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Abstract

We review the basic principles of Quasi-Monte Carlo (QMC) methods, the randomiza-
tions that turn them into variance-reduction techniques, the integration error and variance
bounds obtained in terms of QMC point set discrepancy and variation of the integrand,
and the main classes of point set constructions: lattice rules, digital nets, and permuta-
tions in different bases. QMC methods are designed to estimate s-dimensional integrals,
for moderate or large (perhaps infinite) values of s. In principle, any stochastic simulation
whose purpose is to estimate an integral fits this framework, but the methods work better
for certain types of integrals than others (e.g., if the integrand can be well approximated
by a sum of low-dimensional smooth functions). Such QMC-friendly integrals are encoun-
tered frequently in computational finance and risk analysis. We summarize the theory,
give examples, and provide computational results that illustrate the efficiency improve-
ment achieved. This article is targeted mainly for those who already know Monte Carlo
methods and their application in finance, and want an update of the state-of-the-art on
quasi-Monte Carlo methods.

Key Words: Monte Carlo, quasi-Monte Carlo, variance reduction, effective dimension,
discrepancy, Hilbert spaces.

Résumé

Cet article passe en revue les récents développements théoriques et pratiques concer-
nant les principes de base des méthodes Quasi-Monte Carlo (QMC), les randomisations
qui transforment ces méthodes en techniques de réduction de variance, les bornes sur
Perreur d’intégration et la variance obtenues en termes de la discrépance des ensembles
de points QMC et de la variation de l'intégrale, et les principales classes de construction
des ensembles de points: les regles de réseau, les réseaux digitaux, et les permutations
dans différentes bases. Les méthodes QMC sont congues pour estimer des intégrales en
s dimensions, pour des valeurs de s moyennes ou grandes (potentiellement infinies). Ce
cadre s’applique en principe a toute simulation stochastique dont le but est d’estimer une
intégrale, mais les méthodes fonctionnent mieux pour certains types d’intégrales que pour
d’autres, par exemple lorsque 'intégrande s’approxime bien par une somme de fonctions
lisses en petite dimension. On rencontre souvent de telles intégrales QMC-compatibles en
finance computationnelle et en analyse du risque. Nous résumons la théorie, donnons des
exemples, et présentons des résultats numériques illustrant les améliorations d’efficacité
obtenues. Cet article vise surtout les lecteurs qui connaissent déja les méthodes Monte
Carlo et leurs applications en finance. Il fournit une mise a jour de 'état de I’art sur les
méthodes quasi-Monte Carlo.

Acknowledgments: This work has been supported by an NSERC-Canada Discovery
Grant and a Canada Research Chair to the author. Fred J. Hickernel, Art B. Owen,
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1 Introduction

1.1 Monte Carlo

Monte Carlo (MC) simulation is the primary method for pricing complex financial derivatives,
such as contracts whose payoff depends on several correlated assets or on the entire sample
path of an asset price. The option price p is written as an integral that represents the
mathematical expectation of the discounted payoff under a so-called risk-neutral probability
measure. This expectation is usually with respect to a nonuniform density over the real space,
but with a change of variables, it can be rewritten as an integral over the s-dimensional unit
hypercube (0,1)° = {u = (u1,...,us) : 0 < uj <1 for all j}:

1 1
pmnth)= [ [ du = [ pan=Bp©),

for some function f : (0,1)®* — R, where u represents a point in (0,1)%, and U ~ U(0,1)* is
a random point with the uniform distribution over the unit hypercube [24, 44]. For example,
if the discounted payoff is a function g of s independent standard normal random variables
Z1,...,Zs, then we can write f(u) = g(® 1(uy),...,® !(us)] where ® is the distribution
function of a standard normal random variable.

In this paper, we assume that the integral is already written in the form (1) for a fixed
positive integer s, and we want to estimate p. This s represents the number of calls to the
underlying random number generator used in our simulation. In situations where this number
of calls is random and unbounded, s can be taken as infinite, with the usual assumption that
with probability one, only a finite number of coordinates of U need to be explicitly generated.

In the Monte Carlo method, the estimator is

1 n—1
fin = > f(U), (2)
i=0
where Uy, ..., U,_; are independent random vectors uniformly distributed over (0,1)® and n

is the number of replications (a constant). This estimator is unbiased and has variance o2 /n,
where

o2 ¥ var[f(U;)] = / F2(u) du — p2.

(0,1)°

If 02 < oo, then fi, obeys a central-limit theorem, and we can rely on it to compute a
confidence interval on pu, whose width converges roughly as O(O"I’L_l/ 2). The use of MC
for pricing financial options was first proposed by Boyle [6]. The techniques have evolved
tremendously since then. Recent accounts can be found in [24, 44].

In this paper, we assume that the reader is already familiar with MC methods in finance,
and our discussion is focused on the use of QMC as an alternative. Much of what we say
applies (in principle) to any MC simulation model, and not only to models encountered in
finance.

1.2 Quasi-Monte Carlo

Quasi-Monte Carlo replaces the independent random points U; in (2) by a set of n deter-
ministic points, P, = {up,...,u,—1}, which cover the unit hypercube (0,1)° more evenly
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(uniformly) than a typical set of random points [79, 98]. The point set P, is called a design
by some statisticians. The estimator ji, is replaced by the deterministic approximation

n—1

n= 13 fu) 3)

1=0

The two main classes of constructions for P,, to be discussed later, are integration lattices
and digital nets. QMC methods can also be designed for integrals over other areas than the
unit cube, by constructing point sets directly in those areas, but transforming the integral to
the form (1) is usually more convenient.

There are many ways of measuring the uniformity of P, ; this is usually done via measures
of non-uniformity called discrepancies [17, 18, 28, 29, 30, 31, 73, 79]. Many of them are defined
as the worst-case integration error, with P,, over all functions f of unit norm in some Hilbert
(or Banach) space H [17, 29, 37, 102, 113]. In this type of setting, there holds a general
worst-case error bound of the form

i — pl < D(B)V(f) (4)

for all f € H, where V(f) = || f — u||%, the norm of f—p in H, can be interpreted as a measure
of variation of the function f, and D(P,) is the discrepancy of P,. When H is a Hilbert space,
the discrepancy can then be identified with the norm of some “worst-case” function in H, and
(4) is a form of Cauchy-Schwarz inequality. The right side is the product of two terms: one
depends only on f and the other depends only on P,. Thus, if the function f that we want to
integrate has bounded variation V(f), for a sequence of point sets { P,,, n > 1}, the integration
error converges to 0 at worst at the same rate as D(P,). If this rate beats O(n~'/2), then we
are doing asymptotically better than MC in two ways: the convergence is faster and we have
a worst-case bound instead of just a confidence interval.

Important questions of interest are then: For a given Hilbert space H and a given f € H,
how can we make sure that V(f) < co? Can we compute or bound this variation? How
easily? Can we easily compute D(P,) for large point sets? Can we construct point sets P,
with small discrepancy D(P,)? What is the best rate of convergence we can achieve for D(FP,)
when n — 00? Do we know how to construct explicit sequences of point sets {P,,, n > 1} that
achieve this optimal rate? What about the dependence on the dimension s?7 We will partly
address these questions.

A classic instance of (4), often used to justify QMC, is the Koksma-Hlawka inequality [79]:

where Vik (f) denotes the variation of f in the sense of Hardy and Krause (see [90] for the
definition and a discussion), and D*(P,) is the star discrepancy, defined as follows. For each
point u € (0,1)%, we consider the absolute difference between the volume of the box [0, u)
with corners at the origin and at u, and the fraction of P, that fall in that box, and let D*(FP,)
be the supremum of this quantity over all u € (0,1)%.

There are explicit constructions of sequences ug,uy, ..., in any dimension s, for which
D*(P,) = O(n~'(Inn)*) when P, contains the first n points of the sequence. Thus, for
a function f with Viax(f) < oo, a QMC approximation based on such a sequence gives a
worst-case error bound in (5) that converges as O(n~!(Inn)®). From the practical viewpoint,
however, this classical theory is deceptive. First, as soon as the dimension s exceeds 7 or
8, to have n~'(Inn)® < n~1/2 for all n > ng, we need an ng that is much too large to be
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practical. For s = 8, for example, we already need ng ~ 1.79 x 10%°. Second, the bound in (5)
is typically much too hard to compute to be useful for error assessment. Third, whenever f
is unbounded or has a discontinuity not aligned with the faces of the unit hypercube, Vi (f)
is infinite [90]. This is quite common in financial applications. For example, the payoff of a
standard call option under the Black-Scholes model is unbounded. In the case of an average
over multiple assets or multiple observation times (such as for a Bermudean-Asian option),
it also has a kink not aligned with the axes. Barrier options have a discontinuous payoff.
Discontinuity also arises when estimating sensitivities (the Greeks) for options whose payoff
is otherwise continuous but not everywhere differentiable [24].

In the last decade, researchers have turned their attention to variants of (4) based on other
types of discrepancies and variations, for which V(f) < oo under less restrictive assumptions
and for which D(P,) can be computed efficiently. Popular settings include Sobolev classes
of functions for which the partial derivatives up to a given order are assumed to be square-
integrable, and which are also defined as reproducing kernel Hilbert spaces. The square
variation is defined as a weighted sum, over all subsets of coordinates, of the integrated square
partial derivatives over the subspace determined by these coordinates. A nice feature of this
setting is that by a clever choice of weights, and for standard types of point set constructions,
there are efficient algorithms for computing the corresponding discrepancy, existence results
for point sets with discrepancy below a given value, and concrete methods for constructing
such point sets. Moreover, for any constant « > 0, by making strong enough assumptions
on the smoothness of f (via the square-integrability of high-order partial derivatives), and by
assuming that f is periodic with period 1 with respect to each coordinate, we can obtain a
convergence rate of O(n~**?) for any § > 0 [18, 79, 98].

Convergence of the worst-case error can be characterized from the complexity theory view-
point as follows [17, 37, 101, 104]. For a given family of function spaces H, indexed by their
dimension s, for s > 1 and any € € (0,1), let n(e, s) be the minimal number of points in a
QMC integration rule such that

sup | —p[<e  sup  [ul
rers,IflI<1 FEM, I f1<1

The family is said to be QMC-tractable if n(e, s) increases only polynomially fast in 1/e and
s; that is, if there are non-negative constants C, p and ¢, such that n(e,s) < Ce Ps?. If
this holds with ¢ = 0 (so the required number of points does not depend on the dimension),
then the family is called strongly QMC-tractable. For families of weighted Sobolev spaces,
where the coordinates, or subsets of coordinates, have non-negative weights indicating their
importance in the function f, necessary and sufficient conditions on the weights for tractability
and strong tractability are given for example in [17, 18, 37, 101, 100, 102]. These conditions
show that tractability occurs (roughly) if the integrand depends mostly on a small number
of coordinates, or can be well-approximated by a sum of low-dimensional functions. This is
related to the notions of low effective dimension and variance ratio discussed in Section 1.4.

Instead of the worst-case error, one may also study the average integration error for a
random function f in a given class F. Under mild conditions on F, one can construct a
reproducing kernel Hilbert space H for which the average error over F equals the worst-case
error over functions f € H with variation V(f) < 1. So average error and worst-case error
are equivalent in some sense [34] (see Section 2.2).

These error bounds and convergence rates are nice, but they nevertheless have practical
limitations. For typical applications in finance, V' (f) is too hard to compute, and may be
infinite. Yet, despite the fact that the worst-case error bounds are not practical, QMC happens
to give much more accurate estimates than MC, for certain types of integrands encountered
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in finance, sometimes in hundreds of dimensions or more [1, 9, 43, 57, 94]. Some explanation
of this success will be given in the following. The integration error can be estimated by using
randomized versions of QMC, as we now explain.

1.3 Randomized quasi-Monte Carlo

The difficulty to obtain reliable error estimates with QMC can be addressed by switching to
randomized QMC (RQMC), which turns QMC into a variance-reduction technique [4, 64, 65,
86, 87, 88]. The idea is to randomize P, so that:

(a) it retains its high uniformity when taken as a set and
(b) each individual point is a random vector with the uniform distribution over
(0,1)5.

An RQMC point set is one that satisfies these two conditions. One simple randomization that
satisfies these conditions, for an arbirary point set P,, is a random shift modulo 1 [13, 64, 98]:
Generate a single point U uniformly over (0,1)° and add it to each point of P,, modulo 1,
coordinate-wise. Another one is a random digital shift in base b [63, 65, 73]: generate again
U uniformly over (0,1)*, expand each of its coordinates in base b, and add the digits, modulo
b, to the corresponding digits of each point of P,.

Let fiy rqme denote the estimator (2) in which Uy,...,U,_; are the n randomized points
of an RQMC point set. Under these two conditions, it is easily seen that E[fy, yqme] = p, and
we hope to have the inequality

def ) N )
Jirqmc = nVar|fin rqme] = NE[(fin rqme — ,u)2] < nVarlfi,] = 2. (6)

Because the RQMC estimator is unbiased, this variance is the mean square error. The worst-
case variance over a Banach space H,

sup Var [ﬂmrqmc] ) (7)
V(H<1

is the square of the so-called random-case error [38, 33]. The square worst-case error, on the
other hand, is defined as [33, 38|

E | sup (finrqme — /‘)2 (8)

V(<1

In the situation where f is a random function with some probability measure over H such
that E[V2(f)] = 1, the square average-case error is E[Var|fin rqmc]] [38]. For the worst case
error, we randomize the rule first, then a devil selects a worst-case function f for the real-
ized randomization. For the random-case error, the devil first selects f, then we randomize
the rule. The random-case error can be smaller and may converge faster than the worst-
case error. In fact, for the Sobolev space of functions with square integrable mixed partial
derivatives up to order «, it is known that optimal RQMC rules give O(n“”é ) worst-case
error and O(n~"1/2+9) random-case error [33]. However, explicit RQMC rules that achieve
this random-case rate are still unknown, except for @ = 1, where scrambled nets achieve the
optimal rate [86, 87].

To estimate airqmc and compute a confidence interval on u, we can apply m independent
randomizations to P, and compute X,, and S%m, the sample mean and sample variance of

the m independent realizations Xi,..., X, of [y rqme. Then, E[X,,] = © and E[ng] =
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mVar[X,,] = 07 qme/n [64, 65]. If we assume that X is approximately normally distributed,

then /m(X,, — 1)/Sz.m has approximately the Student distribution with m — 1 degrees of
freedom, and this can be used to compute a confidence interval on p in a standard way.

How should we select m? For a fixed total number of evaluations of f, mn, a larger m gives
a more accurate variance estimator while a larger n usually provides a more accurate estimator
of p. If our main target is really to estimate p, we would normally select m somewhere between
5 and 25. But if it is important to obtain a good variance estimator, for example to compare
the efficiencies of RQMC and MC, it makes sense to take a larger m.

For certain Hilbert spaces of (smooth) functions f and specific classes of (uniform) point
sets P,, variance bounds and asymptotic variance expressions (as a function of n, for either the
worst-case f or an average f in the Hilbert space) can be found in [17, 18, 27, 38, 87, 89, 113],
for example. These variance bounds are typically of the form J,%quc = O(n=2%9) for some
a > 0 and any § > 0, often for o > 1/2. Note that this gives Var[X,,] = O(m~n=20+9),
There are many interesting situations where airqmc is bounded by an expression that con-
verges to zero faster than the squared worst-case error of the corresponding deterministic

QMC method. This gives another important justification for the randomization.

In (2) and (3), the n points are given equal weights, and one may ask if we could do better
with unequal weights. For a fixed f and a fixed deterministic point set P,, this is indeed
generally the case. However, it is shown in [4] that for RQMC, under mild conditions satisfied
by typical RQMC point sets, equal weights are optimal.

Two important classes of RQMC point sets are lattice rules with a random shift modulo 1,
and digital nets with a random digital shift. For these two cases, the lattice or digital net
structure of the point set is preserved by the shift, and explicit expressions for the variance
are available in terms of the squared Fourier or Walsh coefficients of f [64, 65]. Then, by
considering classes of functions for which these coefficients satisfy appropriate convergence
conditions, one can obtain an arbitrary convergence rate for the variance as a function of
n [64, 65]. However, such conditions are difficult to verify in practice (except for special
cases). The ANOVA decomposition discussed in the next subsection is a more aggregated
decomposition that is often more convenient to work with.

Numerical illustrations where RQMC is really effective (empirically) are given in [7, 24,
43, 56, 64], and in Section 8.

1.4 Variance decomposition and effective dimension

In finance applications, integrands f typically have several dozen or even several hundred
dimensions, and (4) does not seem practically useful. In fact, a little thinking immediately
reveals that filling evenly (say) the 100-dimensional unit hypercube would require an excessive
number of points: just to have one point near each corner, we already need n = 2% points!
Then, how can we justify our hope for a substantial variance reduction in (6) when s is large?

The explanation is that in many cases, f can be well approximated by a sum of low-
dimensional functions, that depend only on a small number of coordinates of u. In those
cases, for QMC or RQMC to be effective, it suffices that these low-dimensional functions are

integrated with small error. For example, if s = 100 and f can be well approximated by a sum

of two-dimensional functions f,, where each u satisfies u = {i,j} C {1,...,s} 4 S and the

corresponding f,, depends only on the two coordinates {u;,u;}, then it suffices to construct
P, so that for each function f, in the approximation, the projection of P, over the unit square
in which f, is defined covers that square very evenly.
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For RQMC, this argument can be made rigorous using a functional ANOVA decomposition
of f, as follows [71, 88, 110]. If 0 < oo, there is a unique decomposition of f of the form

fy=p+ > fulw (9)

uCsS, u#¢

where each fy : (0,1)° — R depends only on {u;, i € u}, the f,’s integrate to zero and
are orthogonal, and the variance decomposes as 02 = Y <02 where o2 = Var|[f,(U)] for
U uniformly distributed over (0,1)®. The f, are defined recursively by fs = p (a constant
function) and

fw= [ fwdua- 3 il

(071)87‘“ vCu

for ¢ # u C S, where the first integral is with respect to the coordinates of u whose indexes
are not in u, denoted by uy. For each set of coordinates u, let P, (u) denote the projection of
P,, over the subspace determined by u. For a given function f, if

> ou > po’ (10)
ueJ
for a class J of small subsets of S and some p close to 1, and if we can construct P, so that
the projections P, (u) are highly uniform for all u € J, then the important variance terms o2

can be reduced significantly, thus reducing the overall variance.

If (10) holds for J = {u : |u| < d}, the set of all projections of dimension d or less, we say
that f has effective dimension d in proportion p in the superposition sense [88]. If it holds for
J ={uC{1,...,d}}, wesay that f has effective dimension d in proportion p in the truncation
sense [9]. The latter can sometimes be achieved by redefining the function f without changing
the expectation pu, via a change of variables, in a way that the first few uniforms account for
most of the variance in f [2, 9, 43, 56, 74, 112]. In other words, we change the way the
uniforms are used to generate the estimator in the simulation. We will give examples of this
in section 8. In the context of financial applications, this can be achieved for example by
bridge sampling techniques, principal component analysis, generating the random numbers
in a different order, and replacing certain random variables by their conditional expectations
[1, 2, 24, 43, 57, 76].

The truncation variance ratio of order d is ZuC{l,...,d} 03/02, and the superposition vari-
ance ratio of order d is Zu:M <402/c%. This is the fraction of variance explained by the first
d coordinates, and by the d-dimensional (or less) projections, respectively.

Another decomposition used in this paper is the Fourier expansion of f, written as

)= 3 fh)exp(2mih - ), (1)

heZs

with Fourier coefficients
f(h) = / f(u)exp(—2mch - u)du,
(0,1)¢

where ¢« = v/—1. The Fourier expansion refines the ANOVA decomposition in the sense ‘that
if f has ANOVA expansion (9) and Fourier expansion (11), then the Fourier coefficient f,(h)
of fyis f(h) if u(h) = v, and 0 otherwise, where u(h) = {i : h; # 0} for h = (hy,..., h,) € Z°.
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QMC point sets are usually constructed by making sure that certain types of projections
have good uniformity. One basic desirable property is that all projections contain n distinct
points, the same number as in P,. The point set is then called fully projection-regular [64, 98].
Rectangular grids do not satisfy this property. Constructions for which several projections
are identical are also interesting, because this makes their analysis easier. We say that P,
is dimension-stationary [68] if whenever 1 < iy < ... <i, < sand 1 < j < s — 1y, we
have P,({i1,...,iy}) = Po({i1 + J,...,%; + j}). This means that P,(u) depends only on the
spacings between the indices in u.

1.5 Outline

The remainder of this paper is organized as follows. The next section explains the definition of
discrepancies, variations, error bounds, and variance bounds, defined via reproducing kernel
Hilbert spaces. We see that QMC can provide much faster convergence (asymptotically) than
MC, especially for smooth periodic functions. In Sections 3 and 4, we summarize the main
properties of the two principal types of point sets constructions: lattice rules and digital
nets. Other types of constructions are briefly mentioned in Section 5. In Section 6, we
outline some ways of transforming the function f to reduce its variability or to increase its
truncation or superposition variance ratio of a given order. This includes changes of variables,
bridge sampling, and principal component sampling (for Brownian processes). In Section 8§,
we provide numerical illustrations with option pricing models based on geometric Brownian
motion and variance-gamma processes. The concluding section mentions other extensions not
covered in the paper, and some topics worthy of further investigation.

2 Error and variance bounds via reproducing kernel Hilbert
spaces

2.1 RKHS theory and discrepancies
We start with a symmetric and positive semi-definite function K : [0,1]?* — R, called the
kernel. Symmetric and positive semi-definite means that for any vi,...,v,, € [0,1]° and

m > 0, the m x m matrix whose (,j) entry is K(v;,v;) is symmetric and positive semi-
definite. For each u € [0, 1], let Ky = K(u,-) : [0,1]®* — R. Consider the space of functions

m
HK,() = {f = ZaiKVi TV € [0, 1]8, a; € R, m > 0},
i=1

together with the inner product

m l m L
<f>.g>K = <Z aiKVm ZbJKW]> = Z aiij(Vi7Wj)7
=1 j=1 o i=1j=1

and let Hy be Hg o to which we have added all limits of Cauchy sequences in Hg . This Hx
is a reproducing kernel Hilbert space (RKHS) with kernel K [106]. The norm of a function

f in this space is || f||x = (f, f >}(/2 The kernel has a reproducing property in the sense that
F(u) = (f, K for all f € Hy.

RKHS theory tells us that for any point set P,, there is an explicit function £ € Hg
representing the error functional:

Err(Ky, P,) = &(u) = (£, Ku)k,
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where
1
E P,)=— i) —
x(f,Pa) = = 3 Fw) )
is the QMC error for f with P,. Moreover,

[Ere(f, Po)l = (&, f — ) < l€llx - If = pllx = DP)V(S), (12)

where the inequality is just Cauchy-Schwarz’s, V(f) = || f — u||x is the variation of f, D(FP,)
is the discrepancy of P,, and both depend on K. See [29, 31] for further details. Thus, the
discrepancy is the worst-case error over the class of functions f € Hy for which V(f) < 1.
The (square) discrepancy can be written more explicitly as

D2( n) = llEllF = Er?(E, P)

n—1n—1
s ZZK u;,u;) — —Z K(u;,v dv+/ K(u,v)dudv, (13)
par e [0,1]5 [0,1]25

which can be computed in O(n?s) time if we assume that K and its integral are available in
constant time. The inequality (12) can be generalized further, for example by using Holder’s
inequality instead of Cauchy-Schwarz’s [31].

Specific RKHS constructions are examined in [16, 17, 18, 29, 31, 32, 34, 113], for example.

2.2 Random function f

Suppose now that f is a random function in a space G of functions f : [0,1]* — R endowed
with some probability measure, and that the kernel is defined as

K (u,v) = Cov[f(u), f(v)] = E[f(u)f(v)] = n*(f), (14)

where the expectation is with respect to the probability law of f and u = u(f) depends on
f. In this case, it can be shown that the expected square error equals the square discrepancy
that corresponds to K; i.e., E[Err®(f, P,)] = Err?(¢, P,) = D*(P,). That is, the root mean
square error over G is the same as the worst-case error over {f € Hg : V(f) < 1}, and both
are equal to D(FP,). As a special case, if f is generated from the Brownian sheet measure, then
the corresponding discrepancy turns out to be the classical £y star discrepancy in Eq. (27)
below, without the weights [114].

2.3 Random points

In RQMC, we have a fixed f but P, is randomized and we are interested in the variance
Var[fin rqme] = E[Err?(f, P,)], where the expectation is with respect to the randomization of
P,,. We have

Var[jin rqme] < E[D*(P)VZ(f)] = V(f) - E[D*(P))],

where -
1 n—ln—
E[D2(P,)] :EE%Z%E[K(U,-,UJ-)]—/[OHZS K(u,v) dudv. (15)
1=0 j= >

If both f and P, are random, one simply takes the kernel (14) in (15) to define the discrepancy.
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2.4 Korobov spaces

In one important class of RKHSs, the kernel has the form

K(u,v) = Z w(h)e2“ht(u_") (16)
heZs

where the w(h) are non-negative weights such that ) ;. w(h) < co. The corresponding
inner product is

A~

(frow = Y [w()] ™ f(h)g* (h),

heZs

where the f(h) are the Fourier coefficients of f and the §*(h) are the complex conjugate Fourier
coefficients of g. (When w(h) = 0 we put 1/w(h) = co and we use the convention that 0x co =
0.) This gives a Hilbert space of functions whose Fourier expansion converges absolutely,
named a Korobov space. The corresponding square discrepancy and square variation are

n—1ln—1

D(P,) = % S wm) 33 et - 3 p2(p,) (17)

0#£h€ezs i=0 j=0 ucs

and

2
v = 3 T sy (18)

0#h€eZs w(h) ucs

where D2(P,) is the sum of the terms in (17) for the vectors h whose set of nonzero coordinates
is exactly u. That is, the (square) discrepancy and variation are decomposable in accordance
with the ANOVA decomposition. Note that D2(P,) # D?(P,(u)) = anuDg(Pn). If £(u) is
the representer of the error functional with P,(u), then D?(P,(u)) = [|£(u)||% and D2(P,) =
[|€ul|% for each u, where &, is defined by the ANOVA decomposition of €.

A key issue now is the choice of weights. Different choices give rise to various discrep-
ancies [18, 31]. In general, the weights may depend on s, even if this is not explicit in our
notation. The weights must be selected so that the discrepancy is not too hard to compute,
low-discrepancy point sets can be constructed, and the corresponding variation V(f) is under
control for the functions f of interest in our applications. In view of (18), this means that
appropriate weights should depend on the behavior of the square Fourier coefficients of f.

Unfortunately, we rarely know how the Fourier coefficients behave in applications, so there
is no simple and definitive way of selecting the weights. It is more convenient if V(f) is ex-
pressed in terms of quantities that are easier to compute or to bound. In certain applications,
one can bound the partial derivatives of f, for example, and this has motivated choices of
weights for which V(f) can be written in terms of those partial derivatives [17, 29, 97, 98, 101].

In [18], the weights w(h) are assumed to have the form

w(h) = w(s,h) = v, yn) H |72 = s u(m) Hmin(la |hi|2*) (19)
jeu(h) j=1

for @ > 1/2, where w(0) = 1. These authors provide necessary and sufficient conditions on the
weights v, ,n) for tractability and strong tractability, and prove the existence of lattice rules

for which the worst-case error converges as O(n~*%9) for any § > 0, where the hidden constant
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generally depends on « (and perhaps polynomially on s, unless we have strong tractability).
Convergence rate results of this type have been known for a long time for fixed s [79, 98] and
also for special choices of the weights [17, 101]. However, there are no explicit constructions
available for those lattice rules; they must be found by computer searches for each n and s.
When « is an integer, the corresponding kernel can be written as

_(_47T2)a [yl
Ky(u,v) =1+ Z Ysu [W} HBga((uj —v;j) mod 1) (20)
¢#uCS JEU

where By, is the Bernoulli polynomial of degree 2« (see [98] for the definition; in particular,
Bi(u) = u —1/2 and By(u) = u? — u + 1/6), and the square variation is

2
gelul
dug
/[Y()’l}su (u) u

«
ou?

VA(f) = ) yaa(an?)me

d#uCS [0,1]1xI

duy,, (21)

where u,, represents the coordinates of u whose indices are in u and uy represents those whose
indices are not in u. The corresponding RKHS is comprised of periodic functions f of period
1 with respect to each coordinate, because the Bernoulli polynomials of even degree have this
property. Note that the kernel (20) and the square variation (21) are already decomposed in
the same way as the ANOVA decomposition of f.

With these general weights, the kernel and the discrepancy are too difficult to compute in
general. The sum in (16) is infinite, and the number of terms in (20) grows exponentially with
s. For this reason, more restricted classes of weights, for which simplified and more easily
computable expressions for the kernel are available, have been examined in the literature.
In particular, the weights are said to have the product form if s, = HjEust for some

non-negative constants 7, 1,...,%s,s, which may depend on s. This gives
wh) = T vsqlhsl ™ (22)
jeu(h)

Then, the RKHS H is a tensor product of s one-dimensional Hilbert spaces, and the kernel

becomes
S

(—4n?)
Ky(u,v) = H [1 — WJWBQQ((% —wvj) mod 1), (23)
j=1

which can be computed in O(s) time, so the discrepancy can be computed in O(n?s) time.
Thus, things simplify nicely from the computational viewpoint. For product weights, we
have strong tractability if and only if sup,~;(vs,1 + -+ + 7s,s) < 00, and tractability if and
only if supy>q Y7 In(1 +7s1)/In(s + 1) < oo [18]. That is, the weights s ; must decrease
fast enough with j or s. Note that these conditions do not guarantee fast convergence in n.
Under the stronger condition that supgsq ijl s,j < 0, there exist point sets P, such that

D(P,) = O(n~'*?) uniformly in s.

The weights are said to be order-dependent if 7, ,, depends only on the cardinality of u (and
perhaps on s). They are finite-order weights if there is an integer ¢ independent of s such
that v, = 0 whenever |u| > ¢. Finite order weights can be appropriate for function spaces of
low effective dimension in the superposition sense: if the effective dimension does not exceed
q, then we can disregard the quality of the projections of P, over the subspaces of dimension
larger than ¢, by putting their weights ~,, to zero. There are important applications in
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financial derivative pricing where the effective dimension does not exceed 2 or 3 in proportion
0.99 or more [110, 111, 112, 113], and for which finite order weights make sense. For order-
dependent and finite-order weights, if the weights are bounded, tractability holds and lattice
rules can be constructed that yield an O(n~%%) discrepancy [18, 96, 100] for smooth functions.

2.5 Periodic smooth functions

For periodic smooth functions f with period 1 with respect to each coordinate, and whose
partial derivatives up to some (integer) order aw > 1 are all square integrable, we can achieve
an O(n_o‘+5) convergence of the worst-case error in a RKHS strongly related to that obtained
from (20), and defined as follows [29, 31]. We select a periodic function g : [0,1] — R, with
g(O) = ¢(1), whose derivative of order a, ¢(®), is essentially bounded over [0,1], and with

f g (u)du =0 for v=0,1,...,a. Let M = fol [9'*) (u)]? du and define the kernel

Kuv)=1+ Y vu]] {M + g(uj) + g(vy) — %BM((% —wvj)mod 1)|.  (24)
#uCS jEu ’

The corresponding discrepancy can be written easily via (13).

If g(u) = 0, the kernel (24) is equivalent to the Korobov kernel (20) (the factor 472 can be
incorporated in the weights 75 ).

As another special case, if we take o = 1 and g(u) = —Ba(u)/2, we obtain a weighted La-
unanchored discrepancy which can be interpreted as follows. For each subset ut of coordinates
and u,v € [0, 1]¥ let D(P,(u), u,v) be the local discrepancy for the |u|-dimensional box [u, v)
(with opposite corners at u and v), defined as the absolute difference between the volume of
this box and the fraction of the points that fall in it. The square weighted Ls-unanchored
discrepancy can be written as

Z %u/ 2(Py(u),u,v) dudv. (25)

¢#uCS
2.6 Spaces of nonperiodic smooth functions

A class of discrepancies for smooth functions (not necessarily periodic) can be defined by
selecting an arbitrary function ¢ : [0,1] — R, whose ﬁrst derivative g, is essentially bounded

over [0, 1], and for which fo u)du = 0. Let M = fo 2 du and define the kernel

K(uv) = 1+ Z ’737uH[M+g(Uj)+g(Uj)
¢p#uCS JEU

+(1/2)Ba((u; — v;) mod 1) + Bi(u;) Bi(v))] - (26)

As a special case, by taking g(u) = 1/6 — u?/2, the product in (26) becomes [[jcymin[l —
uj, 1 —vj], and this kernel gives a weighted Ly-star discrepancy whose square can be written

as
= > Yo / D?*(Py(1),0,u) du. (27)
0,1] /]

¢F#uCS
By taking g(u) = 0 for all u, we obtain a discrepancy for which the corresponding square

variation is
vin= Y k[
¢>7éuCS [0,2]1x

a\u\ 2

3uu duy,.

(uy)
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For these two choices of g, regardless of the weights, it is known how to construct infinite se-
quences for which D3(P,) converges as O(n~'*9) where the hidden constant generally depends
on s, and may increase exponentially with s. For product weights, strong tractability holds if

1/2

and only if sup,>q >_7_; 7s; < 00 [17]. Under the stronger condition sup,~q >_7_; 7 I < oo,

S
it is known how to make concrete constructions that achieve the rate O(n~'"°) with a hidden
constant that does not depend on s [49].

2.7 Hilbert spaces based on the Walsh expansion

In Section 2.4, we constructed RKHSs based on a Fourier expansion of f. Similar constructions
can be made for expansions with respect to other types of orthogonal bases. There are many
possibilities, yielding a large collection of discrepancies. One of them, the Walsh expansion,
is interesting because it goes along very nicely with the digital net constructions.

Select a prime integer base b > 2. Let Ny = {0,1,...}. For h = (hy,...,hs) € N and
u= (ug,...,us) € [0,1)°, where

li—1
hj = Jz: hjﬂ'bi, Uj = Zuﬂb_é S [O, 1),
i=0 >1
the digits h;; and u;, are in Zj, and u;, # b — 1 for infinitely many ¢, define
s £j—1
(h,u) = Z Z hjeujer1 mod b. (28)
j=1 =0

The Walsh expansion in base b of f:[0,1) — R is

flu) = fl)emwit,

heNg

with Walsh coefficients
fy = [ a0l g
[0,1)*

In analogy with the Korobov spaces, we can adopt the kernel

K(u,v) = Y w(h)em o/t )
heN;

for some weights w(h), where ©;, denotes the digit-wise subtraction modulo b. If EheNg w(h)

< oo, this gives a Hilbert space of functions f whose Walsh expansion converges absolutely.
The square discrepancy is

n—1ln—1
1 L u; u;
D2(Pn) = Z DE(Pn) =2 Z w(h) Z Z e2me(h,(uiSpu;))/b (30)
ucs 0#heNg i=0 j=0

and the square variation of f is

3 2
v =i - Y L (31)

ucs 0+£heNg
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Again, the choice of weights is a key issue. We can consider similar types of weights as for the
Korobov spaces, and obtain similar discrepancies and error bounds. For product weights, the
discrepancy simplifies as in (23), for example. These spaces are convenient for the analysis of
digital nets. We will return to this in Section 4.6.

2.8 Random shifts for RQMC

For RQMC, in the case of the random shift modulo 1, E[D?(P,)] is obtained with E[K (U;, U;)]

=E[K(u; + U,u; + U)] = E[K(u; — u; + U, U)] o K¢, (u;,u;), which depends only on the
difference (u; — u;) mod 1 (it is shift-invariant) [30, 31]. But any such shift-invariant kernel

has a Fourier expansion of the form

Ksh(u7 V) _ Z w(h)e2mht(u—v)
heZzs

with non-negative Fourier coefficients Kg(h) = w(h) (because the kernel is non-negative
definite). We recover the Korobov kernel (16). The corresponding mean square discrepancy
can then be written as

n—1
E[D2(Pn)]:% 3 wh) Y e (32)
0+4heZs =0

With product weights as in (22), we end up with the kernel (23).

For a random digital shift in base b, a similar expression can be obtained, but with

the Fourier expansion replaced by a Walsh expansion in base b. In that case, we have

E[K(U;,Uj)] = E[K(u; ©p u; &, U, U)] o Kgsn(us,u5), which depends only on u; &3 uj,

where @; denotes the digit-wise addition modulo b. Thus, this kernel has a Walsh expansion
of the form
deh(u7 V) _ Z w(h)e2m<h,u6bv)/b
heNg

with non-negative Walsh coefficients Kqq,(h) = w(h). The corresponding mean square dis-
crepancy can be written as

n—1
1 me(hyu;
E[D*(Po)] =~ > w(h) ) etmhuds?, (33)
0#heNj =0

2.9 Periodizing the function

We saw that better convergence rates can be achieved in spaces of periodic smooth functions
than for non-periodic functions. It seems like a good idea, then, to look for changes of variables
that can periodize a smooth non-periodic function [32, 98]. For convenience, this is usually
achieved by applying a one-dimensional change of variable one coordinate at a time (more
general changes of variables are discussed in Section 6). A general class of such transforma-
tions change the integrand f(uq,...,us) into f(@(u1),...,o(us))|@ (u1) - ¢'(us)|, for some
appropriate smooth one-to-one transformation  : [0,1] — [0, 1], such that ¢*(0) = ¢ (1) =0
for £ = 1,...,a. The new function has the same integral over [0, 1]° than the original one.
Specific choices of ¢ proposed in the literature include polynomial and trigonometric functions
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whose degrees or frequencies increase with « [7, 40, 98]. A major problem with this type of
transformation is that while making the function periodic, it can also increase its variation
V(f). In particular, we have to be careful that |¢'(u)| does not become too large.

A variant of this is to select a continuous transformation ¢ : [0,1] — [0, 1] (not necessarily

one-to-one) with the property that ff o(u)du = b — a for every interval [a,b] C [0,1], and
©(0) = ¢(1). Then,

() du = f(p(w)) du,
[0.1)¢ 0.1

where p(u) = (¢(u1),...,¢(us)). Note that this can be conveniently implemented by trans-
forming the points P, by applying ¢ to each coordinate, and keeping f unchanged (so the
simulation program that computes f needs no change). This means in particular that if we
are in a RKHS with kernel K, then the discrepancy of the transformed points is obtained
simply by replacing K (u,v) by K(p(u),¢(v)) in the discrepancy formula [32]. This applies
to either deterministic or randomized points. When the points are randomized (RQMC), this
transformation must be applied after the randomization.

Perhaps the simplest such transformation takes p(u) = 2u for u < 1/2 and ¢(u) = 2(1—u)
for u > 1/2. It stretches each coordinate of each point u; by a factor of two, then fold
back the coordinates that become larger than 1. It is known as the baker’s transformation.
Equivalently, this transformation can be visualized as contracting the graph of f (for any given
coordinate) horizontally by a factor of two, so the function is now defined over the interval
[0,1/2] only, and then making a mirror copy over the interval [1/2,1], so the transformed
function is now symmetric with respect to 1/2, and its periodic continuation of period 1 is
continuous.

By replacing the kernel K(u,v) with K(¢(u),p(v)) in the appropriate discrepancy ex-
pressions, Hickernell [32] obtains explicit discrepancy expressions for an arbitrary point set
randomized by a random shift followed by a baker’s transformation, for a Hilbert space of
(non-periodic) functions with square integrable partial derivatives of order 2. He also pro-
vides a simplified expression for the case of a randomly shifted lattice, and uses it to show the
existence of lattice rules for which this discrepancy is O(n~2%°) for fixed s. In other words,
adding the baker’s transformation to the random shift reduces the variance from O(n=2%?) to
O(n~%*9) for non-periodic smooth functions. A similar result applies to a digital net with a
random digital shift [14]. Empirical results showing significant variance reductions provided
by the baker’s transformation can be found in [57, 62|, for example.

A natural question to ask at this point is: To what extent do the integrands encountered
in finance fit the function spaces examined here? The truth is that these integrands rarely
belong to the smooth Sobolev spaces of functions with square-integrable partial derivatives
of high order. In fact, these integrands are often non-differentiable at some points. Nev-
ertheless, RQMC with point sets constructed along the lines discussed in this paper often
provides significant variance reduction (and efficiency improvement), as illustrated in Sec-
tion 8. The links between this success and the convergence results discussed here has yet to
be clarified. It seems that the main explanation of RQMC effectiveness in finance is the fact
that integrands are often of very low effective dimension in the superposition sense, and can
often be transformed to have low effective dimension in the truncation sense. The impor-
tant low-dimensional functions of the ANOVA decomposition are often non-differentiable on
a lower-dimensional manifold (e.g., at one point in the one-dimensional case), but are smooth
elsewhere, and RQMC appears to work well for these types of functions.
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3 Lattice rules

3.1 Definition

An integration lattice is a vector space of the form

S
Li=<(v= Zhjvj such that each h; € Z 3 ,

j=1
where vi,...,vs € R® are linearly independent over R and where Lg contains Z°, the set of
integer vectors. The QMC approximation of u with P, = Ls N [0,1)° is a lattice rule [98].
The matrix V whose rows are the basis vectors vi,..., vt is a generator matriz of Ls. The

columns of its inverse W = V~! form a basis for the dual lattice, defined as
L:={heR*:h'veZforalve L}

It turns out that Lg contains Z° if and only if all entries of W are integers. In this case, one
has n = det(W) (the determinant of W) and all coordinates of all points of P, are multiples
of 1/n. Each projection of Ly over a subset u of coordinates is also an integration lattice L(u),
with dual L*(u), and which determines a lower-dimensional lattice rule based on the point set
P, (u).

The rank of Ly is the smallest r such that one can find a basis of the form vy,... v, e,11,
-, €5, where e; is the jth unit vector in s-dimensions. Most lattice rules used in practice
are of rank 1 [64]; their corresponding point set can be written as

P,={v=ivimodl,i=0,...,n—1} = {(ia; mod n)/n,i=0,...,n— 1},

where a; = (a1,...,as) and vi = a;/n. The set P, is fully projection-regular if and only if
r =1 and ged(aj,n) =1 for each j, and in that case there is no loss of generality in assuming
that a1 = 1.

A Korobov rule is a lattice rule of rank 1 for which a; = (1, a, a® mod n, ..., a*! mod n)

for some a € Z,,. Its point set can be written as P, = {(x¢/n,...,zs_1/n) such that z¢ € Z,
and x; = axj—; mod n for all j > 0}. This is the set of all vectors of s successive values
produced by a linear congruential generator (LCG) with modulus n and multiplier a, from all
possible initial states (including 0) [64]. The equivalent recurrence x;/n = u; = au;j_; mod 1
offers a convenient way to enumerate the points, especially when this recurrence has full
period n — 1, i.e., when n is prime and a is a primitive element modulo n. For the ¢th point,
we can start with u; = i/n and apply the recurrence to obtain the successive coordinates
U9, ..., us. Korobov point sets are actually infinite dimensional, because an unlimited number
of coordinates are defined by this recurrence.

Sequence of embedded lattices Lgl) C Lg2) C ng) C ..., constructed so that each lattice
contains the previous one, have been studied in [11, 13, 35, 47]. They permit one to increase
the cardinality of P, sequentially, until a given accuracy has been achieved, for example. A
simple (and practical) case where ng ) is a Korobov lattice with n = n() = 2/ and multiplier
a = a9 = qUt) mod 27, is proposed in [35]. An infinite sequence can be defined simply by
specifying an infinite sequence of multipliers that satisfy this condition.
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3.2 Randomization, discrepancies, and parameters selection

Lattice point sets are usually randomized simply by a random shift modulo 1, as proposed in
[13]. The lattice structure of the points is preserved by the shift, in the sense that we have
a shifted lattice. L’Ecuyer and Lemieux [64] have shown that with a randomly-shifted lattice
rule, whenever 02 < 0o, the variance of the RQMC estimator is exactly:

Var[jinqmel = Y [f(B)]%, (34)

0+£heLx

where the f (h) are the Fourier coefficients of f. The same expression was obtained earlier by
Tuffin [105] under stronger conditions. Given that the goal is to minimize the variance, this
expression tells us that for a given f, the most relevant discrepancy is exactly the expression
(34). This suggests a general class of discrepancies (or figures of merit) for lattice rules, of
the form [28, 64, 65]:

0+£helLs

where the weights w(h) try to mimic the anticipated behavior of | f(h)|2. If F(w, ¢) is the class
of functions f whose squared Fourier coefficients satisfy |f(h)|? < cw(h) for all h € Z*, for
some constant ¢, then we have the variance bound Var|fiy rqme] < ¢ My, ( ) for any mtegrand
f e Flw,c). With no randomization, the integration error fi, — u is also given by (34),
but with the square removed, and under the restrictive condition that the Fourier expansion
converges absolutely. We also had the latter condition for the Korobov spaces earlier. It is
important to underline that the variance expression (34) holds under a much weaker condition
than that. Only the sum of squared Fourier coefficients needs to converge. The function f
does not have to be bounded, for example. Owen [91] studies QMC for unbounded integrands
from another viewpoint.

In the case of an integration lattice, it turns out that Z" ! e2mh'u — pif e LF, and 0
otherwise [98, Lemma 2.7], and therefore the criterion (35) is exactly equivalent to both (17)
and (32). We are back to the same weight selection problem. The square discrepancy for the
kernel (23) simplifies to

n—1 s )
Dpy =1+ 3 IT (140 St Bantu2). (36)

=0 j=1

which can be computed in time O(ns), and is also a weighted version of a criterion known as
Py, [29]. (Several authors name it P, [98]; their o corresponds to our 2a.. The weights used

in [29] are 62 = 4nly 1/ “.) The unweighted case of this criterion, where v; = 1 for all j, with
a =1, was exammed long ago [98] and specific parameters were proposed. Good lattices for
more general weights can be found in [83, 84, 99|, for example. For the same Hilbert space
as in (36), a discrepancy that takes into account the random shift modulo 1 followed by a
baker’s transformation, computable in O(ns) time, is given in [32], Eq. (16).

There has been strong interest recently in a technique called component-by-component
(CBC) construction, for rank-1 lattices [11, 17, 49, 50, 83, 96, 99]. The idea, for a given n, is
to select the components a; of the vector a; = (a1,. .., as) iteratively: Start with a; = 1, and
at step j, with the previously selected components a1,...,a;_1 fixed, select a; to optimize
a given figure of merit (discrepancy) for the j-dimensional lattice with generating vector
(a1,...,a;). This greedy technique drastically reduces the number of possibilities that need
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to be examined for a;. A remarkable result is that by restricting the search in this way,
one still obtains lattice rules that achieve the same theoretical rate of convergence for the
discrepancy as for the best provable bounds. This has been established for several Hilbert
spaces of functions by various authors. Fast computational algorithms have also been designed
to speed up this search [11, 83, 84]. These CBC algorithms can compute the vector a; in
O(nlog(n)s) time using O(n) memory for product weights, and in O(n[log(n)s + s?]) time
using O(ns) memory for order-dependent weights. They are fast enough to allow on-request
(just-in-time) construction of lattice rules for parameters s, n, and weights that are relevant
for a given application and can be provided by the user, e.g., from a simulation program.

Most of the (square) discrepancies mentioned so far can be written as sums over the pro-
jections u and/or over the points u; or the pairs (u;, u;). Several other types of discrepancies
proposed in the literature are written as a supremum over similar terms (or a minimum, with
the terms inverted). The idea is that in view of (34), we may want to use a criterion of the
form

M., (P,) = sup w(h) (37)
0#£heLx
or equivalently
1/M.,,(P,) = min 1/w(h
JM(P) = min, 1/u(b) (39)

instead of (35). Two figures of merit of the form (38), proposed long ago, are the Zaremba
index, where 1/w(h) = [];cym) [hj], and the trigonometric degree (plus 1), where 1/w(h) =
> jcu(h) |hj| [12, 98]. The second one represents the minimal number of hyperplanes to cover
all the points of P,, minus 1 in some cases [48]. If we take 1/w?(h) = > jeuh

then the criterion (37) corresponds to the spectral test, used to assess the quality of random
number generators [28, 48, 55], and which represents the largest distance between equidistant
parallel hyperplanes that cover all the points. Note that all these criteria measure the length
of the shortest nonzero vector h in the dual lattice, using a different notion of length. Other
definitions of lengths could be used as well. In each case, all the functions f whose Fourier
expansion can be written only in terms of vectors h whose length is smaller than the criterion
are integrated exactly (with zero error, or zero variance in the case of a randomly-shifted rule)
by the lattice rule.

) h? instead,

These criteria based on worst-case length can be generalized by weighting the lengths in
some way, for example as a function of u(h). This is often done by using a theoretical upper
bound w(n) on the length of the shortest nonzero vector in the dual lattice for an integration
lattice of density n in d dimensions. The length 1/w(h) is divided by wru(h)‘(n) to provide a

standardized number between 0 and 1 [54, 55, 64, 68]. More generally, we might divide 1/w(h)
by Wy (n), for some numbers wy(n) > Wiy (n), to reduce the weights of the projections (or

coordinate subsets) deemed less important. When s is large, to speed up the computations,
we may restrict ourselves to a subclass J of the sets of indices u C S, and put w(h) = 0
whenever u(h) ¢ J. This gives a criterion of the general form

. . h ~ —1‘
gél}loyéhe?;ﬁ(h):h[w( Jou(n)] (39)

This type of criterion, with 1/w(h) taken as the Euclidean norm of h, has been proposed in
[64, 68] and used to compute tables of parameters for Korobov rules [64]. Simplified versions
of it have been used for a long time to measure the quality of random number generators
[48, 54, 58]. Ome advantage of this type of criterion is that for certain choices of length
(including the Euclidean one), its computation time is pretty much independent of n, so it



18 G-2008-55 Les Cahiers du GERAD

can be convenient for large values of n. On the other hand, its computing time is generally
exponential in d = sup{|u| : u € J}, and also linear in |7|. Values of d of up to a few dozen
can nevertheless be handled [54, 55, 64].

With all these potential selection criteria for lattice rules, one would certainly wonder which
one should be used in practice for typical finance applications, and what is the difference of
RQMC variance between the rules selected via different criteria. There is still no clear and
complete answer to these questions. Partial results, for simplified models, can be found in
[108, 110, 111, 112, 113].

4 Digital nets and sequences

4.1 Definition and constructions

The following digital method, introduced by Niederreiter [77, 79], provides the second main
class of construction methods of low-discrepancy point sets and sequences. Let b > 2 be an
arbitrary integer, usually a prime, called the base. A net of n = bF points in s dimensions is
defined by selecting s generator matrices Cy,...,Cs, where each C; is (in theory) an co x k
matrix with elements in Z; = {0,...,b — 1}. The matrix C; determines the coordinate j of
all the points. To define the ith point u;, for i = 0,...,b" — 1, we write the digital expansion
of 7 in base b and multiply the vector of its digits by C;, modulo b, to obtain the digits of the
expansion of u; ;, the jth coordinate of u;. That is,

k—1
T = Zambz,
=0

4,0
ui7 -71
~ ai,1
Uij2 | = Cj i mod b, (40)
Qg k—1
o
—/
’LLZ'J' = Z’LLL]',gb s and u; = (ui,l, e ,’LLLS). (41)
/=1

The resulting point set is a digital net in base b. In practice, the expansion (41) is truncated
to r digits for some r, so each C; is a r X k matrix. Typically, r is equal to k, or is slightly
larger, or is selected so that b" is near 23!. We assume that the first k& rows of each C;
form a nonsingular k x k matrix; in this case, each one-dimensional projection P,({j}) of
P, over the jth coordinate, truncated to the first k digits in base b, is equal to the set
Zn/n={0,1/n,...,(n—1)/n}. However, these numbers are enumerated in a different order
for the different coordinates. In other words, the first k rows of C; implement a permutation
of Z,/n. The choice of these permutations is the key factor for the uniformity of P, and of
its projections P, (u). If all the permutations were the same, all the points would fall along
the main diagonal of the unit hypercube. More generally, each projection P, (u) of a digital
net (or sequence) is also a digital net (or sequence), with generator matrices Cj;,...,C;, if
u= {’il,...,id}.

What we just gave is a somewhat simplified definition of a digital net. It covers the
most popular constructions. The setting of [79] is more general: one can apply bijections
(or permutations) to the digits of Z; before and after the multiplication by C;. This is
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done by taking an arbitrary ring R of cardinality b, and defining bijections v, : Z; — R for
0=0,....,k—1,andnjp: R— Zy for £ =1,...,rand j =1,...,s. In (40), each digit a; is
replaced by vy (a;¢), and the multiplications by C; are done in the ring R. Then, in (41), each
u; ;¢ is replaced by n; ¢(u; j¢). These bijections give additional opportunity for improving the
uniformity. If R = Zj, they are equivalent to permuting the digits of Z;. If b is a power of
a prime, then R can be taken as a finite field, so the multiplications by C; are performed in
the finite field (allowing this was the original reason for introducing the bijections).

If each C; has an infinite number of columns, then we have an infinite sequence of points,

called a digital sequence in base b. The first k columns determine the first b* points, for
any k. Well-known examples are the sequences of Sobol’ [103] in base 2, of Faure [20] in prime
base b, of Niederreiter [77], and of Niederreiter and Xing [82]. With an infinite sequence of
matrices C;, we have an infinite-dimensional digital net. These infinite sequences of columns
and matrices are typically defined via recurrences (each column and matrix being a function
of the previous ones).

When n is fixed, we can enumerate the points in any order, so one (simple) possibility is to
use the identity permutation for the first k& digits of the first coordinate. That is, the points
are enumerated by their first coordinate. To do that, the first k& rows of C; must form the
reflected identity matrix, with a 1 in row k£ — ¢+ 1 of each column ¢ and 0’s everywhere else.
If the first k rows of C; form the identity instead, then the corresponding output (looking at
the first & digits only) is the first n elements of the van der Corput sequence in base b, defined
as ¥p(0),9¥p(1),¥p(2), ..., where ¢y, : N — [0,1) is the radical inverse function in base b:

Wy(i) = agb™ " +arb 2+ -+ + ap_ b "
if i is a k-digit integer in base b with digital b-ary expansion i = ag + a1b + - - - + ap_1bF L.
The first n elements of a van der Corput sequence fill up the unit interval quite uniformly for
any large enough n. The uniformity is better when n is a power of b. When n is not fixed
in advance, for example if we add points until we think the estimate is sufficiently accurate,
then we need a digital sequence and the best constructions typically take C; (truncated to
its first k& rows) equal to the identity.

4.2 Measures of uniformity via equidistribution

For a vector q = (q1,...,qs) with non-negative integer coordinates, and a base b > 2, if we
partition the jth axis into b% equal parts for each j, we obtain a partition of [0,1)° into
bd1+T4s rectangular boxes of the same size and shape. We call it a q-equidissection in base
b. A point set P, of cardinality n = b* (usually a digital net in base b) is q-equidistributed in
base b if each box of this equidissection contains the same number of points of F,, i.e., exactly
b! points where t = k—q — - - - — q,. For a digital net in base b, this property is easy to verify:
It holds if and only if the set of k — ¢ = ¢1 + --- + ¢; rows that comprise the first ¢; rows of
C;, for j =1,...,s, is linearly independent in the finite ring R (regardless of the bijections

1y and nﬂ).

The point set P, is called a (t, k, s)-net in base b if it is (q1, . . ., ¢s)-equidistributed whenever
@1+ +qs < k—t[79]. We call the smallest such ¢ the t-value of the net. A digital sequence
{ug,uy,...,} in s dimensions is a (t, s)-sequence in base b if for all integers k > 0 and v > 0,
the point set Q(k,v) = {w; : i = vb¥ ... (v +1)b¥ — 1} is a (¢, k, s)-net in base b. The t-value
is the most widely used figure of merit for digital nets. Its justification is that for a fixed s, for

(t,k, s)-nets or (t,s)-sequences with bounded t-value, the star discrepancy D*(P,) converges
as O(n~1(logn)*~1).
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Ideally, we would like the t-value to be zero, but there are theoretical bounds on the best
that can be achieved. In particular, a (0, k, s)-net in base b can exist only if b > s — 1, and
a (0,t)-sequence in base b can exist only if b > t. Lower bounds for general pairs (b, s),
together with the best values achieved by known constructions, are tabulated in [95]. As an
illustration, for b = 2, s = 20, and k = 16, so n = 2'%, we know that the t-value cannot get
below 9. Reaching this optimal value only guarantees equidistribution when there are at most
27 = 128 boxes, that contain at least 27 = 512 points each.

The difficulty is that a small ¢-value would require equidistribution for a very rich family
of partitions into rectangular boxes, and this becomes impossible when t is too small. This
explains the large lower bounds on the t-value. One alternative is to consider a smaller family
of partitions; for example, only cubic boxes [53, 63, 65]. The largest ¢ for which P, is (¢, ..., ¢)-
equidistributed is called the s-dimensional resolution of P,. This value cannot exceed |k/s]
and we call the difference § = |k/s| — ¢ the resolution gap of P,.

These definitions also apply to the projections P,(u) of P,, for u = {iy,...,iq} C S.
Let t, and 0, denote the t-value and the resolution gap associated with P,(u), and t|*u| the

lower bound on t,. Simple measures of non-uniformity for digital nets can be defined by
[56, 65, 69, 92]:

max ydy,  or > by, or

ueJ
* *
131154}(711 [tu_t‘ud ) or Z’Yu [tu_t\ud )
ueJ

for some non-negative weights ~,, where 7 is a preselected class of index sets u. The choice of
J and of the weights 7, is a matter of compromise. If J contains too many sets, the selection
criterion is more costly to compute, and its best possible value is larger, which means that the
criterion is generally less demanding for the important projections. The weights are sometimes
taken all equal to 1.

4.3 Classical constructions

The oldest and most popular type of digital sequence, introduced by Sobol’ [103], is in base 2
and uses upper triangular binary matrices C; with 1’s on the diagonal. These matrices have
an infinite number of rows and columns. In each column, the bits above the diagonal are
taken from the binary expansion of some real number which Sobol’ calls direction number.
These direction numbers obey a bitwise recurrence across columns. Their choice determines
the quality of the net. The original values proposed by Sobol’ were selected to provide
(1,...,1)- and (2,...,2)-equidistribution only (i.e., by considering only the first two bits of
each coordinate). In particular, no attention was paid to the quality of the projections P, (u)
in two or more dimensions, and the uniformity of these projections often turns out to be
quite bad [75]. Different direction numbers, based on stronger equidistribution properties,
are proposed in [46, 67]. Generator matrices can be defined easily for an arbitrary additional
coordinates without modifying the previous ones, so the dimension is virtually infinite.

Faure [20] proposed digital sequences with generator matrices C; = P! mod b, where
the base b is prime and P is a k x k upper triangular matrix whose entry (I, ¢) is the number
of ways of choosing | — 1 elements among ¢ — 1 for [ < ¢ and is 0 for [ > ¢. This gives
C; =1 (the identity) and C; = PC;_; mod b. Faure [20] proved that if b is prime and b > s,
this sequence is a (0, s)-sequence in base b. Unfortunately, the condition b > s is a practical
limitation when the dimension s is large. Moreover, since the choice of b depends on s, the
dimension must be fixed a priori.
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Niederreiter [77] and Niederreiter and Xing [82] proposed sequences and nets for arbitrary
prime power bases and nets in base 2 with better ¢-value than those of Sobol’. The sequence
of [77] can be viewed as infinite-dimensional, but not that of [82].

For all these sequences, if we fix the number of points n = bF, we can take C; equal
to the reflected identity, so the first coordinate of point ¢ is i/n, and we move up all other
coordinates by one position. In a sense, we save one coordinate. From a (t, s)-sequence, we
can then obtain a (¢,k,s + 1)-net for any k.

Other types of digital net constructions can be found in [5, 19, 63, 69, 80, 92, 95] and the
references given there.

4.4 Polynomial lattice rules

Polynomial integration lattices are a special case of digital nets. They are similar to the
ordinary integration lattices, except that they are defined in different spaces. Let b be an
arbitrary integer larger than 1, Z; the residue ring of integers modulo b (the base), Z[z]
the ring of polynomials with coefficients in Z;, and L; the ring of formal Laurent series with
coefficients in Zj, of the form 2 xpz~ ¢, where zy € Zy. A polynomial integration lattice is
defined as

Ls=1V(z)= qu(z)vj(z) such that each q;(z) € Zp[2] p , (42)
j=1

where v1(2),...,vs(z) € L; are defined by v;(z) = a;(2)/P(z), where P(z) = 2 + ay2*~1 +
-+ 4 o € Zp[z] and each a;(z) is a vector of polynomials of degree less than k. Note that
(Zo[2])* € Ls.

An output mapping ¢ : Ly — R is defined by

© (i (L’gZ_Z> = ixgb_g.
l=w {=w

The polynomial lattice rule uses the node set P, = ¢(Ls) N[0,1)° = p(Ls N Lyg), where
Lyo = Ly mod Zp[z]. Polynomial lattice rules of rank 1 were introduced in [78]. They were
generalized to rules of arbitrary rank over a finite field in [66, 69] and over the ring Z in [56].
Most of the properties of ordinary lattice rules have counterparts for the polynomial rules
[56]. In particular, figures of merit similar to (37), (38), and (39) can be defined in terms of
shortest vectors in the dual lattices, and CBC constructions can provide good parameters for
discrepancies based on the Walsh expansion, of the general form (30), with product weights
[14, 15, 16].

4.5 Randomizations and scramblings

It was pointed out in [63, 64, 66] that for a polynomial integration lattice, a random shift of
L in the space of formal series is equivalent to a random digital shift in base b, already intro-
duced in Section 1.3 and appropriate for digital nets in general: Generate U = (Uy,...,Us)
uniformly over (0,1)°, write the digital expansion in base b of each of its coordinates, say
Ui =>4 dﬂb_z, then add d;, modulo b to the /th digit of the digital expansion in base b
of the jth coordinate of each u; € P,. For b = 2, the digitwise addition modulo b is a bitwise
exclusive-or; it can be computed very quickly on a computer. For a digital net, this digital
shift, and all the scrambles that we discuss below, preserve the g-equidistribution properties



22 G-2008-55 Les Cahiers du GERAD

for all vectors q, as well as the (¢, k, s)-net properties. That is, if P, is g-equidistributed
before the shift or the scramble, it remains so after it, regardless of its realization.

The random digital shift provides an unbiased estimator of © with a small amount of work.
However, a deeper scrambling (more randomization) sometimes gives more variance reduction
because the average point set over the class in which we randomize can have better uniformity
in the larger class (with more randomization) than in the restricted class (with the random
shift only).

Owen [85] proposed a nested uniform scrambling, for digital nets, which randomly per-
mutes the values {0,...,b— 1} used for the digits u; ; s, independently across the coordinates
and across the digits. He showed in [87] that for functions whose mixed partial derivatives
satisfy a Lipschitz condition, with a (¢, k, s)-net scrambled in this way, the RQMC estimator
has variance of O(n~3(logn)*). Unfortunately, this method requires (1 4+ b + --- + b 1)s
independent permutations to scramble the first £ digits, so it is very time-consuming. For
b =2 and ¢ = 20, for example, we would need more than one million permutations for each
coordinate. A simplified (and faster) implementation is proposed in [23]. In practice, one
can take £ = k — 1 and then apply an independent random digital shift to the remaining bits
(Wi j k> Wi jkt1,--. for each (i,7). This is equivalent to the full scrambling.

A class of less expensive approaches that perform well, for digital nets, are the linear
scrambles [21, 39, 73, 89], which multiply each matrix C; by a random invertible matrix M;;,
modulo b. Usually, M; is a w x w lower triangular matrix, with invertible elements modulo b
on its diagonal, and it multiplies C; on the left. Each M, can be generated at random in some
class, or can be constructed to minimize some measure of discrepancy. In a version proposed
in [39, 73], the diagonal entries are generated uniformly over {1,...,b — 1}, and the entries
below the diagonal are generated uniformly over {0,...,b — 1}, all independently. A linear
scramble alone does not provide an unbiased estimator, but its combination with a random
digital shift modulo b does. The striped matriz scramble proposed by [89] adds the constraint
that in any given column, all entries below the diagonal are equal to the diagonal entry, which
is generated randomly over {1,...,b — 1}. In base 2, all entries on or below the diagonal are
equal to 1. With this scramble, the points enjoy global and local antithetic properties in each
dimension, and yields O(n~%) variance for smooth one-dimensional integrands (and therefore
for the smooth one-dimensional components of the ANOVA decomposition).

4.6 Variance and error analysis via Walsh expansions
Digital nets have a dual space
C:={h e Nj: (h,u) =0 for all points u € P,}

that plays a similar role as the dual lattice L* for integration lattices [56, 65, 66, 69, 81].
This space is closed with respect to digital addition in base b and multiplication by an integer
modulo b, so it is actually a lattice, even though the digital net itself is not necessarily the
intersection of a lattice with the unit hypercube [56]. The dual space C} indicates which digits
of the points are equidistributed, in the following sense. The nonzero digits h;, of any given
h € N§j form a bit mask that selects a set of digits w; 11 of the points via (28). The vector
of these selected digits is equidistributed, i.e., each possibility appears the same number of
times for this vector, if and only if h is not in C}. In other words, each vector h corresponds
to a given partition of [0,1)%, and the point set is equidistributed for a given class of such
partitions if and only if no h from that class belongs to C;. Uniformity criteria can be defined
in terms of the length of a shortest nonzero vector in C;, for some definition of length on the
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vectors h [56, 69, 81]. The resolution gap and the t-value, for example, can be expressed in
this way.

Recently, Dick [16] introduced a generalization of the t-value, named the ¢(«)-value, based
on a length of h defined as the sum of the o most significant nonzero digits of each coordinate
of h, for a given integer v > 1. This definition of length is a way to select which vectors h
should be kept out of C¥. He constructs explicit digital sequences with bounded t(«a)-value,
and proves that for such sequences, for the Sobolev space of functions with square integrable
mixed partial derivatives up to order «, the worst-case error converges as O(n_a+5 ). With a
random digital shift, the root mean square error converges at the same rate. Dick’s remarkable
result provides the first explicit construction that achieves this optimal rate for this Sobolev
class.

It is proved in [65, 66] that whenever o> < oo, the variance of the RQMC estimator of
w(f) for a digital net with a random digital shift modulo b is exactly

Var[:&n,rqmc]: Z |f(h)|2’ (43)

0+£heCs

where the f (h) are the coefficients of the Walsh expansion of f. This expression is the ultimate
discrepancy measure for a given f, for this RQMC scheme.

As for lattice rules, this suggests a general class of discrepancies of the form [65]:

Mw(Pn): Z w(h)v (44)

0#£heC:

with weights w(h) that should match the behavior of | f(h)|2. If F(w, ¢) is the class of functions
f whose squared Walsh coefficients satisfy | f(h)[> < cw(h) for all h € N§, then Var[ji, rqme] <
cMy(P,) for any f € F(w,c). Without the randomization, the integration error fi, — p is
also given by (43), but with the square removed, and under the restrictive condition that the
Walsh expansion converges absolutely. In the case of a digital net, E"_Ol e2mu(h,ui) /b

=

h € C}, and 0 otherwise, and then (44) is equivalent to both (30) and (33).

=nif

Much of what applies to lattice rules has a counterpart for digital nets (or at least to their
polynomial lattice subclass) [15, 16, 56, 65, 69].

5 Other types of constructions

5.1 Hammersley Point Sets and Halton Sequence

Digital nets and sequences can be further generalized by allowing different bases for the
different coordinates, say b; for coordinate j. For example, the point sets introduced long ago
by Hammersley [26] have

u; = (Z/n7 wbl (2)7 wbz (Z)v s 71/}6371 (Z))v (45)

for i =0,...,n—1, where the basis b; used for coordinate j is the jth smallest prime number.
Here, Cy is the reflected identity and Cj is the identity for all j > 0. The corresponding
infinite sequence, proposed by Halton [25], takes

u; = (vn, (0), 9p, (2), - - o, () (46)
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for all i > 0, where b; is again the jth smallest prime. One drawback is that b; becomes quite
large for large j. In any case, the identity matrices C; could also be replaced by more general
generating matrices, which may give room to improve the uniformity.

In [109], the Halton sequence is randomized simply by selecting the starting point ug
randomly over (0,1)%, truncating its coordinates to a finite digital expansion, and exploiting
the fact that there is a simple way of getting (i + 1) directly from (i), so the successive
points can be generated without knowing their indices ¢ in the original sequence. They show
that this method satisfies conditions (a) and (b) of Section 1.3. In their numerical experiments,
it performs much better than randomly shifting (modulo 1) the Halton sequence.

5.2 Recurrence-based point sets

Infinite-dimensional point sets can be defined in a similar way as random number generators by
selecting a state space S = {sg,...,Sp—1} of cardinality n, a transition function ¢ : § — S,
and an output function g : § — [0,1). The n points P, = {uy,...,u,_1} are defined by
u; = (9(si),9(0(8:)), 9(0%(54)),...). Often, ¢ defines a recurrence of period n — 1 (it visits
all the states except one, which is usually so = 0, for which ¢(sg) = sg). Then the points are
easy to enumerate with very little storage: just run the recurrence over its full cycle and take
all overlapping vectors of successive values produced by that recurrence, plus the additional
vector whose coordinates are all g(0). One example of this is to use a small linear congruential
generator with prime modulus n and primitive multiplier a; this is equivalent to a Korobov
lattice rule [55, 64]. Another example is to use a small linear feedback shift register generator
in base 2, with primitive characteristic polynomial [63, 66]. Point sets are implemented in
this way in SSJ [60], for example.

6 Transforming the integrand

6.1 Change of variables

Improving the uniformity of the point set P, is not the only way to reduce the error or
variance. Another way is to change the function f to reduce its variability or its effective
dimension without changing its mean. The primary technique for reducing the variability
is a change of variable. Define a differentiable one-to-one function ¢ : [0,1]° — [0, 1]°, where
o(v) = (p1(v),...,ps(v)) for v = (v1,...,vs) € [0,1]%, and write

h /(0,1)8 flw)du = /(071)s Flev)J(v)dv = / g(v)dv,

(0,1)®

where J(v) is the Jacobian of the transformation ¢ at v, defined as the determinant of the
s X s matrix whose element (7, j) is d¢;(u)/0u;. To estimate p by MC or QMC or RQMC, we
compute the function g (instead of f) at each point, and average. Note that this is exactly
equivalent to applying a change of measure as in importance sampling: the uniform density of
u is replaced by the density 1/J(v) obtained for u = ¢(v) when v is uniform. The aim is to
select ¢ so that g has smaller variation than f. Another reason for using a change of variables
is to periodize the function (see Section 2.9 and [98]). Other standard variance reduction
techniques such as control variates and conditional Monte Carlo, for example, can be applied
to smooth out the integrand f before applying RQMC.

In theory, there is always a way of reducing the effective dimension to 1, as follows: replace
f by g where g(u) = g(u1) = G™1(u1), where G is the distribution function of the random
variable f(U), i.e., G(x) = P[f(U) < z] where U is uniform over (0,1)*. However, finding
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this ¢ is usually much too difficult, except in a few special cases (for example, if f(U) can be
easily written as a function of a linear combination of normal random variables).

6.2 Bridge sampling and principal component sampling

In the context of financial applications, techniques for reducing the effective dimension have
been proposed based on bridge sampling and principal component analysis [1, 22, 24, 43,
57, 76]. To illustrate these ideas, suppose that the integrand of interest can be written as
a function of a multivariate normal vector Y = (Y7,...,Y}), with mean zero and covariance
matrix ¥. That is, u = E[g(Y)] for some computable function g, and ¢(Y) is the estimator.
For example, ¢g(Y) can be the payoff of a financial option that depends on the sample path
of a multivariate geometric Brownian motion observed at a finite set of epochs. There are
many ways of generating the normal vector Y in this setting. The usual approach is to
decompose X = AA" for some matrix A, generate a vector Z = (Zi,...,Zs)" where the Z;
are independent standard normal random variables, and return Y = AZ. The Z;’s are easily
generated via Z; = ®1(U;) where ® is the standard normal distribution function and the
Uj’s are independent uniform random variables over (0,1). A fast and accurate approximation
method for @1 based on rational Chebyshev approximation, is available in [60], for example.

Now, there are many possibilities for the choice of A. The most common method, the
Cholesky factorization, takes A to be lower triangular. A second possibility is an eigen-
decomposition, for which A = PD'2 where D is a diagonal matrix that contains the eigen-
values of 3 in decreasing order and P is an orthogonal matrix whose columns are the cor-
responding unit-length eigenvectors. This is the decomposition used in standard principal
component analysis (PCA), and was proposed in [1] to reduce the effective dimension in the
truncation sense, in the context of simulating a geometric Brownian motion for option pricing
via QMC. It selects the matrix A so that the maximum amount of variance of Y comes from
Z1, then the maximum amount of variance conditional on Z; comes from Z5, and so on. Thus,
the method concentrates the variance in the first coordinates of Z as much as possible. If
the Z; are generated by inversion as Z; = ®~1(U;), then this method minimizes the effective
dimension in the truncation sense if we consider the variance of Y.

On the other hand, the PCA technique does not take into account the function g. It may
turn out that with the PCA sampling scheme, ¢(Y) depends very little on Z; and very much
on Zss, for example, even if Z; has more influence on the variance of Y. In such a situation,
PCA will miss its target. Ideally, one would like to find a decomposition AA' that minimizes
the effective dimension of the integrand f(U) = g(Y) (in some sense), which depends on g.
For example, the goal could be to maximize the fraction of Var[g(Y)] that comes from Z,
then maximize the fraction that comes from Z5 given Z1, and so on. For nonlinear functions
g, this is a difficult problem. Imai and Tan [41, 42, 43] propose to use a linear approximation
g of g, obtained via a first-order Taylor expansion around some “representative” point in the
unit cube, to compute each new column of A so that the corresponding Z; accounts for the
maximal amount of residual variance of the linear approximation. A distinct representative
point must be selected for each new column of A. The main problem, however, is to find
a good linear approximation. This can be difficult (and impractical) in general (e.g., if ¢ is
highly nonlinear).

In financial applications, Y frequently corresponds to the observations of a c-dimensional
Brownian process {W(t) = (Wi(t),...,We(t)), t > 0} at times 0 =ty <t < --- <tg=1T.
Then, s = c¢d and Y = (Wi(t1),..., We(t1), ..., Wi(tq), ..., We(tq))t. For example, we may
have a basket of ¢ financial assets whose values evolve as (potentially correlated) geometric
Brownian motions (GBMs), and the net payoff at time 7" is a function g of the ¢ asset values
at the fixed observation times.
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The standard approach for simulating the Brownian process {W(t), ¢ > 0} at times
t1,...,tq is to generate the (independent) increments W (t;) — W (tg),..., W(ty) — W(tq_1)
sequentially, in that order. We call it sequential or random walk sampling.

Another way is to write the covariance matrix 3 of the s-dimensional vector Y and de-
compose it as ¥ = AA' as we saw earlier. One can take advantage of the fact that X can be
written as a Kronecker product in this case, and use this to speed up the computations, espe-
cially for PCA [24]. If ¢ = 1 and the decomposition is done with Cholesky, this is equivalent
to sequential sampling.

Brownian Bridge sampling (BBS) was proposed in [76] as a tool to reduce the effective
dimension for QMC, for this situation (with ¢ = 1), by concentrating the variance (or impor-
tance) to the first few random numbers. See also [9, 24]. For notational simplicity, we assume
that d is a power of two, but the method applies more generally. The idea is to first generate
the vector W (ty) = (Wi(tg),. .., We(tq))" from the appropriate c-dimensional normal distri-
bution. Then, we generate W (t,/,) conditional on (W (0), W (t4)), then, W (t4/4) conditional
on (W(0), W(tg)), and W (tsg/4) conditional on (W(tz/2), W(ts)), and so on, until the
whole vector Y has been generated. In general, given t, < t < t;, the distribution of W (t)
conditional on (W (t,), W(tp)) is multivariate normal with mean and covariance matrix:

E[W ()W (ta)
Var[W (t)| W (ta)

W(ty) =yl = Wi(ta) + (W(ty) — W(ta))(t —ta)/(to —ta), and
W(ts) =] ((t = ta)(ts — 1)/ (to — ta)) %,

where p and 3 are the drift vector and the covariance matrix of W, i.e., E[W (¢)—=W(0)] = tu
and Var[W(t) — W(0)] = tX. When ¢ > 1, we must again decompose the (¢ x ¢) conditional
covariance matrix at each step to generate W (t) from the conditional distribution. These
decompositions can be computed beforehand, either via Cholesky, or PCA, or another method.
When the observation points are equally spaced, many of these covariance matrices are the
same. Intuitively, BBS reduces the effective dimension in the truncation sense, because the
first few random numbers already sketch the general shape of the trajectory, whereas the last
ones are only making minor adjustment to it. It is just another (implicit) way of decomposing
the matrix 3. Like for PCA, the overall impact of BBS on an estimator depends on the
function g, and one can construct instances of g for which it increases the effective dimension
and the RQMC variance [93, 113].

:X’
:X’

In one generalization of BBS, one can sample W (t1),..., W(ty) in an arbitrary order,
i.e., according to any given permutation of t,...,ts. Lin and Wang [70] show that sampling
first at the t; closest to 3tq/4 maximizes the variance explained by Z;. This rule applies
recursively: if £, < tg is the farthest point already sampled, then the next best point to sample
in {tg41,...,tq} is the one nearest t, 4 3(tq —t7) /4. If t; < t; have been sampled but no other
point in between, the next best point to sample in this interval (if any) is the one nearest
(t¢ —t;)/2. So in the case of equidistant observation times, the optimal permutation differs
from BBS essentially only by not starting immediately at t; when sampling to the right of the
rightmost point already sampled. In empirical experiments, the new permutation improves
by a few percent the variance explained by Z7, and its impact on the other projections is very
small.

Wang [107] examines the effect of BBS and PCA sampling on the effective dimension in the
superposition and truncation senses, in the context of Asian option pricing models based on
the geometric average, zero strike price, and a geometric Brownian motion. He finds explicit
formulas for the proportion of variance explained by various subsets of projections, and shows
that if 7' is fixed while A =t —t; = T'/d — 0, the effective dimension remains bounded.
This does not hold, however, if A is fixed and T = dA — oo. This model is certainly much
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simpler than the ones for which we want to use MC or QMC, but it gives some idea of the
potential effective dimension for more elaborate models. Numerical experiments suggest that
adding a nonzero strike price and replacing the geometric average by an arithmetic one does
not change the behavior of the effective dimension significantly (this may not be true if the
strike price is very large, so a positive payoff becomes a rare event, or if the time horizon
is long, in which case the geometric and arithmetic averages may differ much more). In
representative numerical examples with d = 64 and d = 256, Wang [107] observed that the
variance ratio explained by the first two coordinates Z; and Zy (the truncation variance ratio
of order 2) was very small for standard sequential sampling, over 90% for BBS, and more
than 99% with PCA. On the other hand, the variance ratio explained by the one- and two-
dimensional projections (the superposition variance ratio of order 2) was more than 99.99%
already with the sequential sampling, and even more with BBS and PCA. This means that for
this type of application, P,, could be constructed based on a discrepancy with large weights
v for Ju] < 2, and small (or zero) weight to the higher-dimensional projections. Wang and
Sloan [110, 111, 112, 113] define and discuss such discrepancies, show how to construct shifted
lattice rules with small discrepancy, and obtain bounds of the convergence rate of the error
when these rules are used with BBS or PCA.

6.3 Extensions

The BBS methodology applies not only to Brownian processes, but to any Lévy process (a
process with stationary and independent increments). However, we need an efficient algorithm
to sample from the conditional distribution. We know how to do that for the Poisson and
gamma processes, for example [2, 22]. In [2], the technique is applied to the simulation of
a variance-gamma process, where the underlying gamma processes are simulated by bridge
sampling.

PCA sampling can also be applied to generate a Lévy process at times 0 =t < t; < -+ <
tq = T, as follows. Suppose the increment over the time interval (¢;_i,t;] has distribution
function GG;. We can generate a standard Brownian motion W at times 0 =79 <7 <--- < 7y
via PCA, then return Gj_l((I)([W(Tj) — W(rj—1)]//Tj — Tj=1)) as the increment of the Lévy
process over (tj_1,t;]. The times 71 < --- < 74 are free parameters that can be selected in
some optimal way (to try minimizing the variance of the RQMC estimator). More generally, if
the Lévy process is multivariate, W can be a multivariate Brownian motion whose covariance
matrix is carefully selected to try to minimize the variance of the target RQMC estimator.

7 Software

Software implementations of QMC point sets and sequences can be found in [8, 39, 45, 60,
61, 67] and the references given there.

Modern simulation software often provides multiple streams and substreams of random
numbers, and facilities to create new streams and to rewind a stream to its starting point,
or to the beginning of the current substream, or the next substream [59, 60, 61]. These tools
facilitate the implementation of variance reduction methods.

Ideally, one should be able to replace the streams of random numbers by QMC or RQMC
point sets or sequences, with no internal modification to the simulation program. This is
the philosophy behind the implementation found in SSJ [60, 61], which offers several types
of point sets and sequences. Some are infinite-dimensional. Available constructions include
lattice rules, Hammersley point sets and Halton sequences, Sobol’, Faure, and Niederreiter
sequences, recurrence-based digital nets, and digital nets constructed by other techniques.
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Randomizations provided include a random shift, a digital random shift, and several matrix
scrambles. Randomizations and transformations (such as the baker’s transformation, for
example), are implemented via container classes that act as filters. For example, to obtain a
randomly-shifted lattice with a baker’s transformation, one can create a point set P for the
underlying integration lattice, then a randomly shifted point set P’ that contains P, then a
baker transformed point set P” that contains P’, and P” is the desired point set. To enumerate
the points of a point set, and the successive coordinates of a point, one uses an iterator similar
to iterators used to enumerate the elements of lists and other types of collections in Java. For
randomized or transformed point sets, the randomizations and transformations are applied
automatically when the points and coordinates are enumerated. An important feature of those
iterators is that they are interchangeable with the random number streams (they have the
same interface). This means that wherever a simulation program needs a stream of random
numbers, we can simply provide an iterator to an RQMC point set instead, and this will
replace MC by RQMC. For examples of this, see [60, 61].

8 Examples

The following examples are similar to those in [57]. We consider a vector of ¢ GBMs,
{Si(t), t > 0}, 1 <i < ¢, where S; has drift parameter r and volatility parameter o;. That is,

Sz(t) = SZ(O) exp [(7’ — 0'22/2)t + O’ZBZ(t)] = SZ(O) exp [Xl(t)]

where X;(t) = (r — 02/2)t + 0;B;(t) and B; is a standard Brownian motion. We assume that
the B;’s are correlated as follows: Cov[B;(t+06)— B;(t), B;(t+06)— B;(t)] = p; ;0 for all § > 0.

We have an option whose discounted payoff is e~ max[S — K, 0], where

c d
S = Z Z wi,jSi(tj) (47)

i=1 j=1

(a weighted arithmetic average), for fixed observation times 0 < t; < --- < tg = T. In
our numerical examples, we take t; = j7'/d, and w;; = 1/(cd) unless indicated otherwise.
Denoting Y = (X1(t1),...,Xc(t1), X1(t2), .., Xc(t2), ..., X1(ta), .., Xc(tq))t, the element
((i=1)c+74), (" —1)c+j4") of Xis p; o0y min(tj,t;). In this context, we can use the payoff
based on the geometric average [[;_; H?Zl Si(t;)“i in place of S, as a control variate (CV)
to reduce the variance. The expectation of this payoff is known exactly [24].

We use the following point sets:

(a) Sobol” nets with a random digital shift only (Sob-S),

(b) Sobol’ nets with a left matrix scramble followed by a digital shift (Sob-LMS-S),

(c) Korobov lattice rules with a random shift modulo 1 (Kor-S), and

(d) Korobov lattice rules with a random shift modulo 1 followed by a baker trans-
formation (Kor-S-B).

The primitive polynomials and the direction numbers for the Sobol” sequence were taken from
[67]. The lattice rule parameters are from [64]. These point sets are rather standard; better
ones could certainly be constructed based on discrepancies adapted to the specific examples, or
to a larger class of target applications that contains these examples. Constructing such better
point sets and making them available is on our agenda. All nonuniform random variables
(mostly normal) were generated by inversion.
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Table 1: Variance Reduction Factors for Example 1, for Cholesky (Left Number) and PCA
(Right Number).

Sobol’ Nets
n =24 n = 216 n =218
Sob+S 289 882|508 3567|1033 10299
Sob+LMS+S | 381 4931|491 11452| 593 39831

Korobov Lattice Rules
n = 16381, a = 5693 | n = 65521, a = 944 |n = 262139, a = 21876
Kor+S 106 737 30 1614| 193 4218
Kor+S+B 185 6820|217 6864 | 684 20984

The variance reduction factor (VRF) is defined as the Monte Carlo variance (per observa-
tion) divided by n times the variance of /iy, yqme for the randomized QMC method. The RQMC
variance was estimated by making m = 100 independent replications of the randomization.
These VRFs are noisy, with a standard error of about 20 percent or more. The simulations
were written in Java using SSJ [60].

Example 1 For our first numerical illustration, we take ¢ = 10 independent assets with a
single observation time (d = 1), and the following parameters taken from [24]: p; ; = 0.4 for
i#j, T=1,0,=0.5 r=0.05 5;(0) =100, and K = 100. We consider the payoff based
on the arithmetic average (47). The exact value and the MC variance per observation are
p~ 15.77 and o? ~ 674.

Table 1 gives the empirical variance reduction factors for the selected point sets. We
compare two ways of sampling the vector Y by transforming a 10-dimensional vector of
independent standard normals: the usual Cholesky factorization (left number in each table
entry) and PCA (right number in each table entry). PCA definitely outperforms the Cholesky
factorization, and the combination of PCA with randomized Sobol’ nets gives the largest
VRFs. As expected, the VRFs (i.e., efficiency gains) increase with n. For the Korobov rules,
the baker transformation helps significantly, but the Sobol’ nets are doing even better. The left
matrix scramble also brings some variance improvements. All methods require approximately
the same CPU time for a given value of n.

Example 2 We modify an example from [41]: we take ¢ = 10, d = 25 p; ; = 0.4 for all i # j,
T=1r=0.04, 0, =0.1+04( —1)/9 for all 4, S;(0) = 100, and K = 100. This gives a
250-dimensional integration problem. The exact value and the MC variance are p ~ 5.818
and o2 ~ 72.3 (these values are accurate up to the given digits).

The results are in Table 2, in the same format as for Table 1. They are similar. The
main difference is that here we have a 250-dimensional problem instead of a 10-dimensional
one, so PCA has more room to reduce the effective dimension compared with Cholesky. The
VRFs are smaller than in Table 1 with Cholesky, but the improvement provided by PCA over
Cholesky is larger.

Example 3 Here we consider an Asian option on a single asset (¢ = 1) whose price follows
a GBM process. The payoff is based on the arithmetic average (47). We also experiment
with the geometric average as a CV to reduce the variance. We examine the improvement of
RQMC over MC with and without the CV, with sequential sampling (SEQ), BBS, and PCA,
for an example with S(0) = 100, » = In(1.09), o; = 0.2, T' = 120/365, t; = D1/365 + (T —
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Table 2: Variance Reduction Factors for Example 2 (250 Dimensions) with Cholesky (Left)
and PCA (Right)

Sobol’ Nets
n =24 n =216 n =28
Sob+S 10 1299 | 17 3184 | 32 6046
Sob+LMS+S 6 4232 4 9219 | 35 16557

Korobov Lattice Rules
n = 16381, a = 5693 | n = 65521, a =944 | n = 262139, a = 21876
Kor+S 18 878 | 18 1504 | 9 2643
Kor+S+B 50 4553 | 46 3657 | 43 7553

Table 3: Estimates of u, 02, and the VRF ¢?/02,, for Example 3

cVv)
d| D K w| o VRF
10 | 111 | 90 | 13.008 | 105 | 1.53 x 10°
10 | 111 | 100 | 5.863 | 61 | 1.07 x 10°

10 | 12| 90 | 11.367 | 46 5400
10 | 12| 100 | 3.617 | 23 3950
120 1| 90| 11.207 | 41 5050
120 11100 | 3.367 | 20 4100

D1/365)(j — 1)/(d — 1) for j = 1,...,d, for six combinations of values of (D1,d, K) given
in Table 3. This table provides estimates of the exact value p, the MC variance o without
the CV, and the VRF 0%/02, where o2, is the MC variance with the CV. These values are
accurate at least to the digit given. We immediately see that the CV alone (without RQMC)
can reduce the variance by a huge factor, especially when d is small and the observation times
are close to each other. This is because the geometric and arithmetic averages are almost the

same in this case.

Table 4 gives the VRFE's of RQMC over MC, with and without the CV, with approximately
n = 26 points. It is important to recall that the optimal CV coefficient depends on the
RQMC point set and on the sampling method, because it depends on the estimator’s variance
and its covariance with the CV, which may vary significantly across the methods [36]. In our
experiments, these variances and covariances were estimated from the same simulation runs
used to compute the estimators of p.

Without the CV, RQMC reduces the variance by a huge factor, especially when combined
with BBS or PCA. The Korobov rule with the random shift and the baker’s transformation
provides the largest variance reduction. With the CV, significant additional VRFs are ob-
tained by the RQMC methods on top of those obtained by the CV alone. In this case, the
Sobol’ net with a random digital shift is the best performer. As an illustration, in the first
row of Table 4, for PCA, the additional VRF over MC+CYV is around 4436, whereas the CV
alone was already providing a VRF of around 1.53 x 10%. The combined VRF with both
methods is approximately 6.8 x 10°. The CPU times per run are about 20% larger with PCA
in this case (in our implementation), so plain (naive) MC would take about 5.6 x 109 times
more CPU time to yield an estimator with equivalent precision. For d = 120, the CPU time
for PCA sampling is about three times that of SEQ. With SEQ, our implementation needs
about 2.7 seconds to make one million simulation runs and compute the estimators with and
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Table 4: VRFs for Example 3 with and without CV, for Sequential Sampling (SEQ), Brownian
bridge sampling (BBS), and PCA sampling. The Sobol’ point sets with a random digital shift
(Sob-DS) have 2'¢ = 65536 points, and the Korobov rules with a random shift (Kor-S) and
with a random shift followed by a baker’s transformation (Kor-SB) have n = 65521 and
a = 944.

d D K P, without CV with CV

SEQ BBS PCA | SEQ BBS PCA
10 111 90 Sob+DS | 9572 12549 14279 63 183 4436
10 111 90 Kor+S | 5943 6014 13751 18 29 291
10 111 90 Kor+S+DB | 88927 256355 563665 90 177 668
10 111 100 Sob+DS | 5764 6638 10309 42 82 1913
10 111 100 Kor+S | 2224 3682 8782 12 31 397
10 111 100 Kor+S+B | 27214 29042 313724 29 61 635
10 12 90 Sob+DS | 2205 9053 12175 27 67 434
10 12 90 Kor+S 442 1720 13790 13 50 71
10 12 90 Kor+S+B | 1394 26883 446423 31 66 200
10 12 100 Sob+DS 368 2025 9506 21 42 274
10 12 100 Kor+S 63 909 5039 8 26 47
10 12 100 Kor+S+B 133 1317 123650 18 54 119

120 190 Sob+DS 325 7079 15101 3 48 483
120 190 Kor+S 192 2025 984 ) 47 75
120 1 90 Kor+S+B 394 15575 474314 13 55 280
120 1 100 Sob+DS 39 1776 10244 3 48 217
120 1 100 Kor+S 24 672 9538 3 23 29
120 1 100 Kor+S+B 29 1101 162531 9 29 144

without CV for d = 10, and about 29 seconds for d = 120. These timings are for an AMD
Athlon 64-bit processor running at 2.4 GHz.

Example 4 An Asian Option Under a Variance Gamma Process. We consider now an asset
price that evolves according to a variance-gamma (VG) process S defined as follows ([3, 2, 72]):

S(t) = S(0)exp [rt + X(G(t;1,v),0,0) + wt],

where X is a Brownian process with drift and variance parameters 6 and o, G is a gamma
process (a process with independent gamma increments) with mean and variance parameters
1 and v, X and G are independent, and w = In(1 — v — 0?v/2) /v. We want to estimate by
simulation the value of an Asian call option, given by E[e™"T max(S — K, 0)].

Here, the vector (S(t1),...,S5(tq)) is not multinormal, so the general setting of the pre-
vious subsection does not apply. However, the processes G and X (and therefore S) can be
generated by sequential sampling (BGSS) or Brownian and gamma bridge sampling (BGBS),
as explained in [3, 2]. For BGBS, we use the fact that for any given values t, < t < t,
and 7, < 7 < 7, the distribution of G(t) conditional on (G(t,), G(ty)) is beta with known
parameters, and the distribution of X (7) conditional on (X (7,), X (7)) is normal with known
parameters. This method requires the generation of one gamma variate, d — 1 beta variates,
and d normal variates. Yet another method, explained in [3, 2], is difference of gammas bridge
sampling (DGBS). It writes the process {S(t), t > 0} as a difference of two gamma processes,
and requires two gamma variates and 2d — 2 beta variates.
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Table 5: Variance Reduction Factors for Example 4 with BGSS (Left), BGBS (middle), and
DGBS (right)

Sobol’ Nets
n =21 n = 210 n =2
Sob+S 37 359 585|141 421 1077|175 510 1154
Sob+LMS+S{29 530 557149 565 995 |77 735 1642

Korobov Lattice Rules
n = 16381, a = 5693 | n = 65521, a = 944 |n = 262139, a = 21876

Kor+S 17 54 119|124 138 26322 285 557
Kor+S+B 52 53 57144 44 433192 93 1688
For a numerical illustration, we take the following parameters from [3]: § = —0.1436,

o =0.12136, v = 0.3, r = 0.1, T =1, K = 101, and S(0) = 100. The exact value and the
MC variance are p =~ 5.725 and o2 ~ 29.89. Table 5 gives the variance reduction factors of
QMC compared with MC. DGBS provides the best improvement.

Example 5 Boyle et al. [7] consider a spread option, where d = 1, ¢ = 2, and the payoff is
e "' max[Sy(T)—S1(T)— K, 0], which is again a function of a bivariate normal with known co-
variance matrix 3. To generate the payoff, they use importance sampling as follows: generate
S1(T) from its original distribution, then generate S3(7") from its conditional distribution given
that the payoff is nonzero, and multiply the estimator by the appropriate likelihood ratio. This
reduces the variability of the integrand and makes it smoother. For RQMC, they use a two-
dimensional lattice rule, and they periodize the function with polynomial and sine transforma-
tions. Their best results are with the transformations ¢pely 4(u) = u*(35 — 84u + 70u? — 20u?)
and ¢gin3(u) = (127w — 8sin(27wu) + sin(4nu))/127, which are special cases of well-known
classes of transformations. We ran some experiments to compare their proposed transforma-
tion with the baker’s transformation, which also periodize the function, and found that ¢y 4
and @sin,3 gave much larger variance reductions than the baker’s transformation, for n ~ 216
and with the same lattices, for this two-dimensional example. We also tried an Asian option
with d =2, t; = 1/2, to =1, S(0) = 100, K =90, r = In(1.09), and o1 = 0.2, with sequential
sampling combined with importance sampling, and the proposed transformations did slightly
better than the baker’s transformation (approximately by a factor of 2).

However, for higher dimensional problems, we observed the opposite: these transformations
give much higher variance than the baker’s transformation. For Example 3 with d = 10,
K =90, and n ~ 26, for instance, with sequential sampling, the higher-order transformations
gave a larger variance than plain Monte Carlo. In other words, they annihilate all the RQMC
gain. The explanation is that the higher-order transformations also increase the variation of
the function, and the impact of this higher variation increases with s.

9 Conclusion

Our discussion of QMC in this paper was in the context of estimating a mathematical ex-
pectation. But QMC can also be used advantageously to estimate something else than an
expectation: e.g., for estimating a quantile, or a function of several expectations, or the gra-
dient of an expectation with respect to a vector of parameters [7, 24]. It can also be used to
obtain an approximation of a function f over a given domain (see [51] and other references
cited there), or to estimate the solution of an optimization problem in which the objective
function or the constraints (or both) involve mathematical expectations. This can be used
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effectively in the context of computing maximum likelihood estimators, for example. QMC
can also replace MC in algorithms that combine MC with approximate dynamic program-
ming (e.g., for pricing American-style options) [10, 24]. All these settings have applications
in finance.

Other QMC developments that could be of high interest in finance are special methods
designed for the simulation of Markov chains over many steps, a setting for which it is difficult
to reduce the effective dimension to a small number. A recently developed RQMC method
named array-RQMC' [52, 62] simulates n copies of the chain, advancing all copies by one step
using an RQMC point set at each iteration, and induces negative dependence between these
copies, so that the empirical distribution of the n states at any given step provides a better
estimate of the true distribution than if the n copies were simulated independently. This
method provides variance reduction factors of over 1000 in some examples where the chain
evolves over a few hundred steps.

Important topics for ongoing and future research include the development of additional
effective methods for reducing the effective dimension, to better understand the ANOVA
decomposition in typical finance problems, to better understand the different discrepancies and
the impact of their choice in the final variance of the estimators for typical classes of integrands,
and to develop software tools that can easily provide appropriate point sets tailored to specific
classes of applications. In the short term, classical QMC point set constructions available in
popular software should be replaced by constructions whose parameters are selected on the
basis of criteria (discrepancies) that take better account of the low-dimensional projections.
This was already pointed out in [64], for example.
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