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Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs. La publication
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Abstract

We consider a class of Markov chain models that includes the highly reliable Markovian systems
(HRMS) often used to represent the evolution of multicomponent systems in reliability settings. We are
interested in the design of efficient importance sampling (IS) schemes to estimate the reliability of such
systems by simulation. For these models, there is in fact a zero-variance IS scheme that can be written
exactly in terms of a value function that gives the expected cost-to-go (the exact reliability, in our case)
from any state of the chain. This IS scheme is impractical to implement exactly, but it can be approxi-
mated by approximating this value function. We examine how this can be effectively used to estimate the
reliability of a highly-reliable multicomponent system with Markovian behavior. In our implementation,
we start with a simple crude approximation of the value function, we use it in a first-order IS scheme
to obtain a better approximation at a few selected states, then we interpolate in between and use this
interpolation in our final (second-order) IS scheme. In numerical illustrations, our approach outperforms
the popular IS heuristics previously proposed for this class of problems. We also perform an asymptotic
analysis in which the HRMS model is parameterized in a standard way by a rarity parameter ǫ, so that
the relative error (or relative variance) of the crude Monte Carlo estimator is unbounded when ǫ → 0.
We show that with our approximation, the IS estimator has bounded relative error (BRE) under very
mild conditions, and vanishing relative error (VRE), which means that the relative error converges to 0
when ǫ → 0, under slightly stronger conditions.

Key Words: Monte Carlo, rare events, importance sampling

Résumé

Nous considérons une classe de modèles Markoviens incluant les systèmes Markoviens hautement
fiables souvent utilisés pour représenter l’évolution de systèmes multi-composants dans le cadre de la
sûreté de fonctionnement. Nous sommes intéressés par la conception des méthodes d’échantillonnage
préférentiel (ou importance sampling) pour estimer la fiabilité de tels systèmes par simulation. Pour ces
modèles, il existe en fait une méthode IS à variance nulle qui peut être écrite explicitement en fonction
d’une fonction de valeur donnant le coût espéré à venir (la fiabilité exacte dans notre cas) à partir de
n’importe quel état de la châıne. Cette méthode IS ne peut être implantée exactement en pratique,
mais elle peut être approximée en approchant la fonction de valeur. Nous examinons comment cela
peut être efficacement utilisé pour estimer la fiabilité d’un système hautement fiable ayant un comporte-
ment Markovien. Au cours de notre implémentation, nous commençons par une approximation brute
de la fonction de valeur, nous l’utilisons dans une méthode IS du premier ordre, qui nous permet par
simulation d’obtenir une meilleure approximation à quelques états sélectionnés; nous interpolons entre ces
états, et utilisons cette interpolation pour notre méthode IS finale (du second ordre). Dans de nos essais
numériques, notre approche surclasse les heuristiques d’IS populaires proposées précédemment pour cette
classe de problèmes. Nous obtenons également une analyse asymptotique dans le cas où le modèle est
paramétré de manière standard par un paramètre de rareté ǫ, de telle sorte que l’erreur relative (ou la
variance relative) de l’estimateur Monte Carlo standard est non bornée quand ǫ → 0. Nous montrons
qu’avec notre approximation, l’estimateur IS vérifie la propriété d’erreur relative bornée, sous certaines
conditions mineures, et même une erreur relative qui converge vers 0 quand ǫ → 0 sous des conditions un
peu plus fortes.

Acknowledgments: This research has been supported by Grant OGP-0110050 and a Canada Research
Chair to the first author, EuroNF Network of Excellence to the second author, and INRIA’s associated
team MOCQUASIN to both authors.
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1 Introduction

Estimating dependability measures for a highly-reliable multicomponent system is an important problem

in many areas of applications such as telecommunications, computer systems, aircraft design, air traffic

control, power utilities, and many others. Dependability measures of interest include (among others) the

mean time to failure (MTTF), defined as the expected time until the first failure of the system given that
all its components are initially operational, the mean time between failures (MTBF), defined as the inverse

of the average number of system failures per unit of time in the long run (over an infinite horizon), and

the system availability, defined as the fraction of the time when the system is operational, in the long run

[8, 23]. Dependability is typically improved by introducing redundancy in the components. To estimate
these measures, the system is often modeled as a continuous-time Markov chain (CTMC), by assuming that

component lifetimes and repair times are exponentially distributed.

However, with the exception of very simple situations, the state space of the CTMC is usually so large

that analytic and numerical methods are impractical, and one must rely on simulation to estimate the

dependability measures of interest. Moreover, standard (crude) Monte Carlo method is much too inefficient,

because system failures occur too rarely to provide a meaningful estimator within a reasonable amount of
time. In this context, importance sampling (IS) is the standard way of making the important rare events (the

system failures, in this case) occur more frequently, in order to recover an unbiased estimator with smaller

variance [10, 14, 22, 26]. The main difficulty is to find a good, robust, and easily implementable IS strategy.

Popular IS heuristics previously proposed for this class of problems include simple failure biasing (SFB),
balanced failure biasing (BFB), the general biasing scheme (GBS), failure-distance biasing (FDB), and the

balance likelihood ratio (BLR) method [2, 6, 7, 12, 13, 23, 26, 27, 29]. Here, we study a different approach in

which we approximate the zero-variance change of measure via a simple approximation of the value function

(in this case, the conditional probability that the rare event occurs, as a function of the current state).

In agreement with previous literature, we adopt a CTMC model with finite state space, whose jumps
(transitions) correspond to component failures and repairs. This model is regenerative, and we can define

the regeneration times as times when the chain returns to the initial state, in which all the components are

operational. The transitions that correspond to component failures have very small rates, but not those that

correspond to repairs. As a result, the system tends to return to its initial state very often and rarely reaches

the failed state.

In this setting, the MTTF can be written as a ratio of two expectations, where the numerator is the

expected time until the system reaches either the failed state or the initial state, and the denominator is the

probability µ0 that the system reaches the failed state before returning to its initial state, both under the

assumption that the system starts from its initial state [10, 23, 25]. The numerator is easy to estimate by

standard Monte Carlo, but not the denominator, because it is the probability of a rare event. The MTBF
and the availability can also be written as ratios of expectations where one of the two expectations in the

ratio involves the same rare event as in µ0. IS schemes that work well for µ0 typically work fine also for these

expectations [10, 12]. In this paper, we focus on low-variance estimation of µ0.

Since the occurrence of the rare event of interest here does not depend on the sojourn times in the states

visited by the CTMC, it suffices to simulate the embedded discrete-time Markov chain (DTMC), and this is
what we will do.

The remainder is organized as follows. In Section 2, we specify the HRMS model considered in this paper

and we briefly summarize the IS heuristics proposed earlier for this model. In Section 3, we define a zero-

variance IS sampling scheme to estimate µ0, and we propose practical heuristics to approximate this scheme

in practice. Zero-variance estimators for general Markov chains have been studied earlier, in [5, 14, 15, 20],
for example. In asymptotic analysis of IS for highly-dependable systems, the failure probabilities are often

parameterized by some parameter ε so that these probabilities converge to 0 when ε → 0 while the repair

probabilities remain bounded, and one studies the asymptotic behavior of the estimator (e.g., its relative

error) when ε → 0. In Section 4, we recall the basic definitions for this type of analysis, and prove some

asymptotic properties of the IS estimators proposed in Section 3. We show that our IS estimators have the
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BRE property under mild conditions, and the VRE property under slightly stronger conditions. In numerical
experiments reported in Section 5, the new IS methods outperform the IS heuristics previously proposed for

this class of problems. A conclusion follows in Section 6. A subset of this paper (mostly parts of Sections 3

and 5) was presented at the 2007 European Simulation Conference [19].

2 Markovian Model of a Highly Reliable System

We consider a model of highly reliable Markovian system (HRMS) as in [6, 25, 26, 27], among others. The
system has c types of components, with ni identical components of type i, for i = 1, . . . , c. We assume that

each component is either in a failed state or in an operational state, and that the system evolves as a CTMC

whose state is a vector y = (y(1), . . . , y(c)), where y(i) represents the number of failed components of type

i. This implies in particular that the failure and repair rates depend only on y, but they may depend on
the entire state y. This CTMC has a finite state space Y of cardinality (n1 + 1) · · · (nc + 1). Let λ(y, y′)

denote its jump rate from state y to state y′. A jump corresponds either to the (simultaneous) failure of one

or more components, or to the repair of one or more failed components. This model covers the notion of

failure propagation, where the failure of a component may trigger the (almost) simultaneous failure of other

components. It also covers deferred and group repairs [12], where repairs can occur only when there are
enough failed components. For example, for a certain type of component, all components of that type might

be repaired as a group (simultaneously) at a given rate when at least three of them are failed, and the repair

rate for these components is zero otherwise. However, our results in this paper are obtained under additional

assumptions that preclude these deferred and group repairs.

One could of course define more general CTMC models where additional information must be incorporated
in the state. This happens, for example, if the failed components are repaired according to some priority

rules that take into account their failure time (then the state space remains finite but the state must contain

the relevant ordering information), or if some of the lifetime or repair distributions are no longer exponential

(then the state space is infinite, with continuous coordinates). Our proposed methodology could be extended
in principle to these more general models, but it may become much more complicated to implement. The IS

methodology studied here is only for the estimation of µ0 in the CTMC model.

We suppose that Y is partitioned in two subsets U and F , where U is a decreasing set (i.e., if y ∈ U
and y ≥ y′ ∈ Y , then y′ ∈ U) that contains the initial state 0 = (0, . . . , 0) in which all the components are

operational. When we return to this state where all the components are operational, we must recognize that
we are not in the same situation as initially, because we now know that we have returned to 0 before reaching

the failed state. In this second case, we will call the state 0′, to make the distinction. In other words, we

split the state 0 in two states: From now on, 0 will refer only to the initial state at the beginning of the

simulation, and 0′ will refer to the state where all the components are operational at any other stage of the

simulation. Formally, this increases the cardinality of the state space by 1. We also denote U0 = U \ {0′}.

Let {Yj , j ≥ 0} be the DTMC embedded in the CTMC. That is, the CTMC starts in state Y0 and enters

state Yj at its jth jump, for j = 1, 2, 3, . . . . The transition probabilities for this DTMC are

p(y, y′) = P[Yj = y′ | Yj−1 = y] =
λ(y, y′)

∑

y′′∈Y λ(y, y′′)

for all y, y′ ∈ Y. We assume that state 0′ can be reached (directly or indirectly) from any state y ∈ U0. Let

τF = inf{j ≥ 0 : Yj ∈ F}, τ0′ = inf{j ≥ 0 : Yj = 0′}, and τ = min(τF , τ0′). Our assumption that 0′ can be
reached from any y ∈ U implies that E[τ ] < ∞. For all y ∈ Y, define

µ(y) = P[τF < τ0′ | Y0 = y].

Note that µ(y) = 1 when y ∈ F , µ(0′) = 0, and µ(0) = µ0 is the probability we want to estimate. To avoid

trivialities, we suppose that 0 < µ0 < 1.



Les Cahiers du GERAD G–2009–02 3

The standard (crude) Monte Carlo method [3] estimates µ0 by simulating n independent copies of the
DTMC under its original probability law, and averages the n copies of the random variable X = I[τF < τ0′ ],

where I is the indicator function. The variance of X is µ0(1 − µ0). A confidence interval on µ0 can be

computed by assuming that this average is approximately normally distributed (relying on the central-limit

theorem) and estimating its variance by the sample variance of the n copies of X , divided by n. In our
rare-event setting, however, only rare realizations of X are nonzero. The crude Monte Carlo estimator has

a relative error (the standard deviation divided by the mean) of
√

µ0(1 − µ0)/n/µ0, which is approximately

(nµ0)
−1/2 when µ0 is small, and becomes very large when µ0 is very small.

IS consists in replacing the transition probabilities p(y, y′) by new probabilities q(y, y′) that satisfy

q(y, y′) > 0 whenever p(y, y′)µ(y′) > 0. We use Eis and Varis to denote the expectation and variance

operators under these new probabilities. The estimator X is replaced by

Xis = X

τ
∏

j=1

p(Yj−1, Yj)

q(Yj−1, Yj)
,

where the last product is the likelihood ratio associated with the sample path. This estimator is unbiased [9]:

Eis[Xis | Y0 = y] = E[X | Y0 = y] = µ(y).

IS schemes such as SFB, BFB, RBS, FDB, and BLR, mentioned earlier, provide specific ways of selecting
the probabilities q(y, y′).

BFB [26] defines

q(y, y′) =



















1
|F (y)| if y′ ∈ F (y) and pR(y) = 0;

ρ 1
|F (y)| if y′ ∈ F (y) and pR(y) > 0;

(1 − ρ) p(y,y′)
pR(y) if y′ ∈ R(y);

0 otherwise,

where F (y) is the set of states y′ directly reachable from y (in a single transition) by a failure event, R(y) is

the set of states directly reachable from y (in a single transition) by a repair event, pR(y) = P[Yj ∈ R(y) |
Yj−1 = y], and ρ ∈ (0, 1) is a constant, usually taken as 0.5. This ρ represents the fraction of probability

devoted to failure transitions at each step. This probability is divided equally between all failure transitions

having nonzero probability.

SFB [27] is similar, except that 1/|F (y)| is replaced by p(y, y′)/
∑

y′∈F (y) p(y, y′) in the above equation,

i.e., the failure probability is allocated to the transitions in proportion to their original probabilities.

GBS and other refinements were developed in [12, 13] for situations where there are high-probability cycles.

The main idea is to make sure that the probabilities are not reduced too much along these high-probability

cycles, because these cycles would otherwise contribute huge values (with low probabilities) to the likelihood
ratio, thus increasing the variance. High-probability cycles are common in models with deferred or group

repairs, for example. In our asymptotic analysis in Section 4, Assumption 1 will disallow high-probability

cycles.

Other schemes have been proposed, trying to take advantage of some knowledge or learning of the model

structure. For instance, we may decompose the set of component types in those have already experienced a

failure and those who have not, and give fixed probabilities to each of those transitions (to favor those that
seem to drive us closer to a failed state). In each case, we can balance the probabilities in each subset or take

them proportional to the original ones in the spirit of SFB and BFB [6]. In particular, FDB [7] changes the

probabilities by taking into account the minimal number of transitions to failure from each state y′ to which

we can jump.

In BLR [2], the probabilities are changed in a way that over any cycle, the cumulated likelihood ratio

remains bounded when the failure probabilities converge to zero. Variants are also defined that use structural

information by identifying events on shortest paths to failure, and pushing more toward those events.
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3 Approximate Zero-Variance Sampling

Here we propose and study an alternative heuristic based on the approximation of the following zero-variance

IS sampling scheme. Suppose we apply IS to our DTMC with

q(y, y′) = q∗(y, y′)
def
=

{

p(y, y′)µ(y′)/µ(y) if 0 < µ(y) < 1,
p(y, y′) otherwise.

(1)

Note that
∑

y′∈Y q(y, y′) = 1 for each y.

Proposition 1 With the probabilities (1), we have Varis[Xis] = 0 and Eis[τ ] < ∞ for any initial state

Y0 = y ∈ U0.

Proof. Under these probabilities, P[X = 0] = 0, because q∗(y,0′) = µ(0′) = 0 for y ∈ U0, so X = 1 with
probability 1. If X = 1, then µ(Yτ ) = 1, and therefore

Xis = X
τ

∏

j=1

p(Yj−1, Yj)

q(Yj−1, Yj)
=

τ
∏

j=1

µ(Yj−1)

µ(Yj)
=

µ(Y0)

µ(Yτ )
= µ0,

a constant, so its variance is zero.

For the second property, observe that a state y 6= 0′ with µ(y) = 0 cannot be reached under the new
probabilities. Then, one can see that there is a constant δ > 0 such that from any visited state y 6= 0′, there

is a path of probability at least δ leading to F . The result then follows from a standard geometric trials

argument.

This zero-variance scheme cannot be implemented exactly, because the function µ is unknown, but it
can be replaced by an approximation v that is easy to compute during the simulation. That is, for each

simulation run, we take an approximation v of the function µ and plug it in (1) in place of µ to define the

change of probabilities for the IS estimator. This gives

q(y, y′) =

{

p(y, y′)v(y′)/ṽ(y) if 0 < ṽ(y) < 1,
p(y, y′) otherwise,

(2)

where ṽ(y) =
∑

y′∈Y p(y, y′)v(y′). We will assume henceforth that v matches µ at 0′ and in F , where its

value is known: v(0′) = 0 and v(y) = 1 for y ∈ F .

Several types of adaptive IS methods that learn a good function v iteratively have been proposed and

studied in the literature; see [1, 4, 14, 15, 20, 24, 28], for example. The general idea of these adaptive methods

is to use the realizations of the previous sample paths, where each sample path provides one realization of
X , to construct an approximation v. Under some conditions, this approximation can sometimes be shown to

converge to µ as n → ∞, where n is the number of realizations of X . There are even situations where one

can prove that the variance converges to zero exponentially in n [4, 15].

In some of these methods, either v or the IS probabilities q are restricted to be in a preselected parametric

class of functions parameterized by a multivariate parameter θ, and the current value of θ used for each
sample path is selected based of what has been learned from the previous sample paths. Some methods

directly parameterize the IS probabilities with θ and then learn adaptively the θ that minimizes the variance.

Another class of methods defines v as a linear combination of a fixed set of basis functions, and estimates the

best coefficients in the linear combination (the parameters) by least squares, using data from the previous

sample paths [14]. The main difficulty with these methods is the choice of basis functions, and they often
require a significant amount of work and storage to update θ.

In this paper, we shall consider simpler, more direct, approximations that can be computed at little cost

and require practically no storage.
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As a rough-cut approximation of the function µ in our model, we start with the following. For any state
y ∈ U0, let Π(y) be the set of all paths π = (y = y0 → y1 → · · · → yk) going from state y to the set F , where

yj ∈ U0 for j = 0, . . . , k − 1, p(yj−1, yj) > 0 for j = 1, . . . , k, and yk ∈ F . Each path π ∈ Π(y) has original

probability

p(π) =

k
∏

j=1

p(yj−1, yj)

and we have that µ(y) =
∑

π∈Π(y) p(π). However, the latter sum is normally too complicated to compute in

practice, because it involves too many paths (there is often an infinite number of paths, because the paths
may contain an unlimited number of cycles within U).

A very crude estimate is to replace the sum by the maximum; i.e., approximate µ(y) by its lower bound

v0(y) = max
π∈Π(y)

p(π).

Computing this v0(y) amounts to computing the shortest path from y to F , where the length of the directed

link from y′ to y′′ is − log p(y′, y′′) for any pair of states (y′, y′′), or equivalently the longest path where
the length of a path is its probability (the product of probabilities of its one-step transitions). In general,

the worst-case time complexity for computing this shortest path is Θ(|U| log |U|), which is certainly better

than the Θ(|U|3) work required to solve the linear system that would provide all the probabilities µ(y) for

y ∈ U , but still expensive for large systems. Moreover, the shortest path would be needed from each state y

visited during the simulation. Of course, one could save work by storing in a hash table any shortest path
computed so far, including the shortest paths from other states y′ computed simultaneously while computing

the shortest path from a given state y. Whenever we would need v0(y) for some state y, we would first check

the hash table to see if it has already been computed. Fortunately, all this overhead can often be bypassed

by exploiting the model’s structure, sometimes even for large and complicated systems, as we shall illustrate
in our examples. In many cases, the shortest path can be computed almost at no cost from any y.

This v0 would do well in the cases where a single path dominates the sum. But this lower bound on µ(y)

could still underestimate the true value by a significant factor. An easy improvement is to take the sum over

a small set of disjoint paths (only a few of them) instead of just considering the single most dominant one.
These dominant paths can often be selected by exploiting our knowledge of the structure of the system. For

example, in some cases, it makes sense to compute the probability of a path that leads to F from failures of a

single type of component, do this for each component type, and add these probabilities. This computation can

be done very quickly. We will use it in our numerical illustrations, for systems that fail whenever fewer than
a given number of components of any given type are operational. When F has a different type of structure,

other inexpensive approximations can often be used instead. For example, if the system fails when the total

number of failed components (regardless of their type) exceeds a given threshold, we can approximate µ(y)

by approximating the probability of reaching the failed stated by a sequence of failure transitions only (no

repair). We will give an illustration of this in Section 5.

Our general definition of v0 for the rest of the paper is then as follows: Select a small set of disjoint paths

Π0(y) ⊆ Π(y) and define

v0(y) =
∑

π∈Π0(y)

p(π).

In [18], we had good luck with the following simple type of additional correction (this was used there

in a splitting algorithm): estimate µ(0) in preliminary runs with some initial IS strategy, and compute the

exponent α such that (v0(0))α equals this estimate. Then, replace the estimate v0(y) by

v1(y) = (v0(y))α

for all y ∈ U . This function v1 matches µ for y ∈ F and matches its estimate at y = 0. In between, it uses

an exponential interpolation, motivated by the crude idea that if there is a single component type, y denotes
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the number of failed components, and if we assume that the probability that the next event is a failure
does not depend on y, then the model turns essentially into a gambler’s ruin problem and µ(y) decreases

(approximately) as an exponential function of −y [20].

This idea can be refined. One possibility is to replace α by a state-dependent correction exponent α(y).

Here we shall consider the following form for α(y):

α(y) = 1 + [α(0) − 1]
log v0(y)

log v0(0)
,

where α(0) is the value of α as in the previous paragraph. The rationale for this form is that the correction

exponent is needed usually because v0(y) accounts for only a few paths and disregards many other ways of

reaching F from y. Since the set of paths leading to F is generally richer when we are farther from F , it

appears sensible to have a correction exponent that changes progressively from 1 when we are very close to
F , to α(0) when we are in state 0, and reflects the “distance” to F for the states in between. We denote the

resulting approximation by

v2(y) = (v0(y))α(y).

Among other possibilities, instead of estimating µ(y) only at y = 0, we can estimate it directly, via IS,

over a finite subset of states E ⊂ U , in preliminary runs. For example, in an HRMS model, E could be
the set of states where no more than one component is failed, or the set of states where no more than two

components are failed (depending on the structure and size of the model). For each state y ∈ E , we define

v3(y) as the direct estimate of µ(y) and we compute α(y) such that (v0(y))α(y) = v3(y). For each state

y ∈ U \ E , we may interpolate exponentially as follows: We can select a state y′ ∈ E such that y′ ≤ y, and
define v3(y) = (v0(y))α(y′) (the selection is arbitrary and could be problem-dependent). Or we may select all

states y′ ∈ E such that y 6= y′ ≤ y, and define v4(y) as the average of the corresponding values of (v0(y))α(y′).

Yet another possibility is to estimate a single exponent α for all states y, based on all available information,

e.g., by least-squares regression. As an extreme case, taking E = U means that we have a direct estimate of

µ(y) for all states y ∈ U , and no interpolation is needed. Then, we are back to an estimator similar to that
of [1], depending on how the estimation is done (these authors change the measure dynamically at each step,

at the same time as they update their estimates of µ(y)). Our proposal is a matter of compromise between

this extreme case and just taking v0 (the other extreme).

All these possibilities would deserve further analysis and empirical comparison in realistic examples. In
the Section 5, we compare some of them with the best known IS heuristics, on a few examples.

4 Asymptotic analysis

Asymptotic analysis of IS estimators in the context of HRMS systems, to characterize their behavior when the

failure rates converge to zero in certain ways while the rest remains fixed, is usually done by parameterizing

the transition rates of the CTMC in a polynomial form as follows [14, 21, 26]:

λ(y, y′) = λ(y, y′, ε) = a(y, y′)εb(y,y′)

for some state-dependent constants a(y, y′) ≥ 0 and b(y, y′) ≥ 0 (that do not depend on ε). We usually

have b(y, y′) > 0 for failure transitions and b(y, y′) = 0 for repair transitions. We then look at what happens

when ε → 0. Thus, the failure rates become smaller and smaller when ε → 0, but the repair rates remain in

Θ(1), and µ0 = µ0(ε) > 0 converges to 0. This parameterization is transmitted to the transition probabilities

p(y, y′) of the DTMC. The rationale is that studying the asymptotic properties in this type of setting should
give a good idea of what happens for a given model, provided that we use the right constants b(y, y′) to

somehow mimic the relationships between the different failure rates.

Suppose we have an estimator X = X(ε) taking its value in [0,∞), such that E[X(ε)] = µ0(ε) and

Var[X(ε)] = σ2
0(ε) for each ε > 0.
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Definition 1 (a) The estimator X(ε) has bounded relative error (BRE) [11, 26], or equivalently bounded
relative variance, if

lim sup
ε→0

σ0(ε)

µ0(ε)
< ∞. (3)

(b) It has vanishing relative error (VRE) [16] if

lim sup
ε→0

σ0(ε)

µ0(ε)
= 0, (4)

or equivalently if

lim sup
ε→0

E[X2(ε)]

µ2
0(ε)

= 1. (5)

BRE essentially means that for a given number of simulation runs, the relative width of a confidence
interval based on the central-limit theorem remains bounded when ε → 0. Under the assumption that the

DTMC has no high-probability cycle, BFB provides an IS estimator with BRE, whereas SFB does not [21].

On the other hand, BRE does not necessarily mean that the estimator is practically efficient, because there

could be a large hidden constant. It has been recognized that BFB can waste computing time by giving

certain low-probability paths more weight than necessary, and this can degrade performance especially when
the system has a high level of redundancy [2, 23].

VRE is obviously much stronger than BRE and it is related to zero-variance simulation in the sense

that VRE implies that X(ε) is generated from a probability law that converges in the L∞ norm to the

zero-variance IS scheme [16]. In our setting, this means that VRE implies that

lim
ε→0

sup
y,y′∈Y

|q(y, y′) − q∗(y, y′)| = 0.

VRE means that the estimation becomes easier when ε → 0, which is the opposite of what normally happens

with crude Monte Carlo.

In what follows, we provide sufficient conditions for VRE, and then for BRE, for IS sampling based
on zero-variance approximation with some function v, applied to the HRMS model of Section 2. The key

ingredient is the quality of the approximation of µ by v.

But first, we start by giving a simple example showing that the zero-variance IS scheme is not (asymp-

totically) balanced in general, in the sense that from a given state, the optimal transition probabilities for

different failure transitions can be of different orders (different powers of ε). When this happens, BFB is
likely to perform poorly compared with a better (unbalanced) heuristic, even if the asymptotic BRE property

holds. Again, this poor performance of BFB (and of balanced schemes in general) in some situations has

been observed earlier, for example in [23].

Example 1 Suppose that c = 2, n1 = n2 = 2, and that the system is operational when at least two
components (of any kind) are operational. Let the transitions probabilities of the corresponding DTMC be

those given in Figure 1, where the states in F are shaded, and state y = (y(1), y(2)) means (as usual) that

y(1) components of type 1 and y(2) components of type 2 are down.

For this small example, we can easily compute µ(y) for all states y by solving the following system of

linear equations (the balance equations of the DTMC):































µ(1, 1) = 2ε2 +
(

1 − 2ε2
)

µ(0, 1)/2 +
(

1 − 2ε2
)

µ(1, 0)/2
µ(0, 2) = ε + (1 − ε)µ(0, 1)
µ(2, 0) = ε + (1 − ε)µ(1, 0)
µ(0, 1) = ε3µ(0, 2) + εµ(1, 1)
µ(1, 0) = ε3µ(2, 0) + εµ(1, 1)
µ(0, 0) = µ(0, 1)/2 + µ(1, 0)/2
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ǫ2

0,0

0,1

0,2

2,2

1,1

ǫ3

≈ 1/2 ≈ 1/2≈ 1/2

1/21/2

1/2

≈ 1

ǫ ǫ

≈ 1/2

≈ 1

ǫ

≈ 1/2

ǫ2

ǫ

≈ 1/2

≈ 1

ǫ

≈ 1

1,0

2,0

2,11,2

1/2

ǫ3

ǫ

Figure 1: Transition probabilities in Example 1

This gives














µ(1, 1) = 2ε2 + (1 − ε) 2ε3+ε4

1−ε+ε3+ε4 = Θ(ε2)

µ(2, 0) = µ(0, 2) = ε + (1 − ε) 2ε3+ε4

1−ε+ε3+ε4 = Θ(ε)

µ(0, 1) = µ(1, 0) = µ(0, 0) = 2ε3+ε4

1−ε+ε3+ε4 = Θ(ε3).

Now, if we look for instance at the two failure transitions from state (0,1), under the zero-variance IS, we

have

q((0, 1), (0, 2)) =
ε3µ(0, 2)

µ(0, 1)
= Θ(ε),

whereas

q((0, 1), (1, 1)) =
εµ(1, 1)

µ(0, 1)
= Θ(1),

which means that the change of measure is unbalanced between these two failure transitions. The explanation

is that all the paths from (0,0) to F that include the transition (0, 1) → (0, 2) have much smaller probability

than those that include the transition (0, 1) → (1, 1) (O(ε4) compared with Θ(ε3)), so we should waste

much less time simulating the former than the latter; i.e., an optimal IS scheme must take q((0, 1), (0, 2))
significantly smaller than q((0, 1), (1, 1)). On the other hand, taking q((0, 1), (0, 2)) too small can be as bad

(or worse) than taking it too large. If it is too small, the likelihood ratio will become very large when this

transition occurs, and this would increase the variance significantly. 2

The next theorem gives a sufficient condition for VRE. It uses the following definition. For all y ∈ U0,

there is a set of paths Πd(y) ⊂ Π(y) such that

p(π) = p(π, ε) = a(π)εb(y) + o(εb(y))

for all π ∈ Πd(y), for some constants a(π) > 0 and b(y) > 0 that do not depend on ε, and p(π, ε) = o(εb(y))
for all π 6∈ Πd(y). The paths in this set Πd(y) are called the dominant paths from y to F . They account

asymptotically for all the probability of reaching F , in the sense that

lim
ε→0

1

µ0(y)

∑

π∈Πd(y)

p(π, ε) = 1. (6)

For y = 0, they are just called the dominant paths. For our next results, we make the following assumption.
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Assumption 1 All cycles that belong to some path π ∈ Π(y) have probability O(εδ), for some constant δ > 0.

This assumption implies that Πd cannot contain paths having a cycle, and therefore Πd must be finite. It
also rules out several models with deferred or group repairs, for which the Markov chain has high-probability

cycles, as mentioned earlier.

Theorem 1 Under Assumption 1, if limε→0 v(y)/µ(y) = 1 for all y ∈ Y, then we have VRE. This happens,

in particular, if v(y) is defined as the sum of probabilities of all dominant paths from y to F .

Proof. Because Y is finite and v(y) = µ(y)(1 + (o(1)) for all y, there are positive constants δ1 and r,

independent of ε and y, such that
|v(y)/µ(y) − 1| ≤ δ1ε

r

for ε sufficiently small. Therefore, there exist δ > 0, independent of ε and y, such that

ṽ(y)

v(y′)
=

∑

y′′∈Y

p(y, y′′)v(y′′)

v(y′)
≤

∑

y′′∈Y

p(y, y′′)
µ(y′′)

µ(y′)
(1 + δεr) =

µ(y)

µ(y′)
(1 + δεr)

for ε sufficiently small. Thus, the IS estimator satisfies

Xis ≤
τ

∏

j=1

ṽ(Yj−1)

v(Yj)
≤ µ0(1 + δεr)τ ,

giving
Eis[X

2
is] ≤ µ2

0Eis[(1 + δεr)2τ ]. (7)

Define m(y) as the maximal length (in number of transitions) of a path π ∈ Πd(y). For y ∈ F , we have

m(y) = 0. Let m = maxy∈U0
m(y), the maximal length taken over the whole set of states. Note that this

m is finite thanks to our assumption that no dominant path can have a cycle. Similarly, define pc(y) as

the probability, under IS, of using a dominant path from y to F given that we are in state y ∈ U0, and let

p0 = miny∈U0
pc(y). Also for all integers i ≥ 0, under IS,

P[τ ≥ mi] ≤ (1 − p0)
i,

because this probability does not exceed the probability of not reaching F in i independent trials, starting
from y. Consequently, the random variable τ/m is stochastically bounded by a geometric random variable Y

with parameter p0, whose generating function GY (s) = E[sY ] = p0s/[1− (1−p0)s] is finite for (1−p0)|s| < 1.

Therefore,

Eis[X
2
is] ≤ µ2

0E[((1 + δεr)2m)τ/m] ≤ µ2
0

p0(1 + δεr)2m

1 − (1 − p0)(1 + δεr)2m
(8)

provided that (1 − p0)(1 + δεr)2m < 1, where the last inequality bounds the moment generating function of

τ/m by that of the geometric random variable.

It remains to show that p0 → 1 when ε → 0, and then by plugging this in (8), we would obtain that

Eis[X
2
is] → µ2

0 as ε → 0, leading to VRE and completing the proof.

Under the assumptions of the theorem, the transition probabilities under IS satisfy

q(y, y′) =
p(y, y′)v(y′)

∑

z∈Y p(y, z)v(z)
=

p(y, y′)µ(y′) + o(1)
∑

z∈Y p(y, z)µ(z) + o(1)
=

p(y, y′)µ(y′)

µ(y)
+ o(1).

So under IS, for y ∈ U0, any path π = (y = y0 → y1 → · · · → yk) ∈ Π(y) has probability

pis(π) =

k
∏

j=1

p(yj−1, yj)µ(yj)

µ(yj−1)
+ o(1) =

p(π)

µ(y)
+ o(1).

Thus, the dominant paths have probability Θ(1) and the non-dominant paths have probability o(1). This

implies that pc(y) → 1, and then that p0 → 1, when ε → 0.
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We now give an example showing that VRE is sometimes satisfied even when the conditions of Theorem 1
are not satisfied. The example satisfies the weaker condition that v(y) is the probability of one dominant

path, which has the same order of magnitude as the sum of probabilities over all dominant paths. One might

conjecture from this example that estimating µ(y) by a v(y) having the right order of magnitude in terms of

ε would be enough for VRE. We give another example showing that this is not true. That is, it shows that
VRE may not hold if we do not split the probability correctly, at each step, among all the transitions that

belong to a dominant path.

Example 2 In the example of Figure 1, suppose we take v(y) = v0(y), defined as the probability of the

(single) most probable path from y to F . This gives v(0, 0) = ε3/2, v(0, 1) = v(1, 0) = ε3, v(2, 0) = v(0, 2) = ε,
and v(1, 1) = ε2. Using this v in (2) leads to the transition probabilities q(y, y′) given in Table 1.

Table 1: Transition probabilities q(y, y′) for Example 2.

Origin state Destination state Probability

(0,0) (0,1) 1/2
(0,0) (1,0) 1/2
(0,1) (0,2) ε/(1 + ε)
(0,1) (1,1) 1/(1 + ε)
(1,0) (2,0) ε/(1 + ε)
(1,0) (1,1) 1/(1 + ε)
(1,1) (0,1), (1,0) (1/2 − ε2)ε/(2 + (1 − 2ε2)ε)
(1,1) (1,2), (2,1) 1/(2 + (1 − 2ε2)ε)
(0,2) (0,1) ε2(1 − ε)/(1 + ε2(1 − ε))
(0,2) (1,2) 1/(1 + ε2(1 − ε))
(2,0) (1,0) ε2(1 − ε)/(1 + ε2(1 − ε))
(2,0) (2,1) 1/(1 + ε2(1 − ε))

Let β(y) = Varis[Xis] when Y0 = y, under these probabilities. By conditioning on the first transition, we

find that these variances satisfy the system of equations

β(y) =
∑

y′∈Y

q(y, y′)

(

p(y, y′)

q(y, y′)
µ(y′)

)2

− (µ(y))2 +
∑

y′∈Y

q(y, y′)

(

p(y, y′)

q(y, y′)

)2

β(y′)

for all y ∈ Y. Solving this system gives, in particular,

β(0, 0) =
3 + 12ε + 12ε2 + o(ε2)

1 − 4ε + 2ε2 + o(ε2)
ε7 = Θ(ε7).

Hence, β(0, 0)/µ2(0, 0) = Θ(ε), meaning that we have VRE. On the other hand, the conditions of Theorem 1

are not satisfied in this case, because v(1, 1) = ε2 whereas µ(1, 1) = 2ε2 + o(ε2). In fact we somehow
got lucky to get VRE. For instance, v(1, 1) wrongly estimates µ(1, 1) by a multiplicative constant, but the

corresponding transition failure probabilities nevertheless have the good first order approximation, because

an error by the same multiplicative constant appears in both the numerator and the denominator of the most

important transition probabilities, so these errors cancel out. This error cancellation occurs at all nodes in

this particular example! However, this does not occur in general, for other examples. 2

Suppose that for a given initial state y, there are different dominant paths, using different initial tran-

sitions, say (y, y1) and (y, y2), for which v(y1) = µ(y1)(c1 + o(1)) and v(y2) = µ(y2)(c2 + o(1)), but with

different multiplicative constants c1 and c2. Using this v, the new probability

q(y, y1) =
p(y, y1)ν(y1)

p(y, y1)ν(y1) + p(y, y2)ν(y2)
(1 + o(1))

does not correspond asymptotically to the zero-variance probability

p(y, y1)µ(y1)

µ(y)
(1 + o(1)).
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The next example illustrates this.

Example 3 Consider again a system with c = 2 and n1 = n2 = 2, and where failure occurs whenever any
two components are failed. The transition probabilities are depicted Figure 2. For each state y, define v(y) as

0,0

0,1

0,2 1,1 2,0

1,0

ǫ

1/21/2

ǫ2 1/(1 + ǫ)
ǫ/(1 + ǫ)

1 − 2ǫ

1 − ǫ − ǫ2

Figure 2: Transition probabilities for Example 3.

the probability of the most probable path from y to F . This gives v(0, 0) = ε/2, v(0, 1) = ε, and v(1, 0) = ε,

whereas the exact values are µ(0, 0) = (3ε + ε2)/2, ν(0, 1) = 2ε, and ν(1, 0) = ε + ε2. Using this function v

in (2) gives the transition probabilities q(y, y′) of Figure 3. It leads to q((0, 0), (1, 0)) = 1/2, whereas for the

1/2

0,0

0,1

0,2 1,1 2,0

1,0

1/2

ǫ/(1 + ǫ) 1/2

1/2

1/(1 + ǫ)

Figure 3: Transitions probabilities based on v for Example 3.

zero-variance change of measure, we should have

q((0, 0), (1, 0)) =
(ε + ε2)/2

(ε + ε2)/2 + ǫ
=

1

3
.

This asymptotic difference prevents VRE to hold. On the other hand, it is not difficult to verify that BRE

holds: Just by enumerating all paths (there are not so many here), one can check that µ(0, 0) = (3ε + ε2)/2

and β(0, 0) = ε2/4 − ε3/2 + ε4/4. 2

In general, we have the following sufficient condition for BRE, which is weaker than the condition for
VRE.

Theorem 2 If Assumption 1 holds and v(y) = Θ(µ(y)), then we have BRE. This condition holds in particular

if we take v(y) as the sum of probabilities of any nonempty subset Π0(y) of Πd(y) (it could be a single path,

or more).

Proof. For the first part, the proof mimics that of the previous theorem. There are positive constants δ′1, δ
′
2

and r′ independent of ε and y, and cy independent of ε, such that

cyµ(y)(1 − δ′1ε
r′

) ≤ v(y) ≤ cyµ(y)(1 + δ′2ε
r′

)

for ε sufficiently small. Therefore, there exists δ′, δ′′ independent of ε and y such that

ṽ(y)

v(y′)
≤

∑

y′′∈Y p(y, y′′)cy′′µ(y′′)

cy′µ(y′)
(1 + δ′εr′

)
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for all y, y′, for ε sufficiently small. Let cM = maxy∈Y cy and cm = miny∈Y cy. Then

ṽ(y)

v(y′)
≤ (1 + δ′εr′

)
cMµ(y)

cmµ(y′)
,

and for Y0 = y,

Eis[X
2
is] ≤ µ2

0E

[

(

cM

cm
(1 + δεr)

)2τ
]

.

For the rest of the proof, we use a similar argument as in Theorem 1. We have that q(y, y′) = Θ(p(y, y′)

µ(y′)/µ(y)), and so any path π ∈ Π(y) has probability pis(π) = Θ(p(π)/µ(y)) under IS. It follows that the
dominant paths have probability Θ(1), the non-dominant paths have probability o(1), and that p0 → 1 when

ε → 0. From this, by bounding again the moment generating function of τ/m, we obtain that Eis[X
2
is]/µ2

0

remains bounded when ε → 0.

For the second part, we have v(y) =
∑

π∈Π0(y) p(π). If v(y) = o(µ(y)), then it means that no dominant

path is taken into account in the computation of v(y), which contradicts the fact that Π0(y) contains at least
one dominant path.

5 Numerical examples

Example 4 We consider a system with c = 3 component types, with n1 = n2 = n3. Each component has

an exponentially distributed time to failure with rate λi for components of type i, where λ1 = ε, λ2 = 1.5ε,

and λ3 = 2ε2, for some parameter ε. Any failed component has an exponentially distributed repair time
with rate 1. Times to failure and repair times are all independent. The system is down whenever fewer than

two components of any one type are operational. We want to estimate µ0, as explained earlier. We will

experiment with different values of ni and ε.

For this example, we define v0(y) as follows. For each component type i, we consider the path that goes

from y to F whose only transitions are failures of components of type i. There are three such paths for each
state y ∈ U , and their probabilities p(π) are very easy to compute. We simply define v0(y) as the sum of their

probabilities. For example, for the initial state y = 0 and component type 1, the sample path π corresponds

to n1 − 1 failures of components of type 1 in succession, and its probability is

p(π) =

n1−2
∏

j=0

(n1 − j)λ1

(n1 − j)λ1 + n2λ2 + n3λ3 + j
.

Again, this choice of v0 is appropriate for the specific structure of F considered here.

The methods we try and compare are BFB, a version of BLR proposed in [2] named simple BLR (SBLR),

and our proposed IS method based on zero-variance approximation, using the function v0 just described, and

its modifications v1 and v2 defined earlier. We will denote these methods by ZVA(v0), ZVA(v1), ZVA(v2),

respectively. For each parameter set that we have selected, Table 2 gives (in the third column) our best
estimate of µ0, obtained from a very large number of simulation runs with our ZVA strategies (these numbers

are accurate at least for the digits given in the table), the rough-cut approximation v0(0) of µ0, and the

estimate obtained from n = 220 (approximately one million) independent simulation runs, by each of the five

methods. A simulation run is defined as a sample path of the DTMC starting in state 0 and running until

we reach the stopping time τ . Here it would be feasible to compute µ0 numerically by building and solving
a large system of linear equations giving µ(y) for all states y, because the number of states for ni = 12 is

only 2198, but we did not do it because it was much simpler (and accurate enough for our purpose) to use

simulation. Table 3 shows the empirical variances computed from those n runs, for each method. One can

easily get an idea of the square relative error (the variance divided by the square mean) by dividing these
values by µ2

0, also given in the table.
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Table 2: Parameter sets and estimates of µ(0) with each method, for Example 4.

ni ε µ0 v0(0) BFB SBLR ZVA(v0) ZVA(v1) ZVA(v2)

3 0.001 2.6 × 10−3 1.3 × 10−3 2.7 × 10−3 2.6 × 10−3 2.6 × 10−3 2.6 × 10−3 2.6 × 10−3

6 0.01 1.8 × 10−7 3.4 × 10−8 1.9 × 10−7 (9.9 × 10−11) 1.8 × 10−7 1.8 × 10−7 1.8 × 10−7

6 0.001 1.7 × 10−11 3.4 × 10−12 1.8 × 10−11 (1.8 × 10−16) 1.7 × 10−11 1.7 × 10−11 1.7 × 10−11

12 0.1 6.0 × 10−8 3.2 × 10−9 4.8 × 10−8 1.3 × 10−8 6.0 × 10−8 6.2 × 10−8 6.7 × 10−8

12 0.001 3.9 × 10−28 3.5 × 10−29 (1.8 × 10−40) (2.9 × 10−45) 3.9 × 10−28 3.9 × 10−28 3.9 × 10−28

Table 3: Empirical variances based on n = 220 independent runs, for Example 4.

ni ε α µ2

0 BFB SBLR ZVA(v0) ZVA(v1) ZVA(v2) RE(v2)

3 0.001 0.906 6.8 × 10−6 6.2 × 10−5 8.0 × 10−3 2.2 × 10−8 6.6 × 10−9 9.3 × 10−9 0.04
6 0.01 0.903 3.2 × 10−14 6.3 × 10−11 (4.5 × 10−16) 2.0 × 10−14 1.2 × 10−14 7.7 × 10−15 0.48
6 0.001 0.939 3.0 × 10−22 8.8 × 10−19 (2.0 × 10−26) 1.2 × 10−23 1.1 × 10−23 7.6 × 10−24 0.16

12 0.1 0.851 3.6 × 10−15 8.1 × 10−10 1.7 × 10−10 1.6 × 10−10 2.9 × 10−10 1.5 × 10−11 64.5
12 0.001 0.963 1.5 × 10−55 (3.2 × 10−74) (3.5 × 10−84) 1.4 × 10−55 9.3 × 10−56 9.4 × 10−56 0.78

In those tables, the entries in parentheses are empirical means and variances that clearly underestimate

their exact counterparts by a large factor. For the empirical means, those entries are actually even lower (by a

large factor) than the crude lower bound v0(0). When we have serious underestimation for the mean, then we

have it for the variance as well. The usual explanation is that certain types of paths that have an important
relative contribution to the mean are given a too small probability by the IS heuristic, and never occur in

the sample, so their contribution is totally missed by the estimator. This reduces both the empirical mean

and empirical variance (but not the true variance). If one of these paths would occur, it would potentially

have a huge contribution, due to a large likelihood ratio. All these problematic entries are for the BFB and

SBLR heuristics, and things generally worsen when µ0 gets smaller and ni gets larger. These heuristics were
designed to cope with very low failure rates for the components (very small ε), but are not doing very when

the paths to F have a large number of transitions (i.e., when ni is large, in our example).

With our proposed approach, using v0 as an approximation already gives much better results than BFB

and SBLR, in the sense that we at least get the right order of magnitude for all parameter values. The

adjustment v1 does not provide much improvement over v0 in this example, whereas v2 does provide a more
significant improvement for many cases. This seems to confirm the idea that the exponential correction

should take into account the distance to failure. This appears to be especially true when ni is small, in

which case we need much less corrections for the states that are very close to failure than for the initial state

(compare the results of v2 with the other ones when ni = 3).

With any of the three variants (v0, v1, and v2), we are able to estimate very small probabilities (smaller
than 10−55 in our example) quite accurately with a reasonably small number of simulation runs. For example,

for ni = 12 and ε = 0.001, if we take the average over n simulation runs with v2, the relative error is√
9.4 × 10−56/(3.9 × 10−28

√
n) ≈ 0.786/

√
n, so we only need n = (78.6/x)2 to get x% relative error. For

example, n = 61 suffices to obtain 10% relative error. For ni = 12 and ε = 0.1, on the other hand, the relative
error with v2 is

√
1.5 × 10−11/(6.0×10−8√n) ≈ 64.5/

√
n, so we need n ≈ (6450/x)2 to get x% relative error.

The relative errors with v2 are given in the table, under RE(v2). Note that with ni = 12, the relative error

with our heuristic is much smaller with ε = 0.001 than with ε = 0.1. This is most likely due to the fact that

our approximation v becomes too crude when ε increases.

Another observation is that α (used for v1) increases, and apparently converges to 1, when ε → 0 for fixed
ni, or when ni increases while ε is fixed. The intuitive explanation is that for this example, the dominant

(most probable) paths leading to F are the direct ones, that involve failures of components of only one type,

and these paths are all included in the computation of v1.
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Table 4: Total computating times (in seconds) for n = 220 runs, for Example 4.

ni ε BFB SBLR ZVA(v0) ZVA(v1) ZVA(v2)

3 0.001 2.2 2.8 3.6 6.7 6.7
6 0.01 17.4 12 37 54 54
6 0.001 17 11 36 47 47

12 0.1 47 102 447 652 525
12 0.001 47 25 89 114 115

Of course, comparing only the variances and neglecting the computing costs might be unfair. A standard

practice is to look at the work-normalized variance, which is the variance multiplied by the (expected) time

required to compute the estimator. On the other hand, the computing time often depends very much on the

implementation details, the computer, the programming language, and even the compiler. For this reason, we

report the computing times separately. Table 4 reports the CPU times needed to make n = 220 independent
simulation runs (this excludes the pilot runs made to estimate α used in v1 and v2). The simulations were

performed in Java using SSJ [17] on a computer with a 2.00 GHz Intel Pentium processor. The CPU times

are generally larger with our new methods than with BFB and SBLR, by a factor of about 3 or 4 in most

cases and up to about 15 in the worst case (with ZVA(v1) when ni = 12 and ε = 0.1). This higher cost
is more than compensated by the large gains in accuracy; in fact, BFB and SBLR only provide misleading

mean and variance estimates in many cases. We note that the larger CPU times for ZVA come not only from

the time required to compute the function v(·) at each step, but also (sometimes more importantly) from the

fact that the sample paths are longer on average, because they reach F more often. 2

Example 5 We now consider a simplified version of an example taken from [25], to which the BFB method-

ology is supposed to fit well. The system is comprised of two sets of processors with two processors per set,

two sets of disk controllers with two controllers per set, and six clusters of disks with four disks per cluster.

The failure rates for processors, controllers, and disks are 5× 10−5, 2× 10−5 and 2× 10−5, respectively. The
repair rate is 1 for each type of component. In each disk cluster, data is replicated, which means that the

failure of a single disk does not provoke system’s failure. The system is operational if all data is accessible

from both processor types, meaning that at least one processor of each type, one controller of each set, and

three disks of each cluster are operational. This can be modeled by c = 10 different types of components, to
differentiate between the different sets of the same kind of component, and each ni is 2 or 4. We use again 220

independent sample paths for the estimations. Table 5 displays the empirical variance and the CPU times

for the 220 runs, for each method. The exact value is µ0 ≈ 5.6 × 10−5 and the exponent in v1 is α ≈ 0.949.

We see that the ZVA methods work very nicely for this example as well, for all three choices of v. They

outperform both BFB and SBLR. 2

Table 5: Empirical variances and CPU times for Example 5.

Method BFB SBLR ZVA(v0) ZVA(v1) ZVA(v2)

Variance 5.8 × 10−8 1.3 × 10−4 2.3 × 10−12 1.0 × 10−12 1.2 × 10−12

CPU time 8.5 9.0 27 39 40

In the next example, we replace the approximation v0 by a different one, to illustrate the idea that a good

choice of v really depends on the structure of the model.

Example 6 We consider a system that fails when the total number of failed components (regardless of their
type) reaches a given number (threshold). This kind of system makes sense if we classify the components in

types according to their failure rate, and we need a minimal total number. In this case, we can easily find

a good approximation for the probability that there is the required number of failures (in succession) before

any repair occurs, and use it for v. A simple approximation is: the probability that the first transition is a

failure (which is 1), multiplied by the probability that the second transition is a failure given that the first
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failed component is one with the largest failure rate, multiplied by the probability that the third transition
is a failure given that the first two failed components have the largest failure rates, and so on. We call v3

this approximation.

For a numerical illustration, we take a system comprised of 20 types of components numbered from 0

to 19, with 4 components of each type. All repair rates are assumed to be 1, but component’s failure rates

differ: type-i components have failure rate λi = (1 + i/10)ǫ for 0 ≤ i ≤ 9 and λi = iǫ2/10 for 10 ≤ i ≤ 19,

where ǫ = 10−3. The system is failed whenever a total of 7 components are failed. Table 6 compares the
results (estimates, variance, CPU times, and average number of steps per run) for BFB, SBLR, and ZVA(v3).

Again, the results obtained by ZVA are very accurate; the variance is reduced with respect to BFB by a

factor 6 × 106. The increase in CPU time is on the other hand very limited. To investigate more closely

where this additional time comes from, the last line of Table 6 reports the average number of steps per run.

It shows that SBLR has shorter paths on average, due to the fact that small paths from 0 to 0′ are more
likely to happen. With ZVA(v3), no sample path finishes at 0′, and the paths are longer on average for this

reason, but the increase with respect to BFB is very small. Thus, in this example, the larger CPU times for

ZVA come mostly from the required time to compute the approximation v3.

Table 6: Empirical estimates variancesCPU timesand average steps per run for Example 6.

Method BFB SBLR ZVA(v3)

Estimate 3.1 × 10−11 (3.5 × 10−14) 3.0 × 10−11

Variance 8.5 × 10−18 (5.1 × 10−25) 1.3 × 10−24

CPU time 11 19 97
Steps per run 7.0 4.7 7.2

6 Conclusion

Zero-variance simulation is an utopian ideal that can be achieved only in very simple situations where the

quantities of interest can be computed exactly without doing any simulation. However, it can be approximated
to a reasonable extent in several interesting situations, and can provide very large variance reduction factors in

a practical way. The method relies on a reasonable approximation of the function µ and this would generally

depend on the model. We have shown in this paper how very simple approximations of the zero-variance

change of measure, in a reliability setting, can bring significant improvements. In our numerical examples,
the proposed approach yields a low-variance estimator where all other previously proposed algorithms miss

the target. Further studies with larger and more complex systems are needed to find the practical limits of

the method. We anticipate that difficulties may show up for large and complicated systems for which there is

a large number of dominant paths whose sum of probabilities is hard to approximate. Additional heuristics

might be needed for this type of situation.
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