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ABSTRACT: A preventive replacement problem is formulated in discrete
time for a multicomponent system having non identical elements. The
components are assumed to be s-independent but there is a possibility
of economies of scale in the reﬁlacement activity. The Dynamic Pro-
gramming equation is obtained and some useful properties of the Bellman
value function are stated. An algorithm for the numerical computation
of optimal and suboptimal replacement strategies is proposed. A

numerical illustration is developped.
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RESUME: On définit un modéle de remplacement préventif en temps discret
pour un syst@me A plusieurs composantes non identiques. Lés composantes
sont stochastiquement indépendantes mais des &conomies d'échelle sont
possibles lorsque plusieurs remplacements se font simultanément. On
obtient 1'équation de la Programmation Dynamique et quelques propriétés
de la fonction de Bellman sont &noncées. On propose un algorithme
permettant d'obtenir numériquement des stratégies optimales ou sous-

optimales. Un exemple numérique est traité.



1. INTRODUCTION

In this paper an optimal preventive replacement problem (OPR) is
formulated in a discrete time setting for a multicomponent system

having non identical elements.

If the failure rate of each element is only a function of its
age, it is theoretically possible to obtain an OPR strategy through
the use of dynamic programming [8]. However the curse of dimension-
ality occurs very early as the cardinality of the state set rises

quickly with the number of elements comprising the system,

The case of a system with identical elements has already been
considered in [3, 4]. Various properties of the Bellman functional
(or optimal cost-to-go function) permitted a substantial reduction
in the size of the state set and of the action set. Furthermore it
has been possible to notice that suboptimal preventive replacement
(SOPR) strategies, much simpler to implement than OPR strategies,

could be in some cases almost as efficient as the former ones.

In the present paper the case of non identical elements is
considered. An example motivating the present research is given by
the optimal maintenance of multimodule aircraft engines. In this
case each module j is characterized by a fixed age limit Tj and a
constant failure rate. In order to replace an element, either upon
failure or due to its age limit, several other elements have to be
removed. A cost reduction is thus possible if one can group some

of the component replacements.



In section 2 the dynamic programming equation to be solved in
order to obtain the OPR strategy is given and an algorithm is proposed

for its numerical solution.

In section 3, a numerical example is worked out and in section 4

a comparison is made with some simple suboptimal strategies.

2. THE DYNAMIC PROGRAMMING APPROACH

We consider a multicomponent system observed at discrete sampled

times: to=0, t.=Aty..., tc=cAt,..., tn=nAt. At time to=0 the whole

1
system is new. We assume that the components have independent life-
time distributions characterized by discrete non-decreasing failure
rate functions:

pi(ri)sPr [component i fails during the next Atlits age is riAt],

i=l,...,m

At a sampled time t0 every failed component must be replaced by a
new one (Emergency Replacement, E.R.) and some components still operative
may be preventively replaced (P.R.). The advantage of performing P.R.s
stems from the following cost structure: If the set ReM={1,2,...,m} of

components have to be replaced, the cost of the intervention is given by:

CR) = Z C, + 2 c.,
ieR ieW@®) T

where Ci is the replacement cost of component i, W(R) is the set of
components to remove in order to replace the set R, and ¢y is the

removal cost of component 1i.



It is assumed that replacements, if any, are instantanecus. Hence
we will make a diétinction between the state of the system at time tc
before any intervention, and the state of the system at time t;=to+0,
just after a possible intervention. At tc the state is a vector
xs(xi)iEM whose component X, is equal to "d" if component i is failed,
and gives the age expressed in number of At periods otherwise. Thus
xEXsiﬁl( NU{d}). Notice that no component x; can be equal to zero. At
tO th; state is a vector rEXos g ({0}U N), whose component r, is equal

i=1

‘to zero if the component i is replaced and is equal to x, otherwise.

i
The probability that the system will be in state x at to+l given

that it is in state r at t; is given by:

m
Pr(xlr)‘= 121 pi(xilri)
where
pi(ri) if X = d
Pi(xilri) = 1 - pi(ri) if xi=ri+l

0 otherwise.

Assuming a discount factor B€(0,1) per time period At, the dynamic
programming approach can be used to characterize the optimal expected
"cost-to-go" functionals Jk(x) giving the minimal discounted expected
cost on the k remaining time periods when the system is observed to be

in state x at time tc=(n—k)At. We obtain:

I =T@,_ ) ® = Mn {CR®R +2 ( I xe)}
k k-1 {R|HEREM} K jewr 11

where H = {ilxi=d} is the set of failed elements and

0 if k=0

Zk(r) =938 xix P(xlr) Jk_l(x) if k=1



It can be proved [5] that Jk(x) is non-decreasing w.r.t. each . -

component x Furthermore it can be shown that optimality precludes

i.

preventive replacements in the absence of failures (i.e. when H=0).

When the time horizon nAt tends to infinity the minimal discounted
expected cost J(x) when the system starts in state x is obtained as the
limit of Jk(x) when ko=, Also there exists an optimal stationary
strategy {e(x)}x€X which gives the set 8(x) of components to replace
when the system is observed to be in state x. It is also shown in [5]
that the following "control limit" property holds:

0(x) =M=06(k) =M Y X = x.

For the case of only two components (m=2), this property corres-
ponds to the control-limit rule stated in [2], [7], [8] and [9]: for
each component i, there is a threshold ﬂi such that when the other
component is failed, it is optimal to also replace i if and only if

>
X, Z Li.

Notice that in general, however, the preceding property cannot be
extended to the case where 8(x) # M., In section 3, an example is given

illustrating that it is possible to have 6(X) < 6(x) even if X > x.

A complete study of the form of the optimal strategy for systems

having identical components can also be found in [3].

Using the monotonicity property of J(x), the following algorithm

yields an approximation of the optimal strategy.



Algorithm:
@ Choose 520, N€ N, set k=0 and JO(X)EO.

() Repeat N times: Set k: = k+l and define'Jk(x) as a monotone non-
decreasing function such that:

Sup | Jk(x) - T(Jk—l)(x) | <6
x€X '

Y173
() Set Jk. = Jk + 3 where

<L - -
vy S 1o U (0 - 3, (01 - 6

> B -
T2 % 18 [}S:g( {3, =3, G} + 8]

() Define V: X+ R as a monotone non-decreasing function such that:

Sup | V(x) - T(J,) (x) | <&
x€X

and set 5§ = Sup | V(x) - J (x) |
o k
x€X

6 _B+6 Bry-vy) YooY
o + Min 2 1 2 1, 5

1 R Y R

then return to step (:).
C) Stop. The argument of the minimum in the definition of T(Jk)

yields a stationary e-optimal strategy. =

Theorem: For any & > 0, there exists § > 0 such that the preceding

algorithm converge in a finite number of iterationms.

The proof of this theorem follows closely similar proofs given

in [1].



3. NUMERICAL ILLUSTRATION

We consider a system consisting of 4 components (see fig. 1).

Component 4 must be removed to give access to component 3, which must

be removed to give access to components 1 or 2.

We assume that each

component has a constant failure rate and an age limit of 8 periods.

Other pertinent values are:

i 1 2 3 4
cy .5 1.5 1.0 4.0
Ci 3.0 2.0 2.0 3.0
pi(ri) riS7 .10 .10 .08 .08
pi(8) 1 1 1 1
w({{i} 4,3,1 4,3,2 4,3 4

Assuming a discount factor B=0.9, e=0.1, 5=0, the DP Algorithm

yields V(0)=32.2 as the expected discounted cost to go when the system

is new. In what follows, the form of the optimal strategy is illustrated

by giving the optimal action for a few states of the system.

Here,

(xl X, x3 x4) denotes a state and xi is encircled when component i has

to be replaced.




Figure 1. Accessibility structure of the system



Example A Example B

Component Component 1 2

State

1 3 4

@ 1 ® © 11
State @ 6 6
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3

®
6

®
1

6 6
@ O
@ ®

In example A, component 1 is failed so that components 3 and 4
(both of age 6) must be removed. If component 2 is of age 1, one
replaces components 3 and 4 to obtain a quite new system. But if
component 2 is of age 6, only the failed one is replaced. Finally,
if component 2 is of age 7, then it is optimal to replace all the

system.

This example shows that X > x does not imply 6(X) = 6(x). This
counterintuitive result can be explained as follows: when the system
is in state (d 1 6 6 ), replacing components 3 and 4 lead to a state
where all components are quite new. When the system is in state
(d 6 6 6), the same action would leave component 2 at age 6 and thus
with a very short remaining life. To move away significantly the
expected time of the next intervention, all the system must be replaced.
But this is more expensive and it happens that the best action is to

replace only the failed component and wait for the next sampled time.

® 66 e |~



In example B, component 4 is failed and it is not compulsory to
remove any other component. However, when component 4 is removed,
the other components are more easily accessible so that it is sometimes

advantageous to do preventive replacements at the same occasion.

In general, the optimal strategy is very complicated, thus there is

an incentive for considering simpler suboptimal strategies.

4. CLASSES OF SIMPLE SUBOPTIMAL STRATEGIES

One simple strategy is to replace only the failed elements. Such
a strategy yields, on the preceding example, an expected discounted cost

of V(0)=33.7, i.e. a 4.57 increase w.r.t. the optimal strategy.

A better suboptimal strategy is the following one: for each
component i, select a threshold £i>0. Then, at any sample time, in
addition to the set H of failed components, replace every component i
in W(H) whose age is greater or equal to Zi. For our example, £3=£4=6
gives the best strategy in that class which yields V(0)=33.2, still a 3%

increase w.r.t. the optimal strategy.

This suboptimal strategy could be refined as follows, so that it
also takes advantage of the increased éccessibility to some components
when others are removed: for each i, define an age threshold for each
"level' of accessibility to i. As an illustration, in the preceding

example, component 2 should be replaced if either
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X, > 222 and component 4 is removed, x, = 223 and component 3 is removed

or if X, = d. Here, 121, 222 and £23 are the fixed age thresholds for
components 2, A similar set of thresholds can be defined for each

component and a strategy is thus defined.

When the curse of dimensionality prevents us to find the optimal
strategy or even approximate it, one may look for a good suboptimal
strategy of the iatter form by using repeated simulation. The idea is
to move in the space of all possible sets of thresholds in an intelligent

manner and find "the best" or a 'very good" point in that space.

However, this approach does not yield necessarily a satisfactory
solution. For our example, the best strategy of this form is still

different from the optimal one for many states.

CONCLUSION

Optimal preventive replacement strategies have been considered
for a multicomponent system with non identical elements and a discrete
time dynamic programming algorithm has been proposed for the approx-

imate computation of optimal strategies.

The numerical illustration shows that the control limit rules,
valid for the single or two-component system, cannot be readily
generalized to larger systems. Experiments with suboptimal strategies
having the control-limit structure show that it is not always possible

to obtain a good approximation of the optimal cost-to-go with such

strategies.



Further research is needed for providing efficient algorithms
which would permit one to solve the optimal stochastic control problem
in continuous time. Refs [4] and [6] give some preliminary results

based on the theory of optimal control for jump processes.
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