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Abstrac!;

The production scheduling problem considered in this paper is related to the planning of op-
erations of a flexible manufacturing cell composed of a punch press and a shear that produce
parts from metal plates. A stochastic control problem is identified, to optimize the expected dis-
counted cost of the system. The control consists in dispatching » bins to a processor units which
can process only one bin at a time. A dynamic programming approach is used, and numerical
techniques are applied for the solution of the two-bin case. Numerical results are presented and

discussed.

Résumé

Nous considérons dans cet article un probléeme de production relatif & la planification des
opérations d’un atelier flexible. Le probléme consiste & choisir parmi n lots lequel sera le prochain
a étre envoyé en production. La taille des lots augmente selon une demande aléatoire. Deux
types de cofits sont pris en compte: un cofit fixe associé au temps de réglage de la machine
et a la perte de matériel et un cofit proportionnel 3 la durée de D’attente d’un lot. Les temps
d’usinage sont déterministes. Une approche basée sur la programmation dynamique est utilisée.

Un exemple constitué de deux types de lots est traité.






1. The multiple lot dispatching problem

The production scheduling problem considered in this paper is related to the planning of op-
erations of a flexible manufacturing cell composed of a punch press and a shear that produce
parts from metal plates. Three process planning problems for this cell, dealing respectively with
the nesting of parts, sequencing of punch operations and clamp positionning, have already been
considered in [1], [2] and [3]. The present study deals with the upstream problem, where one has
to decide how to build and schedule the lots to be produced by the cell. The orders for parts
arrive at random times and are accumulated in lots. A lot consists of a set of parts having the
same material requirements (e.g. metal gauge and quality). The part nesting process generates
some material loss mostly concentrated on the last plate of metal used to produce a lot. In first
approximation this loss can be considered as a fixed loss plus a loss proportional to the number
of parts in the lot sent to production. This fixed loss induces an incentive to build large lots
before starting a production run. On the other hand delaying the production of an ordered part
bears a cost very similar to a holding cost. The problem is to find a good compromise between

these two costs.

This production system can be represented schematically as follows: there is a processor
unit, and n feeder units called bins. Each bin receives and stores unprocessed parts which
then constitute a production lot, corresponding to one possible line of production, with specific
material requirements and processing cost. There is no possibility to transfer parts from one bin
to the other. If the processor is idle, and if a bin is selected for production, then the whole lot
currently in the selected bin is instantaneously transferred to the processor unit and the emptied
bin can immediately resume the lot building process (i.e. receive new parts). The processing

time in the processor depends on the size of the lot sent for production.

This system may equivalently be described as a queue with one server that serves n classes of
arrivals, each class modeled by an independent Poisson process. When idle, the server observes
the contents of the n queues and may decide to remain idle, or to dispatch one of the n queues.
The service time to process one entire queue is dependent upon that queue size. The problem is
related to the clearing system problem (9], a classical one in the queuing litterature, of which the
Shuttle Dispatching Problem is a special case (see [9]). In this problem, the serveris a shuttle that
waits for a sufficient number of passengers to board, and then departs, thus becoming unavailable

for a certain duration (service time). In this situation there is only one class of customers
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(versus n in our case) and service time is independent of queue size. Clearing systems also
have applications in inventory control, and in dispatching of multiple vehicles, with or without
capacity constraints ([9], [7]). In the present paper we favor a stochastic control formulation of

the problem.

For j € {1,...,n}, we define the state of bin j at time ¢ as its anticipated processing time,
given the size of the lot currently in the bin. This state is denoted z;(t). Let P; be the set of parts
which are assigned to bin j. We assume that the arrival process describing the accumulation of
parts of type px; € P; is Poisson with intensity Ay;. This assumption is not essential for this
model, however it simplifies the transition probability kernel expression for the Markov renewal
decision process considered in section 2, and eases the numerical solution. If such a part enters
the bin, it increases the state by a (known) amount £;. The arrival processes corresponding to

different parts are assumed to be independent.

Two kinds of costs are incurred: (a) a holding cost rate for the parts in the bin, which is
considered to be proportional to the bin contents, and (b) alumped cost, related to the setup of
the processor and the material loss, which only depends on the production line (i.e. the selected
bin) corresponding to the lot that is sent for production. Therefore, if one observes bin j on the
interval [¢;,%;] for a particular sample value w, and if the bin has been emptied (i.e. the lot has
been sent to production) at a time t3(w) € [t1,12], then the cost incurred by the system for bin

J, on the interval [¢;,2,], is given by
t2
/ e~ Plw;z;(t,w) dt + e~ W, 6))
ty

In this expression w; is the unit holding cost rate, and W; is the setup cost, for bin j. These

costs are discounted at rate p > 0.

A controller can decide, at some specific times that will be defined shortly, either to postpone
production or to send the current lot contained in some bin j to be processed (we also say that
bin j is emptied into the processor unit). The action set is thus defined as A = .{0, 1,...,n}
where 0 indicates that nothing is sent to the processor, and j indicates that bin j is emptied. We
assume that the controller uses a policy to operate the system over an infinite time horizon. In
order to define precisely the set of admissible policies, we now give a more complete description

of the controlled stochastic process corresponding to this system.



Let y_f(t) be equal to 0 if the processor is idle at time ¢, and equal to the remaining processing
time of the work in process otherwise. The state of the system at time ¢ is thus defined as
s(t) = (y(2), X(1)) = (y(2),z1(2),...,2,(2)), and we denote by S the state set. We consider the
stochastic process s(-) = (s(¢) : t > 0) and we assume that the controller intervenes at the jump
times of X(-), i.e. at the instants of arrivals. Let A(s) be the set of all admissible actions when
in state s. If the y component of s is positive (i.e. if the processor is busy) then A(s) = {0},
otherwise A(s) = A. A policy will thus be defined as a mapping = which sends any state s into
the admissible action set A(s). Under a given policy =, s(-) becomes a semi-Markov process
governed by a transition probability kernel defined in the next section. Associated with an initial

state s® and a policy 7 is the total expected discounted cost

V,,(so) = E, II:i fw e_ptwjivj(t) dt + i 6_“‘%‘} , (2)

j=1"0 £=0
where t;, for £ = 0,--+,00, denote the random times at which a bin is emptied into the processor,
and j, denotes the bin chosen at time ¢,. The problem is to characterize an optimal policy =*

which satisfies, for any s° € S,

Ver (°) = Va(s*) & inf Vi (s°). (3)

Notice that in this formulation, the controller does not intervene as soon as the processor
terminates a job and becomes idle (i.e. when y(t) comes down to zero); it waits until the next
arrival. Under this assumption, the expected time between any two successive transitions is
bounded away from zero, uniformly over the state space, and all the dynamic programming
operators defined in the next section are contracting. This permits one to use a successive
approximation algorithm, as suggested in [5], to compute a near optimal policy #, together with

bounds on sup, s |Vz(s) — Vi(8)].

An alternate formulation would also consider the times at which the processor terminates
a job as possible intervention times: the controller would be allowed to empty a bin as soon as
y(t) reaches a zero value. One difficulty with this formulation is that the dynamic ﬁrogramming
operators (to be defined in the next longer section) are no more contracting. This is due to the
possibility of having a part arrival at a time 7 when the y value is extremely small. In that case,
whatever be the policy, the expected discount factor for one stage is not uniformly bounded
away from one, and thus the model is neither a C or a LC model according to the terminology

of [5].



2. Solving the Markov renewal decision process

In this section we define the Markov renewal decision process (MRDP) associated with the
optimization problem defined above. We will use the dynamic programming operator formalism
initially introduced by Denardo [4]. Recall that the controller intervenes at the jump times of
X(+),i.e. when a new part p;; arrives in one of the bins. Therefore, the random delay 6 between

two successive intervention times is exponential, with distribution function

0 ift <0,
Fo=po<g={)_ . H55 @)

where

Jj=1k=1

Given 6, the holding cost over this transition period is given by

i=1

R(8) = /0 e"”Z(wjmj(t))dt = 1—‘—;""—92(@0,-@), (6)

where z; is the state of bin j at the beginning of this transition period. Let X = (z,,...,2,)
represent the vector state of all bins. Let V be the class of bounded functions V(-) : § — IR.
We define a norm on V by ||V|| = sup,c ¢ |[V(s)|. We consider the operators H and T acting on
V, where H(V): S x A~ IR and T(V) : § — IR are the functions defined below.

If y > 0, then necessarily a = 0 and
H(V)(s,0) = / Ae [R(r)

+e” Zn: E (Ak1> V(max(y — 7,0), X+§k,-e,~)} dr

j=1k=1

__-1?-7 Il:i: wo; + e (Ao 2": i (Akj V(0, X + &; ej))]

im j=1k=1

+/0 e~ (A+p)T (2 E Aj V(y-1,X +Ek:3])) dr, (7)

j=1k=1

where e; denotes the j-th unit vector.



If y=0 and a = 0, then

o0

H(V)(0,X),0) = / Ae™" [R(r)

+ e P7 Xn: Zn: (/\—X’-) V(0,X + £kjej)} dr

j=1k=1
= T (im0, X 4 ) ®
Ify=0anda=1#0,
H(V)((OaX)ﬂ) =W; + H(V)((a:,,X - a:.-e,-),O). (9)

The function T(V')(s) is then defined as

H(V)(3,X,0) ify >0,

T(V)(y,X) = ! (10)

[ OI_<niiéln H(V)((va)’ 7‘) ify=0.

This stochastic control system is a discounted MRDP model, for which there exists a well
developped theory (see [4], [5]). It is in fact a contracting model (type C, according to the
terminology of [5]), which fits into the contraction mapping framework introduced by Denardo

[4]. The expected discount factor between two intervention times is given by

A

= [T ertperrgr = A 11
a= [Terhetia = o (1)

and the operators H and T are contracting with factor a. The following properties hold (see

[5]):

THEOREM 1.

() T(V) =V iff V =V,, ie. V, is the only fixed point of the operator T

(b) lim,—, o [|T"(V) — Vi]| = 0, where T™ denotes the n-fold composition of the operator T;
(c) An optimal policy p. is defined by

p(0,X) = argorsrliiéln H(V,)((0,X),7) (12)

when the minimum is attained.



3. Approximation of the optimal policy

In this section we describe the implementation, for this specific scheduling problem, of the
approximation technique proposed in [5] within the general framework of discrete event dynamic
programming. One wants to approximate the function V, : IR**! — IR which is a fixed point
of the operator T. One uses a value iteration algorithm which consists to apply the operator T'
repeatedly until the fixed point is approximated. Convergence is guaranteed by the contraction
property of T (Theorem 1 (b)). Since the state set S is infinite and continuous, one must include
in the numerical computation another approximation scheme dealing with the evaluation of
T(V') over the whole state set S at each iteration. As suggested in [5], one defines a finite grid
over § = IR™"'. At each iteration, one computes the value of T(V) at each node, and uses
interpolation techniques (e.g. spline or finite element) to evaluate T(V')(-) at points other than

the grid nodes, in order to obtain an approximation W of T'(V).

In [5], it is shown how to compute bounds for the error norm in the computation of V., and
bounds on ||Vz — V.||, where # is the policy retained at the end of the algorithm. The latter
norm represents a bound on the expected loss incurred by using policy i instead of the optimal

policy. The following is proven in [5].

THEOREM 2.

At any iteration, one has:

! >W = —(a/(L-a)|(V = W+ )|

V. (13)

L<W 4 et +(a/(1- @)W + ¢t - V)|

where a = A/(A + p), f+(:) = max{0, f(-)}, and €* and e are positive constants such that
- <T(V)-W <€t (14)
Furthermore, for any €, > €*, one can find a policy u such that
T,(V)XT(V)+ e — €t < W + &, (15)
and any such policy satisfies

Vi=-Vi<e +6
+(a/(1=a) (V=W + ) [+ (W -V + )] . (16)
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The values €~ and €t express the error made when one replaces T'(V) by its approximation
W. In pratice one can evaluate (or estimate) these bounds by using an extra step of the value
iteration method, in which T'(V') is computed at a large number of points interior to the grid G,
and then taking the largest observed errors as estimates for ¢* and ¢~. The same can be done

for €p. The approach is illustrated below for a two-bin system.

4. A two-bin example

When the scheduling problem involves only two bins, the state set .S reduces to IRi. The
grid consists of a set of cells defined by parallelpipeds (some being unbounded). The value
iteration algorithm is applied at each node of the grid and the T(V') function is approximated at
points other than the grid points by using a trilinear interpolation W. When a cell is unbounded

w.r.t. one of the three state variables, the function W is taken as constant in this direction.

The iterations are performed in batches . At the end of each batch the bounds discribed in
Eq. (13) are computed, and new points may be added to the grid. One can start with a coarse
grid, that contains only a small number of points, and refine the grid by adding new points after
every batch. These new points can be chosen, for instance, in such a way that the values (z, )
at which |T(V) — W] is the largest are incorporated into the grid. In our experiments, the ¢
values where evaluated by a technique based on the golden section search method (see [6]), on
each parallelpiped. Batches of iterations are performed until the distance between the bounds

in Eq. (13) becomes sufficiently small.

As a numerical illustration, let n; = ny = 1, Aj; = Ay = 0.05, &1 = &2 = 9.5, and
p = 0.025. One easily computes o = (A1 + A12)/(A11 + A12 + p) = 0.8. We performed 5 batches
of about 35 iterations each. For the last batch, the values of z; and z, defining the grid were 0.0,
40.0, 50.0, 90.0, 100.0, 120.0, 130.0, 140.0, 150.0, 156.7, 160.9, 165.0, 172.5, 180.0, 185.0, 190.0,
195.0, 200.0, 206.2, 212.5, 218.7, 225.0, 232.0, 240.0 and 250.0. After the last batch, we had
[V - W|| < 0.0031, and we estimated e+ = 68.0 and ¢~ = 0.0. The bounds given by theorem 2

are

0< V., — W < 340.284,

0<V, —V. < 340.284,

7



where u i:s”the retained policy (approximated using Eq. (12)). We obtain the same results for
the two bounds, because €~ = 0 and V is always least than W. This corresponds to a relative
approximation error of 3%. The computations for this example took about 18 hours of CPU
time on a SUN-3/50 with a math. co-processor. Most of this time was spent in the last batch
of iterations, where the grid contains around 15000 nodes. The policy p retained at the end of
the algorithm appears in figure 1. This figure also illustrates the resulting policies for examples
with the same data except for p, for which we used p = 0.01, and p = 0.04. One notices that
as p increases, the region where one decides to postpone production tends to become a square.
For small values of p, this region has a more complex shape. A common characteristic feature
of these sets is the pike in the direction of the bisector z; = ®,. This suggests that when the
two bins are equally full, one should wait a little bit longer before deciding which lot will be
sent to production. Figure 2 illustrates the retained policy if the controller intervenes as soon as
the processor terminates a job. As we can see, this policy is the same as the one without these

possible intervention times.

5. Conclusion

In [8], Schweitzer and Seidman have proposed a different although related stochastic dynamic
programming model for the part selection problem in an FMS. Their model uses a discrete state
set and average cost criterion. In the present paper we have considered a different dynamic
programming model also related to the problem of feeding an FMS. In our formulation, the state
set is infinite and continuous and we use a discounted cost criterion. The numerical solution
makes use of advanced approximation techniques in Dynamic Programming. This technique

could be adapted to a deterministic version of this problem.



300

a=2

200 -

100 o \ p=0040

p=0.025
p=0.010 a=1
a=0 /
0 L] I L] I L)
0 100 200 300

Figure 1: Resulting policies for different values of p.

200 A

gt Y

100 +

o+ . .
0 100

i
200 300
Figure 2: Resulting policy if the controller intervenes as soon as the processor terminates a

job.



References

[1] F. Chauny. R. Loulou, S. Sadones, F. Soumis, “A Two Phase Heuristic for Strip-Packing :
Algorithm and Probabilistic Analysis”, OR Letters, Vol. 6, No. 1, 1987.

[2] F. Chauny, A. Haurie, R. Loulou, E. Wagneur, “Sequencing Punch Operation in an FMS :
a Three Dimensional Spacefilling Curve Approach”, INFOR, Vol. 25, No. 1, 1987.

[3] F. Chauny, A. Haurie, R. Loulou, E. Wagneu'r, “Clamps Positioning and Optimal Holding
Positions in an FMS”, To appear in IEEE Transactions on Automatic Control, 1988.

[4] E.V. Denardo, “Contraction Mappings in the Theory underlying Dynamic Programming”,
SIAM Review, Vol. 9, pp. 165-177, 1967.

[5] A. Haurie and P. L’Ecuyer, “Approximation and Bounds in Discrete Event Dynamic Pro-
gramming”, IEEE Transactions on Automatic Control, Vol. AC-31, No. 3, pp. 227-235,
March 1986.

[6] D. G. Luenberger, Linear and Nonlinear Programming, Second ed., Addison-Wesley, 1984.

[7] W. B. Powell and P. Humblet, “The Bulk Service Queue with a General Control Strategy:
Theoretical Analysis and a New Computational Procedure”, Operations Research, Vol 34.,
No. 2., March-April 1986, pp. 267-275.

[8] P.A. Schweitzer and A. Seidmann, “Part Selection Policy for a Flexible Manufacturing Cell
Feeding Several Production Lines”,IIE Transactions, Vol 12, No. 4, pp355-362, 1984.

[9] S. Stidham, “Clearing Systems and (s,3) Inventory Systems with Nonlinear Costs and Pos-
itive Lead Times”, Operations Research, Vol. 34, No. 2, March-April 1986, pp. 277-280.

10



	Cahier20130103_00000
	page-blanche-Brother
	Cahier20130103_00001
	page-blanche-Brother
	Cahier20130103_00002
	page-blanche-Brother
	Cahier20130103_00003
	Cahier20130103_00004
	Cahier20130103_00005
	Cahier20130103_00006
	Cahier20130103_00007
	Cahier20130103_00008
	Cahier20130103_00009
	Cahier20130103_00010
	Cahier20130103_00011
	Cahier20130103_00012

