Les cahiers du GERAD ISSN: 0711-2440

Efficient and Portable
Combined Tausworthe Random
Number Generators

S. Tezuka, P. L’Ecuyer
G-90-54

December 1990

Les textes publiés dans la série des rapports de recherche H.E.C. n’engagent que la responsabilité de leurs
auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds F.C.A.R.

Efficient and Portable Combined Tausworthe
Random Number Generators

Shu Tezuka

IBM Research
Tokyo Research Laboratory !

Pierre L’Ecuyer

Département d’I.R.O.
Université de Montréal 2

November 1990

15-19 Sanbancho, Chiyoda-ku, Tokyo 102, Japan
2C.P. 6128, Succ. A, Montréal, H3C 3J7, Canada

Abstract

In this paper, we propose three combined Tausworthe random number generators
with period length about 108, whose k-distribution properties are good, and which can
be implemented in a portable way. These generators are found through an exhaustive
search for the combination with the best lattice structure in GF{2,z}¥, the k-dimensional
vector space over the field of all Laurent series with coefficients in GF(2). We then apply
a battery of statistical tests to these generators for the comprehensive investigation of
their empirical statistical properties. No apparent defect was found. In the appendix, we
give a sample program in C for the generators.

KEYWORDS: Tausworthe sequences, spectral test, empirical statistical test

Résumé

Nous proposons trois générateurs combinés de type Tausworthe dont la période est
approximativement de 108, pour lesquels les vecteurs de k valeurs successives sont bien
distribués, et que 1’on peut implanter facilement de fagon portable. Ces générateurs sont
le résultat d’une recherche exhaustive pour trouver les combinaisons ayant les structures
de treillis de meilleure qualité dans GF{2,z}*, ’espace vectoriel & k dimensions défini
sur le corps de séries de Laurent & coefficients dans GF(2). Nous appliquons ensuite une
batterie de tests statistiques A ces générateurs afin d’examiner leurs propriétés statistiques
empiriques. Nous n’avons trouvé aucun défaut apparent. En annexe, nous donnons une
implantation en langage C de ces générateurs.

1 Introduction

Combining two or more pseudorandom sequences has recently drawn much attention in the
field of random number generation [2,6,8,11,12,18]. It has the potential of producing genera-
tors with larger period length, better randomness properties, and that are easy to implement.
Combinations of linear congruential generators have been studied in [6,8,18]. It turns out
that for the classes of combination suggested in [18] and [6], the combined generator is also
linear congruential and almost linear congruential, respectively. Linear congruential gener-
ators have a lattice structure which can be characterized to some extent by the so-called
Beyer and spectral tests [5,7]. It is well accepted that generators with bad (or too coarse)
lattice structure must be avoided. Therefore, it is important to make sure that the combined
generator (and not only each of its components) does not suffer from a bad lattice structure.
Some pathological examples of combination are discussed in [8,16].

Tausworthe sequences, which do not possess the same kind of integer lattice structure, have
been investigated as an alternative to linear congruential sequences. Recently, a theory for
the randomness of these sequernces, similar to that of linear congruential sequences, has been
developed [14,15]. The theory shows that Tausworthe sequences have a lattice structure in the
k-dimensional space over GF{2,z}, the field of all Laurent series over GF(2). Consider for
example the Tausworthe sequence whose two-dimensional plot is shown in Figure 1. Suppose
we apply Marsaglia’s lattice test[11], which examines the smallest integer lattice spanned by.
the set of all pairs of consecutive terms in the sequence (i.e. all integer linear combinations
of these pairs). By hand calculation (see Appendix ‘A), we can see easily that this lattice
contains all points with integer coordinates.

Fast software implementations of Tausworthe generators are known, but only for special
cases, e.g., trinomials of small degree. Unfortunately, these special cases have poor statisti-
cal properties [11,17]. Primitive trinomials of large degree (e.g., degree 521 [4]) have been
suggested, but fast implementa.tions" without using extra array of memory are not available.
André et al. [1] discuss how to find good Tausworthe sequences with respect to the two-

" dimensional discrepancy and suggest some. But again, the resulting sequences are slow to
generate, since their characteristic polynomials have many nonzero coefficients.

In a companion paper [15], Tezuka proposed the XOR (bit-wise exclusive-or) combination
of Tausworthe sequences and derived a sufficient condition for the combined sequences to
have a good k-dimensional distribution property. A practical merit of this combination is
that one can generate pseudorandom se_quencéswith large period length, which have a good
k-distribution property, in a portable and efficient way. The objective of this paper is twofold.
First, we conduct an exhaustive search for the best combination of two Tausworthe sequences,
where one is of period 23! — 1 and the other, 2?° — 1, yielding a combined generator of period
length (23! —1)(2%° —1) = 2%°. Second, we perform empirical statistical tests on the resulting
combined generators. The paper is organized as follows. . Section 2 briefly overviews the
definition of combined Tausworthe generators and a theorem for the good k-distribution of
such sequences. In Section 3, we describe an exhaustive search conducted for finding combined
Tausworthe sequences with good k-distribution properties. Three generators were retained.
In Section 4, we perform a comprehensive study of these three generators on the basis of a

Xint

64

Figure 1: The pairs (X;, X;41), for ¢ = 1,...,63, produced by the Tausworthe sequence
X; = E__?:l a4i+;2°79, where {a;} follows the recurrence a; = (a;_s + a;_¢) mod 2.

battery of empirical statistical tests. Section 5-gives a quick comparison of the generators
proposed here with the combination of linear congruential sequences.

2 Overview of combined Tausworthe sequences

2.1 LS2 génerators and Tausworthe sequences

Let GF{2,z} denote the field of all Laurent series of the form S(z) = ¥ _¢jz?, with m -
integer and ¢; in GF(2). Here we define an analogous version of linear congruential sequences
in GF{2,z}. Let 0 be a mapping from GF{2,z} to the real field, defined as

O'(S(a:)) = 5(2).

Then a pseudorandom sequence u;, i = 1,2, ..., in [0,1) is defined as

flz) = (g9(z)fi-1(z) + h(z)) mod M(z) IR
ui = o(fi(z)/M(z)), (1)

where g(z), h(z), M () and fi(z) are polynomials in GF{2,z}. We denote this generator by
the triplet G = (g, h, M) and call it a LS2 generator. In practical situations, u; is expressed
approximately by its truncated value, i.e. by summing from some constant —L.

A Tausworthe sequence is a special case of the above general class. Let M(z) be a primitive
polynomial of degree p over GF(2), h(z) = 0, g(z) = (z* mod M(z)), with 0 < s < 27 — 1,
ged(s,2? —1) =1, m = —1, and L be the “word-size”. Then, for i = 1,2, ..., the Tausworthe
sequence [13,15] can be written as '

L } '
Z u+_72— ' (2)
where {a;, j > 1} is a binary sequence generated by the linear recurrence whose characteristic
polynomial is M(z). Note that the digital multi-step sequences over GF(2) discussed in [1]
are a special case of Tausworthe sequences, i.e., 0 < L = s < p.

We now give an algorithm for the case where M(z) is a primitive trinomial of the form
M(z) = zP+z7+1, with ¢ < p/2, and g(z) = z*, with 0 < s < p—q. Each term of the sequence
{u;} is expressed by its leading L = p bits in this algorithm. This can be implemented easily,
in a “portable” language that supports shlftmg and bitwise-XOR- operatlons (like C), if p
[=L] is not larger than the computer’s word-size.

An algonthm for 1mp1ementmg (2) when 0 <s<p-—g:
Step 0: A and B are p-bit words.
Step 1: B «— g bit left shift of A
Step 2: B A XORB
Step 3: B «— p — s bit right shift of B
Step 4: A «— s bit left shift of A
Step 5: A «— A XORB ‘
Step 6: Output A as the lea.dmg p bits of u;, return to Step 1.

~ The generators based on the above algorithm with p not large, say p < 64, do not perform
well in high dimensions, because linear dependency appears in the leading bits of the k-tuple
(%sy +eey Uisk—1) When k > [p/s] for a fixed s. (For further discussion, see Tootill et al. [17].)
This is one reason why we investigate the combination of Tausworthe sequences in this paper.

2.2 Combination of Tausworthe sequences

Let J > 2. For each j = 1,...,J, let G; = (g;,0, M;) be a LS2 generator, where g;(z) =
(z* mod M;(z)), M;(z) is a primitive polynomial of degree p;, and ged(s;,2? —1) = 1. Let
{ugj), i > 1} denote the corresponding sequence, whose period is 2?5 — 1. The combined
.sequence is defined by ‘

V; = «{" XOR --- XOR u{". | ‘).
Let M(z) = my(z)---my(z). For each j in {1,...,J}, define M_;(z) = M(z)/m;(z) and let
n;(z) be a polynomial such that nj(z)M_;(z) mod M;(z) = 1. Let g(z) = T, g;(z)n;(z) M;(z).
The following theorem (see [15]) characterizes the combined sequence.

Theorem 1 The sequence {V;} corresponds to the LS2 generator G = (9,0, M) and its period
equals the least common multiple of (27 —1,...,277 —1). ° :

Tezuka [15] obtained a theorem that links the k-distribution of the sequences defined in
(1) with the successive minima and reduced basis of a lattice in a vector space over GF{2, z}.
Consider the k-tuples (fi(z)/M(z), ..., fizi—1(z)/M(z)), i=1,2,..., produced by (1). These
~ are expressed by the grid (shifted lattice) Ly + X, where L, is a lattice with basis
@ = 1o e E) g @),
e2 = (0,1,0,...,0),

e = (0,0,0,...,1),

and X = (0,1,1+g(z),..., 1+ g(a) + - -- + g*"%(2))(h(z)/ M()).
Define the norm of a vector a = (f1, ..., fx), where each f; is in GF{2,z}, as

le| = mawigigk.[deg(fi)]-

In this paper, the notions of reduced basis and successive minima of a lattice L in a vector
space over GF{2,z} follow Lenstra’s definitions [9]:

Definition 1 For 1< j <k, a j-th successive minimuin |b;| of L is recursively defined as the
norm of a vector of a smallest norm in L that is linearly independent of by, b, ...,b;_1 over

GF{2,z}, and the basis by, by, ..., by is called a reduced basis of L.

Let [; be the k-th successive minimum of the lattice L; associated with the combined gen-
erator G = (g, 0, M). Foreachi,jin {1,...,J}, 1 # j, define M_;;(z) = M(z)/(m;:(z)m;(z)),

5

let n,,(w) be a polynomial such that n;;(z)M_;;(z) mod M(w)M (z) = 1, and let g_,(a:)
Z.:’I 1 Ez—' 1, 745 g}(m)nﬂ(m)M—iJ(m)
Let IY) be the first successive minimum of the lattice LY associated with the generator
= (9-;,0, M_;). An equidissection of the k-dimensional unit hypercube into 2% cubic cells
is deﬁned as the set of all cubic cells in [0, 1)" with side length of 2~‘ and whose corners have
coordinates that are all multiples of 27¢. That is

Sp(8) = {(i124‘,(z’; +1)278) x e x (27 (G +1)27) [0<i < 25..,0 < i < 2t
Let p = p; + - - + pi be the degree of M(z). The following theorem is proven in [15].

Theorem 2 If lijv) >l forj =1,...,J, and if the combined generator G has the mazimum
possible period (27* — 1) x ... x (277 — 1), then (1) the number of poinis in each cell of the
equidissection Sy(—li) is equal to an integer in the range [22+Ms —J, 20+¥4], and (2) the number
- of cells containing 2P*** points is at least 27*% — D where D = 27 — (27 —1) x ... x (277 —1).

Roughly speaking, the smaller the (negative) value of [, is, the better the k-distribution
of the sequence becomes. Note that the constant D in Theorem 2 is much less than 27** if
—kl; is near p and J is less than p; for each ;. These conditions are usually met in practical
situations.

3 Exhaustive search for .the best combination

We combine two Tausworthe generators, each of them from a specific class. Generators of
~ the first class are those of the form G; = (z*,0,2* + 2?7+ 1), with 0 < 5, < 31 — g,
for ¢ = 3,6,7,13,. Their perlod_ length is 23' — 1, a prime. Those of the second class
have the form G; = (2*,0,2% + z? + 1), with 0 < s; < 27, and their period length is
22 — 1 = 233 x 1103 x 2089. Hence ged(2% — 1,s;) = 1. Each of these generators can be
implemented using the algorithm given in Section 2.1. We conducted exhaustive search for
finding the best combined generator among all 2565 possible combinations of G; and G,. For
this search we used two types of crltena The ﬁrst criterion (to be minimized) is defined as
) Sls(G) = 22‘;%5([60/ k] + U),
where [, is the last successive minimum of the k-dimensional lattice associated with the
combined generator G. This criterion is an analog of the one used in [3,6], which is based on
the spectral test for linear congruential sequences. Its basic idea is to compare the value of /i
to its theoretical upper bound. By using this, we found no generators with Si5(G) = 0 and
207 generators with S;5(G) = 1. For further selection, we tried to minimize

Ci5(G) = E([ﬁﬂ/ k] + L)

among those gene.ra.,tors for which S;5(G) = 1. We obtained three combined generators with
C15(G) = 2. The values of the first and last successive minima for the selected combined
generators, and for their components, are given in Tables 1 through 3.

A second criterion is based on the Beyer’s ratio, which is the measure used in the lattice
test for linear congruential sequences. This is defined as

L1s(G) = max (I — h),

where [, is the first successive minimum of the lattice associated with the combined generator
G in k dimensions. By using this, we found no generator with L;5(G) = 0 or 1, but 158
generators with L;5(G) = 2. For further selection, among those 158, we searched those
minimizing

B15(G) Z(z,, —1).

We obtained two generators with Bj5(G) = 10, which are exactly those of Tables 1 and 3.
The generator of Table 2 has L;5(G) = 2 and B5(G) = 11. We see that the two criteria
agree quite well.

As shown in Theorem 1, these generators can be written in the form (1) as follows: the
generator in Table 1is (2% + 2% + 2% + 2% + 2® + 2® + 2*" + 2% + 2" + 22 + 2% + 2% +
:z36+a:35+a:“—l—a:”—f—a:"‘l+d:3°+m29+w26+a:25+:c24+m22+w21 +w18+$17+$13+m12+
2 4 219 4+ 2% 4+ 2% + 22,0,2% + 2 + 2% + 23 + 2% + 2'° + 2 + 2% + 1); the generator in
Table 2 is (27 + 2% + :1354 T2 4 2% 4 2f 4ot gt 4t g% 4% 2 ¥ e
23l b 29 g g2T 4 25 4 24 | g3 4 g2y 19 4 18 4 T 4 006 4 15 4 04 1y 00 4 g8
2T 4zt +z4+1,0,2% + 23 + 232 + 23 + 22° + 2% + & + 22 + 1); the generator in Table 3 is
(a:59+:c57+a:55—|-zc54+m52+w49+w44+m43+m41+:c4°+a:38+m35+a:33+m28+$23+w22+m”+w16+
25423 2124 294 28 4 25 2t 23 4 22 +1,0 m6°+m42+z33+w31+w29+a:15+:c13+w2+1)

From Theorem 2, the k-distribution of the combined sequences can be summarized as
follows: For any k= 2,...,15 and j = 1,2, we have l(’) > I and the period of the combined
generator G is equal to (231 —-1)x (2% - 1) therefore, the number of points in each cell of the
equidissection Si(—1},) is equal to an integer in the range [260*k — 2 280+kL] qnd the number
of cells containing 26°+*% poinis is at least 27*% — D, where D = 231 + 2% — 1.

Table 1: The norm of the first and k-th successive minima of the lattices associated with
the generators G, Gy = (2'2,0,2% + 2'® + 1), and G, = (27,0, z?° + 2% + 1), for dimensions

k=2,..,15.
Dimension E | 2|3 (4|5]|6]|7[8{9{10]11 1213|1415
Maximum resolution | [60/k] |30 /20 |15|12|10|8|7|6| 6 | 5 |5 | 4 |4 | 4
The combined generator | —I, |[3019 /1512|108 |7 (6| 6 |5 | 5 | 4 | 4 | 3
G I, |[30]21[15|12[10|9|8|7|6 |6 |5 |5 |5 |5
The generator W l12] 76|52 222222221
& (p = 31) I Tofla2fm| 7|7 |6l5|5|5|5(4(3]|3]3
~ The generator —® T2l 7 (6|5 |3{3({3|3|2]2|2]2][2]1
G, (pz = 29) 82 f17l12(10] 6 |6 [5({4(4]3 |3 (3]|3]3]2

Table 2: The norm of the first and k-th successive minima of the lattices associated with
the generators G, G; = (2,0,2% + 2% + 1), and G, = (2'",0,2% + 2% + 1), for dimensions

k=2,..,15.

Dimension k | 23|45 6]7]8[9]10[11]12[13]14]15
Maximum resolution | [60/k] | 30 |20 |15 |12 |10 |8 7|66 |5 |5 | 4 | 4 | 4
The combined generator | —I, [29|20|15|12|10|8|7|6| 5 |5 |5 | 4|4 |4

G | I, |31|20[15(12|10|9|9|7|7 |6 |5 |5 |54

The generator ~I J10f10|7|4|4a|3]3|3]3|2]2]2]2]2

G, (p, = 31) —1M J2t1f{11{10|7|6]|6|5{4]4|[3]|3|3]|3]3

The generator —1® l12[7 |6 |5 |3(|3[3(3|2|2]2[2|2]1

G, (p; = 29) —1%® |17|12{10| 6 |6 |5{4|a|3|3[3[3]3]2

Table 3: The norm of the first and k-th successive minima of the lattices associated with
the generators G, G, = (z'%,0,23! + 2!* 4+ 1), and G, = (2*°,0,2*° + 2? + 1), for dimensions

k=2,..,15.
Dimension E |23 |4]5]6 |7[8[o[10[11]12]13[14[15
Maximum resolution | [60/k] [30 |20 1512|108 |7|6| 6 |5 |5 |4 | 4 | 4
The combined generator | —I, [30|20{14|12]10 |8 7|65 |5 |5 |4 |4]4
G —1, |30|20[16[12[10|9|8|7| 7|6 |5 |5 |5] 4
The generator O T35 5|53 |3|2]2]2]2]2]1]1]1
G (p=31) —M {18|13|13|8 |8 |5|5|5|5|5]|3|3[3]3
The generator -2 lolo|6|4a]|4]|3]3]2]/2(2]2|2]2]1
G, (p=129) “1® {20119 |7 |6 |5|5|5]4]|3]|3]|3][3]2

4 Empirical test results for the generators

We have submitted the three retained generators to the same battery of 21 statistical tests
as in [6]. The final result of each test is the value s of a Kolmogorov-Smirnov statistic S. A
generator fails the test if the observed descriptive level § = P1(S > s | Hp) is “too small”,
where Hj denotes the (null) hypothesis that the generator is perfectly random. The results of
the tests appear in Table 4, where §; represents the observed value of § for the i-th combined
generator. The test numbers correspond to those in [6]. For each test, the initial seeds for the
two Tausworthe components were the binary representations of 12345 and 67890, respectively.
The only “suspect” value was produced by the test number 20 (a collision test) for the first
combined generator. Of course, this value could have been produced by chance and to detect
that, we repeated the same test on the same generator, starting with different seeds. We used
as starting seeds the final values at the end of the “first-trial” test. The result of the second
trial was §; = 0.1391. We conclude that there is no apparent defect in the generators.

Table 4: Deécriptiv_e levels for the empirical statistical tests.

Test 61 . 52 ! 53 v
2403 | .3284 | .0850
.3642 | 4169 | .2201
.7886 | .9873 | .9192
9457 | .1646 | .4985 | -
775 | 7246 | 9266
4964 | .2750 | .4712
4017 | .6091 | .9271
.2877 | .9440 | .5505
6561 | .6425 | .4988
10 | .7164 | .9449 | .5307
11 | .8686 | .7105 | .3142
12 | .3989 | .7195 | .8699
13 | .5621 | .9708 | .4851
14 | .4942 | .8660 | .2536
15 | .3471 | .8628 | .7277
16 | .3880 | .5238 | .8219
17 | 7324 | 5451 | .4932
18 | .1054 | .0683 | .7002
19 | .2989 | .2162 | .2220
20 | .0178 | .3219 | .6505
21 | .1785 | .4960 | .0859

© 0 =1 D O W N e

10

5 Discussion and conclusion

Combined linear congruential generators, as proposed in [6,18], still possess a (sometimes ap-
proximate) integer lattice structure. As shown in [8], one can get 1id of it in lower dimensions,
with an appropriate choice of parameters. The combined Tausworthe generators proposed
here do not have such a lattice structure. A portable implementation in C is given in Ap-
pendix B On a PC-386 (16 MHz) with a 80387 coprocessor, generating one million random
numbers with our implementations took 110 seconds for the combined generator of L’Ecuyer
[6] and 154 seconds for the combined Tausworthe implementation suggested in Appendix B.
We wrote implementations in Modula-2, then in C, and both had roughly the same speed.

Acknowledgements

This work has been supported by NSERC-Canada grant # A5463 and FCAR-Québec grant
EQ2831 to the second author. Pierre Audet helped implementing the generators and
performing the statistical tests. Raymond Couture, Ben Fox and Masanori Fushimi gave
valuable comments and discussions.

References

[1] D.A. André, G.L. Mullen, and H. Niederreiter, « Figures of merit for digital multistep
pseudorandom numbers”, Math. Comp., 54 (1990), 737-748.

2] P. Bratley, B.L. Fox, and L.E. Schrage, A Guide to Simulation, 2nd ed., Sprin er-Veﬂa ,
) g g g
1987.

[3] G.S. Fishman and L.S. Moore, III, “An exhaustive analysis of multiplicative congrﬁential
random number generators with modulus 23! —1”, STAM J. Sci. Stat. Comput., 7 (1986),
24-45. :

[4] M. Fushimi, “Designing a uniform random number generator whose subsequénces are
k-distributed”, SIAM J. Computing, 17 (1988), 89-99.

[5] D.E. Knuth, The Art of Computer Programming: Vol 2, Seminumeriéal Algorithms,
2nd ed. Addison-Wesley, 1981.

[6] P. L’Ecuyer, “ Eﬂ'ic1ent and portable combined random number genera.tors f Comm

ACM., 31 (1988), 742-749, T74.
[7] P.L’Ecuyer, “Random numbers for simulation”, to appear in Comm. ACM.’, (Oct. 1990).

- [8] P. L’Ecuyer and S. Tezuka, “ Structural propertxes for two classes of combined genera-
tors”, in preparation, 1990.

[9] AK. Lenstra, “ Factoring multivariate polynomials over finite fields”,J. Comput. Syst.
" Sei., 30 (1985), 235-248. :

11

[10]

[11)

[12]
[13]
14
[15)
[16]
17

(18]

G. Marsaglia, “The structure of linear congruential sequences”, in Applications of Num-
ber Theory to Numerical Analysis, Academic Press, New York, 1972, 249-285.

G. Marsaglia, “ A current view of random number generators”, in Computer Science and
Statistics: Interface, Elsevier Science Publishers B.V., North-Holland, New York, 1985,
3-10.

G. Marsaglia, A. Zaman, and W. W. Tsang, “Towards a Universal Random Number
Generator”, Stat. and Prob. Letters, 8 (1990), 35-39.

R.C. Tausworthe, “ Random numbers generated by linear recurrence modulo two”, Math.
Comp., 19 (1965), 201-209.

S. Tezuka, “Walsrh-spec'tra.l test for GFSR pseudorandom number generators”, Comm.
ACM., 30 (1987), 731-735.

S. Tezuka, “ Random number generation based on polynomial arithmetic modulo two”,

IBM TRL Research Report, RT-0017, 1989.

S. Tezuka, “Analysis of L’Ecuyer’s combined random number generator”, IJBM TRL

- Technical Note, RT-5014, 1989.

J.P.R. Tootill, W.D. Robinson, and A.G. Adams, “ The runs up-and-down performance
of Tausworthe pseudo-random number generators”, J. ACM, 18 (1971), 381-399.

B.A. Wichmann and I.D. Hill, “ An efficient and portable pseudorandom number gen- =
erator”, Appl. Stat., 31 (1982), 188~190.

12

Appendix A: Application of Marsaglia’s lattice test to a
Tausworthe sequence | -

As an example, consider the Tausworthe sequence used for Figure 1. Tt goes‘vas follows: 32,
8, 6, 34, 41, 30, 40, 14, 36, 11, 55, 54, 38, According to Marsaglia’s algorithm [11], we
have a; = (32,8), 0z = (6, 34), a5 = (41, 30), oy = (40,14), @5 = (36, 11), o = (55,54). Then

Dy=| % | 2| 726 260 e 31=2x 13 x 31 = 806,
a — ay 9 22
_ ay — (4 —' —4 -3 TN . . - _V
Dz_las'—ou =l 15 40 = |(160+45)|_—5x23_115,

and ged(Dy, D;) = 1. Thus, the pairs of successive values from that sequence can generate
all two-dimensional integer points modulo 64, by their integral linear combinations.

Appendix B: A sample implementation in C

In Figure 2, we give an implementation of a combination of two Tausworthe generators, in
the programming language C. Each component is implemented according to the algorithm of -
Section 2.1. The variables Q1, S1, PimS1, and Mask1 [Q2, $2, P2mS2, and Mask2] hold the
respective values of ¢, s, p—s, and 27 —1 for generator 1 [generator 2] in the combination, while
P1imP2 is the difference between the two values of p. At each step, the binary representation
of I1 corresponds to the “state” of the first component, and similarly for I2 and the second
component. Before calling the generator, I1 and I2 must be initialized to integers such that
0 < I1 < Mask1 and 0 < I2 < Mask2. After initialization, each call to CombTaus produces
the next value in the sequence {u;} of the combined generator. This code works on a 32-
bit machine, i.e. if int represents a 32-bit integer. With some compilers (e.g., with most
compilers for PC/DOS), int must be replaced by long to get 32-bit integers. The operators
“<<”, “~? and “¢” in the code represent respectively left shift, bitwise XOR, and bitwise
AND. The latter is used with a bit “mask” to make sure that only the appropriate number
of bits is retained (see Step 0 of the algorithm in Section 2.1). At the end, I2 is shifted for
left alignment with I1 before the bitwise XOR combination. The resulting “integer” is then
“normalized” to a number between 0 and 1. - _ ,

With our compiler on the PC; this code runs slightly faster (149 seconds instead of 154
for one million numbers) when all the variables, except I1, I2, and b, are replaced by their
numerical values directly into the code. Here, we kept the variables mainly to ease code
understanding, facilitate the coding of the other suggested combined generators for those
who want to do it, and facilitate translation into another language.

13

int Q1=13, Q2=2, S1=12, $2=17, PimS1i=19, P2mS2=12, PimP2=2;
unsigned int I1, I2, b, Maski= 2147483647 Mask2=536870911;

double Norm=4. 656612873e-10

‘|double CombTaus () - ‘ ‘
/* Generate numbers between 0 and 1. */

= ((I1 << Q1) " I1) & Maski;

= ((I1 << 81) = (b >> PimS1)) & Maski;

= ((I2 << Q2) - I2) & Mask2;

= ((I2 << s2) ~ (b >> P2mS2)) & Mask2;
i‘eturn ((I1 - (I2 << PimP2)) * HNorm);

Figure 2: A sample C program for the combined Tausworthe generator in Table 1.

14

	Cahier20130219_00000
	page-blanche-Brother
	Cahier20130219_00001
	page-blanche-Brother
	Cahier20130219_00002
	page-blanche-Brother
	Cahier20130219_00003
	Cahier20130219_00004
	Cahier20130219_00005
	Cahier20130219_00006
	Cahier20130219_00007
	Cahier20130219_00008
	Cahier20130219_00009
	Cahier20130219_00010
	Cahier20130219_00011
	Cahier20130219_00012
	Cahier20130219_00013
	Cahier20130219_00014
	Cahier20130219_00015

