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Abstract

We describe different derivative estimators for the case of steady-state performances
measures and obtain the order of their convergence rates. These estimators do not use
explicitly the regenerative structure of the system. Estimators based on infinitesimal
perturbation analysis, Likelihood ratios, and different kinds of finite-differences are ex-
amined.
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Résumé

Nous introduisons différents estimateurs pour la dérivée d’une mesure de performance
sur horizon infini et obtenons l’ordre de leur taux de convergence. Ces estimateurs
n’utilisent pas explicitement la structure regénérative du systéme. Nous examinons des
estimateurs basés sur ’analyse de perturbation infinitésimale, sur la méthode du rapport
de vraisemblance, et sur différentes formes de différences finies.






I. INTRODUCTION

Estimating derivatives of expected performance measures with respect to some continuous
parameters, in the context of stochastic discrete-event simulations, has received a lot of
attention lately [2, 6, 8, 9, 13, 14, 15, 17]. Such derivative estimators are useful for sensitivity
analysis, or can be used within stochastic optimization algorithms [6, 11]. For finite-horizon
simulations, Glynn [6] gives the convergence rates of different estimators, under given sets of
assumptions. In that context, the infinitesimal perturbation analysis (IPA) and likelihood
ratio (LR) [also called score function (SF)] estimators converge at the canonical rate of
n~1/2 where n is the number of replications (thanks to the central-limit Theorem). For
finite-difference (FD) schemes, things are not so easy, because the bias component must be
taken into account. To make the bias go to zero, the FD interval must be reduced towards
zero, but then, the variance typically increases to infinity. Therefore, a compromise must
be made and as a result, typically, one does not get the canonical convergence rate. Glynn
[6] gives (subcanonical) convergence rates for forward and centered FD schemes, with and
without common random numbers, under specific assumptions. L’Ecuyer and Perron [12]
show that in most interesting cases where IPA applies, FD with common random numbers
reaches the canonical rates.

The aim of this paper is to extend these results to derivative estimators of steady-state
performance measures. The system is viewed as a discrete-time Markov chain with general
state space. The model, with its assumptions, is stated in Section II. Section III describes the
derivative estimators that we consider and derive their convergence rates. In this case, not
only the number of replications, but also the run length for the individual replications, should
increase with the computer budget to get the initialization bias down to zero. Therefore,
for a given budget, we have to compromise between run length and number of runs. It does
not appear trivial, in that context, that the convergence rates will be the same as for the
finite-horizon case. Indeed, it turns out that the straightforward LR estimators do not reach
the canonical rate anymore. We derive their convergence rates with and without the control
variate approach proposed in [10]. (Note however that there exists derivative estimators that
converge at the canonical rate, but they use ezplicitly the regenerative structure [5, 13].) For
IPA and FD, we obtain the same rates as for the finite-horizon case.



II. MODEL AND ASSUMPTIONS

As in [1], for any f : IN — [0,00), we define O(f(n)) as the set of functions g : IN — [0, c0)
such that for some constant ¢ > 0, g(n) < c¢f(n) for all n in IN. The set Q(f(n)) is defined
in the same way, with < replaced by >, and ©(f(n)) = O(f(n)) N Q(f(n)).

The setting is similar as in [11]. We consider a Markov chain {X;(0,w),; = 0,1,...} with
general (Borel) state space S, defined over a probability space (Q, 2, Py). Let Xo(8,w) = so
for some fixed initial state sp € S. The sample point w € {2 represents the “randomness”
that drives the system. The probability measure Py depends (in general) on the parameter
value 0. Here, 6 € (a,b), an open interval of IR.

A cost g(0,z) is incurred whenever we visit state z (except for the initial state Xy = s0),
where g : (a,b) X S — IR is assumed measurable. Let

) = 3 22006, X,(0,0) e

be the average cost for the first ¢ steps and let

a(0) = /Q he(8,w)dPy(w). 2)
Assume that for each 6 € (a,b),

|e(0) — a(0)] € O(1/2), (3)

where a(f) represents the steady-state average cost for running the system at parameter
level 8. We suppose that the derivative o/(6) exists for all 8 € (a, b) and we are interested in
estimating o/(8,) for some 0 € (a,b). We also suppose that

|} (6o) — o' (6o)| € O(1/t). (4)
These assumptions hold for many systems of interest (like, e.g., typical regenerative systems).

Basically, our derivative estimators are based on simulations of the system for a finite
number of transitions, each from initial state so. We perform n replications of that. Some
schemes (like IPA or LR) require only one simulation run per replication, while others may
require more (like the usual finite-difference schemes, which require two). Replication 7 gives
an estimate v, ; of the derivative and (except when stated otherwise) the overall derivative
estimate 1s

e )

Our “loss function” is the mean square error of Y, and we are interested in how fast its
square root converges to zero as a function of the total simulation time (computing cost) C,
required for the n replications. We assume that the simulation cost is directly proportional
to the number of simulated transitions. We have

R, = E[Y, — o (o)) = Vi, + B2 (6)
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where R,, V,, and B, denote the mean square error, the variance, and the bias, respectively.
The convergence rate is defined as C~#"/2 (in terms of the total expended CPU time C),
where $* is the largest value of B for which CPR, € O(1) (as a function of n).

In most cases, all runs will have the same length t,, which yields C, € O(nt,). In
general, it is necessary that ¢, — 0o as n — oo to obtain B, — 0. The bias component that
is due to the fact that ¢, is finite is in O(1/t,). There might also be other bias, that is if
E[Y,] # of (o) (like for finite differences). A reasonable choice is

tn = [T'n?] (7)

for some constants p > 0 and T > 0. Then, C, = n|Tn?| € O(n?*1).



III. - DERIVATIVE ESTIMATORS AND THEIR CONVERGENCE RATES

A. Finite differences

Finite-difference (FD) schemes have been used for a long time to estimate derivatives. The
most straightforward schemes use independent streams, as follows. Let n be the number of
replications and ¢, > 0. Let w,...,w.,wy,...,w! be 2n independent sample points, where
each w; is generated under P;_., and each w} is generated under Psy.,. The forward FD
estimator is

2 by, (0 + cn,w; hy, (0, w;
YFDf _ _Z¢FDf — ;Z i ( c) t ( ) (8)
=1 1=1 n

while the central FD estimator is

htn(o B cn7w‘i—)

2¢,

9)

. e 1 & A, (04 coywif) —
}/nFD — Z¢FD _Ez_:

In practice, to compute each term of the sum in (8), one performs two different simulation
runs of length t,, with independent random numbers, to obtain &, (8, w; ) and k¢, (0 +c,, wi")
(and similarly for A, (6 — ¢,,w; ) and hy, (0 + cu,w ;") in (9)).

In typical stochastic simulations, the sample point w (which represents the “randomness”
that drives the system) can be viewed as a sequence of independent uniform variates between
0 and 1. Py = P is then independent of . In that context, one can generate only n
(independent) sample points wy,...,w, from P and take wj = wj = w; for each i. This
gives finite-difference estimators with common random numbers (FDC). The forward FDC

estimator is

2 - ny Wi) — P, (0, wi
yFDOf _1_2 FDOE _Z Pt (0 + cn,wi) — Py, (0, w )’ (10)
n =1 nia Cn

while the central FDC estimator is

yFDCe _ li FDCe l zn: a(0 + cn,wi) — he, (0 — cn,wi)
" 2¢,, )

n i=1 i=1

(11)
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Again, in practice, two simulation runs are made to compute each term of the sum, but these
runs are made with common random numbers.

In the context of finite-horizon simulations (where C,, € ©(n)), it is well known that
FD with independent streams gives rise to large variability (Glynn 1989, Meketon 1987,
Zazanis and Suri 1988). The variances of L7 and ¥52° are in ©(c;?) in general. The best
convergence rates for forward differences and central differences are in O(n='/4) and O(n=1/3)
respectively. For FDC and under a given set of assumptions (including the assumption that
the variances of £ and £ are in ©(c;?)), Glynn (1989) obtains respective convergence
rates in O(n=1/3) and O(n~?/%). In what follows, we show that the convergence rates for the

infinite-horizon case are the same.



Theorem 1. Let t, € O(n?), ¢, € O(n™"), and suppose that supee(, [ Var (h(0,w))] €
O(1/t). For the forward case (FDf and FDCf), suppose that o'(8) # 0 (and ezists) in a
neighborhood of 0. For the central case (FDc and FDCc), suppose that o/"(6) # 0 (and
exists) in a neighborhood of 0. For FDC, suppose (as in Glynn 1989) that the variance of
Vi 15 in O(c;t). Then, the “optimal” values of p, v, B, and the corresponding convergence
rates are respectively

i) p=v=1/3, B=1/2, and C~/* for (8);

i) p=1/2, v =1/4, B =2/3, and C~/3 for (9);
iii) p=~=1/2, B =2/3, and C~*/3 for (10);
) p=2/3,y=1/3, B=4/5, and C~%/5 for (11).

PROOF. Using Taylor’s expansion, it is easily seen that the bias component due to
the fact that we use finite differences is in ©(c,) for forward differences and in ©(c2) for
central differences. For (8), one has V, = Var (Y,'Pf) € O(1/(nckt,)) = O(n~1-P-27),
B, € O(1/tn + ¢») = O0(n™? +n~7), and

CER, € O(nPtV[V, + Bl)
— O(n(p+1)ﬁ[n-1—p+2'y +(n7P 4 n“7)2])
— O(n(p+1)ﬁ[n—1—p+2w +n~® 42 4 n=P=").

Then, C#R, will be in O(1) if

(p+1)B <max(l+p—2v, 2p, 27, p+7).

The maximal value of B for this inequality to be satisfied is § = 1/2, with p = =1/3. (In
that case, the maximum is reached for all four values and equality holds.) Also, CPR, €
Q(nPtOB[p-1-p+27 4 n=27]) 50 that (p+1)f < max(1l+p—2v, 2v) is a necessary condition
for CPR, to be in O(1). Again, B = 1/2 is the best possible value that satisfies this (with
4y = p+1) and (i) follows. Results (ii) to (iv) are obtained in a similar way. The expressions
of CAR, for (ii) to (iv) are respectively

CfRn € O(n(p+1)ﬁ[n—1—p+2v + (n7P + n"27)2]);

CPR, € O(n(p+1)ﬁ[n-1—p+~y + (n7? +n7)2);

)

OfRn € O(n(P+1)ﬁ[n—1-—p+’Y + (n—p + n-—2'y)2])' x

Now, instead of using the same #,, and ¢, for all n replications, one can use say t; € O(i?)

and ¢; € ©(:~") for replication 7, for 1 = 1,...,n. Y, can then be defined as
Y;;, — Z‘i=1 wi",bn,i (12)
E?:l w;



for some positive weights wy, ..., w,. We have C,, € O(3 ", i*) = O(nP*!). For forward FD,
the bias and variance expressions become

B,€0© (Z"l wili + m))

and

Va€® ( =1 w2(ﬂ+h)) .
(E 1 wz)
One can take for example w; = 1 for all ¢, or w; = ¢; (weight proportional to work). In both
cases, it is easy to see that B, € ©(n~? +n~") and V, € O(n~1"P*27), the same as for (8)
above, so that Theorem 1 (i) still applies. It can be verified in the same way that (ii) to (iv)
in Theorem 1 also remain unmodified.

Instead of performing n replications from a given initial state, one can also just perform
one very long replication, in order to diminish the bias component due to the initial state
(transient). Perform one (long) simulation of length in ©(nt,) = O(n?*!) at 6 + c,, then
another one at . Here, n is just a parameter, not a number of replications. Equivalently,
one can view the run length as being cut into n pieces of size in ©(n?), in a “batch-means”
fashion. The (only) gain here is that the bias component due to the initial transient will

now be in @(1i£_) ( oy ) 0 (n"*'In(n)).

i=1

Then, for forward FD, B, € ©(n=*"'In(n) + n~7) and
CPR, €O (n(p“)ﬁ [n“p'l"‘z” + (P Inn)? 4 0~ 4 p P17 n n]) .

Toget (p+1)f—-1—-p+2y=(p+1)f—2y =0, weneed § = 1/2 and 4y = p + 1.
These conditions are also sufficient to obtain CPR, € O(1). So, there is no improvement
on the convergence rate. It can be verified that the same also applies to the case of central
differences and to the forward and central versions of FDC. This is no surprise. Recall that
the convergence rates in Theorem 1 are the same as for the finite-horizon case, for which
there is no transient bias. Therefore, reducing the transient bias should not be expected to
improve the convergence rate.

B. Infinitesimal perturbation analysis

As for FDC, let us view the sample point w as a sequence of independent uniform variates
between 0 and 1, and denote Py by P. Under some conditions (see 3, 9]), the random
variable h}(0,w) = dh:(0,w)/df can be used as an unbiased estimator of o}(#). This is the
IPA derivative estimator.

One can get n i.i.d. replicates of A] (6,w) and use the estimator

YIPA — th (6, w). (13)

z—l
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Here, wy,ws, ... ,w, are independent sample points generated under the common distribution
P. (In practice, for complex simulations, k] (0,w) is not always easy to compute. There are
also many cases where it gives a biased or even totally meaningless derivative estimator. See

[91.)

Theorem 2. Assume that E[h}(0o,w)] = o}(bo) for each t > 0 and that the variance of
Ry(0o,w) is in ©(1/t). Let t, € O(n?). Then, the convergence rate of C~1/2 (B = 1) is
obtained for any p > 1.

PROOF. We have CPR,, € O(n(PtV8(n=P~1 4 n=%)) = O(1) for f=1landp>1. &

This is clearly the best convergence rate that one can expect. Again, as for FD, one can
perform just one run of length in ©(nP*!) to reduce the transient bias. This could reduce
the mean square error, but will not improve the convergence rate.

Sufficient conditions under which E[h}(6p,w)] = 4(6o) are given in (3, 9]. In most inter-
esting cases where IPA applies, these conditions are satisfied. In the context of finite-horizon
simulations, L’Ecuyer and Perron [12] show that whenever these conditions are satisfied, the
variances of YE2 and ;¢ are in O(1) (instead of ©(1/c,)) and the convergence rates for
both the forward and central versions of FDC are the same as for IPA. This is also true in
the steady-state case. For forward FDC, one has in that case

CPR, € O(nPHP[p=1=P 4 (n=P 4 n=7)2))).

A convergence rate of C~1/2 is obtained when 8 =1, p > 1, and v > max(1, (p + 1)/2). For
example, p = 1 and any v > 1 will do. For central FDC, one has

CER, € O(n®+P[p=1P 4 (n7P 4 n=2)?))).

A convergence rate of C~1/2 is obtained when 8 =1, p > 1, and v > max(1/2,(p + 1)/4).
Here, with p = 1, any v > 1/2 will do.

C. Likelihood ratios

The likelihood ratio (or score function) derivative estimation technique, aimed for the case
where P, really depends on 8, goes as follows [5, 9, 13, 14, 15]. To fix ideas, suppose that w can
be viewed as w = ((1,...,(;), where (; is the value taken by a continuous random variable
with density f;¢, and the (;’s are independent. Given X;_i, the value of (; determines
the next state X; of the Markov chain. (A similar development can be made for discrete
or mixted random variables.) Let G = P,, and suppose that G dominates the P;’s in a
neighborhood of 8. One can rewrite

a(f) = /Q Hy(8,)dG(w) (14)



where

Hy(0,w) = hy(0, )1‘[ ]{:’,Z(é’]) (15)
Now, generate w according to G and compute
H1(0,) = F(0,0) + he(0,9) Y2 55(60,0) (16)
j=1
as the LR derivative estimate, where
55(0,) = ~(1n (G5 (17

The sum in (16) is called the score function. For n replications of length ¢,, one one has, as
in (13):

YER = 15 (0,). (18)
T =1
This can be viewed as a generalization of IPA [9]. On the other hand, as explained in [12],
this is equivalent to applying IPA after replacing h; and Py by H; and G, i.e. on top of an
importance sampling scheme. Consequently, known results on IPA can be applied to LR. In
particular, the sufficient conditions for unbiasedness of IPA also apply to LR [9].

It is also well known that unfortunately, the variance of Hj(f,w) is typically in (%), i.e.
increases linearly with the simulation length. Basically, this is because the variance of the
score function is in ©(¢). This means that the assumptions of Theorem 2 are usually not
satisfied for that “special case” of IPA. L’Ecuyer and Glynn [10] have proposed a control
variate scheme for LR under which that variance gets down to ©(1). Let us denote it by CLR.
When the variance of %,; was in the order of 1/¢,, as in Theorems 1 and 2, V,, depended
essentially only on the total simulation length C),, and not on the way it was cut down into
pieces (replications). But this is no more the case here. Intuitively, we expect that the run
lengths should be kept shorter to keep the variance down.

Theorem 3. Assume that E[H}(6p,w)] = o;(6o) for each t > 0. Lett, € O(nP). For LR,
if the variance of H!(fo,w) is in O(t), then the best convergence rate is C~/* (B = 1/2)
and is obtained for p = 1/3. For CLR, if the variance of H}(0o,w) is in ©(1), then the best
convergence rate is C~'/3 (8 = 2/3) and is obtained for p = 1/2.

PROOF. For LR, we have V,, € ©(n?/n), while for CLR, V,, € ©(1/n). Therefore, for
LR, CAR, € O(nPt)B(nP=1 4 n=2r)) which is O(1) for 8 = 1/2 and p = 1/3, while for CLR,
CPR, € O(nPt)8(n~1 4 n=2)), which is O(1) for =2/3 and p=1/2. 1§

One can also use different run lengths for different replications, like ¢; € O(3?) for repli-
cation ¢, ¢ = 1,...,n, as explained in the context of FD. It can be seen easily that for LR
and CLR, the orders of V,, and B,, and the convergence rates, remain the same as in the
above Theorem.



For CLR, one can also perform just one long simulation run, of length t, € O(nP*1),
to diminish the initial transient bias (as for FD). [Now, n becomes just an index; it is no
longer a number of replications.] If one does this straightforwardly, the variance of Y, will
be in O(1). But here, h;,(f,w) is an average of ¢, terms (see eq. (1)). To diminish the
variance of the score function, we can truncate it, that is, consider the derivative of each
term @;(6) — oj_1(0) individually and associate to this term a likelihood ratio based on a
“window” of width say £; € ©(j?) for ¢ < 1. This gives the gradient estimator

J

Y, = B, (60,0) + Zl‘ig(ao,Xj) S Sul00,Ge). (19)
n =1

k=j—4;+1

The variance of Z; = g(6o, X;) k_J_f +1 Sk(00, (k) is typically in O(¢;). Assume (unre-
alistically, but optimistically), that these Z;’s are independent. Then, the variance of Y,
is

nPtl
V. €0 (n‘z(z’“) > jq) = O(nP+D-1)

i=1

and the bias is »
nP
B,€© (n“(”"’l) > j“q) = Q(n9PH),
Jj=1

This yields
CPR, € O(nlPt)P [n(p+1)(q—1) n n_zq(p+1)]

and the largest value of B for that to be in O(1) is f = 2/3, with q =1/3 and any p > —1.
Therefore, there is no improvement on the convergence rate.

When £; = j (¢ = 1) in the above, (19) becomes

= h;n 00, + Zg 00) j) ESk(GO,Ck) (20)

77' Jj=1 k=1

This is (16) with ¢ = ¢,, except that the terms g(fo, X;)Sk(0o, k) for j < k have been
removed from the estimator. But these terms have zero expectation, because for j < k,
X;(0o,w) is independent of Si(6p,w) and E[Si(fp,w)] = 0. Therefore, (20) is an unbiased
estimator of o} (o). Typically, its variance is less than that of (16), but still in the same
order.

Now, suppose that the process is regenerative. Let 0 = 70 < 74 < 7p,... be the regenera-
tion points. Conditional on 7;, what happens after 7; is independent of what happened until

. Based on that, one would be tempted to remove from (20) the terms g(6o, X;)Sk(6o, ()
for which j and k belong to different regenerative cycles (say, £ < 7; < j for some 7), since
then, E[g(@o, Xj)Sk(HQ, Ck)Ile T2, .. ] = E[g(ﬂo, Xj)lTl, T2y ]E[Sk(ao, Ck)|7'17 T2y .. ] But the
problem is that in general, E[Sk(bo, (x)|m1, T2, . .| # E[Sk(o,(x)] = 0, which means that one
cannot really remove these terms. Correct (asymptotically unbiased) gradient estimators for
the regenerative case are given in [5, 13].
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