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Abstract

We analyze a class of combined random number generators proposed by L’Ecuyer
(1988), which combines a set of linear congruential generators (LCGs) with distinct prime
moduli. We show that the geometrical behavior of the vectors of points produced by
the combined generator can be approximated by the lattice structure of an associated
LCG, whose modulus is the product of the moduli of the individual components. The
approximation is good if these individual moduli are near each other and if the dimension
of the vectors is large enough. The associated LCG is also exactly equivalent to a slightly
different combined generator, of the form suggested by Wichmann and Hill (1982). We
give illustrations, for which we examine the approximation error and assess the quality of
the lattice structure of the associated LCG.

KEYWORDS: Rrandom number generation; lattice structure;
combined generators; Chinese Remainder Theorem

Résumé

Nous analysons une classe de générateurs de valeurs aléatoires proposés par L’Ecuyer
(1988), combinant un ensemble de générateurs & congruence linéaire (LCG) avec des
modulos premiers distincts. Nous montrons que la disposition géométrique des vecteurs
de points produits par le générateur combiné peut &tre approximée par la structure de
treillis d’un LCG unique associé, dont le modulo est égal au produit des modulos des
générateurs que I’on combine. L’approximation sera bonne si ces modulos individuels
sont proches les uns des autres et si la dimension des vecteurs est assez grande. Le LCG
associé est aussi exactement equivalent & un générateur combiné légerement différent,
du type de celui suggéré par Wichmann et Hill (1982). Nous illustrons le tout par des
exemples pour lesquels nous examinons 1’erreur d’approximation et évaluons la qualité de

la structure de treillis du LCG associé.






1. APPROXIMATING A COMBINED GENERATOR BY A LCG

Consider J LCGs (J > 2) such that for j = 1,...,J, generator j has modulus m; and
multiplier a;. Suppose that the m;’s are all distinct primes and that each LCG has maximal
period m; — 1 (a; is a primitive element modulo m;). Let s;; denote the state of generator
7 at step 7, that is

8ji 1= a;8;i—1 mod my. (1)

Let é;,...,67 be arbitrary non-zero integers. Define the two combined generators

=1

J
Z,- = (E 5_7'3_7',') mod my; U{ = Zi/ml (2)
and
7 .
VV,‘ = (Z 5jsj,-/mj) mod 1. (3)
j=1

The former is suggested in [5] (with §; = (—1)7-, for ease of implementation), while the
latter generalizes Wichmann and Hill [11]. Let

n; = (m/m;)™ % mod m; forj=1,...,J; (4)
J
m = [[my; (5)
J=1
J
a = |Y anijm/m;| mod m; (6)
j=1

and define the LCG (with composite modulus):

Y; := aY;_; mod m; U; =Y:/m. (7)

In Proposition 1 below, we show that the combined generator (3) is equivalent to the
LCG (7). This is related to the Chinese Remainder Theorem and means that (3) is in fact
an implementation of (7) using modular arithmetic [4, §4.3.2]. An alternative approach
for computing a is also given in [4, p. 274]. In Proposition 2, we show that if the m;’s
are near each other, generator (2) is approximately equivalent to (7) and (3), with some
added “noise”. We give tight bounds on the noise. This approximation is valid under the
assumption that to produce U(0,1) variates, the generator’s state is simply divided by the
modulus, as in (2) and (7). These results were derived in [9] for the special case J = 2 and
8; = 63 = 1. Note that a and m do not depend on the §;’s. A corollary to Proposition 1 is
that the period length of (3) is equal to the Carmichael’s function A(m), which in this case
is equal to the least common multiple of my —1,...,my — 1.

PROPOSITION 1. IfYy/m = Wy, then U; = Y;/m = W; for alli > 0.



PROOF. From the definition of n; and from Fermat’s little Theorem (see, e.g., [8]), one
has
nj(m/m;) mod m; = (m/m;)™~! mod m; =1 (8)
so that njm/m; = 1 + Km; for some integer K and

nj(m/m;)? mod m = (m/m;)(1 + Km;) mod m = m/m;.

From this and since (m/my)(m/m;) mod m = 0 for k # j, one gets

J J
amW; mod m = (E aknkm/mk) (thsjsﬁ/mj) mod m

k=1 Jj=1

=1

J
= (an(m/mj)2aj6j3ji) mod m

J
= (Z(m/mj)(Sjajsj;) mod m

i=1

J
= (Z(m/mj)éj(ajsj,- mod mj)) mod m

J=1
= mVV,-.,.] .

Therefore, mW; satisfies the recursion (7), the same as Y;. W

COROLLARY 1. The period of (3) (and (7)) is always equal to A(m), provided that for
all j, we have (§; mod m;) # 0 and (sjo mod m;) # 0.

PROOF. It suffices to show that Yy = mW), is prime to m and that @ is a primitive
element modulo m, and the result will follow from Carmichael’s Theorem [4, §3.2.1.2]. Under
the assumption of the corollary, since m; is prime, §;sjorn/m; is prime to m;, and mWy =
S 7_, 8xsrom/my, too, because in this sum, all terms with indexes k # j are multiples of m;.
Since this holds for all j, mW, is prime to all prime factors of m, that is prime to m. Saying
that « is a primitive element modulo m means that there is no positive integer k smaller
than A(m) such that a* mod m = 1. If such a k exists, then a¥ mod m; = ¢* mod m; =1
because @ mod m; = (a;n;m/m;) mod m; = a; from (8). But since a; is a primitive element
modulo m;, k must be a multiple of A(m;) = m; — 1. Since this holds for all 5, k must be a
multiple of A(m). B

Here, the period of (7) is much smaller than m — 1 (for J > 2) because the set of states
{1,...,m—1} is partitioned into-subcycles. Of course, it is possible to recover the full period
by juxtaposing or interleaving the subcycles. But this complicates the implementation and
does not appear to be really helpful in practice.

Define
Ut = {j|2<j<Jand (mj —my)é; >0}
U~ = {j]|2<j<Jand (mj —m)é; <0}
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E (mj — mi)(m; — Z (mJ ma)d;

jeu+ myim; jew- mim;
A- =% (mj = ma)8; ¥ (mj —ma)(m; —1)é;
jev+ mam; jew- mim;
A =max(jA*], A7)
PROPOSITION 2. IfYy/m = Wy, then
Ui = (W; +¢€) mod 1 9)
where
A~ < < AT (10)
PROOF. For some integer K, one has
J
Z; = |2 l(m/m;)(m1/m)+1~(m1/m;)]§;sji | mod m,
i=1

= ((ml/m)(Y; + Km) + XJ: (1 - %) 5:’%') mod m,

i=1 2
= (m1Y;/m + mq€;) mod my

where

J J * — . ..
my€; = Z (1 — %) 8;85i = E (m; m‘l)b}sﬁ-

j=1
Dividing by m; and since 1 < s;; < m; — 1 for all j, (9) and (10) follow easily.

Note that the bounds on ¢; are tight, since ¢; = A%t [¢; = A~] (respectively) when
sji=mj—1for j € U* [for j € U~] and sj; = 1 for j € U~ [for j € ¥*]. For example,
let J =2, 6 =1, 6§ = =1, and m;y > my. Then, ¥+ = {2}, U~ is empty, At =
(ml - mz)(mg — 1)/(m1m2), A- = (ml - mg)/(mlmg), and € = (m1 - m2)32,-/(m1m2). We
have ¢, = At when s5; = mgs — 1 and ¢; = A~ when sy, = 1.

From now on, assume that Y;/m = W,. It is well known [3, 4] that all ¢-tuples of
successive values {Pf = (U, ..., Uize-1) = (Wiy..., Wigsa) € [0,1)%, 4 > 0} lie on a lattice
L. Different “figures of merlt”, rela,tlve to the geometrlcal properties of I;, can be computed
for “rating” the corresponding LCG. Among them are the Beyer quotient ¢; € (0,1] and the
distance d; between successive hyperplanes covering the points [2, 4, 3]. It is traditionally
accepted that g; should be near one for all values of ¢ up to a certain constant 7" (or for which
¢: can be computed). But the generator’s quality also depends strongly on the modulus. As
argued in [7], a generator with larger modulus (or of higher order), even if it has a smaller
q:, might be better. A good “bottom of the line” criterion is in fact the distance d; between
hyperplanes. Reducing d; in all dimensions ¢ should be considered as an improvement.



Note that for J > 2, the t-tuples P! form a strict subset of the lattice points in [0,1)?,
since generator (7) does not have maximal period (m is not prime). But if we take all ¢-
tuples of successive values produced by all subcycles of the generator, then this set of points
is L; N [0,1)¢ for some lattice L, and this is the lattice that we analyze in this paper. In all
the examples that we have examined, [, was also the smallest lattice spanned by the points
P! over one of the subcycles that could be used.

The points {P! = (Ui, ...,Uitt-1), ¢ = 0} do not belong in general to I,. But we see
from Proposition 2 that the Euclidean distance between P! and P} obeys

1Pf = BH| < (& 4+ + €hpun)'/? < AV (11)

(To take into account the mod 1 operation, consider all the ¢-dimensional unit hypercubes
with integer vertices. Each one contains a “representative” of P}, whose coordinates are the
same as P}, modulo one. Redefine || P! — P}|| as the Euclidean distance between P} and the
nearest representative of Pf.) When A+/t is much smaller than d;, the combined generator
has approzimately the same hyperplane structure as its associate LCG. To get rid (to some
extent) of the lattice structure (at least in smaller dimensions), one should get a larger A.
This can be achieved by increasing the values of |§;(m; — m1)|. We remark that A+/Z is just
an upper bound. However, for all the examples that we have examined, that bound was
always attained (or almost attained) for some i.



2.  THE APPROXIMATE LATTICE STRUCTURE FOR SOME EXAMPLES

Example 1

Let J =2, my = 101, my = 97, a3 = 51, ay = 58, §; = 1 and 8, = —1. Equations (2) and (3)
become respectively Z; = (81;— 82;) mod 101 and W; = (81i/101 —s5;/97) mod 1, which have
period 2400. One obtains m = 9797, n; = (97° mod 101) = 25, ny = (101°® mod 97) = 73,
a = (a1nima + agnem,) mod m = 2677, A~ ~ .0004 and A = A1 ~ .0392. The associated
LCG is then

Y; = 2677Y;_1 mod 9797. (12)

Pairs of successive values are plotted in Figures 1-4 for the two combined generators and
the two individual components. The latter have small periods and coarse lattice structures.
The lattice structure of the LCG (12), which corresponds to the W;’s, is also apparent in two
dimensions. Although it is certainly not to be recommended, this generator is nevertheless
an improvement over each (much smaller) individual component. The plot for the other
combination (the U;’s, in Figure 4) looks a little better. The lines of Figure 3 are no more
apparent. In fact, the distance between adjacent lines in Figure 3 is 0.0175, while the bound
in (11) is Ayv/2 =~ 0.0554. The resolution along each axis is smaller in Figure 4 than in
Figure 3: all U;’s are multiples of 1/my, while the W;’s are multiples of 1/m, which is much
smaller. This is why, in Figure 4, the points lie on easily discernable equidistant vertical
lines, and also on equidistant horizontal lines.

Table 1: Results for the LCGs of Example 1.

(m,a) (m1,a1) | (m2,a2)
2 q¢ dt At dt dt
2 .3305 | .0175 | .0554 .447 .196
3 L2479 | .0983 | .0679 .447 .218
4 L7597 | L1111 | .0784 .447 377
5 .6362 | .1925 | .0876 447 .500
6 .8029 | .2182 | .0960 .447 .500
7 .7395 | .2887 | .1037 .500 .500
8 .5671 | .4472 | .1109 .500 .500
9 .5731 | .4472 | .1176 .500 BT7
10| .6400 | .4472 | .1239 577 577
11 | .6417 | .4472 | .1300 LBT7 877
12| .7468 | .4472 | .1358 BT7 577
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Figure 1. All pairs of successive points for the LCG with m = 101 and a = 51.
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82,,'4.1 /97
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Figure 2. All pairs of successive points for the LCG with m = 97 and a = 58.
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Figure 4. Pairs of successive points for the combined generator

Ui = ((81,' - 52,') mod 101)/101



In higher dimensions, the distance between hyperplanes typically gets larger, often sig-
nificantly larger than A. In Table 1, we give the Beyer quotients ¢;, distances d; between
hyperplanes, and values of A/t for the LCG (12), for ¢t < 12. For comparison, we also give
the values of d; for the individual LCG components. These quantities were computed using
(with some adaptations) the algorithm described in [1].

Example 2

One combined generator suggested in [5] has J = 2, my = 2147483563, mq = 2147483399,
a; = 40014, a; = 40692, 6, = 1, and 8, = —1. In this case, one has m = 4611685301167870637,
ny = 1715367968, n, = 432115562, a = 1968402271571654650, A~ =~ 3.5 x 10~'7, and
A = At =~ 7.637 x 1078, The combined generator (2), as well as its associated LCG
Y; = aY;_; mod m, have period length of (m; — 1)(my — 1)/2 = 2.306 x 108. Table 2 gives
similar information as Table 1, for this second example. One can see that in high dimensions,
the “noise” A+/f becomes very small with respect to the distance between hyperplanes. This
was already noticed by Tezuka [9]. On the other hand, the hyperplane structure of the as-
sociated LCG is much better than for any of its components, and much better than for any
LCG with modulus smaller than 23!. This is true despite its bad Beyer quotient in dimension
4. That combined generator has essentially the properties of a LCG with larger modulus
m and can be implemented efficiently without getting into the trouble of dealing with large
integers (of more than 31 bits). As we will see in Example 4, for the same size, one can also
find better combined generators than this one.

Table 2: The 32-bit combined generator of L’Ecuyer [5].

(maa‘) (mlaal) (m2’a2)
1 gt dy AVt dy dy
2 .5009 | 6.50E~10 | 1.08E-7 | 2.499E~5 | 2.457E-5
3 .7016 | 7.002E-7 | 1.32E~7 | 8.263E-4 | 8.441E-4
4 .1443 | 4.635E~5 | 1.53E~7 | 4.954E-3 | 4.852E-3
) .6975 | 2.008E-4 | 1.71E-7 | 1.334E-2 | 1.240E-2
6 .6173 | 8.890E-4 | 1.87E~7 | 2.670E-2 | 2.637E-2
7 .6130 | 2.621E-3 | 2.02E-7 | 7.274E~-2 | 7.274E-2
8 .6737 | 5.782E-3 | 2.16E-7 | 7.274E-2 | 7.274E-2
9 .6589 | 9.571E-3 | 2.29E-7 | 9.806E-2 | 8.737E-2
10 | .6632 | 1.738E-2 | 2.41E-7 | 1.474E-1 | 1.054E-1
11| .6390 | 2.361E-2 | 2.53E-7 | 1.474E-1 | 1.324E-1
12 | .6635 | 3.077E-2 | 2.64E~-T7 | 1.474E-1 | 1.443E-1

Example 3

Wichmann and Hill [11] originally suggested a combination of the form (3), with J = 3, m; =
30269, m, = 30307, ma = 30323, a3 = 171, a3 = 172, a3 = 170, and 6§, = 6, = 63 = 1. This
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yields m = 27817185604309, nl = 26478, n2 = 26070, n3 = 8037, and a = 16555425264690.
The equivalence of this generator to a LCG was first pointed out by Zeisel [12]. If one
uses Equation (2) with these values, one also gets A~ ~ —.00125 and A = At = .00178.
L’Ecuyer [5] gave a different one, of the form (2), with J = 3, m; = 32363, m, = 31727,
ma = 31657, a; = 157, a; = 146, a3 = 142, and 6; = —6; = 63 = 1. In that case, one has
m = 32504802982957, nl = 29617, n2 = 17633, n3 = 16749, a = 30890646900944, At ~
.0196, and A = —A~ = .00218. These generators have respective periods of (approximately)
6.95 x 102 and 8.12 x 10'2. Tables 3 and 4 give other information on them and on their
components. The associated LCG of the second combined generator is bad in dimensions
2 and 6 compared to the first one. But note that even if g; is small, d; is nevertheless
smaller in this case than for any standard LCG with modulus m = 23! — 1. Also, the added
noise is significantly larger than the distance between hyperplanes, at least up to dimension
12. The hyperplane structure is lost in the noise. On the other hand, the resolution is
only 1/m;, which means that all points lie on vertical lines that are 1/32363 apart (and the
same horizontally). For this reason, perhaps this generator should not be recommended too
strongly for serious applications.

Table 3: The combined generator of Wichmann and Hill [11].

(m, a) (m1,a1) | (m2,2) | (a3, a3)
14 gt di | AVt di dy ds
2 | .6371 | 2.370E-7 | .0025 | .0088 | .0058 | .0058
3 | .4842 | 4.428E-5 | .0031 | .1562| .0459 | .0419
4 | .7084 | 5.418E-4 | .0036 | .1562| .0905| .1374
5 | .8313 | 2.076E-3 | .0040 | .1562 | .1313| .1374
6 | .7275 | 6.328E-3 | .0044 | .1690 | .1768 | .2294
7 | .4582 | 1.690E-2 | .0047 | .3536| .2425| .2294
8 | .7190 | 2.478E-2 | .0050 | .3536| .3333| .3333
9 | .8083 | 2.993E-2 | .0054 | .3536| .3333| .3333
10 | .7242 | 4.588E-2 | .0056 | .3536 | .3333 | .3333
11| .7422 | 5.987E-2 | .0059 | .3536 | .3333| .3780
12 | .7185 | 7.256E-2 | .0062 | .4472 | .4082| .3780
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Table 4: The 16-bit combined generator of L’Ecuyer [5].

(m, a) (ma, ay) (m2, 02) (ms, Ga)
i q d | AvVi d; dy d;
2 .0181 | 1.304E-6 | .0308 .0064 .0068 .0070
3 .6209 | 4.184E-5 | .0378 .0329 .0390 .0369
4 .6868 | 4.638E-4 | .0436 .0758 .0867 .0765
5 .6003 | 2.069E-3 | .0487 .1302 .1348 .1302
6 .2368 | 1.357E-2 | .0534 L1741 .1890 .1768
7 .6617 | 1.357TE-2 | .0577 .2887 .2500 .2582
8 .4987 | 3.176E-2 | .0617 .2887 .3536 2774
9 .5420 | 3.328E-2 | .0654 .4082 .3536 .2887
10 | .7849 | 4.921E-2 | .0690 .4082 .3536 .3780
11 | .7711 | 56.670E-2 | .0723 .4082 .3536 .3780
12 | .8363 | 6.523E-2 | .0756 .4472 .3536 .3780

Example 4

We now give an example of a combined generator of roughly the same size as Example 2,
whose associated LCG has a lattice structure of slightly better quality, and with much more
noise. Incidentally, its two LCG components have bad lattice structures in dimension 3. The
first one has g3 = .0167 and the second one has g3 = .1022. One has J = 2, m; = 2147483647,
me = 2145483479, a; = 26756, a; = 30318, §; = 1, and &, = —1. In this case, one has
m = 4607390686061167913, n; = 1317463960, n, = 829246600, a = 3416908681540390868,
A~ m~ 4.34 x 10713, and A = At ~ 9.314 x 10~*. The combined generator (2) and its
associated LCG (7) have period length of (m; — 1)(ms — 1)/2 ~ 2.30 x 10'8. Table 5 gives
further information. Up to dimension 7, there could be enough noise to mask the hyperplane
structure. Also, the smallest Beyer quotient is larger here than for Example 2.

12



Table 5: A new 32-bit combined generator.

(m,a) (my,01) | (my,a2)
i gt dy AVt dy dy
2 | .6934 | 5.54E-10 | 1.32E-3 | 3.738E-5 | 3.298E-5
3 | .7979 | 6.379E-7 | 1.61E-3 | 5.138E-3 | 2.986E-3
4 | .8388 | 2.156E-5 | 1.86E-3 | 5.138E-3 | 5.717E-3
5 | .9328 | 1.737E-4 | 2.08E-3 | 1.724E~2 | 1.623E-2
6 | .8074 | 7.731E-4 | 2.28E-3 | 4.046E-2 | 3.400E-2
7 | .5380 | 2.384E-3 | 2.46E-3 | 4.730E-2 | 5.184E-2
8 | .7447 | 4.996E-3 | 2.63E-3 | 7.495E-2 | 8.909E-2
9 | .7727 | 9.720E-3 | 2.79E-3 | 1.072E-1 | 8.909E~2
10 | .6280 | 1.266E-2 | 2.95E-3 | 1.104E-1 | 1.361E-1
11 | .7768 | 1.930E-2 | 3.09E-3 | 1.562E-1 | 1.361E~1
12 | .7795 | 2.859E-2 | 3.22E-3 | 1.562E-1 | 1.474E-1
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3. CONCLUSION

The combined generators of the forms (3) and (2) are respectively equivalent and approxi-
mately equivalent to a LCG. This structural property might appear deceptive at first, because
one of the goals of combination was to get rid of the lattice structure of the components.
But in fact, they give a stronger theoretical basis to these combination approaches. They
show that combination can be viewed as an efficient way of implementing (sometimes with
added noise) a LCG with much larger modulus than the largest integer representable on
the target computer. If well chosen, that LCG will have much better properties than any
of its components. Selecting a combined generator should be based on the properties of its
associated LCG rather than on those of its components. After extensive numerical inves-
tigations, we found that the quality (in terms of lattice structure) of the associated LCG
is essentially unrelated to the quality of its individual components. This means that when
searching for good combined generators, searching for individual components with the best
lattice structure (as was done in [5]) is essentially useless. When the individual moduli differ
enough (with §; = £1), the lattice structure of (7) is usually not recognizable by looking at
the points produced by (2) in small dimensions. With appropriate parameters, combination
(2) can be used to get rid of the lattice structure up to a given dimension.

An alternative approach, which yields a lattice structure of comparable quality to com-
bination (3) and longer period, is to use a multiple recursive generator of order J (see [6,

7).

14



ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada grant # A5463 and FCAR-Québec grant
# EQ2831. Raymond Couture, Marco Jacques, and Francois Paradis gave suggestions and
helped computing the values for the numerical examples.

REFERENCES

[1] L. Afflerbach and H. Grothe, Calculation of Minkowski-Reduced Lattice Bases, Com-
puting, 35 (1985), 269-276.

[2] U. Dieter, How to Calculate Shortest Vectors in a Lattice, Math. of Computation, 29,
131 (1975), 827-833.

[3] H. Grothe, Matrizgeneratoren zur Erzeugung gleichverteilter Pseudozufallsvektoren (in
german), Dissertation (thesis), Tech. Hochschule Darmstadt, Germany, 1988.

[4] D. E. Knuth, The Art of Computer Programming : Seminumerical Algorithms, vol. 2,
second edition. Addison-Wesley, 1981.

[5] P. L’Ecuyer, Efficient and Portable Combined Random Number Generators, Commu-
nications of the ACM, 31, 6 (1988), 742-749 and 774. See also the correspondence in
the same journal, 32, 8 (1989), 1019-1024.

[6] P. L’Ecuyer, Random Numbers for Simulation, Communications of the ACM, 33, 10
(1990), to appear.

[7] P. L’Ecuyer and F. Blouin, Multiple Recursive and Matrix Linear Congruential Gener-
ators, submitted for publication, 1990.

[8] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications. Cam-
bridge University Press, Cambridge, 1986.

[9] S. Tezuka, Analysis of L’Ecuyer’s Combined Random Number Generator, Technical
report RT-5014, IBM Research, Tokyo Research Laboratory, 1989.

[10] S. Tezuka and P. L’Ecuyer, Efficient and Portable Combined Tausworthe Random Num-
ber Generators, Submitted for publication, 1990.

[11] B. A. Wichmann and I. D. Hill, An Efficient and Portable Pseudo-random Number
Generator. Applied Statistics, 31 (1982), 188-190. See also corrections and remarks in
the same journal by Wichmann and Hill 33 (1984), 123; McLeod 34 (1985), 198-200. -

[12] H. Zeisel, A Remark on Algorithm AS 183, Applied Statistics, 35 (1986), 89.

15



	Cahier20130219_00000
	page-blanche-Brother
	Cahier20130219_00001
	page-blanche-Brother
	Cahier20130219_00002
	page-blanche-Brother
	Cahier20130219_00003
	Cahier20130219_00004
	Cahier20130219_00005
	Cahier20130219_00006
	Cahier20130219_00007
	Cahier20130219_00008
	Cahier20130219_00009
	Cahier20130219_00010
	Cahier20130219_00011
	Cahier20130219_00012
	Cahier20130219_00013
	Cahier20130219_00014
	Cahier20130219_00015
	Cahier20130219_00016
	Cahier20130219_00017

