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Abstract

We show that in most interesting cases where infinitesimal perturbation analysis (IPA)
applies for derivative estimation, a finite-difference scheme with common random numbers
(FDC) has the same order of convergence, namely O(n‘l/ 2), provided that the size of
the finite-difference interval converges to zero fast enough. This holds for both one-
sided and two-sided FDC. This also holds for different variants of IPA, like for smoothed
perturbation analysis (SPA), which is based on conditional expectation. We give some
examples and numerical illustrations. Besides their theoretical interest, these results
might have practical implications for situations where implementing IPA is more difficult
than simply doing finite differences.

Keywords:
Simulation; common random numbers; derivative estimation; perturbation analysis;
finite differences

Résumé

Nous montrons que dans presque tous les cas intéressants ol ’analyse de perturbation
infinitésimale s’applique pour estimer une dérivée, une approche basée sur les différentes
finies avec des valeurs aléatoires communes (FDC) posséde le méme ordre de convergence,
soit O(n‘l/ %), pourvu que la taille des intervalles pour les différences finies converge vers
zéro suffisamment rapidement. Cela tient autant pour les versions asymétriques que
symétriques de FDC. Cela tient aussi pour différentes variantes de ’analyse de pertur-
bation, comme par exemple pour 1’analyse de perturbation lissée, basée sur ’espérance
conditionnelle. Nous donnons des exemples et des illustrations numériques. Au deld de
leur intérét théorique, ces résultats peuvent avoir des implications pratiques pour les si-
tuations ou I'implantation de ’analyse de perturbation est significativement plus difficile
que 1'utilisation de différences finies.






1. Introduction

Infinitesimal perturbation analysis (IPA) is a technique for estimating derivatives by sim-
ulation, in the context of discrete-event stochastic dynamic systems. It has received a lot
of attention lately (Heidelberger et al. 1988, Ho 1987, Suri 1987, 1989). The main reason
why IPA is attractive is that when it applies, it gives an estimator of the derivative of a
mathematical expectation with respect to many (continuous) parameters with a single sim-
ulation run. Finite-difference (FD) schemes, in contrast, require many simulation runs to do
a similar job. It is also widely believed that IPA has a better order of convergence than FD
schemes in general. Convergence rates for IPA, FD, and FD with common random numbers
(FDC) have been derived, under various sets of assumptions, in Glynn (1989) and Zazanis
and Suri (1988), among others.

The aim of this paper is to show that in most interesting cases where IPA applies (i.e.
gives an unbiased derivative estimate with finite variance), the finite difference interval in
FDC can be taken very small without getting into the problem of a large variance. The
variance remains bounded and the bias goes to zero when the size of that interval goes to
zero. As a result, if a sample of size n is taken and if the FDC interval size goes to zero
fast enough with n (say, as fast as O(n~'/2)), then the mean square error of the sample
mean for FDC is in the order of 1/n, the same as for IPA. On the other hand, to estimate
the derivative with respect to d parameters (a d-dimensional gradient), the computational
work required by FDC still increases linearly with d, since at least d 4+ 1 simulation runs are
required for each of the n replications. For IPA, only one simulation run is performed, but
the work might also increase linearly with d in some situations because of the number of IPA
counters that have to be updated.

In Section 2, we set the mathematical framework and introduce the IPA and FDC deriva-
tive estimators. We also show how LR estimators can fit into that framework. In Section
3, we recall (sufficient) unbiasedness and finite variance conditions for IPA. In practice, in
most interesting cases where IPA applies, these conditions are satisfied (Glasserman 1988,
L’Ecuyer 1990). We show that under these conditions, the mean square error for FDC is in
O(1/n). Section 4 gives more precise characterizations of the convergence rates. Numerical
examples are given in Section 5. These examples also illustrate how our results apply to
smoothed perturbation analysis (SPA) estimators, for which the objective function is re-
placed by a conditional expectation. [We use the notation O(f(n)) to denote the set of
functions g such that for some constant ¢ > 0, g(r) < ¢f(n) for all n.]



2. IPA and FDC derivative estimation

Consider a stochastic system defined over a probability space (2, X, Py), parametrized by
0 € O, where ® = (a,b) is some open interval in IR. Let the random variable A(f,w)
represent the “cost’ of running the system at parameter level 8 for sample point w € 2. The
expected cost at parameter level 8 is then

o(8) = /Q h(0,w)dPs(w). | (1)

We want to estimate the derivative o/(8) = de(6)/d0, which is assumed to exist. (Note
that for the case where @ is a vector, gradient estimation can be done by considering each
component of the gradient individually.)

In typical stochastic simulations, the sample point w (which represents the “randomness”
that drives the system) can be viewed as a sequence of independent uniform variates between
0 and 1. Py = P is then independent of § and under some additional conditions (see next
section), the random variable A'(8,w) = dh(0,w)/df can be used as an unbiased estimator
of o/(0). This is the IPA derivative estimator.

One can get n i.i.d. replicates of h'(6,w) and use the estimator

1 n
Yy ==2 W(0,w) (2)
e
Here, wy,ws, . . . ,wy are independent sample points generated under the common distribution

P.

In practice, for complex simulations, h'(8,w) is not always easy to compute. There are
also many cases where it gives a biased or even totally meaningless derivative estimator.
One could then return to more classical finite-difference schemes. (Note that there are other
possibilities, e.g. the LR technique. See Glynn 1989, L’Ecuyer 1990, and the references
cited there). It is well known that finite-difference schemes with independent streams of
random numbers give rise to large variability (Glynn 1989, Meketon 1987, Zazanis and Suri
1988). The convergence rates for forward differences and central differences are O(n=1/4) and
O(n=1/3) respectively. With common random numbers and under a given set of assumptions,
Glynn (1989) obtains respective convergence rates of O(n=1/3) and O(n=%/%). But it turns
out that when IPA applies, these assumptions do not hold.

Finite-difference estimators with common random numbers (FDC) can be defined as
follows. Let n be the number of replications and ¢, > 0. Let wy,...,w, be independent
sample points generated under P. The forward FDC estimator is

1 & h(0+ cpyw;) — h(0,w;
yr 2 L MO ) =) o
i=1 Cn

while the central FDC estimator is
v e 1 A0 + cpywi) — h(6 — cn,wi)

== : (4)

n i 2¢,




In practical simulation experiments, to compute each term of the sum in (3), one usually
performs two different simulation runs, with common random numbers, to obtain A(8,w;)
and k(0 + cn,w;) (and similarly for A(6 — ¢,,w;) and k(6 + cn,w;) in (4)). When ¢, is very
small, two problems might occur. The first one is that the variance of Y or Y,° could blow
out, as is the case with FD without common random numbers. In the next section, we show
that this is not necessarily so. A second problem has to do with numerical precision. Even
when the variance is zero, (3) and (4) become numerically unstable when ¢, gets too small.
We do not address this (well known) question in this paper.

We could also mention another derivative estimation technique, based on likelihood ratios
(LR), which goes as follows (Glynn 1989, L’Ecuyer 1990). Suppose now that P really
depends on §. Rewrite :

a(f) = /Q H(6,w)dG(w) (5)

where H(0,w) = h(0,w)(dPs/dG)(w), G is a probability measure independent of & that
dominates the Pp’s, and dPy/dG denotes the Radon-Nikodym derivative. Now, generate w
according to G and compute H'(0,w) = dH(0,w)/dd as the LR derivative estimate. This is
in fact equivalent to applying IPA after replacing h by H and P; by G. In other words, LR
is equivalent to applying IPA on top of an importance sampling scheme. (Here, w does not
necessarily represent a sequence of U(0,1) variates, but it can be expressed as a function of
some @ which is itself viewed as a sequence of i.i.d. U(0,1) variates, and the mapping from
& to w does not depend on §.) Therefore, our results also apply to LR estimators. In that
context, finite-differences are defined using H instead of h.



3. Unbiasedness conditions and convergence rates

We will use the mean square error (MSE) as an efficiency criterion for our estimators. In
other words, the loss function associated with a derivative estimator Y, based on n runs is

R, = E[Y, — /(o)) = Var (Y,) + B2 (6)

where B, = E[Y,] — ¢/(0p) denotes the bias of ¥,,. We say that the convergence rate is in
O(f(n)) if R, € O(f(n)?).

Sufficient conditions for unbiasedness of the IPA estimator are given in Glasserman (1988)
and L’Ecuyer (1990). We recall these conditions and extend them to conditions under which
convergence rates can be obtained. Suppose that we want to estimate the derivative at
0 = 0y. Assumption Al below is parametrized by v > 0. For example, A1(2) denotes that
assumption with » = 2. A1(2) is not a necessary condition for IPA to apply, but according to
our experience, for all interesting cases for which IPA applies in practice, A1(2) is satisfied.

ASSUMPTION A1(v). There is an open neighborhood T of 6 and a measurable set
= C Q, such that P(Z) = 1, and for all w € E, h(-,w) exists and is continuous everywhere
in T, and is also differentiable in D(w) C T, where T \ D(w) is at most a denumerable set.

Define
sup |A'(0,w)| ifw € Z;
)

U(w) = {0€D(w (7)
0 otherwise.

Assume that there exists a function I' : @ — IR, such that ¥(w) < I'(w) for all w € 2, and
that [[I'(w)]"dP(w) = K(v) < co. N

THEOREM 1. Under A1(2), h'(8o,w) is an unbiased estimator of o/(6o), with finite vari-
ance o8 < K(2). As a consequence, the mean square error of YY is RE = Var (YF) = o} /n
and the convergence rate is in O(n=/?), :

PROOF. A1(2) implies A1(1) and the unbiasedness then follows from Theorem 1 in
L’Ecuyer (1990). Also, Var [A'(fo,w)] < E[(F(fo,w))?] < E[I?*(w)] = K(2) < co. ®

We now show that similar properties hold for FDC. Here, 02(c,) represents the variance
of each term of the sum in (3), RE is the mean square error of YF, and similarly for central
differences.

THEOREM 2. Assume Al(2) and suppose that o is twice continuously differentiable in
Y. If ¢, is small enough such that [0o,00 + c,] C Y, then of(c,) < K(2) and

Ry = ofi(ca)/n + [@"(EF)en /2] (8)
where Oy < £t < 09 + ¢, Similarly, if [y — cn, 00 + ] C Y, then 0i(¢,) < K(2) and
Ry = od(ca)/n + [(a"(€7) = &'(€7))en/4]? B C)
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where Og—c, < €~ < 0y < €Y < bp+c¢y. In (8) and (9), the first term is the variance and the
second one is the bias. In both cases, as a consequence, the convergence rate is in O(n=1/%)
provided that ¢, is in O(n~'/?). Further, if a is three times continuously differentiable in
a neighborhood of 0y, then the (squared) bias term in (9) can be replaced by ((«”(¢1) +
a™(£7))c2 /12)%. In that case, for the convergence rate to be in O(n='/2), it suffices that
cn € O(n=1/4).

PROOF. A Taylor series development yields
E[Y;] = [a(b0 + ¢n) — a(00)]/en = o (6o) + o' (€F)en /2

for g < ¢+ < 6y + ¢,. When ¢, is small enough, 8y + ¢, € T and from Theorem 8.5.3 in
Dieudonné (1969),

Alotenw) =hllow)) o 1(6,w)| < T(w).
Cp 6€[60,80+cn]ND(w)

Then, ci(e,) < K(2) and
Ry = of(en)/n + (E[Y;] = &/(80))* = of(ca)/n + (" (€¥)en/2)".
For the central differences, the Taylor series development yields
E[Y,’] = [a(fo + ) — oo — ca)]/(2¢n) = o/ (60) + (" (£7) = &"(§7))en/4

for Op — cp < €~ < By < €t < 0y + ¢,. The proof of (9) is then the same as for the forward
case. When the third derivative exists, the new bias term can be obtained easily after adding
one term to the Taylor series expansion. B



4. Convergence in distribution

We now derive stronger convergence results, under additional assumptions. The symbol =
denotes convergence in distribution and N(0, 1) denotes the standard normal distribution. As
seen in the previous section, A1(2) implies that the variance of (A(fo+ cn,w;) — k(fo,wi))/cn,
namely o2(c,), is bounded as ¢, — 0 (and similarly for centered differences). For the next
result, we also assume that it converges to a constant.

THEOREM 3. Suppose that A1(2 + §8) holds for some é6 > 0, that « is twice continuously
differentiable in Y, and that lim,_,o, 02(c,) = o0&, where 0 < op < co. Then, o} < K(2) < o0
and, as n — 0o:
a) If n'/?c, — oo, then n'/2|YF — o/(8,)| = oo;
b) If n}/%c, — 0, then n**(YF — o/(65)) = orN(0,1);
¢) If «'(0) is continuous at 6 = 6 and n'/%c, — ¢ > 0, then n'/2(Y,F — o/(6,)) =
orN(0,1) + o”(80)c/2.

For centered FDC, with o replaced by %, (b) is also true. Further, if o is also three times
continuously differentiable in Y, then, as n — co:

d) If n'/%c, — oo, then n'/4|YF — o/(6y)| = oo;

e) If nt/%c, — 0, then n'/4(YF — o/(8y)) = opN(0,1);

f) If o™(6) is continuous at 6 = 6y and n'/*c, — ¢ > 0, then nY/4 (YT — o&/(6;)) =
orN(0,1) + & (65)c?/6. '

PROOF. Let ARE; = [h(60 + cn,wi) — h(fo,wi)]/cn and Ay ; = ARE; — E[ARE ]. Then

VAYE — () = nY2Y) Ani+nABIARL] - o (80))

=1
= p-1/2 Z A+ n1/2a"(§:)cn/2

i=1

where £ is as in Section 3. Since 6y < &F < 6y + ¢p, ¢, — 0, and o is continuous, one has
o"(&F) — o'(6p). It remains to show that

n~1/2 Z Ani = opN(0, 1) ' (10)
=1

as n — oo and the results a, b, and ¢ will follow. For that, as in Glynn (1989), we use the
Lindeberg-Feller Theorem, which is a central-limit theorem for triangular arrays (see Chung
1974, p.205). We just need to verify Lindeberg’s condition and (10) will follow from that
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theorem. In our case, the triangular array is {n~'/2A,;/or(cs), 1 <7 <n and n > 1} and
Lindeberg’s condition is that for each C > 0,

lim E[(An;/or(cn))? | (Anifor(en))? > nC) = 0. (11)

n—oo

We have

E[(Anifow(en))® | (Ani/or(en))’ > nC]

< E[(|Anil/op(ca))™**/(nC)’1* | (Ansi/ow(cn))* > nC]
< E[Ani**/lop(en)**(nC)°V?]
< E

P*+8(w)]/low(en) ™ (nC)*/7].

This goes to zero'as n — 0o. The proof is similar for the central-difference case. n

There exists degenerate cases where A1(2 + §) holds but where o#(c,) = 0. Then, both
IPA and FDC have zero variance. This is the case, for example, if 2(8,w) can be decomposed
as h(0,w) = f(0) + g(w). Another pathological case is when h(#,w) can be decomposed as
h(0,w) = f(0)g(w). The variance for IPA is then var [Y,F] = n1(f'(0))? var [g(w)], which
is zero at points 6p for which f(6y) = 0. For FDC, the variance then goes to zero as ¢, — 0

and 6 — 65 (or 6 = bp).



5. Numerical examples

5.1. Average system time for the first ¢ customers in an GI/G/1 queue

Consider a GI/G/1 queue, initially empty, with interarrival and service-time distributions F
and Gy respectively, both with finite expectations and variances. The latter has a density g,
and depends on a parameter § € ©. For 1 < j <'t, A; denotes the interarrival time between
customers j — 1 and j (A; is the arrival time of customer 1 and the system starts at time 0),
S; is the service time for customer j, and Xj is the system time (waiting time in the queue
plus service time) for customer j. We have Xp = 0, and Xj41 = Sj11 + max(0, X; — Aj;1)
for j > 0. Let h(6,w) be the observed average system time for the first ¢ customers:

h(8,w) = %éx, (12)

-

Here, a(0) is the expected mean system time for the first ¢ customers in the system,

Suppose that each service time S; is generated by inversion: S; = Gg'(U;), where the
Uy’s are i.i.d. U(0,1) variates. Suppose also that for each u € (0,1), ¢(8,u) = dG7'(u)/00
exists and that supgee |#(8,u)| < T'(u), where I' : (0,1) — IR is a measurable function such
that f}(T'(u))3du < co. The IPA estimator in this case is

1
W(,w) = 3 ZIX;, (13)
=
where X =0 and X},; = Si,; + X} if X; > Aj41, X[,y = 5j4, otherwise. It is easily seen

that for each 6, A'(8,w) < Y- ¢(6,U;), and that A1(3) holds (see also L’Ecuyer 1990, and
L’Ecuyer, Giroux, and Glynn 1990). Therefore, Theorems 1—3 apply.

For a numerical illustration, suppose that Gy and F' are the exponential distributions
with means 0 and 1, respectively. Let t = 10 and 6y = 0.5. The true value of the derivative
(computed by recursive equations as in L’Ecuyer 1990) is o/(0.5) = 2.46339. We performed
numerical experiments with IPA and the forward and central versions of FDC, with different
subsequences c,. In each case, we computed the (sample) mean square error R, for different
values of n. The results appear in Table 1. They are in accordance with Theorems 1—S3.
Common random numbers were used across the lines of the Table. Note in particular the
strong similarity between the results of the three methods when ¢, is chosen appropriately.
For this particular example, the forward and central versions of FDC with ¢, = n=1/4 also
give similar results. One can also see that when ¢, goes to zero too fast (like ¢, = n=?),
numerical instability comes in.

5.2. A race between two random variables

This example is inspired from Glasserman and Gong (1990), but our analysis goes further
and in different directions. Consider a race between two random variables X; and X;. X,
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¢, |n=102|n=10% | n=10* | n=105 | n =108

IPA — | 3.09E-2 | 3.53E-3 | 3.54E-4 | 3.53E-5 | 3.55E-6

FDC(F) | n~Y/4 | 4.60E-2 | 4.07E-3 | 4.00E-4 | 3.77E-5 | 3.69E-6
” n~1/2 | 3.58E-2 | 3.61E-3 | 3.58E-4 | 3.54E-5 | 3.56E-6
” n-1 | 3.11E-2 | 3.53E-3 | 3.54E-4 | 3.53E-5 | 3.55E-6
” n=? | 3.09E-2 | 3.53E-3 | 3.54E-4 | 3.53E-5 | 3.55E-6
n~3 | 3.09E-2 | 3.53E-3 | 3.54E-4 | 3.44E-5 | 6.18E-3

FDC(C) | n~¥/4 | 2.62E-2 | 3.05E-3 | 3.37E-4 | 3.42E-5 | 3.50E-6
7 n~1/2 | 3.08E-2 | 3.41E-3 | 3.53E-4 | 3.52E-5 | 3.55E-6
n~! | 3.10E-2 | 3.53E-3 | 3.54E-4 | 3.53E-5 | 3.55E-6
n~? | 3.09E-2 | 3.53E-3 | 3.54E-4 | 3.53E-5 | 3.55E-6
n~3 | 3.09E-2 | 3.53E-3 | 3.54E-4 | 3.67E-5 | 8.13E-3

»

»

”»

Table 1: Sample mean square errors for the M/M/1 queue example.

has distribution F, while X; has distribution Gy, which depends on a parameter § € O,
where © is a finite interval. Suppose our reward h(f,w) is 1 is X; < X, (X1 wins the
race), 0 otherwise. Then, a(f) = Py[X; < X;], where P; denotes the probability when
X has distribution Gp. As usual, we want to estimate o/(f). Of course, the exact value
can be computed directly in most cases. But this simple example is a good illustration of
what happens in many practical situations where the output is discontinuous with respect
to the parameter value. More complicated cases can be treated in a similar way; see, e.g.,
Glasserman and Gong (1990).

To simplify the analysis, let G4(0) = F(0) = 0. Suppose that for each u € (0,1), G5*(u)
exists, and is non-decreasing and differentiable in # for # € ©. Suppose also that Gy(z) is
twice continuously differentiable with respect to 6, that dGy(2)/dé is bounded uniformly:
0 < —dGy(z)/d§ < C for all € © and =z > 0, for some constant C, and that F' has a
density f. Let X;(0) = G5'(U;) and Xy = F~1(U,), where U; and U, are i.i.d. U(0,1).

Trying to apply IPA nalvely will not work in this case. If we view w as representing
(U1, Us), then h/(0,w) = 0 except when X;(8) = X3, in which case it is undefined. Therefore,
E[YP] = 0 and this IPA estimator is clearly biased.

Assume [0 4 ¢,0 — c| C ©. One term of the centered FDC estimator is
40 = RO +c,w) —h(0 —cw) _ { —1/(2¢) i Xi(0~¢) < X2 < X(0+0) (14)
2c 0 otherwise.

Using Taylor’s development and the uniform bound on the derivative of Gi¢ with respect to
8, we obtain for some € € [0 — ¢, 0 + ],

Pi[y® = —1/(2¢)] = Po[Gose(Xa) S Ur < Gope(X3)]

9



[ (Go-ola) = Gorel@)dF (2)

[)w(—2c)%Ga(w) le:g dF(z)
< 2¢C.

Then,
Var (4°) < Bl(yoy) = EZ S < 2

which means that this example satisfies Glynn’s assumption (Glynn 1989) that the variance

of 4C is in O(1/c). Therefore, one gets a convergence rate of n=%/5, which is obtained with
-1/3,

Ch=n

As suggested in Glasserman and Gong (1990), smoothed perturbation analysis can be
applied in this case. Basically, this amounts to replacing the “nalve” reward function above
by a conditional expectation. Equivalently, this corresponds to viewing w-as representing
something different than a sequence of uniform variates. We will examine three ways of
applying that to our example, i.e., three different choices for the meaning of w. (Strictly
speaking, when the sample space is “redefined” that way, we assume implicitly that there
still exists a “lower-level” probability space on which the probabilities that define A(6,w)
below are well defined. This lower-level probability space is equivalent to the one in which
w can be interpreted as a sequence of i.i.d. U(0,1) variates. We do not discuss that in detail
because this is not necessary and would require introducing complicated notation that could
just turn the attention away from the fundamental issues.) Let X;(6) and X, be as above,

and define 1 X0 < X
0) = { I X1(0) < Az
1) 0 otherwise.
Suppose we want to estimate the derivative at 6 = 6,.

Let us redefine w = U; and
h(0,w) = PlI(6) = 1| w] = P[X;(0) < X; | U] = F(X.(9)),
where F' =1 — F. Individual terms of the central FDC (4) and IPA estimators are then

F(X1(0 —¢)) — F(X1(0 + ¢))
CS1 __
and
WS = (X, (6))XL(6) | (16)
where X;(0) = dGz'(U,)/d6.
An alternative redefinition could be w = U, and
h(ﬂ,w) = P[I(G) =1 I w] = P[X1(0) < X2 l Uz] = Gg(Xg)

The terms of the central FDC (4) and IPA estimators are then

¢C’S2 - Gﬁ+c(X2) — Gﬂ—c(X2) (17)

2c
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and

PS5 = dGy(X,)/do. (18)
A possible third redefinition is w = (U1, I(6o)) and
h(0,w) = P[I(0) =1 | w] = P[X1(0) < X2 | Uy, I(00)].
Note that I(f) is non-increasing in 8. If I(6,) = 0 and 6 < 6o, then

h(0,0) = P[Xy > X1(6) | X < X1(60)] = 1 — %%
If I(0p) = 1 and @ > 6o, then
h(0,0) = P[Xs > X1(0) | Xz > X1 (00)] = ;(%1%
This yields )
CFGO) oo 0 <o
h(b,w) = IEGO) i (1 F(X1(90))) (1= 1) 6= (19)
Fx0)) I(8o) if 0 > 0o.
F(X1(60))
One term of the central FDC estimator (4) at § = 0, is then
‘ l F(X1(¢90 - C)) _ 1 ) —
wCSS _ h(00 + c,w) - h(00 - C, w) - 2¢ [ _F(X1(00)) 1} f I(eo) 0 (20)
2 1 lF (X1(0o+¢)) _ 1] it I(6) = 1.
2¢| F(X1(6o)) |

An IPA estimator is obtained by derivating (19) for a fixed w. But here, for a fixed w,
at § = 6o, the left derivative is different from the right derivative. They are respectively:

¢PSBL — lim h(aoaw) — h(OO — 6 w) — _f(Xl(ao))X{(ao)
c—0t C F(Xl(ag))

(1 —1(6o)) (21)

and

$PSR — fiy PO+ 6w) — hllo,w) _ —f(X1(60)) X1(G)
c—0+ c F(Xl (00))
Fortunately, both estimators have the same expectation as (16). This can be seen by condi-
tioning on X7(6p) as follows:

E[pP®] = E[E[HT | X, (60))]

- | R 300

. _f(Xl(Ho))X{(eo) _ 1(6o
- E[ (X)) E[1—1I(6o) | X1(6 )]]

= E[-f(X1(60))X}(60)],

1(60). (22)
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and similarly for ¥F5°E. However, (16) should have less variance, because it is a con-
ditional expectation of each of the other two. The estimator suggested in Glasserman
and Gong (1990) is equivalent to (22). (Strictly speaking, it is obtained by viewing w
as w = (I(6p), U1 1(6o) + Us(1 — I(6))). It remains to verify Assumption Al. In view of our
diffentiability assumptions, only the v-integrability (last assumption) remains to be checked.
If it holds for some v > 2, then Theorem 3 applies. Also, if it holds for (16) for some v > 1,
then (16) is unbiased, which implies that (21) and (22) are also unbiased, since they have
the same expectation. For (16), a sufficient condition is that

v

E 3gg[f(X1(0))X{(9)] < co. (23)

For (18), it holds for any v > 0, since 4752 < C.

As an illustration, suppose that X, is exponential with mean § and X, exponential with
mean 1. Then F(z) =1 — €%, f(z) = e, X1(0) = —01In(1 — U1), X{(0) =-In(l1-0U;) =
X1(0)/6. Let © = [a, b], where 0 < a < b. In this case, since f(X1(0))X{(f) < X{(0) = X1(1)
and since an exponential of mean one has finite moments, (23) holds with any » > 0. We
performed numerical experiments with these different estimators to estimate the derivative
at 6y = 1.0. Here, «(0) = 1/(6 + 1) and o/(f) = —1/(6 + 1)?. The experimental procedure
was the same as for example 1. The empirical mean square errors appear in Table 2. We
see that for FDC without smoothing, with ¢, = n=1/3, the empirical results agree with the
convergence rate of n=2/5, while with ¢, = n~?, things get lost in the noise. After smoothing,
IPA and FDC with ¢, = n~! have essentially the same behavior, -except for the third way
of conditioning, where the two IPA estimators are the limits of left and right one-sided
differences, respectively.

Cn n=10% | n=103 | n=10* | n=10° | n=10% | n =107
FDC n~1/3 | 5.273E-3 | 1.277TE-3 | 2.840E-4 | 5.918E-5 | 1.238E-5 | 2.680E-6
FDC n~! | 6.250E-4 | 6.250E-5 | 2.500E-1 | 6.250E-7 | 6.250E-8 | 2.500E-1
FDC-S1 n~1 | 1.091E-4 | 1.165E-5 | 1.174E-6 | 1.152E-7 | 1.157E-8 | 1.158E-9
FDC-S2 n-! | 1.157E-4 | 1.220E-5 | 1.157E-6 | 1.162E-7 | 1.157E-8 | 1.157E-9
FDC-S3 n-1 | 4.190E-4 | 3.593E-5 | 3.839E-6 | 3.886E-7 | 3.816E-8 | 3.860E-9
IPA-S1 — 1.091E-4 | 1.165E-5 | 1.174E-6 | 1.152E-7 | 1.157E-8 | 1.158E-9
IPA-S2 — 1.157E-4 | 1.220E-5 | 1.157E-6 | 1.162E-7 | 1.157E-8 | 1.157TE-9
IPA-S3L — 9.093E-4 | 9.397E-5 | 9.093E-6 | 9.129E-7 | 9.146E-8 | 9.161E-9
IPA-S3R | — 2.187E-3 | 1.758E-4 | 1.855E-5 | 1.900E-6 | 1.857E-7 | 1.878E-8
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Table 2: Sample mean square errors for the second example.




5.3. Average number of customers whose system time exceeds a given threshold

We come back to our first example (GI/G/1 queue), with the same assumptions, but with
a different cost function. Let o;(0) = Py(X; > L), for some fixed constant L, and a(f) =
(1/t) X%~y j(#). The latter is the expected proportion of customers, among the first ¢, whose
time spent in the system is larger than L.

To construct a gradient estimator for a(f), we will examine one customer at a time,
i.e. find an estimator for o/(0). Suppose that w is viewed as the sequence of all uniform
variates that are used to feed the simulation, and that k;(6,w) = I(X; > L), where I denotes
the indicator function. Then, as for the previous example, E[h}(0,w)] = 0 # «;(f). Now,
suppose that only the first j — 1 interarrival and service times are known. In that case, X;_;
is known, and X; > L if and only if max(0, X;-y — A;) > L — S;. This is a race between the
two random variables max(0, X;_1 — A;) and L — S;. Therefore, perhaps we can apply the
ideas developped in the previous example. Let us make the same assumptions for Gy and
F as for the previous example. Suppose also that Gy has a density g, that is bounded by a
constant K. '

Suppose we view w as the set of uniforms used to generate the first j service times and
the first j — 1 interarrival times, and redefine

1 if 5; > L;

F(X;-14+ Sj— L) otherwise. (24)

hj(gaw) = PG(XJ‘ > L | w) = {

This is an unbiased estimator of a;(6), but unfortunately, it is discontinuous in # at the
value of 6 for which S; = L, whenever there is one. Therefore, this particular smoothing is
not effective here.

For a second try, suppose we view w as the set of uniforms used to generate the first j —1
service times and the first j interarrival times, and redefine

hi(0,w) = Py(X; > L |w) = 1 — Go(L — max(0, Xj_y — Aj)). (25)

The corresponding IPA estimator is then

, b,
Ri(0,w) = —-%G(;(L —max(0, Xj_1 — 4;))

+g0(L — max(O,Xj_.l — AJ)) ;_1I(Xj_1 > Aj).

This estimator is in fact the same as for the first example of Wardi et al. (1990). Under our
assumptions, k;(8,w) is continuous and piecewise differentiable for each w, and

J
Ki(0,w) < C+ K Y T(Uy),
k=1
so that A1(3) is satisfied and Theorems 1-3 apply. For an estimator of o/(f), just take
(1/1) £jaa B5(6,w).

13



To reduce the variance further, one can condition on less, i.e. view w as containing less
information. For example, suppose we view w as the set of uniforms used to generate the
first j — 1 service times and the first § — 1 interarrival times. (In the previous example, the
equivalent of this would have reduced the variance to zero.) Assume that F' has a density,
and that dgy/df exists and is bounded by an integrable function over [0, L]. Then,

h]—‘(a,w) = Pg(Xj > L Iw) = Po(Sj > L) + Pg(Sj <L, Aj < X1+ Sj - L)
L
— 1—Ge(L)+ /0 F(Xj—1 — L+ 8)gs(s)ds, (26)

and Theorems 1-3 apply. The IPA estimator is:

Ri(0,w) = —g—e—Gg(L) + /OL (X_;'—lf(Xj"'l — L+ 38)ge(s) + F(Xj.1 — L+ 3)%@(3)) ds.
(27)

~

Again, we performed a set of experiments as for the previous examples. The interar-
rival and service times were exponential exactly as in Example 1. In that case, one has

~08Gy(s)/00 = (s/0%)e*/?, and the expressions (26) and (27) become

L
h: 0, = ~-L/6 / 1— —(Xj—1—L+s) 1 0 —sled
i(0,w) e~ L0 max(o,L-x,-_,)( e )(1/8)e=*/ds

5 i 1 (emXsm1=210 4 ge=B=Xi010) if X, < I
and |
1(0,6) = 7y [0+ (04 D/ = X]0) = 1) e 70
where

(0,) (14 0+ 1)(XI_y + (L = Xjo1)/60) e~ E=Xi-Dl0 5 X4 < I
PAEEEY (14 (04 1)X1,) eb-Xom it X;_; < L.

We took t = 20 and L = 2. The true value of the derivative (computed by recursive
equations) is «/(0.5) = 0.82484. The results appear in Table 3. The smoothed estimators
(24), (25), and (26) are denoted by S1, S2, and S3, respectively. Again, whenever IPA

applies, the results of FDC and IPA are almost identical. Also, straightforward FDC using
(24) appears to work reasonably well in this case.
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~

Cn n=10% | n=10% | n=10* | n=10°% | n=10°
FDC n=1/3 | 3.409E-3 | 5.899E-4 | 1.039E-4 | 1.623E-5 | 2.786E-6
FDC n~1 | 1.542E-2 | 2.470E-2 | 1.994E-2 | 2.811E-2 | 2.250E-2

|

FDC-S1 | n~! | 6.409E-3 | 2.793E-3 | 1.241E-3 | 3.169E-3 | 1.238E-3
FDC-S2 | n~1 | 5.233E-3 | 6.404E-4 | 7.610E-5 | 7.172E-6 | 7.326E-7
FDC-S3 | n~! | 2.842E-3 | 3.447E-4 | 4.238E-5 | 4.012E-6 | 4.073E-7
IPA-S2 — | 5.329E-3 | 6.369E-4 | 7.625E-5 | 7.173E-6 | 7.326E-7
IPA-S3 — | 2.772E-3 | 3.447E-4 | 4.238E-5 | 4.012E-6 | 4.073E-7

15

Table 3: Sample mean square errors for Example 3.




6. Conclusion

We have analysed the strong relationship between IPA and FDC for gradient estimation.
After reading certain articles, one might be tempted to conclude that IPA estimators have
much less variance than their finite-differences counterparts. But we have shown that if
common random numbers are used and if the interval sizes for the finite differences are
chosen appropriately, this is not really the case.

It is true that IPA estimators require just one simulation, whatever be the number of
parameters, while if there are 2d parameters, FDC estimators require 2d simulations for the
central case and d-+1 simulations for the forward case. IPA can be applied to real-life systems
(not just simulations), but not FDC (see Suri 1989). FDC can also have numerical problems
when the intervals are too small. Finally, implementing FDC with the proper synchronisation
is not always easy in practice, especially for complex systems (see, e.g., Bratley, Fox, and
Schrage 1987, and L’Ecuyer, Giroux, and Glynn 1990). On the other hand, IPA is not always
trivial to implement either. In some cases, finding out the expression for the IPA estimator
and implementing it into a simulation program can be really complicated and/or tedious.
FDC might then be a reasonably efficient and less expensive alternative.
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