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Abstract

Infinitesimal Perturbation Analysis (IPA) is perhaps the most efficient
derivative estimation method for many practical discrete-event stochastic
systems, whenever it applies. But there are many situations where it does not
apply directly. Alternative methods such as Likelihood Ratios (LR), Finite
Perturbation Analysis (FPA), Smoothed Perturbation Analysis (SPA), Rare
Perturbation Analysis (RPA), and a few others, have been proposed and
could be used when IPA does not apply directly. In this paper, we discuss
some links that exist between these methods and explain them by showing
how each of them can be applied to a specific example, namely to estimate
the derivative of the expected number of customers per regenerative cycle
in a GI/G/1 queue, with respect to parameters of the interarrival and/or
service-time distributions. We also give the results of numerical experiments
to compare the performances of these methods.

Résumé

L’analyse de perturbation infinitesimale (IPA), lorsqu’elle s’applique, sem-
ble étre la méthode d’estimation de dérivées la plus efficace pour la plu-
part des systémes stochastiques & événements discrets. Mais dans plusieurs
cas, cette méthode ne s’applique pas directement. D’autres méthodes, telles
la méthode du rapport de vraisemblance (LR), l’analyse de perturbation
finie (FPA), l’analyse de perturbation lissée (SPA), ’analyse de perturba-
tion rare (RPA), etc., ont été proposées et peuvent &tre utilisées lorsque IPA
ne s’applique pas directement. Dans cet article, nous discutons de certains
liens qui existent entre ces méthodes et expliquons ces derniéres en montrant
comment les appliquer dans le cas d’un exemple simple, en ’occurence pour
estimer la dérivée du nombre espéré de clients par cycle regénératif dans
une file GI/G/1, par rapport 4 des parameétres de la loi inter-arrivées ou de
la loi des durées de service. Nous donnons aussi les résultats de quelques
expériences numériques comparant les performances de ces méthodes.






1. Introduction

During the past decade there has been an increasing number of new methods and algorithms
for the estimation of the sensitivity of complex queueing systems with respect to some
parameters of the underlying distributions. Among the many important recent references to
this area, we can cite for instance Glasserman and Gong (1990), Glynn (1990), Heidelberger
et al. (1988), Ho (1987), Ho and Strickland (1990), L'Ecuyer (1990), Reiman and Weiss
(1989), Rubinstein (1989), Simon (1989), and Suri (1989).

Both theoretical and empirical results suggest that for most discrete-event stochastic
systems of interest, Infinitesimal Perturbation Analysis (IPA) is usually the most efficient
derivative estimation method when it applies. But in many cases, IPA does not apply di-
rectly. Various alternative methods have been proposed and could be used in these situations.
Such methods include the use of a Likelihood Ratio (LR) or Score function (SF), Finite Per-
turbation Analysis (FPA), Smoothed Perturbation Analysis (SPA), Conditional Infinitesimal
Perturbation Analysis (CIPA), Rare Perturbation Analysis (RPA), and a few others. In this
paper, we discuss some links that exist between these methods and explain them by showing
how each of them can be applied to a specific example, namely to estimate the derivative of
the expected number of customers per regenerative cycle in a GI/G/1 queue, with respect
to parameters of the interarrival and/or service-time distributions. Applying those methods
is not straightforward, even for such a simple example. The development that we follow
for deriving our estimators can be generalized or adapted to many similar problems. We
also look at the performance of our estimators on that specific example through numerical
illustrations. Of course, the best method for that example is not necessarily the best in
general, but nevertheless, numerical experiments can give some insight into what goes on.
The estimators that we examine are all based on a single simulation run. That excludes the
family of finite-difference estimators with or without common random numbers (see, e.g.,
L’Ecuyer and Perron, 1990).

Section 2 introduces the model and explains why straightforward IPA will not work
in that case. In Section 3, we recall briefly how the likelihood ratio (LR) method applies,
yielding a simple unbiased derivative estimate. It is well known, however, that LR estimators
are plagued with a large variance, especially when the regenerative cycles (busy periods) are
long. We are therefore looking for better estimators. In Section 4, in the context of our
GI/G/1 queueing example, we describe a finite perturbation analysis scheme called Finite-
Difference Phantom RPA. This approach, based on the thinning of a point process, was
introduced in Vézquez-Abad and Kushner (1990). It is inspired by ideas used in Suri and
Cao (1986) to study the sensitivities with respect to the number of jobs circulating in a
closed queueing network. In Section 5, following Brémaud and Vazquez-Abad (1991), we
take the RPA approach to the limit and add some smoothing (conditioning) to obtain an
infinitesimal phantom RPA estimator. In Section 6, we introduce two new estimators based
on Smoothed Perturbation Analysis (SPA), that is estimators obtained by applying IPA after
having replaced the objective function by a conditional expectation. Similar estimators have
been studied in Glasserman and Gong (1990), L’Ecuyer and Perron (1990), and Wardi et al.
(1990), for different problems. These SPA estimators can be used to estimate sensitivities



with respect to parameters of either the interarrival or service-time distributions. Further,
we explain in Section 7 how any estimator of the derivative with respect to the arrival
rate (whether or not the arrivals are Poisson) can be transformed into an estimator of the
derivative with respect to the (average) service rate, and vice-versa. These kinds of indirect
estimators are called surrogate estimators, following the terminology of Vazquez-Abad and
Kushner (1990). In Ho and Cao (1985), the same idea was used to estimate sensitivities
with respect to routing parameters via sensitivities with respect to service rates for a closed
network. Section 8 reports the results of our numerical experiments and Section 9 gives
concluding remarks. It turns out that our SPA estimators of Section 6 are the most effective
for the cases that we have examined.

2. Number of customers per busy cycle in a GI/G/1 queue

We consider a GI/G/1 queue with inter-arrival time distribution F) and service-time distri-
bution G,. For simplification, suppose that F and G, have respective densities fy and g,.
Here, A and p are continuous parameters with respect to which we might want to estimate
the derivative of some “performance measure” expressed as a mathematical expectation. We
will use 0 as a generic name that could designate either A or y. The “performance measure”
that we will concentrate on in this paper is the expected number of customers in a busy
cycle.

The evolution of the GI/G/1 queue can be described conveniently as follows throught
Lindley’s equations (1-2) below. Suppose that the queue is started empty and let ¢ denote
the i-th customer in the system. For each 7 > 1, let:

A; = interarrival time between customer ¢ and ¢ + 1;
; = service requirement of customer z;

W, = waiting time of customer ¢;

X; = sojourn time of customer <.

Then, one has W; = 0, X; = S;, and for each ¢ > 1,

W = maX(O,Xi-l—Ai-1); (1)
Xi = W+ 8. (2)

That process evolves according to a probability measure that depends on the parameter
. Assuming that the queue is stable, this is a regenerative “discrete-time” Markov chain,
where the “time” is viewed as representing the customer number ¢ (see Asmussen, 1987).
The regenerative points can be defined as the indexes of the customers who find the system
empty when they arrive. Let 7 denote the number of customers in a given regenerative cycle,
say the first one, and £(6) = E4[7] be its expectation at parameter value 6.



A standard way to estimate £(6) is to run the system for say n regenerative cycles and
count the total number of customers in those n cycles, divided by n. This gives the estimator

L(0)= 23 7= Cufm, 3)

j=1

where 7; represents the number of customers in the j-th regenerative cycle and C, is the
total number of customers during the n cycles. But estimating #'(), the derivative of £(6)
with respect to 0, is less simple. An estimation of #(6) is necessary, for example, when one
wishes to estimate the derivative of an average “cost” per customer over an infinite horizon,
using LR and a regenerative approach (see, e.g., Glynn 1990).

One approach for building efficient derivative estimators is IPA. The basic idea of IPA is
essentially to use the derivative of the sample estimator, for fixed underlying U(0, 1) uniform
random numbers, as an estimator of the derivative of the expectation. But in our case
here, when the sequence of U(0,1) variates that are used to generate the interarrival and
service times are fixed, (3) is piecewise constant as a function of §. Therefore, whenever the
derivative of (3) is defined, it is zero. This is clearly not a worthwhile estimator for #'(9),
which is usually not zero in the cases of interest. This means that straightforward IPA does
not apply in this case: we cannot interchange the derivative and expectation.

3. Applying the LR method

A now well known alternative to IPA is the likelihood ratio (LR) approach, sometimes
called the score function (SF) method. That method can be traced back to Aleksandrov
et al. (1968). More recent references include Glynn (1990), Reiman and Weiss (1989), and
Rubinstein (1989). L’Ecuyer (1990) has shown how LR, SF, and IPA can be presented into
a unified framework under which IPA can be viewed as a special case of LR. L’Ecuyer and
Perron (1990) showed how SPA also fits quite well into this framework and how LR can be
viewed as a special case of IPA.

The standard LR derivative estimator is simply obtained as the product of the perfor-
mance measure of interest (here, 7), by the so-called score function. For one regenerative
cycle, this yields (see L’Ecuyer 1990 or Glynn 1990):

#7304 + (), @

where A; and S; are considered fixed when taking the derivative with respect to §. When
0 = X [resp. 8§ = p], the derivative of In g,(S;) [resp. In fi(A;)] vanishes. For n regenerative
cycles, the derivative estimator is obtained by averaging out the n values of %® associated
with these cycles.



4. Finite-difference RPA

Ordinary perturbation analysis is based on the idea of introducing tiny perturbations to the
system, so that the nominal and perturbed paths differ almost surely by a very small amount.
In contrast, Rare Perturbation Analysis (RPA) is based on introducing the perturbations
only rarely, so that the nominal and perturbed paths differ only very rarely, but the amount
of the difference may be large. For more on RPA, see Vizquez-Abad and Kushner (1990)
and Brémaud and Vazquez-Abad (1991).

To simplify the presentation here, we assume that § = A and that the arrival process
is Poisson with rate A. We therefore have a M/G/1 queue. Suppose that A is reduced to
A — A), for some small constant AX > 0. Standard finite PA will take that reduction into
account by sliding along the arrival times slightly into the future: each interarrival time A;
is multiplied by A/(A + AX). RPA, in contrast, will thin down the process by removing any
given arrival with probability AA/A. The path of the original process is called the nominal
path, while the path of the process with some arrivals removed is called the phantom path.
The customers whose arrival is actually removed are called phantom customers.

We now explain how the finite-difference RPA derivative estimator can be computed in
a single run. That derivative estimator will be the difference between the average number
of customers per busy cycle in the nominal path and the average number of customers per
busy cycle in the phantom path, divided by AM. So, while simulating the nominal path, we
need to compute the total number of non-phantom customers as well as the number of busy
cycles in the phantom path. '

To each customer ¢, associate a Bernoulli (AA/A) random variable I; which is independent
of all the A,’s, S;’s, and other I;’s. When I; = 1, customer ¢ is a phantom customer in the
phantom path. The arrival process of those customers which are not phantoms is a Poisson
process with rate A — AX. (Note that this development also applies to the situation where
the arrival process is a more general point process.) Computing the total number of non-
phantom customers is trivial: just sum the (1 — I;)’s. It remains to see how to compute the
number of busy cycles in the phantom path.

Observe that removing customers can split busy cycles, but can never merge them. Each
time a busy cycle starts in the nominal path, then a busy cycle must also start in the phantom
path (unless the first customer in that busy cycle has been phantomized, in which case the
corresponding busy cycle in the phantom path will start with the arrival of the next non-
phantom customer). Note that here, the non-phantom customers in the phantom path keep
the same numbers and same attributes that they had in the nominal path. For example,
if the third customer is the first phantom, then the third non-phantom customer in the
phantom path will have service time Sy, not S3. Let W: and X; denote the waiting time and
system time, respectively, of customer 7 in the phantom path. When : is a phantom, these
quantities can be viewed as “phantom” times but are nevertheless well defined. The simplest
way of taking into account that a customer has been removed, in Lindley’s equations, is to



replace its service time by zero. Using that trick, Lindley’s equations for the phantom system

become: Wl = W1 = 0, Xl = (1 - 11)51, and for 7 > 1,

max(0, X1 — Aisy); (5)
Wi+ (1 = L)S.. : (6)

2 g*
<
|

It follows immediately that W; < W; and X; < X; for each i. Note that from the se-
quence {(A;, S;, Xi, X;), i = 1,2,3,...}, one can compute finite-difference estimators for
many different performance measures. Computing the number of busy cycles is equivalent
to computing the number of customers who are first in their busy cycle, i.e. whose waiting
time is zero. Therefore, the number of busy cycles in the phantom path is equal to the
number of busy cycles in the nominal path, plus the number of non-phantom customers who
did wait in the nominal path and are not waiting any more in the phantom path (i.e. such
that W; = 0 < (1 — I,)W;), minus the number of customers who did not wait in the nominal
path but are now phantoms (i.e. such that W; = 0 and I; = 1). To compute the last two
numbers during the nominal simulation, it suffices to maintain (Wi, X;) and a counter D.
At the beginning of the simulation, initialize D to zero. Whenever W; = 0 < (1 — I,)W;, add
one to the counter and whenever W; = 1 — I; = 0, subtract one from the counter. Let n, C,
and C denote respectively the number of regenerative cycles in the nominal path, the total
number of customers in the nominal path, and the total number of non-phantom customers
in the phantom path. Then, the finite-difference RPA estimator becomes:

FD-RPA _ ___1_ 9 _ é (7)
" A\n n+D)’
This estimator satisfies
1
Ex[ypfP-FPA] = ¥\ (Ex[7] — Ex_axT])-

Therefore, it is biased for #()), due to the finite differences. However, it can be computed in
a single run and could also be used in more complex situations where IPA would not apply
directly. See Vazquez-Abad and Kushner (1990) for an extension to a queueing network
problem.

5. An average infinitesimal RPA approach

The bias on the estimator (7) can be reduced by reducing AX, but at the cost of increasing
the variance. The reason is that when A is very small, customer phantomizations become
rare events that have a large impact on the estimator value. Further, that finite-difference
estimator cannot be taken to the limit directly, that is take the limit as AX — 0, because
when A is small enough, there are no more phantom customers and (7) becomes zero. So,
we have exactly the same problem as we had with IPA in Section 2.



Brémaud and Vazquez-Abad (1991) have developed a less straightforward way of taking
RPA to the limit. Their approach yields an unbiased derivative estimator. Let us sketch
this approach in the context of our example. Suppose that we simulate the system for one
regenerative cycle and let 7 be the number of customers in that cycle in the nominal path.
The simulation starts at the arrival of the first customer, both in the nominal and phantom
paths. After that first customer has arrived, since the arrival rate in the phantom process
is smaller, some of the 7 — 1 arrivals that follow can be phantomized, with the appropriate
probabilities. The number K of phantom customers is a binomial random variable with
parameters 7 — 1 and p = A)/A. To estimate the derivative, we condition on K: for each
integer k in {0,...,7 — 1}, we multiply P[K = k] by the derivative of the expected number
of customers in the cycle, conditional on the event that K = k and on the sequence of
interarrival and service times in the nominal path. We then sum up over all values of k.
For k = 0, the conditional derivative is clearly zero. When AX becomes infinitesimal, it can
be shown that the event { K > 2} can be neglected, so that the problem comes down to
estimating the derivative of the expected number of customers in the first cycle given the
nominal path and given that K = 1. When K = 1, each customer after the first one has
the same chance of being the phantom, that is 1/(7 — 1). So, for ¢ = 2,...,7, we will look
at what happens when customer ¢ is the (only) phantom in its cycle, and take the average
over all these values of 7. Let #(!) denote the number of customers in the first cycle of the
phantom path when i is the only phantom. This can be computed using the same kind of
Lindley equations as in the previous section, with I; = 1 and I; = 0 for ¢ # j. (Note that
we need one set of Lindley equations for each 7, : = 2,...,7. This implies a non-negligible
overhead.) The average (infinitesimal) RPA estimator (for one busy cycle) then becomes
(for more details on its derivation, see Brémaud and Vazquez-Abad, 1991):

YA-RPA _ %i(T — #)y, (8)

1=2

Brémaud and Vazquez-Abad (1991) show that under reasonable conditions, that estimator
is unbiased for £'(#). They also show some links between this estimator and the LR method.
Finally, a similar estimator has also been suggested by Gong (1988).

Of course, as for LR, one will use say n regenerative cycles and estimate the derivative
by averaging out the n values of yp4~FPA associated with these cycles. Note that here,
contrary to what we did for the finite-difference RPA in the previous section, the number of
regenerative cycles that we consider is the same for both the nominal and phantom paths.
Here, when a busy cycle splits up, we simply discard what happens in the phantom path
until the start of the next busy cycle in the nominal path.

6. Two SPA Estimators

Let us return to the model formulation of Section 2, where @ can be either A or u. Observe
that the (infinite-horizon) average number of customers per cycle period is the inverse of the



fraction of customers that are first in their busy cycles, i.e. whose waiting time is zero. That
is

1

£(8) = Eo[r] = B =0

(9)
where
def 13
Pg(W = 0) é khm EZPQ(I/V’ = 0)
TR =
represents the probability that a “random” customer in steady-state has zero waiting time.
By differentiating (9), one obtains

0 1 0

[’(9) = %Eg[T] = -—[—P;—(—m %

Py(W =0). (10)
We can now estimate #'(9) indirectly by estimating Py(W = 0) and its derivative with
respect to 6. To do so, we consider a simulation with a total number C of customers (when
we simulate for a fixed number n of regenerative cycles, C is a random variable). Let Z;
be the indicator function of the event {W; = 0}. To estimate P3(W = 0) we can take the
sample average
> (1)
=TI (11
C i=1 '
which converges to Py(W = 0) a.s. and in expectation as C — oo (or as n — o0), by the
elementary renewal theorem (see, e.g., Wolff, 1989).

As we saw before, since Z; is generally discontinuous in @ for fixed underlying U(0,1)
random variates, straightforward IPA cannot be applied directly to (11). To smooth out
the estimator, we can replace Z;,; by its conditional expectation given X;. Following the
notation in L’Ecuyer (1990) and L’Ecuyer and Perron (1990), for each ¢ > 1, let w; rep-
resent the sequence of standard uniform U(0,1) variates that have been used to generate
{A1,...,Ai-1,51,...,5:}. Then, X; is a function of (6,w;).

Now, let: B
h;(@,w,‘) = Po(Wi+1 =0 I Wi) = po(Ai > Xi) = FB(Xi), (12)

where Fy(X;) def y _ Fy(X;). Then, we have Eg(h;(0,w;)) = Eg (Eg(Ziy1 | wi)) = Pos(Wipa =
0), so that a second unbiased estimator for Pp(W = 0) is

LS hio,00). (13)

N

If h;(0,w;) satisfies the assumptions of Theorem 1 in L’Ecuyer (1990), then an unbiased
estimator of 0Py(W;41 = 0)/00 is given by:

H0,0) = 2 POX) = - (—%Fe) (X) - F(X) DX, (14)



where the derivatives are taken with respect to § for w; fized. In particular, when 6 = p
(and X is fixed), the right-hand-side of (14) becomes —f(X;)(0X;/0p). From (10), (13),
and (14), we obtain the following estimator for the derivative #'(8):

c c -2
¢SPA = ———CZ h;(G,w,-) (Z h,‘(a,wi)) . (15)
1=1 i=1
Sufficient conditions for Theorem 1 in L’Ecuyer (1990) to apply in this case can be obtained

in a similar way as for the examples examined in L’Ecuyer and Perron (1990).

As a second choice for smoothing, let w; represent the sequence of standard uniform
U(0,1) variates that have been used to generate {Ay,..., A;,51,...,S:-1}. Now, h; is defined
as

hi(0,w;) = Po(Wip1 =0 | wi) = Bp(Wi + 5 < Ai) = Go(Ai — W5). (16)

Note that when A; — W; < 0, this quantity is zero. Again, if this k; satisfies the assumptions
of Theorem 1 in L’Ecuyer (1990), an unbiased estimator of 9Py(W;41 = 0)/00 is given by:

0 0 0
1(0,62) = 3 o(As = W) = (2560 ) (A= W+ o= W) (A= W) (17)
for A; — W; > 0, and R(6,w;) = 0 otherwise. In particular, when § = X (and p is fixed),
the right-hand-side of (17) becomes g,(A; — W;)0(A; — W;)/0X. Using these new h; and A}
in (15) yields a second SPA estimator. Sufficient conditions for that second estimator to be
unbiased can be obtained as in L’Ecuyer and Perron (1990).

7. Surrogate (or indirect) estimation

Suppose that A and u represent respectively the average arrival rate and the average service
rate (whether or not the distributions are exponential). Then, if both A and x are multipled
by the same constant ¢, the expected number of customers per busy cycle does not change,
since this just corresponds to changing the time scale by the factor ¢. Therefore, in that
case, £(0) depends on @ only via p = A/u. From that observation, we can express £/()\) as a
function of #'(x), and vice-versa:

p0) = Ml _ dBulr]dudp
X du dpd\

~50(w). (18)

Using (18), any estimator of the derivative with respect to the average arrival rate A can be
transformed into an estimator of the derivative with respect to the average service rate p,
and vice-versa. Such indirect estimators were studied in Vézquez-Abad and Kushner (1990),
where they were called surrogate estimators. For example, any of the two SPA estimators
defined in the previous section can be used to estimate the derivative with respect to either
A or p. Furthermore, each of these two estimators for A [resp., for y] can be transformed into
an estimator for p [resp., for A] by (18). This gives four SPA estimators for the derivative
with respect to A and another four with respect to u.
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8. Numerical illustration with an M/M/1 queue

To illustrate the behavior of the above estimators, we take a simple M/M/1 queue with
arrival rate A and service rate u. We have Fi(z) = 1—e™?2, fi(z) = Ae™%, G,(z) = 1—e~#2,
and g,(z) = pe=#*. We want to estimate #'(}), the derivative with respect to \. We simulate
that queue for n regenerative cycles and compute each derivative estimator that we are
interested in. Further, we do r replications of that. The exact value of the derivative £'())
for the M/M/1 queue can be computed easily, which permits us to compare our estimations
with the true values:

o) = u—ﬁ—/\-;
' ¥ hbl= gty

The standard LR estimator (4) with § = A becomes in this case

—TZ 1anA)_<T/,\ ZA) (19)

1=1

On the other hand, the standard LR estimator for the derivative with respect to u is given
by
z/;LR—TEa—lngu = (T/,u ES’) (20)
1=1
An indirect (surrogate) estimator of the derivative with respect to A is readily obtained by
combining (18) and (20).

When we take the derivative with respect to 8 = A, for our first SPA estimator, we obtain
hi(0,w;) = e=*%i and

hi(8,w;) = e (—Xi - a;i’) =35
JED:

where ®; {7 € 1| customer j is in the same busy cycle as customer i }. The last equality
above follows from standard IPA arguments, as in Suri (1989) or Suri and Zazanis (1988),
for example. For § = ), for the second SPA estimator, we have k;(0,w;) = 1 — e~#m2x(0,4i-W:)

and, since W; = ¥ e0,\(i}(S; — A;) and 04;/0) = —A;/],

—u(as—wiy (A — W, B na—w;
(0 wi) = pem wy O(Ai — W) 5 ) - G u(Ai Wt)j%; A;
when A; — W; > 0. When A; — W; < 0, one has h}(f,w;) = 0. The corresponding SPA

estimators (13) and (15) for £(#) and £ () can be computed easily in a single simulation run.



If we take the derivative with respect to g, we obtain by analogous calculations

6X. A
! ) = =AXy 2 Z A X S.
hi(0,w;) Ae 3 e jEE : i

for the first SPA estimator and

h;(&,wi) = o~ H(Ai=Wi) Z A;
Jj€d;

for the second one. The corresponding derivative estimators given by (15) can be used,
together with (18), to obtain surrogate estimators of the derivative with respect to A. It
turns out that for this particular M/M/1 example, these two surrogate SPA derivative
estimators are exactly the same as the two direct SPA estimators developed in the previous
paragraph. But this coincidence is not always true in general.

Table 1 gives the results of our numerical experiments. We took r = 100 replications
and n = 10000 regenerative cycles per replication. In all cases, A = 1, so that the traffic
intensity is p = 1/u. We performed simulations with the following values of p: 1/4, 1/2,
2/3, and 3/4. For the finite differences, we took A\ = 0.02. We have computed estimators
using the following methods: direct LR based on equation (19) (D-LR), surrogate LR based
on equation (20) (S-LR), finite-difference RPA (FD-RPA), average infinitesimal RPA (A-
RPA), and the two SPA estimators of Section 6 (SPA1) and (SPA2). For each method and
each value of p, we give the average (aver.) of the 100 derivative estimations that we have
obtained, and the sample standard deviation (s.d.). Notice that for each column of the table,
all estimators have been computed from the same simulations, that is with common random
numbers.

p 1/4 1/2 2/3 3/4
Exact derivative 0.4444 2.00 6.00 12.00
aver. [ s.d. | aver. [ s.d. | aver. I s.d. aver. [ s.d.
D-LR 0.444 | 0.035 | 1.987 [ 0.168 | 6.051 | 0.582 | 12.163 | 1.446
S-LR 0.440 | 0.044 | 1.982 [ 0.169 | 6.072 | 0.634 | 12.021 | 1.455
FD-RPA 0.437 | 0.078 | 1.976 | 0.249 | 5.843 | 0.531 | 11.416 | 0.893
A-RPA 0.445 | 0.014 | 1.990 | 0.085 | 6.015 | 0.366 | 12.071 | 0.796
SPA1 1 0.444 | 0.009 | 1.992 | 0.063 | 6.020 | 0.286 | 12.067 | 0.614
SPA2 0.446 | 0.012 | 1.994 | 0.074 | 6.011 | 0.324 | 12.073 | 0.683

Table 1: Simulation results for the M/M/1 example.

From the simulation results, one can see that our first and second SPA estimators, in
that order, are those that perform the best. They are unbiased and have a lower standard
deviation than the other ones. Then, comes the average RPA method. Finite-difference RPA
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has not only more variance, but also significant bias for the value of AX = 0.02 that we have
chosen. A smaller value of A\ will reduce the bias, but then the variance will be still higher.
The LR methods have the highest variance.

9. Conclusion

We have shown through an example how efficient perturbation analysis estimators can be
built in situations where straightforward IPA will not work. We have introduced two new
(efficient) SPA estimators for estimating the derivative of the expected number of customers
per regenerative cycle in a GI/G/1 queue. For the examples that we have examined, these
new estimators outperformed those that had been proposed previously for the same problem.
We took the GI/G/1 queue as an illustration, but our development can be generalized to
different performance measures and more general systems.
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