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Abstract

The lattice structure of conventional linear congruential random
number generators (LCGs), over integers, is well known. In this pa-
per, we study LCGs in the field of formal Laurent series, with coef-
ficient in the Galois field IF;. The state of the generator (a Laurent
series) evolves according to a linear recursion and can be mapped to a
number between 0 and 1, producing what we call a LS2 sequence. In
particular, the sequences produced by simple or combined Tausworthe
generators are special cases of LS2 sequences. By analyzing the lattice
structure of the LCG, we obtain a precise description of how all the
k-dimensional vectors formed by successive values in the LS2 sequence
are distributed in the unit hypercube. More specifically, for any par-
tition of the k-dimensional hypercube into 2¥ identical subcubes, we
can quickly compute a table giving the exact number of subcubes that
contain exactly n points, for each integer n. We give many examples
which illustrate the practical implications of our results.

Résumé

La structure de réseau des générateurs  congruence linéaire (GCL)
ordinaires, définis sur les entiers, est bien connue. Dans cet article,
nous étudions les GCL dans le corps des séries formelles de Laurent,
avec coefficients dans le coprs de Galois IF;. L’état du générateur (une
série de Laurent) évolue selon une récurrence linéaire. On définit une
application faisant correspondre & chaque série de Laurent un nombre
réel entre 0 et 1 et la suite de ces valeurs, produites par le générateur,
forme ce que ’on appelle une suite LS2. Les suites produites par des
générateurs de type Tausworthe simples ou combinés sont en fait des
cas particuliers de suites LS2. En analysant la structure de réseau
d’un tel générateur, on obtient une description précise de la fagon
dont tous les vecteurs de dimension k, dont les composantes sont des
valeurs successives de la suite, sont distribués dans I’hypercube uni-
taire {0, 1)’° . Plus précisément, pour chaque partition de cet hypercube
en 2% sous-cubes de méme taille, nous pouvons calculer rapidement
combien de sous-cubes contiennent exactement n points, pour chaque
entier n. Nos résultats théoriques sont illustrés par plusieurs examples
numériques.






1. INTRODUCTION

Following Tezuka [12, 13], we consider the analogue of a multiplicative linear congruential
generator in the field K of formal Laurent expansions (at infinity) with coefficients in the
Galois field IF5:

T=0nz"+ a1 2" (1)

where n is any integer. This generator is conveniently defined with the help of the operators:

frac(z) = a1zl + Qgz 24 o,
trunci(z) = @uz"+ Qpo12® P F oot az”
for z € K defined as in (1) and [ € Z. Let a (the multiplier) and m (the modulus) be
non-zero elements in K. For [ > 0, we consider the pseudorandom sequence:

u; = truncy(frac(a’/m)), i=0,1,2,.... (2)

One can identify any element z expressed as in (1) with the real number o, 2" 40,1271 +
.-+, where each ; € IF, is identified with its representative integer 0 or 1. The sequence (2) in
K is then identified with a pseudorandom sequence in the interval [0,1), which we call a LS2
(Laurent Series over IF;) sequence. As pointed out by Tezuka [12, 13], the usual Tausworthe
sequences, as well as their combinations by means of addition modulo two, are instances of
this scheme. Tezuka has also shown the influence of the last and first successive minima of
certain lattices in K* associated with combined generators, and with their components, on
their k-distribution properties.

The aim of this paper is to show that a more complete description of the k-distribution
involves all successive minima for the corresponding lattices. For any partition of the k-
dimensional hypercube into 2% identical subcubes, we show how to quickly compute a table
giving the number of subcubes that contain exactly n points, for each integer n.

In Section 2, we recall some facts concerning lattices in a field of series and prove a key
theorem from which the rest of our results will follow. Section 3 gives a precise statement
of the k-distribution problem that we want to address. We solve that problem in Section
4 for the case of a prime modulus m and in Section 5 for the case of combined generators
with two or three components. In all cases, we assume (among other things) that a and m
are polynomials in K and that the generator has (full) period 27 — 1, where p is the degree
of m. In Section 6, we give numerical examples illustrating the practical implications of our
results.



2. LATTICES

Following Mahler [6], we define a non-Archimedean valuation in K by

|93[—{0 if z = 0;
“12® ifz#0 and zis given by (1) with o, # 0.

This makes K a locally compact field. Let k& denote a positive integer. The vector space
K* is then normed by || X|| = maxi<i<k |%i|, where X = (21,...,2x), and it is also locally
compact.

We now consider, in K, the subring of polynomials A = IFy[z] and A-submodules of K*.
We call one such submodule a lattice if it is discrete in K*. We will not assume, as is usually
done, that a lattice has maximal rank over A. One may then define its rank as the dimension
of the K-vector subspace it generates. We note that, because of local compactness, linear
independence in a lattice is the same over A as over K. We will make use of the following
result (see the proof of lemma 1 of [7]).

THEOREM 1. Let Xy,..., X}, be points in a lattice L C K* of rank h with the following
properties:

(i) X is a shortest non-zero vector in L;

(i1) for i = 2,...,h, X; is a shortest vector among the set of vectors X in L such that
X1,...,X;1,X are linearly independent over A.

Then, X1,...,Xy form a basis of L over A.

Since any cube C, = {X | || X]| < 2"}, r € Z, contains but a finite number of points
in a given lattice L, it follows that a system as in Theorem 1 always exists. This system
is a reduced basis for L (in the sense of Minkowski). The numbers o; = || X;|| > 0 are then
uniquely determined by the lattice and are called its successive minima. Lenstra [4] gives
details on how to compute these numbers (and a reduced basis) efficiently when the lattice
is integral (i.e., contained in A¥).

One can view L N C, as a vector space over IFy, with cardinality 2¢, where d is its finite
dimension over IF,. In the next Theorem, we show that the number 2¢ of lattice points in
the cube C, is determined by r and the lattice’s successive minima. Let s; = log,o; (an
integer). For ¢ € R, let t* denote max(t, 0).



THEOREM 2. One has: i
d=> (r—s)*. (3)

=1

PROOF. Let Xj,..., X}, be as in Theorem 1. For each integer j > 0, let A; = max{i < A |
s; < j} be the number of points X; contained in Cj4; and, for 1 <4 < Ay, let X,-(j) = 2% X,
Then, || X?|| = 29. We will now prove that the system B = (XD |j<r,1<i<h}isa
basis for L N C, over IF;. From that, equation (3) easily follows.

We show first that for each j > s;, the system Xl(j), e ,X,(Lj.) is linearly independent
over IF; modulo C;. Let us prove that property by induction on j. For j = s, one has
h;i = max{t < h | s; = s = j} and the vectors Xl(j),...,X,(l? are in fact Xi,..., X4,
which are linearly independent by construction. Now, let j > s; + 1 and assume that
Xl(j—l), e ,X,(é'_'l) are linearly independent over IF; modulo C;_;. Let X € C; be a linear

1

combination over IFy of X\, ... ,X}g). If j = s; for some i, let | = min{¢ | s; = j}. This
linear combination cannot involve any of X ,(j ), e X ,(Lj) (that is, X, ..., X»,), since X would

be linearly independent of Xi,...,X;_; (and shorter than X;) contradicting the minimality
property of X;. If j # s; for all 4, then h; = hj_;. Therefore, in both cases, the linear
combination can involve only ij), D, ¢ ,(lf)_l For these we have Xi(j ) = zX,-(j -1 and, since
multiplication by z is a linear (over IF;) automorphism of K* mapping C;_; onto Cj, it
follows that they are linearly independent over IF; modulo C; and our linear combination
must be trivial. This completes the induction.

We are now ready to show that B is a basis , i.e. that it is linearly independent and that
every vector of L N C, can be expressed as a linear combination of vectors of B. Let X € L.
From Theorem 1, X can be expressed uniquely as a linear combination of Xi,..., Xy, with
coefficients in A, that is

h h
X = Z Z sznXi = Z Z E,'in(J), (4)
i=1n>0 i=152si
where each ¢;; = & ;,4n is in IF; and there are finitely many non-zero ¢;,’s. Since the cin’s
are unique, the &;,’s are also unique. If X = 0, then each ¢;, must be zero because the X;’s
are independent over A. As a consequence, if X = 0, each &; must be zero, which implies
that B is linearly independent over IF,.

It remains to show tha,t,- if X € Cy, &; # 0 implies j < r. Let | = max{j | &; # 0}. One
has | > s;, because s; < 53 < -+ < 54 and the sum in (4) is for j > s;. Suppose that [ > r
and let

h hoI-1 ,
=Y &axP=x-Y Y &xP.
=1 i=1 j=s;

Since X € C, C C; and X,-(j) € C) for each j < [, one has X € C. In other words, X = 0
modulo C). Since Xl(l), o X ,(,ll) are linearly independent modulo C}, this implies &; = 0 for
each 7, which contradicts the definition of I. Therefore, I < r and the conclusion follows. B



3. THE QUESTION OF k-DISTRIBUTION

For the remainder of the paper, we assume given a,m € K satisfying the following assump-
tions:
(Al) a,m € 4;

(A2) The group (A/(m))* of invertible elements of the quotient ring A/(m) is cyclic and a
is a generator for it;

(A3) m has no factor of the first degree. 1

We consider all k-tuples of successive non-truncated terms of (2):
R; = (frac(a’/m),...,frac(a"t*"1/m)), i=0,1,...
and the A-submodule of K* defined by
L = AR, + AF.

From Al, L is a lattice that contains all the R;’s. We call it the lattice associated with the
pseudorandom sequence defined by @ and m. The mapping ¢ — frac(zRo), z € A, where
frac is applied componentwise, induces an isomorphism

A/(m)~LNCqy (5)

and, if S is the subset of L N Cy that corresponds to (A4/(m))*, it follows from A2 that the
sequence {R;, 1 = 0,1,...} runs cyclically through all points of S and that each point is
visited exactly once per period.

For each integer [ > 0, let E; = trunc;(Co), where trunc; is applied componentwise. The
operator trunc; then defines a linear transformation over IF'y,

trunc; : LN Cy — K. (6)
We now define a frequency function f; : E; — INU {0} by
fi(X) = card{R € S | trun¢;(R) = X}.

The set E; corresponds to a partition of the hypercube [0, 1)* into 2k cubic cells of the same
size; we note that, if X € E; and R € S, the condition trunc;(R) = X means that the point
in IR* corresponding to R lies (strictly, because of A3) inside the cube 15, [2i, 2 + 27)
where z; is the real number corresponding to the i-th coordinate of X; fi(X) is then the
number of such points R € S falling into this cube. For each integer n, let

@i(n) = card{X € E; | fi(X) =n},

which represents the number of cells that contain exactly n points. We will be concerned
in the next sections with the problem of computing ¢;(n) efficiently for every non-negative
integer n. '



4. SIMPLE GENERATORS

We first consider the case where the polynomial m is irreductible. Let p be the degree of m.
From (5) we see that S = LN Cp \ {0}. Also, the kernel of the mapping (6) is LN C_; and,
if we denote its image by L®), we obtain for X € E,

0 it X € B\ LW,
filX) =< card(LNCLy) if X e LO\ {0};
card(LNC.;) -1 i X =0.

Now, card(L N C_;) = 24, where d is given in Theorem 2 with r = —l and A = k. Then,
from (6) and (5), dimp, (L") = dimp, (LN Co) —d = p — d. Since dim, (E;) = ki, there are
okl _ 97-4 points in E; \ L® and 2P~ points in L(). This is summarized in Table 1, which
gives the value of ;(n) for all values of n for which it could be non-zero.

Table 1: Values of ¢;(n) that could be non-zero.

Ln | ¢i(n) |
2 [27—1
29 111
0 2ik — gr—d

Tezuka [12] calls the pseudorandom sequence k-distributed with resolution [ when the
case n = 0 does not occur, i.e. when

Ik =p—d. (7)

In the trivial case ! = 0, we have E; = {0} and d = p so that (7) holds. As/increases through
successive integers, r = —I correspondingly decreases and by Theorem 2, (7) remains valid
if and only if r > log o (note that log ox < 0 since A¥ C L). This gives another proof of the
following result of Tezuka [12, Theorem 1]:

COROLLARY 1. A simple pseudo-random sequence in K defined by a and m is k-
distributed with resolution | if and only if logor < —1. 1



5. COMBINED GENERATORS WITH J SIMPLE COMPONENTS

5.1. General formul=

We consider now the case where m is a product of J prime factors, m = m; ---mj, where
for each j, p; > 2 is the degree of m; and p = py + - - - + ps is the degree of m. Assumptions
A1-A3 then hold, provided that for each pair 1 # j, GCD (27 — 1, 27 — 1) = 1. For
j=1,...,J,let L; be the lattice in K* associated with the LS2 sequence defined by (a,m;).

By the Chinese Remainder theorem, we have a ring isomorphism
Af(m) x -+ x Af(my) = Af(m). | ®)
Through (5), this becomes
LNCo=(LinCo)@®---®(LsNCo) (9)

(direct sum of vector spaces over IF;). For each j, define V; = L; N Co. For each subset ¥
of {1, cee ,J}, define my = HjG\I’ m;, V\p = EBje‘I! V}', Wq; = V\;[; N C._l, and dqy = dim(W\p). If
¥ = {1,...,J}, we also write Vg and Wy as V and W respectively. (Note that all objects
and quantities defined above depend implicitly on k and [.) Each dy can be computed using
(3) in Theorem 2, with r = —I, h = k, and L = Ly, where Ly is the lattice associated with
the LS2 sequence defined by (a,my). Then,

S=v\ U V. (10)
|[¥)|=J-1

For each X € E;\ L®), one has fj(X) = 0. Those X € L( correspond by (6) to the cosets
W' of W in V. For any given coset W', we define the signature of W’ (also the signature
of X) as the set ®(W') = {¥ C {1,...,J} | W' NVy # ¢}. Observe that for each W,
card(W') = card(W) = 2¢ and when W’ intersects Vi, card(W' N Vg) = card(W N Vy) =
card(Wy) = 2%¢. A non-empty family ® of subsets of {1,...,J} such that ¥ € ® and ¥ C U’
imply ¥’ € ®, will be called a mazimal family. Reciprocally, a non-empty family I' of subsets
of {1,...,J}, such that ¥;, ¥, € I" implies ¥; ¢ U, and ¥, ¢ Uy, will be called a minimal
family. Let Q and A denote the classes of all maximal and minimal families, respectively. A
set U belonging to a maximal family ® is called a minimal element of @ if no proper subset
of ¥ belongs to ®. The set of minimal elements of ® will be called the generator of ®, and
denoted by 7(®). Since 7(®) contains only minimal elements, it is clearly a minimal family,
that is, 7(®) € A. The next lemma shows that the mapping 7 : @ — A is one-to-one and
onto, and also that {2 contains all signatures.

LEMMA 1. If® is a signature, then ® € Q. Also, 7: @ — A is one-to-one and onto.



PROOF. Let ® = ®(W") be a signature and assume ¥ € ®. Then W' N Vg # ¢ and, if
T C ¥, Vg is a subset of Vg and W/ N Vg # $. Therefore & € . Now, let ' € A and
let ® be the family of all subsets of {1,...,J} that contain (or are equal to) some element
of . Then, ® € Q and 7(®) = T, which proves that 7 is onto. If ®; is another maximal
family with 7(®,) = T, then ® C ®;, because I' C &y, so that by the definition of ® and
since ®; € 0, every set of ® must be in ®;. Also, since 7(®;) =T, all sets of @; \ I have
proper subsets in I', which implies that &, C ®. Therefore, one must have ®; = ®, which
means that 7 is one-to-one. 1

Let X € LM and let W’ be the coset that is mapped to X. We then have, from (10) and
using a standard inclusion-exclusion argument,

fi(X) = card(W'NS)

= ZJ:(—I)i > card(W'NVy)
i=0 |U|=T—i

- Z (=1)7-1¥Igde (11)
TEF(W)

For each ® € (, let cp denote the number of cosets of W (in V) with signature ®. In view
of (11), it will be sufficient to determine these numbers. We will use intermediate quantities

Cr = card (( N (Ve + W)) /W) , TEeA. (12)

vel

The quantity Cr is the number of cosets W’ with signature ® = 7~*(T), that is, such that
W' N Vy # ¢ if and only if ¥ € ®. They are related to the cg’s by the equations

2 ce = Cr, T'eA. (13)
{elrce}

Observe that the sum in (13) is over all maximal families ¥ that contains 7=*(I'). The
quantities Cr will be determined, partly by Theorem 3, and completely in cases J =2 or 3.
In such cases, one can also compute the cg’s using (13) because of the following lemma.

LEMMA 2. The linear system (13) admits a unique solution cg,® € (2, for any given set
of values for the Cr'’s. ‘

PROOF. Since 0 and A have the same cardinality by lemma 1, it is sufficient to show
that all ¢p’s are 0 if all Cr’s are 0. Suppose Cr = 0 for each I' € A. For each maximal
family ®, let s¢ denote the number of maximal families that contain ®. We proceed by
induction on sg. If sg = 1 then, for I' = 7(®), the sum in (13) has only one term, namely
cs, which must be zero. Now, let s > 1 and assume that cg = 0 whenever sg < s. Let @ be
a maximal family such that s = s. For any maximal family &’ that contains @ strictly, one
must have s < s = s, and therefore cgr = 0. Then, cp is the only possible non-zero term

7



that remains in the sum in (13) for ' = 7(®). Since that sum is zero, cs must be zero. This
completes the induction. &

For each T' € A, we define

(T) = dim ( N (Ve + W)) — dim(W), (14)
so that
Cr =20, (15)

THEOREM 3. LetT € A and ¥ = Uwer Y. If the canonical mapping

Vg, — H (V‘I’o/(v‘l’ + W‘I’o)) (16)
vel’
18 onto, then
() = (py, — du,)(1 = IT)) + 3_ (pe — du).- (17)
vel’
This will be the case if || = 1 or 2. If the mapping is not onto, “=” must be replaced by

“>7in (17).

PROOF. The canonical mapping (16) has kernel Nger(Vae + Wy, ). But the dimension of
Vg, must be equal to the dimension of the kernel plus the dimension of the image. That is,
if the mapping is onto,

Py, = dim(V\po) = dim < m (V\I: -+ Wq;o)> -+ Z dim (V‘po/(V\p + Wq;o)) .
gel vel

Observe that dim(Vy, / (Ve + Wy, )) = dim(Vy, ) — (dim(Vey) + dim(Wy, ) — dim(Veg NWy,)) =
Py, — dg, — py + dg and that the canonical mapping

N Ve + Wa,)/Wa, — () (Vo + W)/W (18)
vel verl i

is an isomorphism. Then,

dim ( N (Ve + AW)/W) = dim ( (Ve + Wwo)/Wwo)

Ter ver

= dim ( N (Ve + Wwo)) — dim(Wy,)

el
= pWo—'dWo_'2:(pWo-'dWo—_pW'FdW)
vel
= (1 —|T))(peo — duo) + >_ (py — du).

Yel



If the mapping is not onto, the second equality in this proof must be replaced by < and the
next to last equality above must be replaced by >.

If T| = 1, say I' = {¥}, then (16) becomes Vg — Vu/(Ve + Wy), which is clearly
onto. Suppose that |T'| = 2, namely T' = {¥1, ¥3}. Let & = (%, 1) € Vo /(Va, + Wy,) X
Vao/ (Vg + Wy, ). Since Vg, = Vi, + Vag,, thereisa vz € Vg, N2, and similarly for v;. Then,
v = vy + vy € Vi, is mapped to ¥. So, the mapping (16) is again onto. N

Below, we give specific tables for the cases J = 2 and J = 3. For J = 2 all the cg’s can be
computed easily from Theorem 3. For J = 3, Theorem 3 gives us one equation for each set
T € A, except for one, for which the mapping (16) is not onto. We obtain this last equation
and show how all the cg’s can be computed by considering a special lattice, different from
the Lg’s, and its successive minima. Below, ® denotes the signature of X.

5.2. Two simple components

For J = 2, card(Q) = 5 as shown in Table 2. We number these signatures from 1 to 5 and,
to simplify the notation, we will replace each signature ® by its corresponding number when
used as a subscript of ¢. In this case, Theorem 3 gives us an equation for each set I, as
shown in Table 3.

Table 2: Possible signatures and frequencies for generators with two components.
n|® [ AiX) |

1 {{1,2}} 22

{{1,2},{1}} 2¢ — 2%

{{1,2},{2}} 2¢ — 2%

{{1,2},{1},{2}} |2¢-2%n 2%

{{1a2}7{1}1{2}’¢} 2d‘2d1 — 2% +1

O > W N

Table 3: Equations given by Theorem 3, for J = 2.

|T | equation |
{{1,2}} ctetetete = 2°7°
{{1}} categteos = 24
{{2}} cateates = 2%
{{1},{2}} cates = 2hmh
{¢} s = 1
Solving the equations of Table 3, one obtains:

Cy = 1,

Cy = 2d_d1 ~d2 _ 1,

3 = 2?2—42 _ 2d—d1—dz,

c = op1—-di _ 24—511—42,

o = 2p—d + 2d-—d1 —dy __ 9P1 -dy _ 2192—d2'

9



These results are summarized in Table 4, where the first column gives all possible values
of n for which ;(n) is not always zero. The integers d, d; and d; are obtained from Theorem
2 applied to L, Ly, and L,, respectively, with r = —I. (Note that the fourth entry of the
first column in Table 4 might be equal to —1, but that then the corresponding entry in the
second column is zero.) To have the points “well distributed” among the cells, one would like
to have first the smallest possible d, then the smallest d; and d,. The best case is d = p— Ik
and d; = dy = 0, which could occur only when lk < p.

Table 4: Values of ¢;(n) that could be non-zero, for J = 2.

Ln | i(n) |

9d op=d | 9d—di—dz __ 9p1~d1 _ 9p2—d2
94 _ 9d1 op1—dy __ 9d—di—dz

9d _ 9dp op2—dz __ 9d—di—d2

2d _ 2d1 _ 2d2 2d-—d1-—d2 -1

2¢ —2dh _9d2 41 |1

0 olk _ gp=d

5.3. Three simple components

For J = 3, card() = 19 as shown in Table 5. Again, we number these signatures from 1 to
19 and use these numbers as subscripts of c.

For all those minimal families I" whose cardinality is 1 or 2, Theorem 3 yields CT directly.
For T' = {{1,2},{1,3},{2,3}}, it can be verified that the mapping (16) is onto, so that
Theorem 3 applies. Indeed, let & = (3,92, 01) € (V/(Viz+W)) x (V/(Via+ W)) x (V/(Vas +
W)). Since V = Vip + V3, there is a v3 € V3 N ¥3, and similarly for v, and v;. Then,
v = vy + vy +v3 € V is mapped to ¥ by (16). There remains the case I' = {{1}, {2}, {3}},
which is more difficult and is taken care of by Lemma 3 below. These results are summarized
in Table 6. From the equations of Table 6, the ¢;’s (i.e., the values of ¢;(n)) can be computed
easily.

We now explain how to deal with ' = {{1},{2},{3}}, i.e. how to compute D =
dim((Vs + W) N (Vo + W) N (Vs + W))/W). For this case, the mapping (16) is not onto in
general and D cannot be determined by only the pg’s and ds’s. We give examples of that at
the end of the appendix. Consider the lattice L' = L1z X L1z X Loz C K 3k and the mapping
n : K3 — K* defined by n(vy,vs,v3) = v1+va+vs. Let L = L'Nker(n) = {v € L' | n(v) = 0},
the kernel of n restricted to L’. We then have: '

LEMMA 3. D = dlm(f, n C_I) — dl - d2 — d3.
PROOF. Let W = Wy, + Wys + W3 and d = dim(W). From Lemma 6 in the appendix,
one has '

D =dyy +diz+des —dy —do — d3 — d. (19)

10



Table 5: Possible signatures and frequencies for generators with three components.

n | @ [ AX

1 {{1,2,3}} 2d

2 | {{1,2,3},{1,2}} 2 _ ot

3 {{1’2a3}, {1)3}} 24 _ 2413

4 | {1,2,31.42,3)) 24 oo

5 {{1’27 3}7 {1a2}’ {1,3}} 24 — 2d12 _ 9dus

6 {{1’2’3}7 {1,2}: {2a 3}} 94 — 9d12 _ 2da

7 1 {{1,2,3},{1,3},{2,3}} 24 — 212 — 2

8 {{1’2’ 3},{1 2} {1 3} {2 3}} 9d _ 9diz _ 913 _ Qdn

9 | {{1,2,3},{1,2}.{1,3},{1}} 24 gis _ i 1 20

10 {{1)2>3}’ {1 2} {2 3} {2}} 24 — 9d12 _ 9daz 4 2%

11| {{1,2,3},{1,3},{2,3}, {3}} 24 — s _ s 4 g

12 {{1,2,3},{1,2},{1,3},{2,3},{1}} 9d _ 9diz _ 9d1a __ Qd23 4 9d

13 | {{1,2,3},{1,2},{1,3},{2,3},{2}} 9d _ 9di2 _ 9dis _ 9daz 4 9d2

14 | {{1,2,3},{L,2},{1,3}, 12,3}, {3}} 24 _ ytn _ s _ i 4. g

15 | {{1,2,3},{1,2},{1,3},{2,3}, {1}, {2}} od _ 9diz _ 9d1a _ 9das 4 odi | 9da

16 | {{1,2,3},4{1,2},{1,3},{2,3}, {1}, {3}} 9d _ 9diz _ 9d13 __ 9das 4 9d1 | 9ds

17 | {{1,2,3},{1,2},{1,3},1{2,3},{2}, {3}} 9d _ 9diz _ 91 _ 9dza 1 9ds 4 9ds

18 {{1,2,3},{1,2},{1,3},{2,3},{1},{2},{3}} 2d_2d12 __2d13 _2d23 +2d1 +2d2 +2d3

19 | {{1,2,3},{1,2},{1,3},{2,3}, {1}, {2}, {8}, ¢} | 2¢ — 212 — 2%z — 2% 4 241 4 22 4 2% _ ]
But since n(Wi, x Wiz x Was) = W, one has

dim(LNC_;) = dim(ker(n) N (Wiy x Wiz x Was))

= dlm(ng X W13 X W23) -
= dig+diz+das —d.

dim(W)
(20)

Merging (19) and (20) completes the proof. B

We can now compute D using Theorem 2 by determining L’s successive minima. For
this, we must construct a basis for L, which can then be reduced by Lenstra’s algorithm [4].

We first find a set of vectors that generate L. An element of L’ can be written as
v = (v1 + v2,v] + v3,v5 + vg) with v1,v] € Ly, vq,v; € Lg and v3,v3 € La. Such a v belongs

to L if and only if
v1+ vy +ve+ vy + v+ vy =0. (21)

We will now work in L modulo A, i.e. in the quotient group L/A. In that group, L is the
direct sum of L;, Lo, and L3. This comes from (9) and noticing that the mapping “frac”
induces a projection L — L N Cy with kernel A* (and the same for L;,L; and L3). So,
we obtain from (21), vy + v} = vy + v§ = v} + v4 = 0 modulo A* and v can be written as
(v1 + va, =01 + v3, —v2 — v3) = (v1, —v1,0) + (v2,0, ~v2) + (0,3, —v3) (each term € L) plus
something in A3* which must also be in L. So, a generating system for L is obtained as the
union of a basis for A% Nker(n), {(v1, —v1,0)}, {(v2,0, —v2)} and {(0,vs, —vs)}, where vy, v2
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Table 6: Equations given by Theorem 3 for J = 3.

[ T l equation J
{{172,3}} cl+02+---+c19 — QP—d
{{1’2}} co+cst+cgtcegst+cgt+cotcot-+cg = 2?12—d12
{{1,3}} cat+csterdtcgteoten et -tee = 2peds
{{2,3}} catcetert+cegstcotententteog = 2P8-dn
{{1,2},{1,3}} cs+cg+co+ciot---+c9 = 9p1+d—diz—dia
{{1,2},{2, 3}} ce+cgt+clotciat -+ cg = 2p2rtd-diz—da
{{1’ 3}) {2, 3}} crt+cgs+epitciatr+ g = 2P3+d—d13—d23
{{1,2},{1,3},{2,3}} Co+Cipt ety = 22-dia—dio=dz
12,3}, {1}} ciatcis+eetestoy = 207hd
{{13 3}7 {2}} cistcastcear+cas+cg = 9d—dz—dy3
{{1,2},{3}} cutcietcrtesten = 247db-de
{{1}} ctciot+cs+ce+cstcg = op1~di
{{2}} clotcistostorteosgten = 2P27%
{{3}} cnteuatcetoartastcas = 207%
{{1}a {2}} cis +Cig+co = 9d12—d; ~dp
{1}, {3}} ci6+cig+clg = 2he—di—d
{2}, {3}) meT AT T et
{{1},{2}a{3}} cig+cig = zD
{¢} cg = 1

and vz run through a basis of Ly, Ly, and Ls, respectively. Finally, a basis for A% N ker(n)
is given by {e; — €1k, €; — €iyar | 1 = 1...k} where ¢; € A3k is the vector with all components
0 with the exception of the :-th one which is the polynomial equal to 1.

It now remains to transform this generating system into a basis for L. This is similar to
the corresponding proplem for lattices in IR™, but now, integral linear combination means
a linear combination with coefficients in A. So, let X3,...,X, denote a generating system,
each vector having been multiplied by the modulus m so that all coordinates now belong to
A. If some of these X;’s have a non-zero first coordinate, one may construct, by the usual
process of finding a gcd, a linear combination of them, say X, with the property that the
first coordinate of X divides (in A) the first coordinate of each X;. One can then, by adding
an integral multiple of X to the X;’s, modify them so that their first coordinate is 0. We
now have a new generating system formed by the modified X;’s, together with X. In case
all X;’s had zero first coordinate from the start, we just do nothing at this step. Then, we
repeat the process for the second coordinate of the X;’s, etc., each time obtaining possibly
anew X. At each step, the X;’s, together with all the obtained X’s, still form a generating
system for L. Once the process is terminated for all coordinates, all the X;’s are zero and
we can forget them. The basis is then the set of X’s divided by the modulus m.

12



6. EXAMPLES

In this section, a LS2 (or Tausworthe) generator g with multiplier @ and modulo m will be
denoted by g = (a,m), and our use of Theorem 2 will always be with A = k and r = —1.

6.1. A Combination of Two or Three Toy Generators

As a first illustration, we examine in detail the (low-dimensional) behavior of the three simple
“toy” generators g; = (z, z® +z + 1), g = (2%, z* + 2z + 1), and g3 = (2%, 2® + 2% + 1),
as well as the combination g3 of the last two, and the combination g;23 of all three. Since
ged(2® — 1, 2* — 1) = ged(31,15) = 1, the period of ges is 31 x 15 = 465. Similarly, since
gcd(23 — 1, 465) = 1, the period of g123 is 465 x 7 = 3255.

Table 7: Dimensions associated with gi, g2, g3, and their combinations, for & = 2.

L|| d | dia|dys|drz|dy|dy|ds|D
1fio] 5 | 76 [1]2]3]2
28] 3 [ 5[4 ]0J0]1}3
3623 ]2 ]0[0]0]2
441 J2[1]0oJofoj1
50201 ][0 Joj0jO0]oO
6loJoJo]JofJoJofojoO

Table 8: Values of ¢i(n) for g1, g2, and gs, for k£ = 2.

g3
[n
g1 g2 T I 3 I (Plgn)

[ n]@(n) I n|wln) i I
112 3 114 3

1 1 3 1 0 0

0 0 0 0 2 % 115

211 7 211 15 ol o

0 9 0 1 3T1 1 31

0 33

Table 7 gives all the kernel dimensions referred to in Tables 1-6, for £ = 2. These have
been computed using Theorem 2 and Lemma 3. From these values, we have computed the
wi(n)’s for different values of [, for the generators g1, g2, g3, g3, and gi123. These are given in
Tables 8 and 9. One can see that gy, g2, and g3 reach the best possible resolution considering

13



Table 9: Values of y;(n) for go3 and g2, for k£ = 2.

9123
Il n |@ln)
1| 814 3
813 1
0 0
2 | 204 7
g23 203 9
[l n |on) 0] 0
114117 1 31 953 16
116 3 52 16
0 0 51 3
21 30 1 50 5
29 15 49 20
0 0 48 4
31 8 24 0 0
7 33 41 16 48
6 7 14 64
0 0 13 4
41 4 34 12 60
3 41 11 33
2 3 10 35
0 128 9 10
5] 2 210 8 2
1 45 0 0
0 769 5| 4 504
3 246
2 228
1 45
0 1
6 1 3255
0 841

their period length, for all . But their periods are very small. For the combination gs3, one
has d = p — Ik (and maximum resolution) only for [ < 3. For I = 4 and | = 5, there are
empty cells and also cells that contain more than one point. Note that for / =1 and 2, the
number of cells with 2¢ points turns out to be zero. That kind of situation happens quite
frequently. For gi23, d = p — Ik holds for { up to 6. After that, any cell will contain either 0
or 1 point. Observe that the values of d, d;, or d;; never increase when [ increases. But this
does not necessarily hold for D.

14



Table 10: Dimensions d, ds, d3, and values of ¢;(n) for ges, for £ = 3.

923
I n|@n)
1159 1
L] d]d]ds] 81T
116112 0 0
218 24
2131010 7 33
310{0]0 6 7
' 0 0
311 | 465
0 47

Table 10 gives the values that correspond to go3 in dimension k= 3. Onehas d =p -k
for | > 3. Despite that, for [ = 3, there are 47 empty cells, due to the fact that in this case,
- n =0 for lines 2, 3, and 5 in Table 4.

Figure 1 shows all the points produced by the generator gos, in dimension k£ = 2. This
illustrates the results of the left-hand part of Table 9. For example, the grid on the figure
partitions the square into 28 = 64 cells, which corresponds to [ = 3. As indicated by Table
9, 24 cells contain 8 points, 33 cells contain 7 points, and 7 cells contain 6 points. If the
grid was refined to partition the square into 28 = 256 cells (i.e. [ = 4), then, as indicated by
Table 9, there would be 128 empty cells while the other cells would contain either 2, 3, or 4
points.
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Figure 1: The pairs (u;, uit1), produced by the combined Tausworthe generator gos.

6.2. A Simple Generator From André, Mullen, and Niederreiter

We now examine a simple Tausworthe generator based on a polynomial of degree p = 32,
which has been obtained by André et al. [1] and called “universally optimal”. This generator
is ga = (2%, 2% 4¢3 £ 230 4 228 4 %7 4 2% 4 oM 4 222 4 g2 L g12 L gl 4 2% 4B 4 o7 4
28 4+ 25 + 2* + 2% 4+ 2% + z + 1). Table 11 gives the values of d for all dimensions k¥ < 10,
and all [. For I > 16 and for the entries marked “-”, one has d = 0. There are only three
non-zero entries for which d > p — Ik, i.e., for which one does not have k-distribution with
resolution /, and these are the three entries with d = 1. Table 12 shows what happens with
the values of Table 1 for each of these three cases: there are 23! empty cells and 23! — 1 cells
that contain two points each.
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Table 11: The values of d in dimensions k& = 2 to 10, for generator g4.

%
T 234516780910
T 3012928 27126]25]24]23]22
2 (282624 |22]20|18|16]14 |12
'3 1l26|23|2|17]14]|11|8 |52
4024216128 |4f1]-]-
s 22|72 --1-]-
6ll2of1algl2]-|-|-1]-1-
7l a1 --1-1-]1-
sllwels|-|-|-|-1-1]-1-
o5 |- -1-1-1-1-1-+
o2l --1-1-1-1|-1-
ol - --1-1-1-1-
welsl-l-1-1-1-1-1-1-
wBle|--1-1-1-1-1-]1-
wlal-{-1-1-1-1-1-1-
w2l --1-1-1-1-1-]1-
w6l 1| --1-1-1-1-1-]-

Table 12: Values of ¢;(n) for g4 in dimensions k = 2, 3, and 8.

k=2 k=3 k=28
[ Tn [ o) [ [n ] e (] n | o)
14 [ 16 | 228 —1 9 1322 —1 2 216 1216 ]
15 1 31 1 216 1 1
15 4 [29~1 10| 4 [230~1 3 28 24 1
3 1 3 1 28 -1 1
16| 2 |23 -1 112 |23 -1 4 2 231 1
1 1 1 1 1 1
0 231 0 231 0 231
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6.3. A Simple Generator From Mullen and Niederreiter

Here, we look at another so-called “optimal polynomial”, suggested in Mullen and Niederre-
iter [9]. This one has degree 64 and yields the generator gy = (2%, 2% 4 2% 4+ 20 4 259 +
2% 4 254 4+ 749 4 232 4+ 1). Table 13 gives the values of d for all dimensions ¥ < 5, and all
[>11. For k=3, one has d > p—lk for all [ > 17. Also,d > p—lkfor k=5 and [ = 13.
Table 14 shows what happens with ¢;(n) in dimension & = 3. For example, with | = 21,
one has approximately 26% empty cells and 253 cells that contain 2! points each. This is not
very good.

Table 13: The values of d in dimensions of £ = 2 to 5, for generator gM.-

k
T 2345
11 142 (311209
12 {40 [ 28 {16 | 4
131381251121
14 1136 {22 | 8 | -
15434 (19| 4 | -
16132116 - | -
17113015 - | -
182814 - | -
1926 13| - | -
20|24 | 12| - | -
21 (22|11 - | -
22 120 |10} - | -
231181 9 | - | -
24 116 8 | - | -
25414 7| - |-
26 {1126 | - |-
271101 & | - | -
281 8 | 4| - |-
291 6 | 3| - |-
301412 - |-
3121 -]-
320 -1-1-1-

6.4. A Combined Tausworthe Generator Taken From SUPER-DUPER

Our last example is a combined Tausworthe generator, which is itself a component of the
generator Super-Duper proposed by Marsaglia [8]. This generator is given by g = (z*?, 2?2+
z!% +1). Note that M(z) = 23 + 2% + 1 is not irreducible and can be written as M(z) =

18



Table 14: Values of ¢;(n) for ga in dimension k = 3.

k=3
L] n | @n)
16 216 248 1
216 _ 1 1
17 215 299 -1
215 -1 1
0 251 _ 249
18 214 2%0 1
214 _ 1 1
0 254 _ 250
19 213 251 —1
218 1 1
0 257 _ 251
20 212 282 1
212 1 1
0 260 - 252
21 211 2% _1
211 1 1
0 263 _ 253
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Table 15: Values of d, d;, and d; for the component of Super-Duper.

k=2

T d [ [4

1 1130(191{ 9

2 12817 ] 7 k= k=4
31261151 5 ]| d]d]d 1] d]di]ds
4 124113 3 1 (129118 8 11128117 7
5 1122(11 11 2 12615 5 2 1124113 3
6 12019 |0 3 12413 3 3 (221111
71181 7 ] 0 4 (122111 ] 1 4 (201 9160
81161 5 | 0 512001910 5118 7|0
9141 310 6 |18 710 6 |16 5 | 0
10121 0 7116510 711413 {0
1110 0 | O 81114310 8 1112111 0
121 8 | 0|0 94121110 910} 010
1311 6 (0] 0 1004101 0|0 10 81010
14 40 |0

1504241010

611010

(21 + 29+ 215 4+ 28+ 212 4 2104 2% + 28 + 27+ 28 + 2t + 22 + 1) (2 + 2 + 27 + 22+ 1). So,
this generator can be regarded as a combined Tausworthe generator. The maximum possible
period is (22! — 1)(2" — 1) and thereby almost all initial values give the maximum period.
Table 15 gives the values of d, d;, and d; for all /, in dimensions 2 to 4. From that, one can
use Table 4 to compute ¢;(n). The results are given in Table 16. Here, the values for which
maximum resolution (d = p— k) is not attained are { = 16 for k =2,and alll{ > 3 for k =3
and 4. Therefore, bad behavior is to be expected in dimensions 3 and 4. Table 16 confirms
that. For example, in dimension 3 and with [ = 6, there are 245760 empty cells, 2047 cells
that contain 262015 points each, and 14337 cells that contain 262016 points each.
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Table 16: Values of ¢;(n) for the component of Super-Duper.

k=2
I ln] ei1(n)
14 | 16 | 222 — 221 — 211 + 16
15| 220 4211 25 41
14 15
15| 4 | 230221 2l 1 4
3 221 + 211 -7
2 3
16| 2 | 231 —221 211 49
1 221 + 211 _ 3
0 231 +1
k=3 k=4
] n IO ! ] n | @(n)
2 226_215__,25 26_1 2 224__213_23 28_1
226___215_25+1 1 224_213_‘___23_*_1 1
3 224_213_23 28__1 3 222_211_2 210_1
224_213_23+1 1 222_211__1 1
0 28 0 212 _ 210
4 222 R 211 ) 210 -1 4 220 . 29 212 _ 211 + 1
222_211_1 1 220_29___1 211 _
0 212 - 210 0 216 . 212
5 220 - 29 212 _ 211 + 1 5 218 _ 27 214 _ 211 + 1
220 _ 29 1 211 1 218 _ 97 1 21t 1
0 215 — 912 0 220 — 914
6 218 _ 27 ‘214 _ 211 + 1 6 216 — 25 216 _ 211 + 1
218 27 1 211 1 216 25 1 211 1
0 218 . 214 0 224 — 216
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APPENDIX

In this appendix, we derive a technical result that was used in the proof of Lemma 3 in
Section 5.3. Let V = V4 + V5 + V5 be a direct sum of vector spaces and W C V a subspace.
Foreachi # j, let W; = WnV, W;; = Wn(V;+V;), d =dim(W), di = dim(W;), and
dij = dim(W;;). Let

W = Wig + Wiz + Was (22)

and d = dim(W). Let D = dim(((VA + W) N (Vo + W) N (Va3 + W))/W). Our aim is now to
express D as a function of quantities defined above.

Let Wy = Wy + W, + W3 and for each subspace E of V, let E denote the image of £ by
the canonical mapping V' — V/W,;. We will perform a reductlon of everything modulo Wh.
The development will then be easier in space V due to the fact that W N V; = W; = {0} for
each . For each ¢ and j # ¢, one has the following:

V = Vi+Va+ Vs (direct sum);
W, = wnV={0}
VV;’]’ = Wn (Vz + VJ),
I ¥ dim(W;;) = dim(W N (Vi + V;)) = dim(W;;) — dim(W;; N Wo)
= dxm(W;J) — dlI‘I‘l(I/V1 —+ VV]) = d,-j —d; - dj; (23)

d ¥ dim(W) = dim(W) — dim(W,) = d — dy — dy — da.
One has W &' Yini Wij = W and
J;dm(ﬁ/)=5_dl_d2_;z3. (24)
Finally,
dim((i +W)NVa+W)N(Va+W)) = dim((V+W)NVa+W)N(Va+W))+dr +do+ds.  (25)

Let H; =V, N (Vg + W12) N (Vé + W13)

LEMMA 4. One has
G+ nT+W)n(a+W)=H+W (26)
and D = dim(Hl).A

PROOF. Let v; + w; = vy + wy = v3 + w3 be a common element to the three spaces that
intersect on the left in equation (26). One then has v; = vy + (w2 — w1) = v3 + (w3 — wy),

where wy — wy € Wiy and ws — wy € Wiz, Therefore, v; belongs to H; and the set on the
left is a subset of the one on the right. The inclusion in the other direction is immediate.

99



Since Hy C V4, Hy N W is a subset of W, and is therefore {0}. This means that the sum
H1 + W is direct. Then, from (26) and (25), one has

D = dm(M+WNG+W)N(Va+W))+di+dy+ds—d
= dlm(H1)+d1m(W)+d1+d2+d3—-d
= d1m(H1)l

Let 7; denote the canonical projection V — V. Since W = {0}, for each v; € H; there
are unique elements wy; € Wye and wis € Wia such that m1(wi2) = 7r1(w13) = v;. We can
then define a linear mapping u : Hy Was by p(v1) = m2(wi2) — m3(wiz) (= wiz — wis, since
7Tl('l.012 - w13) = 0).

LEMMA 5. The mapping p is one-to-one and u(Hy) = (Wig + Wis) N Was.
PROOF. If p(v1) = 0, then wiy = wiz € (f/l 4 ‘72) N (171 + f/g,) = V] so that wyp =

wyz = 0 and v; = 7r1(w12) 0. This implies that px is one-to-one. By construction,
we have u(H;) C (ng + W13) N W23 and it remains to show the reverse inclusion. Let
Wiz = wyg — wyz € (Why + Wis) N Was and v = m(wiq). Since m(wes) = 0, we have
Ti(wis) = mi(wi2) = v and v € Hy. Then, from the definition of p, u(v) = wes and this
completes the proof. N

LEMMA 6.
D =dim(H) = diy+ diz+ das — dim(W)
= dip+dist+dps—di—dy—ds—d. (27)

PROOF. Keeping in mind that the sum W, + W3 is direct because each W; is {0}, and

using the previous lemma, one has

dm(W) = dim(Wis + Wiz + Was)
= dim(Whas) + dim(W, + Was) — dim((Why + Was) N Was)
= dyz +diy +diz - dim(H,).
This gives the middle equality. The first equality is already contained in Lemma 4, while
the last one follows from (23) and (24). n

The following example shows that knowing d, the d;’s, and d;;’s is not sufficient in general
to compute D.

EXAMPLE. For:=1,2,3,let dim(V;) = 2 and let {v;, v} be a basis for V;. We consider
two cases. In the first case, suppose that W = IF; - (vy + v3) + IF3 - (v2 + v}) + F3 - (v3 + vi),
where F, - v means the space {0,v}. Then, W; = W NV, = {0} for each ¢ and and
H=VYin(Va+W)NVs+ W) =VnNnVa+TF-(v1+v5)N(Va+F(vs +v1)) =
iNn(Va+F2-v)N(Va+TF;-v)) = (IFy-v1)N(IF2-vf) = {0}, so that D = dim(H;) = 0. In the
second case, suppose that W = IFy-(vy+v2)+F2- (v +v3)+ F2- (v5+v4). Then, WNV; = {0}
for each z and Hy; = ViN(Vo+Wi)N(Va+Wis) = iN(Vae+TFy - (vi4v2))N(Va+TFo(v1 +v3)) =
NN (Va+TFy-v)N(Va+Fs-v1) = Favy, so that D = dim(H;) = 1. In both cases, d = 3,
dij = 1, and d; = 0, but the two cases have different values of D. .
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