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Abstract

Approaches like infinitesimal perturbation analysis and the likelihood ratio
method have drawn a great deal of attention recently, as ways of estimating
the gradient of a performance measure with respect to continuous parameters
in a dynamic stochastic system. In this paper, we experiment with the use of
these estimators in stochastic approximation algorithms, to perform so-called
“single-run optimizations” of steady-state systems. We also compare them to
finite-difference estimators, with and without common random numbers. Un-
der mild conditions, for an objective function that involves the mean system
time in a GI/G/1 queue, we prove that many variants of these algorithms con-
verge to the minimizer. In most cases, however, the simulation length must
be increased from iteration to iteration; otherwise the algorithm may converge
to the wrong value. One exception is a particular implementation of infinites-
imal perturbation analysis, for which the single-run optimization converges to
the optimum even with a fixed (and small) number of ends of service per it-
eration. We have performed extensive numerical experiments with a simple
M/M/1 queue, which illustrate the basic convergence properties and possible
pitfalls of the various techniques. Our convergence proofs are quite involved.
As a by-product, we obtain new structural results for the GI/G/1 queue that
could be of independent interest.

Résumé

Des techniques telles que I’analyse de perturbation infinitésimale et la métho-
de du rapport de vraisemblance ont attiré beaucoup ’attention récemment. Ces
méthodes visent & estimer le gradient d’une mesure de performance par rapport
3 un vecteur de paramétres continus dans le contexte de systémes dynamiques
stochastiques & événements discrets. Nous avons expérimenté la combinaison
de ces estimateurs avec des algorithmes d’approximation stochastique, en vue
d’optimiser de tels systémes sur horizon infini en une seule simulation. Dans
ce contexte, nous les avons aussi comparés avec des estimateurs basés sur les
différences finies, avec et sans valeurs aléatoires communes. Pour une fonction
objectif impliquant la durée moyenne de séjour dans une file d’attente GI/G/1,
nous montrons, sous des hypothéses relativement faibles, que plusieures varian-
tes de ces algorithmes convergent vers ’optimum. Cependant, en général, la
durée de la simulation par itération doit augmenter (vers I’infini) d’itération en
itération; sinon 1’algorithme peut converger vers la mauvaise valeur. Une im-
plantation particuliere de ’analyse de perturbation infinitésimale constitue une
exception: dans ce cas, I’algorithme converge vers 'optimum méme si chaque
itération comporte le méme nombre de clients (et ce nombre peut étre trés
pétit). Nous avons effectué des expériences numériques avec une simple file
d’attente M/M/1, et les résultats illustrent bien les propriétés de convergence
et les dangers 3 éviter avec les différentes méthodes.






I. INTRODUCTION

Simulation has traditionally been used to evaluate the performance of complex systems, especially
when analytic formulas are not available. Using it to perform optimization is much more challenging.
Consider a (stochastic) simulation model parametrized by a vector 8 of continuous parameters, and
suppose one seeks to minimize the expected value a(#) of some objective function. In principle, if
a(#) is well behaved, one could estimate its derivative (or gradient) by simulation, and use adapted
versions of classical nonlinear programming algorithms. Recently, the question of how to estimate
the gradient of a performance measure (defined as a mathematical expectation), with respect to
continuous parameters, by simulation, has attracted a great deal of attention [5, 13, 14, 15, 16,
17, 19, 20, 27, 35, 36, 37, 39, 41, 42]. For “steady-state” simulations, a “single-run” iterative
optimization scheme based on stochastic approximation (SA) has been suggested [8, 21, 33, 35, 43,
44]. At each iteration, this scheme uses an estimate of the gradient of o to modify the current
parameter value. Combined with appropriate variance reduction techniques, these methods could
enlarge substantially the class of stochastic optimization problems that can be solved.

In this paper, we investigate the combination of SA with different derivative estimation tech-
niques (DETs). The general theory of SA has been studied extensively (see [15, 21, 23, 24, 25,
34, 35, 37] and many reference cited there), but not very much their combination with various
DETs, for discrete-event systems in the steady-state context, as we do here. Preliminary empirical
experiments have been undertaken by Suri and Leung [43] for a M/M/1 queue. These authors look
at two SA methods, which they presented as heuristics. One was based on infinitesimal perturba-
tion analysis (IPA), while the other was an adaptation of the Kiefer-Wolfowitz (KW) algorithm,
which uses finite differences (FD) to estimate the derivative. They observed empirically that for the
problem considered, the approach based on IPA converged much faster than KW. Our results here
imply that for the example they examined, their first method converges to the optimal solution,
while their second might converge to the wrong value. We examine in this paper many other DETs,
including some based on FD, with and without common random numbers (CRN), IPA [5, 17, 19,
20, 41, 42, 44, 46, 47), and variants of the likelihood ratio (LR) method [1, 13, 14, 16, 27, 36, 38,
39] (sometimes called the score function (SF) method). These techniques can be combined with SA
in different ways. At each iteration, one can use for example a (deterministic) truncated horizon or
perhaps a regenerative approach. The length of the horizon or the number of regenerative cycles
for an iteration can remain fixed from one iteration to the next, or may vary (e.g., increase). We
discuss convergence conditions for many such combinations and argue that some typically converge
to the wrong value when using a fixed simulation length at each iteration. Increasing the simulation
length between iterations typically reduces the bias. In many cases, the length of the simulation
at each iteration should have little or no influence on the convergence rate in terms of the total
simulation length, provided that the variance of the derivative estimator decreases linearly with the
simulation length (we do not prove that, but for supporting arguments, see [23], Section 7.4). In
fact, we do not study convergence rates in this paper. We suggest KW variants that converge to the
optimal solution. One of these variants, which uses CRNs and increases the simulation length at
each iteration, appears competitive with IPA, at least for our example. Fu and Ho [8] also obtained
promising experimental results with different (“extended” or “improved”) SA algorithms. (We do
not consider these in this paper.)

In Section II, we consider a GI/G/1 queue for which the decision variable is a scale parameter
of the service time distribution. The aim is to minimize a function of the average system time per



customer. We take this example to explain what happens when SA is used to (try to) optimize
infinite-horizon (steady-state) simulations. We feel that most of the important questions that would
arise in more general models are well illustrated by this simple example. We recall the classical
SA algorithm and give (simplified) sufficient conditions for its convergence to the optimum. More
general conditions are given in Appendix I. Section III reviews different ways of estimating the
derivative (DETs). For each of them, we prove convergence of SA to the optimum, under specific
conditions. Later on, in Section V, we discuss how all this can be extended to more general systems.
Our presentation is made in the steady-state setting, but it also applies (with lots of simplifications)
to finite-horizon simulations or to the case of infinite-horizon total discounted cost, by taking (6)
as the total expected (possibly discounted) cost at parameter level 6. The initial simulation state
is then fixed (or could be part of the parameter, or random with known distribution). For finite-
horizon simulations, many things simplify since the initial bias problem disappears.

The proofs of most of our results of Sections II and IIT are relegated to Appendix II. These
proofs are quite involved and one of the reason is that since the value of 6 is constantly changing,
some convergence properties of the derivative estimators (like, for instance, bounded variance and
convergence in expectation to the steady-state derivative) must be shown to hold uniformly in 0.
As a byproduct, we obtain original results concerning GI/G/1 queues that could be of independent
interest. For instance, it follows from the renewal-reward theorem [45] that for a stable queue, the
average sojourn time of the first ¢ customers in the queue converges in expectation, ast — oo, to the
infinite-horizon average sojourn time per customer. We prove, under appropriate conditions, that
this convergence is uniform over 4 and s, where s is the initial state (taken over some compact set),
which corresponds to the waiting time of the first customer, and 8 lies in a compact set in which the
system is (uniformly) stable. We also derive a similar uniform convergence result for the derivative
of the expected average sojourn time with respect to 6, and a few additional characterizations of
~ this expectation.

In Section IV, we report an extensive numerical investigation, for an M/M/1 example similar
to the one studied in [43]. The idea was to run the algorithm variants on a problem for which
we could compute analytically the optimal solution. Our experiments deal with an example where
the decision parameter vector § has only one component. A multidimensional case would certainly
involve more intensive computations. As always, since these experiments were done on a specific
example, one should be careful in making any generalizations. The primary goal of this example is
not really to compare performance, but to illustrate convergence properties and possible dangers.
We also recall that in many cases, IPA and/or LR do not apply [27]. Other numerical results for
other kinds of examples are given in the master’s thesis of the second author [9], which has been the
starting point of this paper. In the conclusion, we summarize our results and mention prospects
for further research.



II. ExAMPLE: A GI/G/1 QUEUE

A. The basic model

Consider a GI/G/1 queue [2, 45] with interarrival and service-time distributions A and By re-
spectively, both with finite expectations and variances. The latter depends on a parameter
6 € © = [fy,uo] C R and has a corresponding density function bg. To simplify analysis, we
assume that @ is a scale parameter, i.e. Bs(¢) = B((/f) for some distribution B. The more general
case will be discussed later on. We assume that £y < 1 < ug and that for = up, the system is
stable. This implies that the system is also stable for smaller values of . Let w(f) be the average
sojourn time in the system per customer, in steady-state, at parameter level §. The objective
function is defined by

a(6) = w() + C(8). (1)

where C : © — R is continuously differentiable. We want to minimize a() over © = [{;,u;], where
ly < £1 < ug < ug. Let 8* be the optimum. The reason we define @ and O this way is to be able
to do finite-difference derivative estimation at any point of © (see next Section). This is also useful
for LR and IPA.

For many distributions, &(6) and its minimizer §* can be computed analytically or numerically.
But let us ignore this momentarily and see how the problem can be solved using SA combined
with different DETs. The solutions of some numerical examples can then be compared to the true
optimal solutions for an empirical evaluation.

A GI/G/1 queue can be described in terms of a discrete-time Markov chain via Lindley’s
equation. For ¢ > 1, let W;, (; = 0Z;, and W} = W; + (; be the waiting time, service time, and
sojourn time for the i-th customer, and »; be the time between arrivals of the i-th and (i + 1)-th
customer. Here, Z; follows the distribution B. For our purposes, W; will be the state of the Markov
chain at step i. The state space is § = [0,00) and W; = s is the initial state. W; = 0 corresponds
to an initially empty system (zero wait for the first customer). For i > 1, one has

Wr=W;+¢G  and  Wig:= (WS —wn)t (2)

where z+ means max(z,0). Since C() is deterministic, we will estimate only the derivative of w(6)
and then add C’(6) separately to Y.

We can view the Markov chain {W;,i = 1,2,...} as being defined over a probability space
(Q, %, Py s), where the sample point w € Q represents the “randomness” that drives the system
and the associated probability measure Py ; depends (in general) on # and s (where W, = s € S is
deterministic). [As we will see later, there are different ways of defining that probability space and
we sometimes define it in such a way that P; , actually depends neither on @ nor on s, but that all
the dependency on (6, s) appears in the transformation from w to the W;’s and W;’s. For example,
w may represent the sequence of inter-arrival and service times, or may represent a sequence of
iid. U(0,1) variates]. Let Eg, denote the corresponding mathematical expectation. When the
quantities involved do not depend on s, we sometimes denote it by Ej to simplify the notation.



Fort > 1, let

hi(0,8,w) = Zt:W,-*; (3)
=1

wi8,5) = /Q he(8, 3,00)d Py o(w); 4)

a(0,5) = C(6)+wi(d,s)/1. (5)

Here, hy(0, s,w) represents the total sojourn time in the system for the first ¢ customers, and wy(8, 3)
its expectation. Also, C(8) + hi(8, s,w)/t is the average cost for the first ¢ customers, and (6, s)
its expectation. Let F; be the sigma-field generated by ((1,v1,...,(:v¢). Then, hy(0,s,w) is Fi-
measurable. Also, if s = 0 and if 7 denotes the number of customers in the first busy cycle (i.e.,
7 + 1 is the smallest ¢ > 1 such that W; = 0), then 7 + 1 is a stopping time with respect to
{.7:75, i 2 1}.

Let § = [0, c], for some (perhaps large) constant ¢, which can be viewed as the set of admissible
initial states. If ¢ = 0, then all simulations are started from the empty state. It is well known from
renewal theory that for each fixed 6 € @ and s € 5, lim; .o wi(0, s)/t = w(0), and lim¢ (0, s) =
a().

B. A stochastic approzimation scheme

We consider a stochastic approximation (SA) algorithm of the form

0n+1 = 7"6(011 - 7nYn)a (6)

for n > 1, where 8, is the parameter value at the beginning of iteration n (8; € © is fixed, or
random with known distribution), Y,, is an estimate of the derivative o/(6,) obtained at iteration
n, {7n,n > 1} is a (deterministic) positive sequence decreasing to 0 such that 372, v, = oo, and
To denotes the projection on the set O (i.e. mo(8) is the point of O closest to #). In what follows,
except when stated otherwise, we will assume that v, = yon~! for some constant o > 0.

To obtain Y,, we can compute directly the derivative of the deterministic term C(6,), and
estimate only w’(6,). Each such estimation is obtained by simulating the system for one or more
“subrun(s)” of finite duration. Each simulation subrun corresponds essentially to one copy of the
Markov chain described above, with initial state s € §. Specific ways of obtaining Y;, are discussed
in the next section. Some use a deterministic truncated horizon %, at iteration n. Others exploit
the regenerative structure, in which case the horizon ¢ is the value taken by a random variable 7'
(a stopping time). These estimators are usually biased. Some of the methods for computing ¥,
require keeping information beyond the state of the chain {W;, ¢ > 1}. For IPA, for example,
we usually maintain IPA “accumulators”. To deal with that, we will extend the state space when
necessary. But in all cases, that added part of the state has no influence on the future evolution of
the chain in a given subrun and on Equations (3-9).

Let s, € S denote the state of the system at the beginning of iteration n. We assume that
when 8, and s, are fixed, the distribution of (Y3, sp41) is completely specified and independent of
the past iterations (but may depend on n). In other words, {(Yn,0n+1,5n+1),n > 0} evolves as a



(nonhomogeneous) Markov chain. (Here, Yp is a dummy value). Denote by E;,_;(-) the conditional
expectation E(- | 0,,s,), that is the expectation conditional on what is known at the beginning of
iteration n. Assume that Y, is integrable for all n > 1. Then, E,_1(Y,) exists and we can write

Y, = a’(an) + B+ €n (7)

where B, = E,_1[Y,] — @/(6,) represents the (conditional) bias on Y, given (6,,s,), while ¢, is a
random sequence, with E,_;(¢,) = 0 and E,_1(e2) = var (Y, | bn,85).

C. Convergence to the optimum

We now give (simplified) sufficient conditions for the convergence of (6) to an optimum. The
following proposition is a special case of Theorem 2 in Appendix L. It treats the case where the
(conditional) bias 3, goes to zero and the variance of Y, does not increase too fast with n. When
the DET uses the same simulation length at each iteration, 8, typically does not go to zero. But
sometimes, Eo(f8,) — 0 and the algorithm might still converge to the optimum. This is covered
by Theorem 4 of Appendix I. This latter theorem insures only weak convergence, but this is good
enough for practical applications. Chong and Ramadge [7] also analyze a situation where 3, does
not converge to zero. They use a different approach than ours, estimate the derivative differently,
and prove almost sure convergence to the optimum.

Proposition 1. Suppose that o is differentiable and strictly unimodal over ©. If lim,_,o Br =0
with probability one and 352, Eo(€2)n=2 < oo with probability one, then lim,_ .o 0, = 0* with
probability one. 1

For convenience in the following sections, we will decompose 8, as 8, = BF + BE, where 8L
is the bias component due to the fact that we simulate over a finite (truncated) horizon and B2
represents the possibility that Y, may itself be a biased estimator of the derivative of the finite-
horizon expected cost. Typically, when we use finite differences, BE # 0. If we use a deterministic
(truncated) horizon ¢, at iteration n, then BX = w} (0n,8,)/tn — w'(65). Here and throughout the
paper, the “prime” denotes the derivative with respect to 8. To make sure that the latter converges
to zero with probability one, we will show, under appropriate conditions, that w}(8,s)/t — w'(6)
converges to zero uniformly in (6, s) as t goes to infinity. This is discussed in the next subsection.

D. Continuous differentiability and uniform convergence

We want sufficient conditions under which e is strictly unimodal, w and each wy(-, s) are differen-
tiable, and the following uniform convergence results hold:

lim sup |wi(8,s)/t—w(f)| =0 (8)
t—00 0€g,8€5
and
lim sup |wi(6,s)/t— w'(8)|=0. (9)
t=%e0,5€8



In Proposition 17 of Appendix II, we establish (8-9) under the following assumption 1. We -
also prove, under that Assumption, that w;(#,s)/t is convex and continuously differentiable in 8
for each s and ¢, and that « is also strictly convex and continuously differentiable. Note that these
continuous differentiability properties can be expected to hold only when appropriate regularity
conditions are imposed on the distribution of Z. For example, if Z is deterministic, then each W
and w¢(0, s) are continuous, but only piecewise differentiable in §. This does not means that SA
will not work. The continuous differentiability that is exploited here is merely a sufficient condition
for the validity of SA.

Assumption 1. (i) Suppose that 0 is a scale parameter, i.e. that a service time can be written
as { = 0Z where 8 > 0 and Z is a random variable with distribution B def B1 and density
b4 by, Equivalently, bg(¢) = b(¢/8)/6, for > 0. Assume that the set {z > 0| b(z) > 0},
which is the support of b, is [0, 00).

(ii) Let b be continuously differentiable and have a finite Laplace transform in a neighborhood of
zero.

(iii) Suppose that for each 6y € © and K > 1, there is an €o such that 0 < € < bo,

bs(€)
20 () <5 2 a0
and , 4
Egy+eo [|05419?|)<e ('55]111)‘9(()) ] < 00. (11)

(iv) Let E9=1[C8] < 00.

(v) Let C be strictly convez and continuously differentiable in ©. N



III. WAYS OF ESTIMATING THE DERIVATIVE

One crucial ingredient for the SA algorithm considered here is an efficient derivative estimation
technique (DET). In this section, we survey some possibilities, discussing their efficiencies and
implementation difficulties.

A. Finite differences (FD)

This method is described, for instance, in [15, 23, 37, 46], without the projection operator. When
used in conjunction with FD, the SA algorithm (6) is known as the Kiefer-Wolfowitz (KW) algo-
rithm. Here, we describe and use central (or symmetric) FD. For other variants, like forward ¥D,
see [15, 23, 37, 46]. When there are d parameters instead of just one, ie. if f is a d-dimensional
vector, the latter uses only d + 1 instead of 2d subruns per iteration. However, its asymptotic
convergence rate is not as good [15].

Take a deterministic positive sequence {c,,n > 1} that converges to 0. At iteration n, simulate
from some initial state s € § at parameter value 0 = 7g(0, —¢cn) for ¢, customers. Simulate also
(independently) from state s{ € S at parameter value 6} = 75(0, + ¢5) for ¢, customers. Ways
of selecting s;; and s will be discussed later. Let w;; and w;t denote the respective sample points.
The FD derivative estimator is

b, (0, 87, wt) — he, (075 87, w0 )

Y, = C'(6, 12
Here, the conditional bias B2 = E,_1[Y,] — a}_(0n, sn) can itself be decomposed as
n n
pR =P + 6} (13)
where ot p
w ,8n) — wy, (05, 8n
ﬂ.,? — ‘ln( n (0+)— 0—t)t( )) _ w';n(on,sn)/tn (14)
and
:3,{ - wtn(ﬂ,’{, SI) - wtn(o'r.t7 8.,,,) + wtn(gﬁ,sn) - wtn(og,sv_z) (15)

(6% — 67ty

represent respectively the bias due to finite differences and the bias due to the possibly different
initial states.

Proposition 2. Let Asssumption 1 hold. Ift, — oo, then lim, .o 3; =

PROOF. From Propositions 11 and 12 of Appendix II, w(-) and wy(:,s)/t are continuously
differentiable, for each s € § and ¢ > 0. Also, from Proposition 17, (9) holds. From Taylor’s
theorem, one has AP = (w} (£n,35) — W} (On,$n))/tn for 6, < &, < 65. Note that as n — oo,
one has 83 — - — 0 and therefore &, — 8,. Then, B2 = [w} (&n,n)/tn — W'(&x)] + [w'(&n) —
w'(6,)] + [w'(8) — w,,_(8r,5n)/ta] and each bracketed term converges to zero from (9) and from
the continuity of w’. W



The term BI can be eliminated by picking s; = st = s,. Otherwise, if the distance between
s; and s} is in the order of 1, the numerator in (15) should decrease with t, at rate in the order of
1/t, (asymptotically). In that case, to get 3L — 0, we could take 1/(t,c,) — 0. Even when f; = 0,
taking ¢, constant may lead to problems, as will be illustrated later, because BL is usually not zero.
As ¢, decreases to zero, when w; and w; are distinct (“independent”), the variance on Y, usually
increases to infinity. However, we have the following proposition, whose proof is in Appendix IL

Proposition 3. Let Assumption 1 hold, t, — 0o, ¢, — 0, and 352, t;1(ne,)™2 < co. Assume
that BL — 0 a.s. as n — oo (this can be achieved trivially by taking s; = sf = sp). Then, 0, — 6*
with probability one. N

Reasonable choices for the sequences might be for instance ¢, = t, + t&yn and ¢, = con=1/6

for appropriate constants #,, t;, and co. This choice of ¢, is motivated by what happens in the
(different, but related) case where a(f) is an objective function over a fixed finite horizon and where
t, represents the number of i.i.d. replications. In that case, under reasonable assumptions, the
best possible convergence rate for the derivative estimator is ¢ 1/3 and it is obtained when cnt,l/ 6
converges to a constant. This choice of ¢, also gives the best convergence rate to 6* for the KW
procedure. This rate is £=1/3 in terms of the total simulation length ¢ = 2d Y"7; ¢;. (See [15, 23,
46)).

One simple way to choose the initial states of the subruns is as follows. Start the first subrun
of iteration n from state s, € 5. We then take the terminal state of any given subrun as the initial
state of the next one. (Project on § whenever necessary.) For s,y1, take the terminal state of
the last subrun of iteration n. Still, the two subruns of a given iteration can be ordered in two
different ways. More generally, if § has dimension d, one can permute the 2d subruns of a given
iteration in any given way, and select the terminal state of any subrun for s,41. It is not clear
what the best way of doing this is, if any. Another way is to take the same initial state for each
subrun: s; = st = s,. Again, there are different possibilities for the selection of s,41. One can
also take (reset) s, = 8o for all n, for a fixed state so. But in any case, the KW method is usually
plagued by a huge variance on Y, which makes it converge very slowly, at least when the subruns
are performed with “independent” random numbers. '

Glynn [13] describes an alternative KW approach based on regenerative analysis. It eliminates
the bias BF" and B, but the variance is usually much higher. The package SAMOPT [3] is an imple-
mentation of KW with specially tuned parameters. It was designed for finite-horizon simulations.
It also replaces Y,, by its sign.

B. Finite differences with common random numbers (FDC)

One way to reduce the variance in FD is to use common random numbers across the subruns at
each iteration, start all the subruns from the same state: s; = st = s,, and synchronize. More
specifically, one views w as representing a sequence of U(0,1) variates, so that all the dependency
on (0, s) appears in h(8, s, ). Take w} = w; = wy,. Since the subruns are aimed at comparing very
similar systems, hy, (0, sn,wy) and hy, (05, Sn,wy) should be highly correlated, especially when ¢,
is small, so that considerable variance reductions might be obtained. Conditions that guarantee



variance reductions are given in [4, 37]. Proposition 2 still applies. For the related case of a fixed
finite horizon with ¢, ii.d. replications, under additional assumptions, Glynn [15] shows that the
best convergehce rate for FDC is 1, 2/ 5, which is attained if cnty 5 converges to a constant. Under
a different set of assumptions, which are essentially the same assumptions that one usually makes
to show that IPA works, L’Ecuyer and Perron [28] show that FDC has the same convergence rate
as [PA, namely %, 12 3 Cn }/ 2 converges to a constant.

What could happen if ¢, is kept constant ? Let us look at the simplest case, where ¢, = 1 for
each n.

Proposition 4. Suppose that C(6) + 0 has its minimum at §°. Let 8° = wo(6°). Then, with
t, = 1, SA with FDC converges to 8° almost surely.

PROOF. When we estimate the average cost using ¢, = 1, we actually look at the time spent
in the system by one customer, i.e. the customer being served in that subrun. This time can be
expressed as hy(6, s,w) = s + 6B~1(w), where s is the (waiting) time already spent in the system
by that customer and w is viewed as the U(0,1) variate used to generate its service time. We then

have
hl(o;i.’smw) - hl(o-;asmw) _ oﬁB—l(w) - Q;B‘l(w) -

o — 05 oF — 0
which has finite variance, from Assumption 1 (iv). Also, E,[Y,] = 1+ C’(8). If we redefine for the
moment w(8) = 6 + C(6) and apply Proposition 1, the conclusion follows. N

Y, - C'(6) = B (w).

As an illustration, take an M/M/1 queue with arrival rate A = 1, mean service time 6 € @ =
[€1,u1) for uy < 1, and C(8) = 1/0. Here, C(f) + 8 has its minimum at §° = 1. Therefore, §,
converges to u; with probability one. The problem here is that with a different 6, the time spent
in the queue by the customers already there at the beginning of the iteration would have been
different and the method does not take that into account. This flaw also exists for any fixed ¢, = t.
The difference |#° — 6*| should decrease with ¢. In our numerical results of Section IV, for ¢ as large
as 100, the effect is still significant.

As initial states, one can take s, = sg € § for all n (for some fixed sg), or s,41 can be one
of the two (or 2d, in general) terminal states of iteration n. Whenever that state is outside S,
project back to §. Since we are interested in steady-state behavior, taking a terminal state of
the previous iteration appears intuitively better. A heuristic rule is to choose the state that was
obtained from the subrun with the parameter value the closest to the new parameter value 6,,1.
Implementing this method for complex simulations is not without pain. Saving the simulation
state means saving the states of the random number generators, the event list, all the objects in
the model, etc. In practice, many objects in the model are pointers to data structures that can be
created, modified or destroyed dynamically, and whose types have been defined by the programmer.
When saving the state of the system, one cannot only save the pointer values, but must make an
explicit “backup” copy of all these structures. When restoring the system to a given state, these
must be recopied again. This is different than saving and restoring the state of the program, because
some variables associated with the SA and FD algorithms (e.g., the index of the current subrun for
FD) should not be saved and restored. Usually, the simulation package cannot do that and specific
code must be written. In fact, it would be very difficult to implement “state saving” facilities in



a general simulation package, because typically, the package has no way of knowing with certainty
the structures of all the dynamic objects created by the user. All this implies overhead not only
for the computer, but also for the programmer. Another source of programming overhead in FDC
comes from the need to insure synchronization of the random numbers across the subruns.

When ¢, is small, there is sometimes little change between the sample paths of the two subruns.
One could then ask: is it possible to perform only one subrun and trace the few changes ? It is
indeed sometimes possible, and this idea leads to what is called finite perturbation analysis. Taking
that to the limit when ¢, goes to zero, one obtains infinitesimal perturbation analysis (see below).
These techniques permit “single-run” optimization algorithms, which can be applied not only to
simulations, but also (on-line) to actual systems. KW is not really a “single-run” algorithm and
its direct application to actual systems is more limited.

C. A likelihood ratio (LR) approach

The LR derivative estimation approach has drawn a lot of attention lately (e.g., [1, 13, 14, 16, 27,
36, 38, 39]). Here, for any s € S, to differentiate the expectation (5) with respect to 6, take a
probability measure G, independent of # that dominates the Py ,’s for 6 € 0, and rewrite:

wi(8, ) = /Q he(6, 8,0)Le(Gs, 0, 8,w)dG4(w) (16)

where Ly(Gs, 0, s,w) = (dPy s /dGs)(w) is the Radon-Nikodym derivative of Py, with respect to Gs.
Under appropriate regularity conditions (see [27, 29, 36]), one can differentiate w; by differentiating
inside the integral:

wi(6,5) = /n D(8, 5,0)dG (). (17)

where

¥4(0, 5,w) = Li(Gs, 0, 8,w)hi(8, s,w) + he(0, 3,w)Li(Gs, 0, 5,w). (18)

When (17) holds, the LR estimator (8, s,w) can be used to estimate w}(6,s). Only one simulation
experiment (using G,) is required to estimate the derivative.

In our case, we view w as representing the sequence of inter-arrival and service times for the
first ¢ customers, that is w = ((1,41,...,(t, 1), and take G, = Py, s where 0o is the value of ¢ at
which we want to estimate the derivative. [Note that here, G5 and P do not depend on s.] The
Radon-Nikodym derivative then becomes the likelihood ratio

b b
LiPosty50) =TT 2((2_)), (19)

which is 1 at 8 = . The derivative of (19) is Li(Pg,,s, 0, 5,w)S54(0, s,w), where

t
S:(8, 8,w) = > di, . (20)
i=1
and 9

di = =5 be(Gi). (21)
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The expression (20) is called the score function. The LR estimator (18) then becomes
¥i(8, s,w) = hy(8, 8,w)Le( Py, 5,0, 8,w)Se(0,5,w). (22)

We show in Proposition 11 of Appendix II that under Assumption 1, (22) is an unbiased estimator
of w}(8, s) for 6 in some neighborhood of fy. After adding the derivative of the deterministic part
and letting 6y = 6,,, the LR derivative estimate at iteration n for SA becomes

Y, = C'(6n) + %1, (Ony Snywn)/tn = C'(0r) + b, (0ny 80y wn)St,(Ons S0y wn )/ tn. (23)

Note that the variance of S;(6,s,w) (and of the derivative estimator (22) at § = o) increases
with ¢. This is a significant drawback and must be taken into account when making the tradeoff
between bias and variance. Here, % = 0 and B goes to zero as t, goes to infinity. But the
variance on Y, then goes to infinity also. One remedy, as in FD, is to increase ¢, with n, but not
too fast. We show in Proposition 18 that under Assumption 1, the variance of Y;, does not increase
faster than linearly in ¢,. The conditions of Proposition 1 can then be verified with v, = yon~! and
tp =ty +tpnP for 0 < p < 1. In the finite-horizon case, SA with LR converges at a rate of t=1/2 [15]
in terms of the total simulation length ¢. But when the variance increases with ¢, and ¢, increases
with n, this is no longer true. L’Ecuyer [31] examines infinite-horizon derivative estimation with
LR and shows that the best convergence rate for the derivative estimator as a function of the total
computer budget is obtained when the simulation length is in the order of n!/3 as a function of the
number n of replications. This slow increase reflects the fact that the variance increases too rapidly
when we try to get rid of the bias through longer simulations. In [30], a control variate scheme
is proposed to eliminate that linear increase of the variance of 94(0,s,w)/t. Instead, the variance
remains in the order of 1 with respect to . We will experiment with that scheme in Section IV.

Another way of reducing (less dramatically) the variance is to estimate the derivative of the
expected sojourn time of each individual customer separately, and then add. This uses the idea
that since the sojourn time of customer 7 is independent of the service times of the customers that
follow him, the appropriate score function that should multiply W} is the sum up to 7 instead of
up to t. This gives the following triangular LR derivative estimator:

(8, 5,0) = (W Z dj) ) (24)

i=1 =1

Some variants of the LR approach circumvent the bias/variance problem by using a regenerative
approach [13, 14, 30, 36]. Let s = 0 and let 7 be the number of customers in, say, the first
regenerative cycle (busy period). From elementary renewal theory one has w(6) = u(8)/£(6) where
u(#) and £(6) are respectively the expected total system time (for all the customers) and the
expected number of customers over a regenerative cycle:

u(0) = Egol7l;
,
00) = Egp [E W,-*] :
i=1
If w'(0) exists, then, from standard calculus, one has

W ()4(6) ~ £(8)u(8) _ w(8) — w(6)e(6)

VO =—"""¢p o)

(25)
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Combining estimators for each of the four quantities on the right-hand-side of (25) yields an esti-
mator for w'(#). One can estimate £(8) and w(f) = u(0)/£() as usual, using say r regenerative
cycles, while v/(6) and #/(8) can be estimated through the LR method as follows.

Let Go = Pg, 0. The likelihood ratio and score function associated with the first regenerative
cycle are respectively

L(Pgy 0,0,0,w) = H bb:((% (26)
and r |
S-(6,0,w) = d. (27)
=1

The LR estimators of u/(8) and £/(6) based on that cycle are respectively

Yu(0,w) = (Z W) L.(Pg, 0,8,0,w)5:(6,0,w) (28)
i=1
and
Ye(0,w) = 7L, (Pgy0,6,0,w)5:(6,0,w). (29)

Proposition 12 in Appendix II states that these estimators are unbiased under Assumption 1. One
can then repeat this and take the average over r regenerative cycles. More precisely, let 7; be
the number of departures during the j-th regenerative cycle, h; the total system time for those 7;
customers who left during that cycle, and S; the score function associated with that cycle. Then,
an estimator of w'(fp) is given by

ZT]Zh S; — Eh ZT,

i=1 =1 . (30)

)

This estimator is biased, because it estimates the expectation of a ratio using correlated estimators
for the numerator and denominator, and the expectation of products using correlated estimators
for the factors. But the variance does not increase linearly with the simulation length as for the
truncated horizon case. Algorithm B in [13] proposes a different regenerative estimator, which is
unbiased. However, according to our experience, its variance is usually rather high.

In Proposition 19, we show that under Assumption 1 and if

sup Eyg [ds] < 00, (31)
6e6

then, as 7 — 00, (30) has bounded variance and converges in expectation to w’(fp), uniformly with
respect to fg. This yields the following regenerative LR estimator of o/(8,) for iteration n:

tn in in in
S > hiSi— > hiy TS

Y,n - C,(on) + =1 j=1 , j=12 j=1 ) (32)
> Tj)
=1 ) \
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The estimators (23) and (32) can be integrated into the SA algorithm. The following proposi-
tion, proved in Appendix II, tells us about the convergence of such a scheme.

Proposition 5. Let Assumption 1 and Equation (31) hold.

(a) Suppose one uses SA with the LR estimator (23). If s, € § for all m, t, — oo, and
3% tan~2 < 00, then 0, — 8* with probability one.

(b) Suppose one uses SA with the regenerative LR estimator (32). Ift, — oo, then 6, — 6* with
probability one. 1

D. Infinitesimal Perturbation analysis (IPA)

A straightforward approach to attack the variance problem in LR above is to define the sample
space in such a manner that Py, is independent of . For instance, one can view w as a sequence
of independent U(0,1) variates that drive the simulation. Then, L(P,,s,6,s,w) = 1 for all § and
the last term in (17) vanishes, yielding (under the appropriate regularity conditions):

¥i(0, s,w) = hy(0, s,w). (33)

This is in fact the infinitesimal perturbation analysis (IPA) derivative estimator for w;(6, s) [5, 12,
17, 19, 20, 41, 42, 44].

The basic idea of IPA is to generate a sample point w, viewed as a sequence of U(0, 1) variates,
and, for w fixed, observe the effect of an infinitesimal perturbation on @ (around ) by propagating it
over the sample path, assuming that the sequence of events does not change, and that the events can
only “slide smoothly” in time. The derivative estimation is taken as the derivative of the objective
function for that fixed value of w. Again, the derivative and expectation can be interchanged only
under the appropriate regularity conditions [10, 19, 27]. Regenerative versions can be defined as
for LR; see [19]. When IPA does not work for the original system, various devices can sometimes
be used to “smooth out” or transform the original problem into a problem for which IPA will work
correctly (see [11, 17, 28] for instance). These devices are usually problem-dependent. In principle,
when (33) is unbiased, IPA can be viewed as a limiting version of FDC as ¢, becomes infinitesimal.
Note however that one must be careful about implementation “details”, which can sometimes make
a big difference between IPA and “infinitesimal” FDC. This is illustrated by Propositions 4 and 7.

Here, an infinitesimal perturbation on (; affects the system time of customer j and of all the
customers (if any) following him in the same busy period. Therefore,

HOsw) =2 3 ZeW) 537, (34)

=1 j=v; i=1 j=v;

where v; is the first customer, with index > 1, in the busy period to which customer 7 belongs.
That is, v; = i if W; = 0, and v; = min{j > 1 | W; = 0 and Wy > 0 for j < k < i} if W; > 0. Then,

= C'(0,) + hy(0n, S, w)/tn. (35)
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This can be computed easily during the simulation. The inside sum in (34) is called the IPA accu-
mulator. Observe that imposing v; > 1 means that we consider only the service time perturbations
of the customers who left during the current iteration. In other words, we assume that the IPA
accumulator is reset to zero between iterations. The initial state s, of iteration n can be either 0
for all n (always restart from an empty system), or be the value of (W — v;)* from the previous
iteration (for n > 1).

We can consider another variant of IPA in which the IPA accumulator is not reset to zero
between iterations. In that case, both s, and the initial value a, of the IPA accumulator are taken
form the previous iteration. The value of a,, is the value of Z;:w Z; from the previous iteration if
s, > 0, and is 0 otherwise. The value of a,, must then be considered as part of the “state”. Let

ki = min(¢, min{i > 0 | Wi1 = 0}). : (36)

When Wy = s > 0, k} represents the number of customers in the current iteration who are in the
same busy period as the last customer of the previous iteration. For this IPA variant, (34) must
be modified to:

ot 4
hi(0,s,a,w) = ak; + Z Z Zj, (37)
1=1 j=v;

where a is the initial value of the IPA accumulator.

For the regenerative version, let s = 0 and 7 be the number of customers in, say, the first
regenerative cycle. The value of (34) for that cycle becomes

h.(6,0,w) = E E Z;. (38)

=1 j=1

With r regenerative cycles, let 7; and k) denote the respective values of 7 and h’(6,0,w) for the
Jj-th regenerative cycle. The regenerative IPA estimator is then

2;::1 h‘lq
=t 39
z:j:l Tj ( )

At iteration n, one takes r = t, regenerative cycles and ¢ is the value taken by a random variable
T, = E}":l 7;. This yields
tn pt.
Yo = C'(0a) + =2 (40)

7=1 Tj

In [19], the authors argue that the derivative estimator (37) is a consistent estimator of w'(6)
for a rather general class of GI/G/1 queues, and give a proof for the M/G/1 case. A proof for the
GI/G/1 case is given in [47] under assumptions slightly different than ours. To prove convergence of
the stochastic optimization algorithm using Proposition 1, what we need is not convergence of (34)
divided by t to w’(#) with probability one (as t — 00), but convergence in expectation, uniformly
over §. In fact, both kinds of convergence, as well as variance boundedness, follow from Propositions
13, 17, and 20 in Appendix II. Proposition 13 also shows that the IPA estimator (34) is unbiased
under Assumption 1. This leads to the following Proposition, proven in Appendix II.
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Proposition 6. Let Assumption 1 hold.

(a) Suppose one uses SA with the IPA estimator (35). If s1 = 0, s, € S and a, = 0 for all n,
and t, — oo, then 8, — 0* with probability one.

(b) Suppose one uses SA with the regenerative IPA estimator (40), with t, regenerative cycles at
iteration n. Ift, — oo, then 6, — 6* with probability one. W

If the IPA accumulator a, is not reset to 0 between iterations, proving Proposition 6 (a) appears
slightly more difficult. But we believe that the result still holds.

For this GI/G/1 example, IPA has the stronger property that even when using a truncated
horizon t, that is constant with n, if the IPA accumulator is kept between iterations and under
mild additional assumptions, SA converges to the optimizer. But on the other hand, if the IPA
accumulator is reset to zero at the beginning of each iteration, then we have the same problem as
with FDC. When we keep the value of the accumulator across iterations, the estimator takes into
account the service time perturbations due to all preceding customers, including those who left
during previous iterations. It is true that the structure of the busy periods, and (in general) the
individual terms of the sum (34), could depend on @, which changes between iterations. But as 6,
converges to some value, that change becomes negligible under appropriate continuity assumptions.
(In the present GI/G/1 context, the Z;’s are in fact independent of 6, but not the v;’s) With
this intuitive reasoning, we should expect that SA with IPA converges to * even with fixed 2,.
Proposition 7, whose proof is in Appendix II, states that this is effectively true. Here, we cannot
use Proposition 1 because we do not have 8, — 0. Instead, we will give a weak convergence proof,
based on Kushner and Shwartz [25] (see Theorem 4 of that paper). )

Proposition 7. Consider the SA algorithm with IPA, under Assumption 1, with {Yn,n 2 0}
satisfying W4 of Appendiz I, and constant truncated horizon t, = t. Let the interarrival time
distribution have a bounded density. Suppose that the IPA accumulator is not reset to 0 between
iterations. Then, 0, converges in probability to the optimum 6*. N

With the regenerative IPA estimator (40), SA does not converge to the optimum in general if
t, does not converge to infinity. On the other hand, Chong and Ramadge [6] propose a somewhat
different regenerative approach which converges to the optimum for constant #,, in the case of an
M/G/1 queue. The basic idea is to replace the factor 1/t in (34) by 1/Eg[r] = 1 — AE[(], for
t, = 1. The average service time Ey[(] is assumed to be known. When A is unknown, for a given
regenerative cycle, one can use an estimate X obtained from the previous cycles. Alternatively, one
can use at each iteration one or more cycle(s) to estimate A and another cycle to compute the sum
in (34). Further, in [7], they generalize their approach to the GI/G/1 queue.
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IV. NUMERICAL EXPERIMENTS WITH THE M/M/1 QUEUE

This example is inspired by Suri and Leung [43]. Consider an M/M/1 queue with arrival rate A = 1
and mean service time § € ©. One has By(¢) = 1—e=¢/¢, B;1(u) = —01n(1-u), bs({) = (1/6)e=¢/?,
and ZInbg(¢) = (( — 0)/62. Let C(6) = C1/8 for some constant Cy > 0. The optimal value §*
can be computed easily in this case. Indeed, w(f) = /(1 — 8) and 6* = /C1/(1+ +/C7) (if this
value is not in ©, the optimum is at the nearest boundary). We will compare our empirical results
to this theoretical value. Assumption 1 is easily verified. Indeed, (i) holds trivially, b(¢) = e~¢ is
continuously differentiable, and its Laplace transform [5° e*¢e~¢d( is finite for |s| < 1. For (iii),
take €y = 00(K — 1)/(K + 1) Then,

o (p295) < 2% [0 (5- 5]

0o + €0 < 0o + €0
0 = b5 — €

= K

IA

and

E [ sup (8 Inb (C))4] E { sup (C_0)4]

Go+¢ — I} = 00 +€ R,

o+e€o 1606 |<éo 90 o+€o 10—8o|<<o 92

‘ Egyteo [(Bo + €0 — {)* + (60 — €0 — ¢)*] <
(6o — €0)®

since the exponential distribution has finite moments of all orders. Finally, [5°2%b(z2)dz =

fs° 28e~?dz < oo, which is (iv), and C(z) = Ci/z obeys (v), which completes the verification

of Assumption 1.

00,

In these experiments, we have tried many SA-GET combinations, or variants. Henceforth, we
refer to them as algorithms. The final state of each simulation subrun was taken as the initial state
for the next one, except when stated otherwise. For FDC, the initial state s,41 was the final state
of the subrun at iteration n with parameter value the closest to 6,41. When the queue was not
empty at the end of an iteration, we were careful to generate the new service time only at the
beginning of the next iteration, i.e. after modifying the parameter. Kesten [22] has proposed a rule
under which instead of diminishing 7,, at each iteration, one diminishes it only when the sign of the
gradient estimate (for one parameter) is different from the one of the previous iteration (i.e. when
the change on the parameter changes direction). The heuristic idea is that if the parameter keeps
moving in the same direction, it should be because we are still far away from the optimum and so,
let’s give it a chance to move faster. That heuristic might help in situations where we start really
far away from the optimum, and where the change on the parameter at each iteration tends to be
very small. We have implemented this rule for some of our experiments. This is indicated in the
results. Besides the GETs described in the previous section, we also implemented the regenerative
algorithms described in [13] (with and without the arctan transformation), SAMOPT [3], and other
variants, for which we do not give the details here.

A. The experimental setup

We actually performed the following experiment. For each algorithm, we made N simulation runs,
each yielding an estimation of §*. The N initial parameter values were randomly chosen, uniformly
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in ©, and the initial state was s = 0 (an empty system). Across the algorithms, we used common
random numbers and the same set of initial parameter values. This means that the different entries
of Table 1 are strongly correlated. Each run was stopped after a (fixed) total of T' ends of service.
Hence, all algorithms were subjected to approximately the same sequence of random numbers and, if
we neglect the differences in overhead for the GETs, used about the same CPU time. (The overhead
was quite low in general, except for very small values of t,, like ¢, = 1.) The programs were written
using SIMOD [26], a simulation package based on the language Modula-2. We insisted on using
exactly the same simulation program for all algorithms. In fact, the simulation model and the
algorithms were implemented in two different modules, the latter being totally model independent.

For each algorithm variant, we computed the empirical mean 6, standard deviation sq and
standard error s, of the N retained parameter values. If y; denotes the retained parameter value
for run i (i.e. the value of 6, after the last iteration, for that run), the above quantities are defined
by

1 ¥ , 1 & 2 . 1& 2

9=-ﬁiz=;yi; 5d=m;(%‘—9)§ 5e=ﬁ;(yi—9)- (41)
We also computed a confidence interval I; on the expectation of 4, assuming that VN(G-E())/sq
follows a Student distribution with N — 1 degrees of freedom.

B. Numerical results

The third column of Table 1 gives some of the results of an experiment we made with T = 10°,
N =10, © = [0.01,0.95] and C; = 1. The optimal solution is §* = 0.5. We computed the 95%
confidence intervals Iy as described above, and the entries for which Iy does not contain §* are
indicated in table 1. FD, FDC, IPA and LR are as described in the previous section. LRR refers
to the regenerative version of LR given in (12), while IPAR refers to the regenerative version of
IPA. The symbol -K following the name of the algorithm signifies that Kesten’s rule was used. The
symbol -0 means that the state was reset to s = 0 at the beginning of each iteration. The symbol
-7 following IPA means that the IPA accumulator was reset to 0 between iterations. The symbol
-S following FD means that instead of always simulating first at 8, — c, and then at 6, + ¢,, we
adopted the following heuristic rule: if the parameter has just decreased, simulate first on the right
(at 8, + c,), otherwise simulate first on the left. The rationale is that if the parameter has just
decreased, the current state has been reached by simulating at a parameter value larger than ,,, and
should thus be a statistically “better” initial state for a simulation at 6, + ¢, than at 8, — ¢, (and
symmetrically if the parameter has just increased). LR-D means the “triangular” version of LR
given by (24). LR-C [LR-DC] means LR [LR-D] in which h4(8, s,w) was replaced by (6, s,w) — 1.
This does not change the expectation of (8, s,w), but reduces its variance from O(t) to O(1) at
0 = 6%, because w(8*) = 1 (see [30]). In all cases, we had 7, = 1/n. We took ¢, = 0.1n=1/¢ for FD
and ¢, = 0.1n=1/5 for FDC. For FDC, we also tried ¢, = 0.001n~%, which is denoted by FDC-NN.

We see that IPA performs well, even when t, is fixed at a small constant. IPA-Z, IPAR, FDC,
FDC-K and FDC-NN, with a linearly increasing t,, are approximately as good. When 1, is fixed to
a small constant, convergence is also quick with FDC, IPA-Z, or IPAR (small s4), but the standard
error s, is very large, which indicates that convergence is not to the right value. Even for ¢, = 100,
the bias is still quite apparent for FDC. The problem with IPAR is that with the regenerative
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Ci=1(6"=1/2)[C1=1/25 (6*=1/6)[ C1 =25 (8" =5/6)
T, Sd Se 84 Se Sd Se :
FD n .00979 .00967
FD 100+ = | .01075 .01044
FD-S n .00761 .00732
FDC 5 00149 .15343 «
FDC 100 .00340 .00721 «
FDC n .00193 .00184 .00030 .00030 02354 .02234
FDC 100 + » | .00204 .00198 .00027 .00029 02875 .02824
FDC-K |n .00193 .00184 .00030 .00030 02354 .02234
FDC-0 |n .00243 .00231 .00039 .00037 03019 .02867
FDC-NN | n .00203 .00196 .00031 .00031 02270 .02177
FDC ni/2 .00181 .00684 «
IPA 1 00227 .00217
IPA 10 00227 .00216 .00053 .00051 02402 .02575
IPA 100 .00229 .00219
IPA n .00195 .00185 .00046 .00044 .03208 .03416
IPA 100+ = | .00203 .00193 .00046 .00043 02685 .02849
IPA-K n .00195 .00185 .00046 .00044 03208 .03416
IPA-Z 10 .00169 .07365 4
IPA-Z n .00192 .00189 .00046 .00044 02449 02597
IPA-0 n .00246 .00233 .00042 .00040 01721 .01956
IPAR 5 .00228 .06175 <
IPAR n .00200 .00197 .00046 .00044 02981 .03110
LR nl/3 01221 .02062 «
LR nl/2 .03012 .02876 02454 .02355 .04473  .05214
LR n2/3 .07494 .07115
LR-C n1/2 00772 .00749 00221 .00291 « 03433 .04864 «
LR-CO nl/2 .00709 .00725
LR-D nl/2 .01502 .01658
LR-CD | nl/? .00533 .00615 00175 .00176 03000 .05141 « .
LR-CD | n?/3 .00706 .00688 .00264 .00255 .04893 .04857
LRR n .00447 .00453 .00124 .00118 07608 .07446
LRR nl/2 .00443 .01775 «
Table 1: Some experimental results for T = 106, N = 10 and C; = 1,1/25, and 25.

For the values marked with «, the 95% confidence interval does not contain 6*.

approach, the number of ends of service during the t,, regenerative cycles is now random, and we
get a bias due to the fact that we estimate a ratio with that number on the denominator. Of course,
this bias goes to zero as t, goes to infinity, and this is why IPAR with ¢, = n works fine. FD has
approximately the same behavior as FDC, but with larger variance. FD-S is slightly better than
FD, but not competitive with FDC or IPA.
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Figure 1: Evolution of s, (N=100) for FDC (black), PA (white) and LRR (star).

The LR methods in general have trouble due to their large associated variance. That variance
stays low when ¢, grows slowly, but then, the bias becomes more of a problem. LR with ¢, = n?
has large variance for large p, and for small p, the bias goes down much too slowly compared to the
variance. As a result, the confidence interval I, based on the N final values of 0y, is very likely
not to cover #*. This is what happens, for instance, with p = 1/3. Among the truncated-horizon
variants, LR-C and LR-CD provide significant improvements over LR. The LR variant that gives
the best results here is LRR (regenerative) with ¢, increasing linearly. With ¢, = n1/2, both LRR
and FDC have the same bias problem as described above: the bias goes down too slowly and Iy does
not contain 6*. Nevertheless, they converge (slowly) to the right answer (we verified it empirically
with longer simulation runs). Kesten’s rule does not appear to help for any of the methods in
this example. SAMOPT [3] and the algorithms described in [13] gave rather bad results (huge
variances) and they do not appear in the figure. They are obviously not competitive, at least for
this example. The problem with SAMOPT is that near the optimum, the gradient is very small
in absolute value, and replacing it by its sign is really not a good idea. We also obtained bad
results with other variants, like for instance IPA with t, = 100 + n but v, = n=1/2 instead of
n=1. Independent sets of experiments were also performed with 7" = 10% and the results were quite
similar to the ones given here [9].

We have also observed that for IPA, the evolution of the parameter 8,, with the total simulation
length depends very little on #,. We made experiments with different (constant) values of ¢,
between 1 and 1000, and observed that the evolution of § was practically identical in all cases,
independently of t,. These simulations were performed with common random numbers. Even if
the starting values are different, the evolution is almost identical if common random numbers are
used.
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In Figure 1, we see the evolution of the standard error s, with the simulation length, for
FDC, IPA, and LRR, all with ¢, = n. This is the result of a new experiment, with longer and
much more numerous runs: we took T = 2 x 109 and N = 100. We see that FDC and IPA
appear roughly comparable, and that LRR has about twice their standard error (four times more
variance). These graphs agree with the expected convergence rates of O(T~1/2): the standard error
gets approximately cut in half when the total simulation length 7' is multiplied by four.

How does the speed of convergence of 8, to 8* compares to the speed of convergence of the cost
estimator to the true average cost when 6 is fixed ? We note that simply comparing the widths of
the confidence intervals at the end doesn’t make sense, since the parameter and the cost are not
necessarily measured on the same scale. Dividing by the means to obtain relative values doesn’t
make sense either, there might be cases where 6* or the average cost is zero or near zero. In any
case, it is well known that the average cost estimator converges at rate T-1/2, and we have observed
the same convergence rate for 8,,. This means that we can estimate the optimum as fast (in terms
of orders of convergence rates) as we can estimate the cost at a given point! This was already
observed in [44].

We made other sets of experiments with C; = 1/25 (for which 6* = 1/6) and Cy = 25 (for
which 6* = 5/6). The results appear in the last two columns of Table 1. For C; = 1/25, the traffic
intensity for § near 6* is low, and we get a much lower variance than for C; = 1. The opposite is
true for C; = 25. The relative “rankings” of the algorithms are about the same. For C1 = 1/25,
FDC appears better than IPA. But note that these standard error estimates are based on only
10 observations, which means that they themselves have non-negligible variance. The entries of
Table 1 are also correlated, because of the common random numbers. For C; = 25, LR-CD, and
t, = n!/2, the variance for 8, goes down quickly and the bias does not go to zero fast enough to cope
with that. The result is that for this experiment, the confidence interval Iy does not contain 6*. A
possible remedy is to increase t, faster: for ¢, = n2/3, the problem disappears. But in any case,
this shows that one must be very careful about confidence intervals in these kinds of experiments,
even if they are asymptotically valid. For C; = 25, LR is now competitive with LRR (8 is larger
and the regenerative cycles are much longer in this case).
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V. GENERALIZATIONS

A. More general service time parameters

For simplicity, the development of the previous sections and of Appendix II was made under the
assumption that @ is a scale parameter of the service time distribution. This assumption can of
course be relaxed. We now give more general sufficient conditions under which our results hold. Let
By be the service time distribution, with density bg, and suppose that the service time of customer
i is generated by inversion, i.e., that (; = B;'(U;), where U; is a U (0 1) random variate. Assume
that B, !(u) is differentiable in 0 foreach 0 < u < 1, and let Z; = 80 B;Y(U;).

Assumption 2.

(i) The set {¢ > 0| bg({) > 0}, which is the support of be, is independent of 8.
(ii) Everywhere in ©, bs(() is continuously differentiable with respect to 8, for each ¢ > 0.

(iii) There is a distribution B such that supgeq By'(u) < B~ 1(u) for each u. The queue remains
stable when the service times are generated according to B. Also, f (B“l(u))sdu < oco. In
other words, E[(8] < oo, where E is the expectation that corresponds to B.

(iv) There exists a measurable function T : (0,1) — IR such that [y(I'(u))*du < oo and
suppeo|Z By H(u)| < T(u) for each u.

(v) For each 8y € ® and K > 1, there is an open interval T containing 6y such that by is well
defined for 9 € T, and a § € © such that

be(¢)
sup (3509) < (2

and

E; < 00. (43)

¢+ |[su L ©) 4
bex 00

Also, the moment generating function associated with B is finite in some neighborhood of
zero.

(vi) Z; > 0 for all i with probability one.

(vii) For each 0 < u < 1, By(u) is non-decreasing and convez in 6. B

Other variants of these conditions also work. For example, in (vii), non-decreasing can be
replaced by non-increasing, provided that the same substitution is also made in the statement and
proof of Proposition 15. In (vi), > 0 can be replaced by < 0. In the latter case, in Proposition
14, w}(8,0) becomes non-increasing (instead of non-decreasing) in ¢. Condition (vi) can also be
replaced by the more general one: wj}(#,0)/t is non-decreasing in ¢ for each 8, or non-increasing in
t for each 6. A generalization of condition (v) is
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(v’) For each §y € ® and K > 1, there is an open interval T containing 6o such that by is well
defined for § € T, and a density ¢ whose support contains the support of s, such that

su éb—e(—Q)4 su Eo(—Q2 Tsu bo(¢) ) 0
b [C”oe%( o) () tIm () <= @

where 7 is the number of customers in a regenerative cycle.

Proposition 8. The results of Propositions 2-3, 5-7, and 10-21 still hold with Asumption 1 re-
placed by Assumption 2. 1

Proposition 8 can be verified by going through all the proofs with the new assumptions. This
is discussed in Appendix II. Finally, the following result, proved in Appendix II, shows that the
uniform convergence (8) holds under much weaker conditions than those of Assumption 1 or 2.
This result could be of independent interest.

Proposition 9. Suppose that there is a distribution B such that supyeq By '(u) < B~(u) for each
u, that [y (B=1(u))du < 0o, and that the queue remains stable when the service times are generated
according to B. Then, (8) holds. W

B. General Markov chain models

The convergence results of Section III can be extended to more general models than the GI/G/1
queue. Consider for example a general discrete-time Markov chain model parametrized by 6.
Let oy(8,s) = C(6) + w:(6,s)/t be the expected average cost per step for the first ¢ steps, if
the initial state is s. Suppose that (8-9) hold (which implies that the derivative exists), that
a(8) = C(8) + w() is strictly unimodal, and that an unbiased LR or IPA derivative estimator for
w}(8, s) is available. If the variance of the LR estimator is in O(t), then Proposition 5 (a) applies,
while if the variance of the IPA estimator is in O(1/t), then Proposition 6 (a) applies. Further,
if the system is regenerative, and if unbiased LR estimators are available for the derivative of the
expected (regenerative) cycle length and the derivative of the expected cost per cycle, then one can
construct an estimator for w’() as in (30). If that estimator has bounded variance and converges
in expectation to w(#) uniformly in 6, as r — oo, then Proposition 5 (b) applies. If a FD or
FDC estimator is used and if w(-) and wy(-,s) are continuously differentiable (for each s), then
Proposition 3 applies.

One can also consider continuous-time models, in which costs are incurred continuously, models
with discounting, etc. All this generalizes to the setup of Appendix I, where # is a vector of
parameters. Derivatives are then replaced by gradients.
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VI. CONCLUSION

Through a simple example, we have seen how a derivative estimation technique, such as FD, IPA,
or LR, can be incorporated into a stochastic approximation algorithm to get a provably convergent
stochastic optimization method. We also pointed out some dangers associated with different kinds
of bias. For the example considered, IPA gave the best results, but this may not be true in general.

The performance of these algorithms when there are many parameters to optimize, the incor-
poration of proper variance reduction techniques, and the study of convergence rates, are other
interesting subjects for further investigation. In principle, IPA and LR can be used to estimate
higher order derivatives, but the variance is typically quite high. Is it too high to permit the imple-
mentation of good second order algorithms based on these estimates 7 Again, further investigation
is needed.
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APPENDIX I. SUFFICIENT CONVERGENCE CONDITIONS

In this appendix, we give sufficient conditions for the convergence of the SA algorithm (6) to an
optimum. The first set of conditions implies almost sure convergence, whereas the second set
implies weak convergence. These conditions are adaptated from [23, 25].

In what follows, we assume that © is a compact and convex set of the form © = {0 € R? |
g(8) < 0}, equal to the closure of its interior, where ¢ is a k4-dimensional vector of continuously
differentiable functions (constraints), as in [32, chap.10], and at any point on the boundary of O,
the gradients of the active constraints are linearly independent. We want to minimize the function
a:0 — IR, over ©. We assume that there is a companion stochastic process {s,, n > 1}, defined
over some Borel space S, and a family of probability measures {Ps s, (0,5) € © x S}, such that
P[(Yn+1,Sn+1) € | (On,sn) = (8,8)] = Py qf-] for all » > 1. Let E,_1, B,, and €, be defined as in
Section 2.

Define z, = 3%, 7% and m(z) = max{n | z, < 2} for 2 > 0. Let 2° : [0,00) — IR? be the
piecewise linear interpolation of the set of points {(zy,8,),n > 1}, and z" the left shift of 20 defined
by z"(z) = %z + 2z,,), for z > 0. Hence, 2"(0) = 2o(2,) = 0, and if 2™ converges to a limit z, the
asymptotic properties of z(z) as z — oo can provide information on the asymptotic behavior of 8,
as n — oco. For any function v : @ — IR?, define (when the limit exists):

#(v(0)) = lim (”@(‘9 6 v(0) = 9). (45)

§—0+ §

Consider the differential equation
z'(z) = 7(—v(2(2)))- (46)
The theorems below give conditions under which as n — oo, ™ converges in some sense to a

solution of (46) for a proper v. This convergence property permits one to analyze the behavior of
{0,,n > 1}. We give a list of assumptions that will be used selectively in the next two theorems.

S1. Forall n > 1, ¥, > Yn41 > 0, and Y02, vn = 00.

S2. limy,— 0 Br = 0 almost surely.
S3. Foreach T > 0 and € > 0,

m(§T+z)-1

lim P ( sup Vi€

n—0o i>n, z2<T

> e) =0. (47)

i=m(;T)

S4. There is a positive sequence {6,, n > 1} such that Eo[e]e,] < 1/62 and Y02, (7n/6,)? < oo.

S5. There is a #* € O, an asymptotically stable point of z/(z) = #(—a/(¢(2))), with domain of
attraction D4(6*) (in the sense of Liapounov), and almost surely, infinitely many 6, belong
to D A(e*). \

Theorem 1. (Kushner and Clark). Assume S1 to S3. Then, almost surely, z° is uniformly con-
tinuous on [0,00) and any limit z of a convergent subsequence of {z™,n > 1} satisfies (46) with

v=«o!. If 8* also satisfies S5, then lim,_, o 8, = 0* almost surely. 1
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Theorem 1 is proved in [23, Theorem 5.3.1]. Condition S3 is quite general, but has low intuitive
appeal. The theorem below uses a more restrictive but more “familiar” condition. It is a variant
of Proposition F in section II of [34].

Theorem 2. Under conditions S1, §2, S4 and S5, SA converges almost surely to 6*.

PROOF. It suffices to show that S3 holds, and the result will follow from part (b) of the previous
Theorem. Note that under S4, for each n, the sequence {37, vi€i, j > 1} is a martingale. For
each € > 0, from Doob’s inequality and from S4, we have

;
P (sup > e
i>n

i=n
for some constant K. This upper bound goes to zero as n — oo. Hence, we obtain condition
A2.2.4" of [23], which implies S4. W

Often, S2 is not satisfied. But if Eo[83,] — 0 as n — 00, the algorithm should converge as well
to the optimum. This is addressed by the following (weaker) results. Theorem 3 follows easily from
the results of [25], while Theorem 4 is an adaptation of the second part of Theorem 4.2.1 in [23],
and can be proved in the same way (note that in the last paragraph of the proof of Theorem 4.2.1
in [23], the max should be replaced by a min). We give a new list of assumptions.

K& K &
> 6) <3 > ¥ Eq[ee) < g?’(’ﬁ/&)z- (48)

i=n

W1. Denote &, = (Y, 8n41) € R X S. Assume that Py, is weakly continuous in (6,s) and that
E[Ynic | (6n,8,) = (6,3)] is continuous in (6, s), for some integer ¢ > 0. Assume that for each
fixed 8 € O, i.e. if v, = 0 for all n, {£,,n > 1} is a Markov process with unique invariant
measure PP and corresponding mathematical expectation EY. Denote v(f) = E®(Y,). Let
{P?,6 ¢ O} and {£,,n > 1} be tight (the latter uniformly over 8 and s; see [25]).

W2. For each compact C C IR x S, there is an integer nc < oo such that for each T > 0, the set
of probability measures {P[(0n4j;&ntj-1) € - | On = 0,60 = £,0€0,6€C,n2>21,j52
ng, Yot +17 < T, C compact subset of S} is tight.

W3. For some constant & > 0, sup,>; Eol|Ya|'*"] < co.
W4. v, > 0 for all n, limy 00 ¥n = 0, 1.°2, ¥ = 00 and 352, [Yn41 — Ynl < 0.

W5. There is a 8* € O, an asymptotically stable point of #'(z) = 7(—v(z(2))), with domain of
attraction D4(6*) = O.

Theorem 3. Under Assumptions W1—W/, {z",n > 1} is tight and any weak limit of one of.
its subsequences satisfies the projected differential equation (46) almost everywhere with probability
one. Also, v(6) is continuous in 0.

PROOF. This follows from Theorems 1 and 4 and the remarks that follow Theorem 4 in [25].
] \

Theorem 4. Under Assumptions W1—WS5, 8, converges to §* in probability, i.e. for each ¢ > 0,
limy, 00 P(||6n — 0*|| > €)=0. N

25



APPENDIX II. SOME CONVERGENCE PROOFS

In this Appendix, we prove that under Assumption 1, LR and IPA provide unbiased estimators
for w}(8, s), the derivative of the expected total sojourn time of the first ¢ customers. We obtain
variance bounds for these derivative estimators and for their regenerative counterparts, which are
asymptotically unbiased and converge in quadratic mean, uniformly in 6. Recall that uniform
convergence in quadratic mean implies uniform convergence in expectaton. We also show that
wy(+,s) and w(-) are continuously differentiable, and that (8-9) hold. We then prove Propositions
3, and 5 to 9. Along the road, we obtain a few additional characterizations of w;, w}, w, and w'.

Proposition 10. Under Assumption 1, one has

sup Eg[¢F + 7% < o0
k<8, 0€®

PROOF. From Assumption 1 (i) and (iv), Es[¢®] = [5°(02)3b(2)dz < (uo)® [5° 2%b(2)dz < oo.
In particular, Ey[¢8] < oco. Then, from Theorem I1.3.1 (i) in [18], one has Eyy[r®] < co. This
implies that E,,[¢¥ + 7] < oo for each k < 8. Now, we will argue that { and 7 are stochastically
non-decreasing in #. From that and from basic stochastic ordering principles [45], the result will
follow automatically. Let w represent the underlying sequence of U(0,1) variates. For w fixed,
each ¢; is (linearly) increasing in f. But increasing any service time cannot increase the number of
customers in the first busy cycle. Therefore, ¢ and 7 are stochastically non-decreasing in 6. N

Proposition 11. Consider the truncated horizon LR derivative estimator (22), under Assumption
1. For each 0y € ©, there is a neighborhood Y of 8y such that for all (0,5) € T x §, (22) is an
unbiased estimator of w}(0,s). Further, for (6, .s) in © x §, wy(-,8) is differentiable and wi(9,s) is
continuous (jointly) in (6, s).

PROOF. For fixed w, h;(8, s,w) does not depend on 8. Since each by({;) = b((;/0)/8 is assumed
differentiable in §, Assumption A2 (a)in [29] is satisfied. Observe that for each i, W; < s+ 22—1 i

0 that he(6, 5,0) = Yhey (Wi + ) < ¢ (54 ey &) Then,
t 2 t 2 t
(h(8,s,w))? < 12 (s + EQ) <22 |2+ (Z (,-) <2252+ 2633 .
i=1 =1 =1

Let K > 1 and € > 0 satisfy Assumption 1 (iii). Let § = 8p + €. Then,

[ '3—b0(6))2 bG(C) 2 ,
' 5 he (0, s,w
Ee ‘IG_S£F<EO ( bg(C) * |9-—S€o|p<eo (ba_(C)) + (h (0 )) :|

[ be(¢) a%ba(())2 K2 2.2 3 a2
o 501;})«0 (bg(C) “0) + K* + 2t%s" + 2t ; a(¢)

IA
&

IA

E; |[K? sup ( 9 lnbg(C)) ] + K2 + 2t%s% 4+ 2t* E5(¢?)
lo—o]<eo \ 00
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This implies A2 (b) in [29] with ¢ = bs. Therefore, from Proposition 2 of [29], the conclusion
follows, except for the joint continuity of w}(6, s). For fixed w, it is easily seen, by induction on 2,
that each W7 is continuous in s. Indeed, this is clearly true for ¢ = 1, since Wy = s+ ;. It W
is continuous in s, then W, = (W# — v;)* + (; is also continuous in s, since v; does not depend
on s. This implies that for fixed w, h4(8, s,w) is continuous in s (and constant in §). Also, from
Assumption 1 (i) and (ii), S:(6,s,w) and Ly(Py,,s,0,s,w) are continuous in 6 and constant in s.
Therefore, 1:(0, s,w) defined in (22) is continuous in (6, s). (Recall that the product of continuous
functions is continuous; see Theorem 4.10 (b) of [40]). Let sp > 0 and assume that (0, s) remains
in (8o — €0, 00+ €0) X S when taking the limit. The first part of the proof and Proposition 2 of [29]
also implies that 94(0, s,w) < T'(w) in some neighborhood of (6, s0), where I'(w) is integrable with
respect to Pj. As a consequence, we can apply Lebesgues’s dominated convergence theorem,

1i A 0, = i E5 9, ,
(evs)""l(léﬂyso) wt( S) (9,3)-—-»]:(%0,50) 0[1'bt( s w)]

I 0.5,
7 | 0.1 B ) P10 5)

= Ez[%:(80, s0,w)] = wi(o, s0)-

If 59 = 0, the convergence of s to sp should be interpreted as convergence from the right. This can
be done for each (6o, o) € © X S, which completes the proof. N

Proposition 12. Under Assumption 1, u(6), £(0), and w(#) are finite and continuously differen-
tiable in 8, for 6 € ©. Also, 1, (0,w) and 1¢(0,w), defined in (28) and (29), are unbiased estimators
of w'(0) and £/(0), respectively, for 6 in a small enough neighborhood of 6.

PROOF. We first prove the second part of the proposition and for that, we will use Proposition
3 of [29]. For fixed w, 7 and °7_; W do not depend on 6. Therefore, 7, -7, W, and each bg((;)
are differentiable in @ everywhere in @. This implies Assumption A2 (a) in [29] with ¢ replaced by
T.

From Assumption 1 (ii), there is an § > 0 such that for all s that satisfy sup < 3, E, [esf} =

E, [es“"(] < 00. Then, from Theorem IIL.3.2 in [18], page 81, there is an ¢ > 0 such that

E,, [e617] < co. In words, the service time distribution and the number of customers in a busy
period have finite moment generating functions in a neighborhood of zero. Let 0 < K < e /8, &
satisfy Assumption 1 (iii), and § = 6 + €o. One has

. ba(C))s o ar
su < K S ef?
i=III |9—‘90F<50 (bé(o -

and, since 7 is stochastically non-decreasing in 0,

By [K¥7] < Egle7] < Eup[e77] < co.

From Proposition 10 (used in the last inequality) and Theorem 1.5.2 in 18, p,22] (used in the
next to last inequality), there is a constant K7 < oo such that
r 4
i=1

)

=1

Ey [(h:(8,0,0))"] < Ep <Ej
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IN

Ej[78] + Ej

)]

< Eglr®)+ Ki(Egr®| E5¢*))'? < oo

- (g-o-bo(of
lo=bol<eo \ 2a(C)
0
Eg[T]E@ [K4 19_391;&50 (69 In bg(C)) ]

Then, all the requirements of Assumption A3 in [29] are satisfied, with h(f,w) there replaced
by either 7 or 37, W (which here do not depend on 6 for w fixed), and I'1;(¢) = K®. This
holds in a neighborhood of 8y for each 6y € ©. This implies the result, except for the continuous
differentiability of w. But the latter follows from (25) and the continuous differentiability of u and

L. 1

From Wald’s equation and Assumption 1 (ii),

T 3 N
S sup (—————W”"(CJ))] = BB

E_
6 j=1 |60—6o|<e0 bg(CJ)

IA

Proposition 13. For each (8,s) € © x §, the IPA estimator (34) is an unbiased estimator of
wy(8, s).

PROOF. For fixed w (viewed as equivalent to a sequence of independent U(0,1) variates),
hi(8,s,w) is continuous in each (j, and therefore continuous in § from Assumption 1 (i). It is also
differentiable in § everywhere except when two events (arrival or departure) occur simultaneously,
which happens at most for a finite number of values of §. One has

hi(8,s,w)| < EZ <ty Z;.

=1 j=1 7=1

2871(0;)

For fixed ¢, from Proposition 10, Ey [t E§-=1 Zj] = t2§=1 E1[¢;] < oo. Then, from Theorem 1 in
[27], h4(8, s,w) is an unbiased estimator of w}(6,s). N

Proposition 14. Under Assumption 1, wy(8,0)/t and wj(6,0)/t are non-decreasing in t.

PROOF. We use stochastic order arguments [45, Section 11.4]. For s = 0, and fixed w (repre-
senting the underlying sequence of uniform variates), consider the cost estimator (3) and the IPA
derivative estimator (34). For i > 1, from Proposition 13, W} and ZJ_U Z; are unbiased estimators
of the expected sojourn time of customer ¢ and of its derivative, respectlvely To obtain estimators
of the corresponding quantities for customer 4 + 1, the straightforward way is simply to replace ¢
by i + 1 in the above expressions. But what we will do, rather, is to augment the sample path by
adding a customer at the beginning. This will permit us to exploit stochastic ordering. Add a new
customer before customer 1 and call it customer 0. Generate a new service time (o = 0Zg and a new
interarrival time vg, according to the distributions A and By, respectively. For ¢ > 1, let v; =0 if
and only if customer i (which is now the (i+1)-th customer) is in the same busy period as customer
0 in this new (augmented) sample path. Otherwise, v; remains the same as in (34). In the latter
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case, W;* and E.;_v Z; (the inside sum in (34)) also remain the same. On the other hand, if v; is
now 0, W} and ZJ_U Z; are increased by (o—vo > 0 and Zp > 0, respectively. But the values of W}
and EJ_v Z; for the new sample path have in fact the same distribution as Wi, and E;—I——-};, + Z;
for the omgznal sample path. This means that these expressions are stochastically non-decreasing
in ¢, which implies that their expectations, namely Ego[W{] and Ejp [EJ_,,‘ J] = 5 Ego[W;]
(from Proposition 13), are non-decreasing in i. Then, the averages w(6,0)/t = Sty Epo[Wi]/t

and w}(6,0)/t = ¢, 5 Eso[W#]/t are non-decreasing in t. B

Observe that the result of the previous proposition is not true in general, for s # 0.

Proposition 15. Under Assumption 1, w() and w:(8,s), for each t > 1 and s € §, are non-
decreasing and convez in 6.

PROOF. Since {; = #Z; and from (2), it is easily seen that (for fixed Z;’s) each W; and W
is non-decreasing and convex in 8. Therefore, for each (s,t), w:(8, s) is non-decreasing and convex
in 6. This implies that w() = lim;— e w(6,s)/t is also non-decreasing and convex in 6. From
Assumption 1 (v), it follows that a(8) is strictly convex. W

Proposition 16. For a given regenerative cycle, let T be the number of customers in that cycle
and h,.(8,0,w) as in (38). Under Assumption 1, one has

Eq[h:(8,0 w)]

w'(f) = — 22—~ 49

(0)= 2 (49)

PROOF. From Proposition 13 (for the first equality), and the expected value version of the
renewal-reward Theorem [45] (for the second one), one has

g 2H6,0) _ . Ea[i(8,0,w)] _ Eo[hz(6,0,w)]

0
t—o0 t t—00 t EB [T] (5 )

It now remains to show that the latter ratio is equal to w’(#). For that, we will show that the ratio
is continuous in #. Then, since w}(#,0) is continuous in § (Propositions 11), and since w;(6,0)/t is
non-decreasing in ¢ (Proposition 14), it follows from the Theorem of Dini (40, Theorem 7.13] that
the convergence in (50) is uniform:

! !
hm sup wt(e,o) i Eg [h7(0,0,w)]

=0. 51

From Theorem 7.17 in [40] and since w;(8,0)/t converges to w(f), this implies that the limit in (50) '
must be equal to w'(f).

We still have to show that the ratio of expectations is continuous in . We have already shown in
Proposition 12 the continuity of Eg[r] = £(1). We can prove the continuity of the other expectation
in a similar way, as follows. From Proposition 10, Assumption 1 (iv), and Theorem 1.5.2 in [18],
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: 4
there is a constant 1 < K < oo, independent of 8, such that Eg[r%] < K and Ey [(E;ﬂ Zj> ] <K.
Then,
1/2

2
Eg[(R.(0,0,w))] < Eg|r? (Ezj) < | Eo[m4)Es (Zz) <K. (52
Jj=1

(This bound will also be re-used in a later proof.) Now, by simulating for one regenerative cycle at
6 = 6y, one can estimate Ey[h!(8,0,w)] by using a likelihood ratio:

(1_1 ) ) ZZZ]

i=1j=1

Eb’[hfr(o’ 0, w)] = Eg

Since this estimator (inside the brackets) is continuous in #, from (52) and Lebesgue’s dominated
convergence Theorem, it follows that the expectation is also continuous in 6. B

Proposition 17. Under Assumption 1, (8-9) hold.

PROOF. First recall that from renewal theory [2, 45], for fixed (f,s) € © x §, one has
limy_,oo wi(6, 8)/t = w(#), which is pointwise convergence. But we want uniform convergence.
We will first prove (8), and then (9), under the assumption that 5§ = {0}. Then, we will generalize.

Let § = {0}. From the pointwise convergence, since wy(f,0) and w(f) are continuous in §
(Propositions 11 and 12), and since wy(6,0)/t is non-decreasing in ¢ (Proposition 14), it follows
from the Theorem of Dini [40, Theorem 7.13] that

lim sup |wy(6,0)/t — w(f)| =
t—00 6ed

We have already shown the analogue for the derivative in (51).

Now, let § = [0,¢] for ¢ > 0. Recall that (3) and (34) give unbiased estimators for w;(6,s)
and w)(d,s). Since these estimators are non-decreasing in s (trivial to verify; in (34), each v; is
non-increasing in s), wy(6, s) and wj(8, s) are both non-decreasing in s. For the moment, assume
that there is an infinite stream of customers (not just t), and let 7* denote the index of the last
customer in the first busy cycle, i.e., 7* = min{z > 1 | W;41 = 0}. Note that 7* is a stopping time
with respect to {F;, t > 1}. From Proposition 10, Fy,[(?] < 00, so that from Theorem I11.3.1 (i) in
[18], Ev, ¢[(T*)?] < 0o. Therefore, Eg c[(7*)?] is bounded uniformly in 6, because 7* is stochastically
non-decreasing in 8. We want to bound |w;(8, s) — w(8,0)| by a constant K3 that does not depend
on ¢t and s. For any given t > 1, let 7 = min(7*,t). For s = ¢, one has

Zm* — Zt (C+ECJ‘)
j=1

=1 =1
.
< er*+1* E ¢ .
j=1
T* 2
< e+ () + (Z Cj)
j=1
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and, using Theorem 1.5.2 in [18],

< Fy. [cr* + (T*)zl + K2E0,C[(T*)2]E9,C[C]2] <

W

i=1

Eﬁ,c

for some finite constants K, and K3. Also,

t
Z Wi* T

— {wt_T*(o, 0) S 'lUt(o, 0) if 7* < t,
t=7*+1 0

otherwise.

(Here, the sum is defined to be 0 whenever 7* + 1 > t.) Therefore,

wt(0,0) < 'wt(0 S) < wt(0 C)

= Fg. ZW* + Z 1W*:|
=7+

t

2, wr

:
= Fy Zm*+E0,c

[ i=1 =1 +1
< K3+ w(6,0).
Then,
- 0
sup wt(o 3) ,w(e)‘ < ~ sup <wt(0"9) wt(o,o) + wt( 70)__w(g)|>
6€0,5€3 0€0,5€3 t t
t  eosesl 1

converges to zero as t — co. This proves (8).

The proof of (9) is similar. For s = ¢, one has

Tr g ™ T* 2
Y Zi<m Yy Z;i < (M) + (sz)
j=1

i=1 ;=1 i=1
From Theorem 1.5.2 in [18], there are then finite constants K4 and K5 such that

£y

1=1 5=1

Ep, < Fpe [(7)?] + KaBo [(7*)?)Eo o[ 23] < K.

Also, since w}(0,0) is non-decreasing in t,

™| = wi_,.(6,0) < w)(8,0)
i=r*+1 j=1
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if #* < t, and is zero otherwise. Therefore,

w(6,0) < wj(8,s) < wif,e)

= Ep. Ziz + Z ZZ‘

L i=1 j=1 =1} +15=1

7

K t
= E9,c ZZZj+E0,c[ Z ZJ

| i=1 j=1 i=rr+15=1
< Ks+ wj(6,0).

g

This, with the uniform convergence for s = 0, implies (9). B

Proposition 18. Consider the LR estimator (22), under Assumption 1. Then,

2
sup  Ep, [———¢t(‘9t;s’w)
9€0, s<c, t>1
PROOF. We will first show that
sup Eg[df] < oo. (53)

6e®d

Let K > 1. From Assumption 1 (iii), for each 6y € O, there is an open interval Y(6p) = (6o —
€0,00 + €0) and a constant K(f) < oo such that

4
Eg | sup (;alnbe(C)) ] < K(6o),

6€Y (o)

where § = 0y + €. It follows that

9 459(4)}
4 i
0:;1(;;0)15‘9[61,] esggo)Ea [( In be(C)) b3(0)
9
< Kb [065‘}1(%0) (550) l
< KK(bo).

Now, {Y(6), 6o € O} is a family of open sets that covers ©. Since © is compact, there is a finite
subset of that family, say {T(8M),..., T(8™))}, that covers O, and one has

sup Ey[df] < max KE(6%) < oo.
) 1<ig

Since Eg[¢#] < oo (Proposition 10), from section VIIL.2 of [2], since Eg [(W)*] < Eg [(W7)*],
and from (53), there exists a constant § < oo such that

sup  Egs[(W))* +df] <6
8€0, s<c, i>1
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Recall that E[d;] = 0 and that the d;’s are independent. Then, using Cauchy-Schwartz inequality,
one gets

t 2 /4 2
B [$3(8,5,w)] = Ep, (ZW:‘) (Zdj)

=1 j=1
= " 4 " 4 1/2
< |Egs (ZW,*) Eos | D d;
=1 j=1
_ a1/2
< sup Ey s((W*)4)ZZEG s(dzdjz- :l
=1 j=1
< [t46t26]1/2 = 135. 1

Proposition 19. Consider the regenerative LR estimator (30), with r regenerative cycles. Suppose
that Assumption 1 holds and that
sup Ey [ds] < 00. (54)
6€0
Then, as T — oo, that estimator has bounded variance and converges in quadratic mean to w'(9),
uniformly with respect to 8 in ©.

PROOF. Here, almost sure convergence follows easily from the law of large numbers applied to
each sum divided by r. But uniform convergence in expectation is more difficult to prove. What we
will show is that the estimator (30), minus w'(#), converges to zero in quadratic mean, uniformly
in 6. This implies our results.

For a given regenerative cycle, let 7 be the number of customers in that cycle. One has
5+(0,0,w) = ¥ 71 d; and h,(6,0,w) = Y7y W < 73774 (. From Proposition 10 and Theo-
rem 1.5.2 in [18], there is a constant K independent of §, 1 < K <-oco such that Eg[r®] < K,

Ey [(Ejf_zl Cj)s] < K, and Ey [(E;f:l dj)s] < K. Then,

1/2

4
Eg[(hr(8,0,w))*] < Eg |7* (Z gj) < | Eolr®|Eq (Z CJ) <K.
J=1 j=1
Define A;; = h;S; — w(0)7;S; — w'(6)7; and Ag; = hj — w(0)7;. Note that Eg[Ay;] = Eg[Az;] = 0,
since w(8) = Eg[h;]/Ee[r;] and w'(0) = (Eg[h;S;] — w(B)Eg[TJ 1)/ Es[7;] (from Proposition 12).
Also, since Eg[r;] > 1 (used in the first two lines) and Eg[Az;] = 0 (used in the last line), we have

w(8) < Eolh;] < (Eg[hd))!/* < K4,
w'(0) < Eﬁ[hJSJ]_w(e)EG[TJSJ]
< |Eg[h;S;]| + w(B)| Eolr; S]]
< (EaW3SI)Y? + KA Eg[ri ST
< (Bl b)Y A(Eo[S)Y/® + K4 Eglrf)Eq[S5])/®
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E

K3/8+K1/2 < 2K1/2,

Eg[A%;] 2Eg[h%S7] + 4w?(0)Eo[r?57] + 4(w'(6))* Eq[77]

IAN A A IA

2K3/4 4 4K + 16K%/* < 22K5/4,
Ey[(h; — w(8)7;)*]

8Eg[h3] + 8(w(6))* Eg[r?]

8K + 8K - KY? < 16K3/2,

Ey[A3;]

(tEm)]

IA A

Ey

0

i=1j=1

Keeping in mind that 7; > 1 and E4[A;;] = 0 for each j, one then has

As 7 goes to infinity, this clearly converges to zero uniformly in 6. These inequalities also provide

- 12
> hiSi D hi Y miS;
P - e — /(0)
2T .
j=1 ! (; T])
1 r r r r -1 7 T T
S ,Ea ‘; Zhij—w(a)ETij—w'(e)ZTj-{- E‘rj w(O)Erj —-Zhj ZT]'S]'
' j=1 i=1 i=1 j=1 j=1 =1 j=1
1< ’ 1< e ’
< 2B [ =) Ay ) | +2Es |2 Az) [2D-7S
= Ti= Ti=
4 AN 1/2
2 9 1 r 1 T
< ZEfAL]+ 2| Eo | (=D A2 [ Eo || =D S
T r j=1 T j:l
2 16 K3/ 172
< ;EQ[A%j]+2 ( 2 Eg[T;S; )
< 2

~(22K°/* + 16K°1*K/?) < T6K/4/r.

a uniform upper bound of 76 K5/4/r on the variance of (30). N

Proposition 20. Suppose that Assumption 1 holds, that the system was originally started from
the empty state s = 0, and that the service time of the j-th customer overall has distribution By,
with 6; € ©. The 0;’s can be different and might even be random, but we assume in that case that
0; is F;_1-measurable for each j and that 8; € © with probability one. Then, By, must be viewed
as the service time distribution of customer j conditional on 8;, i.e. conditional on the past. Let v;

34

2 Eg[h]) 2 (ol SF1)* + 4K 2 (Eo[ 1 Eo[SFN)!/* + 16K (Eo[r}])!/*

;1322 AgiAgj) < T—lee[A‘é,-] < 16K3/%/r2.
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be defined as in (34). Then, there is a constant K < oo such that

k+t I
sup E ( Z ZZ) < K. (55)

k20, 121 i=k+1 j=v;

Here, E denotes the ezpectation associated with the above sequence of 0;’s and we assume that it
15 well defined.

PROOF. Suppose first that we use the service time distribution B,, for all the customers,
namely (; = uoZ;. Then, the queue is a stable regenerative system [2, Chap. VIII]. Let 7 be
the number of customers in a regenerative cycle (say, the first one). From Assumption 1 and
Proposition 10,

Eu [t + 2% < oo. (56)

For each customer %, define
Z Z
=g

and let us view for the moment £? as a “cost” associated to customer . The expected “cost” per
regenerative cycle is then, using Theorem 1.5.2 in [18].

n[d = o)

1=1

1/2
()
t=1
< (Bulr)KiBulr1E[24)
< K

for some finite constants K7 and K. From the renewal-reward theorem [45], one then has

t—»oo t

ZEUO ‘512]— up [Z&‘l /Euo[T :e SK (57)

It has been shown in the proof of Proposition 14 that &; is stochastically non-decreasing in ¢. This
implies that E,,[£?] is non-decreasing in i. Using (57), it follows that Ey,[£2] < lim; oo By [€7] =
K <K.

Now, we will complete the proof using stochastic ordering arguments similar to those used in
the proof of Proposition 10. For a given sequence of underlying uniform variates, increasing 6;
increases the service time of customer j and does not affect the other service and interarrival times.
Clearly, increasing a service time can never split a busy period, i.e. can never increase any v;.
Therefore, T and each §; are stochastically non-decreasing in each ;. Since 8; < ug for each j,
&; generated under the assumptions of the proposition is stochastically dominated by &; generated
under the assumption that §; = wg for all j. This implies that E[¢?] < Ey[€?] < K, where E
is the same as in (55). The expectation in (55), which is the second moment of the average of
Ek+1s- - +5€ktt, is then bounded by K. B
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Proposition 21. Asr — 0o, (39) has bounded variance and converges in quadratic mean to w' (6),
" uniformly with respect to 0.

PROOF. Let K be as in the proof of Proposition 16. Then, from (52) and since 7 > 1,
w'(6) < Ey [|B,(6,0,w)[] < K/, (58)
For j =1,...,r, define A; = h, — w'(f)7;. These A;’s are i.i.d. and, from Proposition 16,

E4[A;] = Eg[hf] — w'(6)Es[rj] = 0.

Also,
EolA2) < 2(Eaf(})?] + (w/(0))2 Eofr]) < 2(K + K*/?)
and, for j # 1,
Eg[A;Ai] = Eg[A;]Eq[Ai] = 0.
Then,

T
P

< (S (B — w'(0)7r:)]?
Ep 3-;1 “w,(g) = E; 2_7—1( ]T w( )TJ)]
2i=1Ti
2 '
Jj=1
) . \
< B f|-2 A
Jj=1
< gy a| =ik [42] < 4K®2/r
_T26j=1j_7'9j_ .

As r goes to infinity, this converges to zero uniformly in 6. This also provides a uniform upper
bound of 4K3/2 on the variance of (39).

PROOF of Proposition 3. We will show that the mean-square error of h;(6,s,w)/t is in
the order of 1/t, uniformly in (8,s). From that, E,_1[¢2], which is the variance of Yy, is in the
order of t;1¢;2 and "2, En_1[€2]n~% < oo with probability one. Then, from Proposition 17,
lim,_.co BF = 0 with probability one and the result follows from Proposition 1.

We now bound the mean-square error. We convene that the j-th busy cycle ends when the
system empties out for the j-th time and that the first “busy cycle” starts with customer 1. So,
when s # 0, the first “busy cycle” does not obey the same prébability law than the other ones, but
all these busy cycles are nevertheless independent. For j > 1, let 7; be the number of customers
in the j-th busy cycle, h; the total sojourn time of those 7; customers, and A; = h; — w(@)r;. For
j > 2, one has Eg[A;] = 0 and, from the proof of Proposition 19, there are finite constants K;
and K, independent of 8 such that w(6) < Ky and Eg[A%] < Eg[h? + Kir7] < K,. For j =1, by
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the same kind of argument as in the proof of Proposition 17, the are finite constants K3 and K4
independent of @ such that

Eaas [Tf]

IA

Ks;
2

A

( 0\’
Epslhl] < Ege||len+7E+ (Z Cj)
A

4
T1
< 3Epc |eri+ 1+ (Z {j) < K,

i=1

Then, there is a finite constant K such that
Eoo[A} + h] < Eg,[2h3 + (w(6))*r{] < K.

Let M(t) = sup{i > 0 | Ej-=1 7; < t} be the number of busy cycles completed when the ¢-th

customer leaves and A(t) = Zj]‘i(lt)"'l 7j. Applying Wald’s equation and observing that M(?) < ¢

(for the last two inequalities), one obtains:

Ey,s l(ﬂﬂ,t.s;w) - w(0)> 2]

: 2
= [(%Z(W:—ww))) ‘

i=1
1 [/ /M) A(t) 2
< B, (( > A,.)_ S (W7 - w(®))
7=1 t=141
[ /M@)+1 2
2 2 2
< EEEG,s ( > Aj) +(hM(t)+1) +(w(9)TM(t)+1)
i=1
9 FM(t)+1 M(t)+1
< ;2—}_‘79,3 2 A.;Aj-l- E (h?+w2(0)1-j2)
| 4,J=1 j=1
9 [ M(t)+1 M(t)+1 M(t)+1
< B |[Al+hi 240 Y A+ Y0 A4+ Y (B +07(0))
i =2 i,j=2 i=1
2
< = [ B [A2 + 1] + 20, A1) ool M(8)) Bl o

+Ks + Eo ol M(1)| Ego 43 + b + w?(8)r3]]
2
< t_2[2K5+tK2] €O0(1/t). n
PROOF of Proposition 5. From Proposition 11, 9;,(0y, $n,w,) is an unbiased estimator
of w} (0, sn), so that F = 0. From Proposition 17, we know that 8, = BE — 0 when t, — 0.

From Proposition 18, there exists a constant K such that E,_i[€2] < Kt, for all n. Therefore,
S0 Epq[e2ln=? < 722, Kt,n~? < oo. The first result then follows from Proposition 1.
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For the regenerative case, it is shown in Proposition 19 that as the number of regenerative
cycles t, — oo, the expression (30) has bounded variance and converges in quadratic mean to
w'(#), uniformly in 8. This implies uniform convergence in expectation. Then, lim, . 8 = 0, the
variance of Y}, is uniformly bounded, and Proposition 1 applies. B

PROOF of Proposition 6. From Proposition 13, b} (8, Sn,ws) is an unbiased estimator of
w} (0,,5n), so that B2 = 0. From Proposition 17, we know that 3, = BE — 0 when ¢, — 0. From
Proposition 20, the variance of A} (6y,sn,wn) (conditional on s; = 0) is bounded uniformly in 6,
and t, (even when 8 varies between customers and iterations). The first result then follows from
Proposition 1.

For the regenerative case, it is shown in Proposition 21 that as the number of regenerative
cycles t, — oo, the expression (39) has bounded variance and converges in quadratic mean to
w'(6), uniformly in 8. This implies uniform convergence in expectation. Then, lim;—,c 8, = 0, the
variance of Y,, is uniformly bounded, and Proposition 1 applies. &

PROOTF of Proposition 7. For the proof of this proposition, we will redefine differently the
state of the Markov chain. Remove the restriction s,, < ¢ and redefine the system state at iteration
n as s, = (Tn,an), Where z, is the sojourn time of the last customer of iteration n — 1 (21 = 0),
and a, is the value of the IPA accumulator at the beginning of iteration n. Here, we assume
that the arrival time of the first customer of an iteration is “unknown” (not part of the state) at
the beginning of the iteration. We do that in order to facilitate the verification of the continuity
conditions required in W1 of Appendix I. Let s = (z, a) be the system state at the beginning of an
iteration, k} be defined as in (36),

t i
Yr=aki+) Y Z; | (59)

i=1 j=v;

and

J=vt

§= (1/)*, Wi, I(kf = t)a + Zt: Zj) : (60)

Here, 1* is the value of the IPA estimator (37), while the other two components of £ give the initial
state for the next iteration. If the current iteration is iteration n, then (0,z,a) = (6, 2n,a,) and
£ =&, = (Y%, Tnt1, ans1). We need to verify assumptions W1 to W5 of Appendix I and the result
will follow from Theorem 4. Since t, is fixed at ¢, Py zq(én € ) does not depend on n.

To prove the weak continuity, let g : IR® — IR be continuous and bounded in absolute value by
a constant K,. We need to show that Ej,,[g(£)] is continuous in (8,z,a). Let 6o € ©, K > 1,
and € and Y as in Assumption 1 (iii). Let 8 = 6y + €0, 2o > 0, and ao > 0. Now, for |0 — 6| < €0,
z > 0 and a > 0, define \

=1 j=u; J=vt

t : t i b 5
AB,z,a,w0) = g (ak;‘ + E Z Z;, W, I(k; = t)a + E Zj) ]___[ b;gé;
=1 t

t i t tp .
-9 (aokzo + Z Z Zj, VV;:O’ I(kf,o = t)ao + Z Zj) H bof((é))’

i=1 j=vwipo J=vt,0
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where kth v, and Wy, are the respective values of k}, v;, and W} when 2 is replaced by zo
and w = (vo,(1,...,%-1,(;) Temains the same. We assume that w is generated using d, ie. that
(i = 0Z; for each i. Let I(z,z0) = 1 if v; ¢ # v; for at least one %, and I(z, o) = 0 otherwise. Note
that I(z,2o) = 0 implies that kfo = k7. Also,

Vo —$o+Z(VJ ¢s)

j=1

< |.'E _ :l?ol}

i
Pi(I(@,0)=1) < 3By

t
= Y E;|FP;
i=1

lvo — o + 2| < |z — o

E:(Vj - ()= Z”

i=1

< 2tK,|z — zo|,

where Ej integrates over the values of z, and K, is a bound on the density of the interarrival time
vo. Conditional on I(z,zo) = 0, A(6, z,a,w) is continuous in (8, z, a), because g is continuous, Wy
is continuous in z and does not depend on (6,a), bg(¢) is continuous in @ for each ¢, kfy = ki,
and v; g = v; for each 7. Further, |A(,z,a,w)| is bounded by 2K,K* and is zero when (6,z,a) =
(6o, zo, ap). Therefore,

E¢,z,0 —Eg, 200
(9v“’va)—*fr910y$o,ao)| b, [g(f)] 60,20, O[g(é)]l
= lim IEO_ [A(e,x’a,, w)]l

(9@’&)-*(90 »Z0 ,ao)

< m E5[A(6,,0,0)(1 - I(z,20))] + Eg [2K,K'I(z, 30|
(9»xya)_’(9013709a0)
< Ej i - i K%2tK, |z —
= [ [(‘9,$,a)llf%glo,x0,ao) A(oa z,a, w)(l I(m7 270)) ] + (B,z,a)E?go,xo,ao) 2](9 2tK |.’,U 370{

= 0,

where Lebesgue’s dominated convergence theorem has been used to pass the limit inside the expec-
tation to get the last inequality. This proves the required weak continuity. This also implies (as a
special case) that Ep, .[4*] is continuous in (6, z, a), which verifies the second requirement of W1,
with ¢ = 0.

For fixed 6 € O, since the system is stable, {{,,n > 1} is regenerative and is a Markov chain
with some steady-state distribution P? (see [2], chapter VIII). Regeneration occurs whenever an
iteration starts with an empty system. From the proof of Proposition 20, there exists K; < co such
that sup,; Eol[(¥5/tn)?] < K1 and sup,»; Eola%] < Ki. This yields W3. By similar arguments,
one can show that sup, s, Eo[z2] < K for some constant K» < co. Take K = max(K3, K3). For
any € > 0, one has K Z—Eo[(¢;/tn)2] > (3K/€)P[(vx/tn)? > 3K €], so that sup,>q P[(¥}/tn)? >
3K /€] < €/3. Similarly, sup,>; Plz2 > 3K/e] < €/3 and sup,>; Pla2 > 3K/e] < €/3. Then,
SUPp>1 Plmax((¢%/ts)? 22 ,1,a2,,) < 3K/e] > 1 — e. This reasoning also holds for # varying in
any manner inside ©. This implies the tightness properties required in W1.

For W2, let C be a compact subset of IR x §, ¢ < oo such that C C [0, c]?, and let &, € C. Let
i denote the i-th customer overall and nt + 1 + 7 be the index of the first non-waiting customer
from the beginning of iteration n + 1. One has 7 = 0 if iteration n + 1 starts with a new busy
cycle and otherwise, 7* is the number of customers, from the beginning of iteration n + 1, who
are in the same busy cycle as the last customer of iteration n. From the same argument as in
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the proof of Proposition 17, there exists K (c) < oo such that Eyy[(7])*] < K.(c). Then, from
straightforward stochastic ordering, E[(7)? | £&n] < Euo o[(1)?] < K, (c). This implies that for all
€> 0, Plrr > K.(c)/e| &] < €. Let € > 0, n*(c) = [Kr(c)/€], ¢ = (3K /€)%, and C = [0,>. Let
n. = 1+ [n*(c)/t] and i > n.. For each 0 < j < n., from the same argument as we used above to
prove W1, one has P[€,4; € C | 7 = j] > 1 — €. Then,

n*(c)

P[£n+i€C|£n] 2 Z Plénti € C, T;:z.ﬂfn]
j=0
n*(c)

ZP[Trt:jlé‘n]P[gn-i-ieélT;:j]

Jj=0
2 (1-€)P[r; < n*(c) | &l
> (1- €)%

Here, P denotes the probability law associated with the Markov chain {£,,n > 1} when 6§ varies
according to the algorithm and n. can be viewed as a time that we give to the system to stabilize.
Roughly, if ¢ is larger, the initial state could be larger (e.g. large initial queue size), and we will
take a larger n.. This implies W2.

When 8 is fixed, according to the proof of Proposition 4, E}.-:,,'. Z; is an unbiased estimator of
the gradient of the expected system time of the i-th customer (overall). Then, %}, is unbiased for
the gradient of the expected total system time of customers nt,...,(n + 1)t — 1. When n — oo,
from (9), the expectation of %/t + C'(9) thus converges to o/(d). Therefore, v(f) = o/(#) and
W5 follows. B

PROOF of Proposition 8. We just have to check that the arguments in the proofs still hold,
sometimes with slight adaptations. We will quickly discuss these adaptations. The other proofs
basically remain the same.

In all the proofs, replace By, by B, and E,, by E (the expectation that corresponds to B). In
Proposition 17, if Z; > 0 in (vi) is replaced by Z; < 0, then wj(8, s) becomes non-increasing in ¢
and s. In the proof, after “The proof of (9) is similar”, replace Z; by —Z; in the first two equations,
then replace the last four “<” (in the last two equations) by “>”. For the proof of Proposition 20,
observe that |Z;| < T'(U;). Define & = Y5_,, T(U;). Then,

E[Z?] < E r(gr(w))?]

=1 T o
< (E[r2]E (_Zr(vn) D
< (BIrK BB @)Y) "
< K

for some finite constants K; and K. Using an argument similar to that in the proof of Proposition
14, it is easily seen that £ is stochastically non-decreasing in i. Therefore, E[£?] is stochastically
non-decreasing in i and bounded by K, and it follows that E[¢?] < E[£?] < E[é?] < K. Then,
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the last sentence of the proof is still valid. Note that the boundedness of the fourth moment in
Assumption 2 (iv) is used in the proof of the analogue of (52). H

PROOF of Proposition 9. The following notation is inspired from [2]. Define D; = (; — v,
So=0,8 = D1+ -+ Di, My = maxi<ic i, M = limgo0 My, and 1,(t) = max{i | §; = M;}.
Recall that B;(u) < B-(u) for each u € (0,1). Let (¢(P,DE,SP,MB,i5(t)) be the values
corresponding to ({;, D, S, M, i4(t)) when B is used instead of By, with the same uniform variates,
and let E denote the associated mathematical expectation (which does not depends on (4, s)). Note
that (B > ¢;, DB > D;, §B > S;, MP > M, and iB(t) > i.(t). The latter holds because iZ(t) = i
if and only ifDiBf,_1+---+DJB < 0 for all 7, ¢ < j < t, which implies Dj41 + --++ D; <0 for all 7,
1 < j <1, because D; < Df.

Since W; has the same distribution as max(s+ Si, My—1) (see [2, p.80, Corollary 7.4]), we have
Eg [M;_y — M] < Eg o[W; — M) < Eg [(s+ Se)t]+ Eg o[Mi1 — M].

But Ep,[(s + S)*] < E[(c+ SP)t] — 0 as t — oo since SP — —o0, (c+ SP)* < ¢+ M7, and
El[c+ MP] < oo (and from Lebesgue’s dominated convergence theorem). This convergence does
not depend on (8, s). Also, using the definition of 7.(t) for the second inequality,

0SM-M=>Y Di< > Di< Y DP=MP-M].
i) 2P0 i)

But E[MB — MB] — 0 as t — co (from the monotone convergence theorem) and this convergence
does not depend on (8, s). Therefore, lim;,co | Eg,s[W: — M]| = 0 uniformly in (6, s), which implies
that

1

Jim 00,5) = (0] = Jim §

i
= |22 Bo.[Wi - M]| =0

=1

uniformly in (6,s). N
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