
Les Cahiers du GERAD ISSN: 0711–2440

Combined Multiple Recursive Random
Number Generators

Pierre L’Ecuyer

G–95–15

March 1995

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds F.C.A.R.

Combined Multiple Recursive Random
Number Generators

Pierre L’Ecuyer

GERAD and Département d’Informatique et de
Recherche Opérationnelle
Université de Montréal

C.P. 6128, Succ. Centre-Ville, Montréal
Canada, H3C 3J7

March, 1995

Abstract

We analyze the random number generators obtained by combining two or
more multiple recursive generators. We study the lattice structure of such com-
bined generators and argue that combination is a good way of obtaining robust
generators, based on a recurrence with many non-zero coefficients, and which
also possess a fast implementation.

Keywords: Simulation, random number generation, linear congruential, lat-
tice structure, multiple recursive, combined generators

Résumé

Nous analysons les générateurs de valeurs aléatoires obtenus en combinant
deux ou plusieurs générateurs récursifs multiples. Nous étudions la structure de
réseau de tels générateurs combinés et montrons que ce genre de combinaison
est une bonne façon d’obtenir des générateurs linéaires robustes, basés sur des
récurrences ayant plusieurs coefficients non nuls, et possédant une implantation
efficace.

Introduction

Linear congruential random number generators (LCGs) with prime moduli smaller

than 231 have the merit of being easily implementable on 32-bit computers, but no

longer satisfy the requirements of today’s computer intensive simulations. Indeed,

their period length could easily be exhausted in a few minutes of cpu time on a

typical workstation. It is also now well-recognized that, for “statistical” reasons (see,

e.g., Compagner 1991, L’Ecuyer 1994 for more details), the period length of a linear-

type generator should be several orders of magnitude larger than what is actually

used. There are also good reasons (e.g., variance reduction) for splitting the sequence

of a random number generator into disjoint subsequences, to make several “virtual”

generators out of the first one L’Ecuyer (1994), each of them having a long period

and good properties. Because of those requirements, the availability of statistically

robust generators with huge period lengths, say up to 2200 or so, is highly desirable.

One way of improving upon LCGs is to use multiple recursive generators

(MRGs) (see L’Ecuyer 1990, L’Ecuyer, Blouin, and Couture 1993, L’Ecuyer 1994,

Niederreiter 1992), which are based on a linear recurrence of higher order. More

specifically, an MRG of order k is based on a kth-order linear recurrence of the form

xn = (a1xn−1 + · · · + akxn−k + b) mod m; (1)

un = xn/m,

where m and k are positive integers, while b and each ai belong to ZZm ={0,1,. . . ,m−1}.
For reasons of efficiency, it has often been suggested to use only two non-zero coef-

ficients ai and b = 0 in (1). This gives a very fast generator whose period reaches

mk − 1 under verifiable conditions (L’Ecuyer 1990, L’Ecuyer, Blouin, and Couture

1993). However, when the number of non-zero coefficients in (1) is small compared to

k, there are unfavorable limitations on the quality of lattice structure of the generator

(see L’Ecuyer 1995). In other words, these generators have structural defects, which

are not necessarily catastrophic, but could conceivably show up in some computer-

intensive simulations.

Another approach for increasing the period and improving the structure of the

generator is combination. Combined LCGs, which add up the results of two or more

LCGs with different moduli, have been studied by L’Ecuyer (1988), L’Ecuyer and

Tezuka (1991), Wichmann and Hill (1982). They are equivalent (or approximately

equivalent) to LCGs with large non-prime moduli. In other words, these combined

1

LCGs can be viewed as efficient implementations of LCGs with huge moduli (L’Ecuyer

and Tezuka 1991). One advantage of the combination approach proposed by L’Ecuyer

(1988), compared to that of Wichmann and Hill (1982), is that the former adds “noise”

to the lattice structure, i.e., shakes up the regularity of the points produced (L’Ecuyer

and Tezuka 1991). However, to obtain a period length near mk, we must combine

at least k LCGs with distinct prime moduli close to m. This becomes inefficient as

k increases. Other types of combinations, such as combined Tausworthe generators

(Tezuka and L’Ecuyer 1991, Compagner 1991, Wang and Compagner 1993), have

also been proposed and analyzed in the literature. For more details, see Couture and

L’Ecuyer (1996), L’Ecuyer (1990), L’Ecuyer (1994) and the references cited there.

In this paper, we analyze what happens when we combine two or more MRGs.

We show that the combined generator is equivalent (or approximately equivalent,

depending on the type of combination), to an MRG with large modulus, equal to

the product of the individual moduli. One important advantage of that combination

is that the linear recurrence associated with the combined generator can have many

non-zero coefficients. Another feature, for one of the combination types, is the noise

added to the lattice structure, as with the combined LCGs. In the next section, we

define the combined generators, derive their approximating MRGs, and characterize

their period lengths. We then discuss the influence of combination on the lattice

structure. Finally, we examine particular classes of combinations and suggest one

specific generator. For more about the basic concepts of on finite fields, we refer the

reader to Lidl and Niederreiter (1986).

1 The MRG associated with a combined generator

Consider J MRGs (J ≥ 2) such that for j = 1, . . . , J , the jth recurrence has order kj

and is given by:

xj,n = (aj,1xj,n−1 + · · · + aj,kj
xj,n−kj

+ bj) mod mj. (2)

We assume that the mj’s are pairwise relatively prime and that each recurrence is

purely periodic. Let ρj denote the period length of the jth recurrence; that is, xn+ρj
=

xn for all n ≥ 0. Recall that if mj is prime, it is easy to obtain ρj equal to m
kj

j − 1:

take bj = 0 (a homogeneous recurrence) and select the coefficients aj,i in such a way

that the characteristic polynomial of (2), defined as f(x) = xkj −aj,1x
kj−1−· · ·−aj,kj

,

2

is a primitive polynomial modulo mj (Knuth 1981, Lidl and Niederreiter 1986). We

recall that the polynomial f(x) is primitive, for prime mj, if and only if m
kj

j −1 is the

smallest positive integer n such that xn ≡ 1 (mod f(x)). An algorithm for testing

for primitivity modulo mj is given in Knuth (1981), p.29. The only case where bj �= 0

seems to have practical interest is when kj = 1 and mj is a power of two; the period

length can then reach mj under certain conditions (see, e.g., Theorem 3.2.1.2.A of

Knuth 1981).

Let δ1, . . . , δJ be arbitrary integers such that δj is relatively prime to mj for

each j. Define the two combined generators

zn =

⎛
⎝ J∑

j=1

δjxj,n

⎞
⎠ mod m1; ũn = zn/m1 (3)

and

wn =

⎛
⎝ J∑

j=1

δjxj,n

mj

⎞
⎠ mod 1. (4)

Let

k = max(k1, . . . , kj); (5)

m =
J∏

j=1

mj ; (6)

b =

⎛
⎝ J∑

j=1

δjbjm

mj

⎞
⎠ mod m ; (7)

nj = (m/mj)
−1 mod mj for j = 1, . . . , J ; (8)

ai =

⎛
⎝ J∑

j=1

aj,injm

mj

⎞
⎠ mod m for i = 1, . . . , k; (9)

where aj,i = 0 for i > kj, and where (m/mj)
−1 mod mj is the inverse of m/mj modulo

mj (which exists, because the mj’s are assumed relatively prime). In other words, nj

is defined as the smallest positive integer which satisfies nj(m/mj) ≡ 1 (mod mj).

It can be computed using the identity: nj = (m/mj)
mj−2 mod mj and a divide-to-

conquer algorithm (Brassard and Bratley 1988, Knuth 1981, L’Ecuyer 1990), or by a

variant of Euclid’s algorithm, as explained in Knuth (1981). The divide-to-conquer

algorithm computes the exponentiation modulo mj using the following recursion:

xn mod mj =

⎧⎪⎨
⎪⎩

x if n = 1;
x · xn−1 mod mj if n > 1, n even;
xn/2 · xn/2 mod mj if n > 1, n odd.

3

Consider the following MRG, with composite modulus:

xn = (a1xn−1 + · · · + akxn−k + b) mod m; (10)

un = xn/m. (11)

In what follows, we show that (4) and (10–11) are equivalent, and that their period

length ρ is equal to the least common multiple (lcm) of ρ1, . . . , ρj. We then give tight

bounds on the difference between un and ũn. These bounds are close to zero when

the mj’s are close to each other. All these results generalize those already given by

L’Ecuyer and Tezuka (1991) for the case where k = 1 and b = 0.

Proposition 1 If (w0, . . . , wk−1) = (u0, . . . , uk−1), then wn = un for all n ≥ 0.

Proof. By the same argument as in L’Ecuyer and Tezuka (1991), it is easily seen

that

nj(m/mj)
2 mod m = m/mj.

Then, since (m/mi)(m/mj) mod m = 0 for i �= j, one obtains

m(a1wn−1 + · · · + akwn−k + b) mod m

=

⎡
⎣b + m

k∑
i=1

(
J∑

�=1

a�,in�m

m�

)⎛⎝ J∑
j=1

δjxj,n−i

mj

⎞
⎠
⎤
⎦ mod m

=

⎡
⎣b +

k∑
i=1

J∑
j=1

nj

(
m

mj

)2

aj,iδjxj,n−i

⎤
⎦ mod m

=

⎡
⎣b +

k∑
i=1

J∑
j=1

m

mj

δjaj,ixj,n−i

⎤
⎦ mod m

=

⎡
⎣ J∑

j=1

(
m

mj

δj

(
bj +

k∑
i=1

aj,ixj,n−i

)
mod mj

)⎤⎦ mod m

=

⎛
⎝m

J∑
j=1

δjxj,n

mj

⎞
⎠ mod m

= mwn.

Therefore, {mwn, n ≥ 0} satisfies the same recurrence as {xn, n ≥ 0}, and that

completes the proof. �

The next lemma will be used in the proof of the proposition that follows.

Define cj = (m/mj)δj mod mj.

4

Lemma 1 One has xn ≡ cjxj,n (mod mj).

Proof. One has

xn = mwn =

(
m

J∑
�=1

δ�x�,n

m�

)
mod m, (12)

which yields

xn ≡ cjxj,n (mod mj),

because (m/m�)δ� mod mj = 0 for � �= j. �

Proposition 2 The period of {xn, n ≥ 0} is equal to ρ = lcm(ρ1, . . . , ρJ).

Proof. Let sj,n = (xj,n, . . . , xj,n+kj−1) and sn = (xn, . . . , xn+k−1). Since each compo-

nent is purely periodic, the combined generator is also certainly purely periodic, i.e.,

the initial state s0 is eventually revisited. The period of {xn, n ≥ 0} is the smallest

ν such that xν+n = xn for all n ≥ 0, i.e., such that

sν = s0. (13)

Clearly, since ρ is the least common multiple of the individual periods of the compo-

nents, ν = ρ satisfies (13). It remains to show that no smaller ν satisfies (13). Suppose

that such a ν exists. Then, from Lemma 1, one has that cj(xj,n−xj,n+ν) mod mj = 0.

From the assumption that δj is relatively prime to mj and because the mj’s are pair-

wise relatively prime, it follows that cj is invertible modulo mj. This implies that

(xj,n − xj,n+ν) mod mj = 0. Since this holds for all n ≥ 0, it follows that ν must be

a multiple of ρj, the period of {xj,n, n ≥ 0}. This holds for all j. Therefore, ν must

be equal to ρ. �

If each recurrence (2) is homogeneous (bj = 0) and mj is prime, then one can

easily achieve ρj = m
kj

j −1 by selecting a primitive polynomial for each j. Then, each

ρj is even, so ρ ≤ (mk1
1 − 1) · · · (mkJ

J − 1)/2J−1. Another interesting possibility is to

take a power of two for m1, k1 = 1, get ρ1 = m1, and then use distinct prime moduli

for the remaining mj’s.

Note that the coefficients ai in (10) do not depend on the choice of the δj’s;

only b does. Therefore, when the individual recurrences (2) are homogeneous, the

recurrence for the combined generator is the same for whatever (nonzero mod mj)

5

choices for the δj’s. However, changing the δj’s will change in general the starting

point (x0, . . . , xk−1) in (10) and, as a result, will change the sequence produced.

Note that there are mk such starting points (including bad ones) or, equivalently,

mk possible states for the recurrence (10). Changing the starting point could have

a non-negligible effect because those mk states are usually partitioned into disjoint

subcycles (plus perhaps some transient states), so changing the starting point could

conceivably send us to a different subcycle. When two starting points belong to

the same subcycle (i.e., are reachable from each other), we say that they (and the

corresponding sequences) are equivalent .

The total number of states for the combined generator (including the trivial

states) is equal to
∏J

j=1 m
kj

j , since each component has m
kj

j possible states. If the kj

are not all equal, this could be much less than mk. In that case, not all values of

(x0, . . . , xk−1) in (10) can be obtained as combinations of values of (xj,0, . . . , xj,k−1)

through (12). It turns out that the states (x0, . . . , xk−1) which can be obtained as a

combination are recurrent states for the recurrence (10), i.e., if the recurrence starts

from such a state, it will eventually return to that state. The other states, which are

not the result of a combination, are transient , that is, if any of them is the initial

state for (10), then it will never be visited again by the recurrence. This is analyzed

more deeply by Couture and L’Ecuyer (1996).

Example 1 Take J = 2, m1 = 5, k1 = 1, m2 = 3, k2 = 3. Select the multipliers so

that each component has a full period, namely ρ1 = 4 and ρ2 = 33−1 = 26. Then, the

combined generator has a total of 5 × 27 = 135 possible states (including the zeros),

but its period is only ρ = 52. On the other hand, the recurrence (10) associated with

the combined generator has order 3 and modulus 15; so its total number of states is

153 = 3375. The recurrent states are the 135 states produced by the combination;

the other 3240 states are all transient.

We now bound the difference (modulo 1) between un and ũn. The εn in (14)

represents the distance between un and ũn on the circle (or one-dimensional torus)

obtained by joining the two extremities of the interval [0, 1]. Notice that ũn must

be a multiple of 1/m1, and therefore has less resolution than un, which is a multiple

of 1/m. However, |εn| is not bounded by 1/m1. As in L’Ecuyer and Tezuka (1991),

define

Ψ+ = {j | 2 ≤ j ≤ J and (mj − m1)δj > 0}

6

Ψ− = {j | 2 ≤ j ≤ J and (mj − m1)δj < 0}

∆+ =
∑

j∈Ψ+

(mj − m1)(mj − 1)δj

m1mj

+
∑

j∈Ψ−

(mj − m1)δj

m1mj

∆− =
∑

j∈Ψ+

(mj − m1)δj

m1mj

+
∑

j∈Ψ−

(mj − m1)(mj − 1)δj

m1mj

.

Proposition 3 If (w0, . . . , wk−1) = (u0, . . . , uk−1), then

ũn = (un + εn) mod 1 (14)

for all n ≥ 0, where

∆− ≤ εn ≤ ∆+. (15)

Proof. The proof mirrors that of Proposition 2 in L’Ecuyer and Tezuka (1991), and

is omitted. �

2 Combining generators with a common modulus

In the preceding section, we assumed that the mj’s were pairwise relatively prime.

Let us now consider a different situation, that where the mj’s in (2) are all the same,

say mj = m for all j, but where the kj’s are distinct. We shall consider again the

two combined generators (3) and (4). We note that in this section, k and m are

still the order and modulus of the MRG associated with the combination, are defined

differently as in (5–6).

Let m be a prime. For each j, we suppose that bj = 0 and let fj(x) =

xkj − aj,1x
kj−1 − · · · − aj,kj

be the characteristic polynomial of the recurrence. We

assume that fj(x) is a primitive polynomial modulo m, so that ρj = mkj − 1. Let

f(x) = xk − a1x
k−1 − · · · − ak = f1(x) · · · fJ(x) mod m

be the product of those characteristic polynomials, where k=
∏J

j=1 kj, and b=0. Con-

sider now the recurrence (10) associated with that characteristic polynomial, again

with un = xn/m. We show that both combinations (3) and (4) follow exactly that

recurrence. We also show that the period of the combined generator is bounded above

7

by ρ1 · · · ρJ/(m−1)J−1, instead of ρ1 · · · ρJ/2J−1 as is the case for distinct prime mod-

uli. Therefore, this method of combination with a large prime m appears unfavorable

compared to that of the previous section.

Proposition 4 Under the assumptions made in this section, if (w0, . . . , wk−1) =

(u0, . . . , uk−1) = (ũ0, . . . , ũk−1), then wn = un = ũn for all n ≥ 0.

Proof. Since mj = m for all j, it is clear from their definitions that ũn = wn for all

n. It remains to show that {xn} (in (1)) and {zn} obey the same linear recurrence.

Observe that the minimal polynomial of the recurrence {δjxj,n, n ≥ 0} is fj(x), the

same as for {xj,n, n ≥ 0}. The polynomials fj(x) are also irreducible, because they

were assumed to be primitive. Since the kj’s are distinct, these polynomials must be

relatively prime. Then, from Theorem 6.57 in Lidl and Niederreiter (1986), it follows

that the sequence {zn, n ≥ 0}, which is the sum of linear recurrences with respective

minimal polynomials f1(x), . . . , fJ(x), is a linear recurrence with minimal polynomial

f(x). �

Proposition 5 Under the same assumptions as in the previous proposition, sup-

pose that for all j, (xj,0, . . . , xj,kj−1) mod m �= (0, . . . , 0). Then, the period length of

{xn, n ≥ 0} is equal to ρ = lcm(mk1 − 1, . . . ,mkJ − 1). Note that (m− 1) is always a

common factor. The largest possible value of ρ is ρ = (mk1 − 1) · · · (mkJ − 1)/(m −
1)J−1, and it could be reached only if the kj’s are pairwise relatively prime.

Proof. The first part follows from the proof of the previous proposition and The-

orem 6.59 of Lidl and Niederreiter (1986). The second part is a consequence of

Corollary 3.7 of Lidl and Niederreiter (1986). �

3 The Lattice Structure

For any positive integer t, define

Tt = {un = (un, . . . , un+t−1) | n ≥ 0, s0 = (x0, . . . , xk−1) ∈ ZZk
m}. (16)

This is the set of all possible overlapping t-tuples of successive values produced by

(10–11), from all possible initial states. Consider also the shift of Tt defined by

8

T ′
t = (Tt − (0, . . . , 0, b, . . . , bt−k)) mod 1. In general Tt does not necessarily contain

the zero vector, but T ′
t does. Let L′

t be the integer lattice generated by T ′
t and ZZk

m,

that is, the set of all linear combinations of elements of T ′
t and ZZk

m, with integer

coefficients, and let Lt = L′
t + (0, . . . , 0, b, . . . , bt−k) be the grid (shift lattice), which

contains Tt.

The points of Lt lie in a set of equidistant parallel hyperplanes (Knuth 1981)

and one would like that the distance dt between those hyperplanes be relatively small,

in order to avoid large slices of empty space. For historical reasons, computing dt is

called the spectral test . Another popular quality measure for a lattice is the Beyer

quotient qt (L’Ecuyer 1990, L’Ecuyer, Blouin, and Couture 1993), defined as the

ratio of lengths of a shortest and longest vectors in a Minkowski reduced basis for

the lattice, and which should be close to one. The computer programs described in

L’Ecuyer and Couture (1995) permit one to compute dt and qt in reasonably large

dimensions, up to around 40 or more.

Note that dt is the same for both Lt and L′
t. On the other hand, when ρ < mk,

the points visited from any given initial state form a strict subset of Tt, which might

generate a strict subgrid of Lt.

When there are both transient and recurrent states, it is more appropriate to

analyze the set Tr,t of t-tuples which are recurrent, since only those states are obtained

by the combination. One has Tr,t ⊆ Tt, and the inclusion is strict when the kj’s are

not all equal. Let Lr,t and L′
r,t denote the grid and lattice associated with Tr,t (the

analogues of Lt and L′
t). Couture and L’Ecuyer (1996) explain how to construct a

lattice basis for Lr,t and give several results and special techniques for computing dt

efficiently in large dimensions for combined generators.

The points ũn = (ũn, . . . , ũn+t−1), n ≥ 0, produced by the combined genera-

tor (3) no longer belong to the grids or lattices described above, because of the “noise”

εn. If we equate (or join) the opposite faces of the t-dimensional unit hypercube [0, 1]t,

we obtain the t-dimensional unit torus. Computing the Euclidean distances in that

torus is equivalent to “neglecting” the modulo 1 operation in (14) (see L’Ecuyer and

Tezuka 1991 for further discussion). We then obtain that the Euclidean distance be-

tween ũn and un in the unit torus is bounded by ∆
√

t, where ∆ = max(|∆+|, |∆−|).
Typically, the values of εn are also pretty much evenly distributed between ∆− and

∆+. As a result, when ∆
√

t is larger than dt, the hyperplane structure usually be-

comes unrecognizable.

9

4 Examples

We now give specific numerical examples. The first two should not be taken as

serious proposals for random number generators; their purpose is just to give concrete

illustrations of the possible effect of combination. The last two examples are more

realistic and could be used as actual random number generators. We have applied

a battery of statistical tests to one of them (Example 4) and give a C program

implementing it.

Example 2 Let J = 2, m1 = 103, k1 = 1, a1,1 = 40, m2 = 101, k2 = 3, and

(a2,1, a2,2, a2,3) = (29, 14,−15). Then, each component has full period, that is ρ1 =

102 and ρ2 = 1013 − 1 = 1030300, and the period of the combination is ρ = ρ1ρ2/2 =

52545300. The recurrence (10) associated with the combination has order k = 3,

modulus m = 10403, multipliers (a1, a2, a3) = (4675, 721, 4429), and b = 0. The

latter recurrence has 104033 possible states, 103×1013 of which are recurrent. Table I

shows the distances dt between successive hyperplanes, in dimensions 4 to 10, for the

lattice Lt generated by all the 104033 states (first column) and for the (sub)lattice

Lr,t generated by the recurrent states (second column). The latter is the proper one

to analyze in this case, and clearly contains much fewer points than the former. One

may also be interested by the sublattice generated by the ρ states visited over one of

the two main cycles of the combined generator: here this sublattice turns out to be

the same as Lr,t.

Example 3 Let J = 2, m1 = 103, and m2 = 101 as in Example 2, but we now

take k1 = k2 = 2. With (a1,1, a1,2) = (21,−21) and (a2,1, a2,2) = (27,−18), both

components have full period, that is, ρ1 = 1022−1 = 10608 and ρ2 = 1012−1 = 10200.

In this case, gcd(ρ1, ρ2) = 408, so ρ = ρ1ρ2/408 = 265200. The recurrence (10) has

order k = 2, modulus m = 10403, and all its 104032 states are recurrent. Therefore,

the lattice Lr,t is the same as Lt. Table II gives the values of dt. Note that this

generator has 408 main cycles of length 265200. We also analyzed the lattice (or

grid) generated by some of those main cycles (i.e., with different initial states) and it

turned out that it was the same as Lt in each case. In general, this need not always be

the case: the lattice (or grid) generated by one main cycle could be a strict sublattice

(or subgrid) of Lr,t.

10

Table I: The Values of dt for Example 2, for each component,
for all states, and for the recurrent states of the combination

t dt

component 1 component 2 full recurrent

4 0.30151 0.11547 0.00127 0.01048

5 0.30151 0.11547 0.00582 0.02767

6 0.57735 0.12500 0.01048 0.04560

7 0.57735 0.12500 0.02767 0.07161

8 0.57735 0.20000 0.04560 0.10370

9 0.57735 0.22361 0.07161 0.12039

10 0.57735 0.25820 0.10370 0.16667

Table II: The Values of dt for Example 3

t dt

3 0.00285

4 0.00996

5 0.02429

6 0.05361

7 0.08058

8 0.10847

9 0.15811

10 0.15811

Example 4 For a more realistic combined generator, let us take J = 2, m1 = 231 −
1 = 2147483647, m2 = 2145483479, k1 = k2 = 3, (a1,1, a1,2, a1,3) = (0, 63308,−183326),

and (a2,1, a2,2, a2,3) = (86098, 0,−539608). Each component has period ρj = m3
j − 1,

and the combination has period ρ = ρ1ρ2/2, which is close to 2205. The MRG associ-

ated with the combination has order 3, modulus m = m1m2 = 4607390686061167913,

and multipliers a1 = 2620007610006878699, a2 = 4374377652968432818, and a3 =

667476516358487852.

11

Table III: The generator proposed in Example 4:
dt and qt for each component and for the combination

t component 1 component 2 combination

dt qt dt qt dt qt ∆
√

t

4 5.16E-6 9.0E-5 1.83E-6 2.5E-4 1.1E-14 0.6585 1.86E-3

5 5.16E-6 0.1611 3.28E-6 0.5952 6.6E-12 0.7558 2.08E-3

6 2.45E-5 0.6807 2.45E-5 0.3948 4.8E-10 0.7315 2.28E-3

7 1.21E-4 0.5722 1.16E-4 0.5146 9.80E-9 0.7866 2.46E-3

8 3.74E-4 0.6424 4.07E-4 0.5930 9.55E-8 0.7167 2.63E-3

9 9.24E-4 0.6590 8.26E-4 0.7049 6.00E-7 0.7491 2.79E-3

10 1.58E-3 0.7746 2.12E-3 0.4970 2.25E-6 0.6667 2.95E-3

11 3.60E-3 0.6983 3.86E-3 0.6364 8.41E-6 0.7563 3.09E-3

12 4.41E-3 0.7343 5.67E-3 0.6674 2.66E-5 0.6676 3.23E-3

13 6.67E-3 0.7700 7.21E-3 0.7353 4.68E-5 0.7255 3.36E-3

14 8.18E-3 0.9083 1.03E-2 0.7439 1.05E-4 0.7362 3.48E-3

15 1.25E-2 0.8629 1.28E-2 0.5947 1.60E-4 0.8171 3.61E-3

16 1.60E-2 0.7156 1.78E-2 0.5895 2.68E-4 0.8671 3.73E-3

17 2.14E-2 0.7818 2.24E-2 0.5804 4.26E-4 0.8619 3.84E-3

18 2.24E-2 0.8576 2.32E-2 0.8028 7.05E-4 0.9026 3.95E-3

19 2.77E-2 0.9080 3.11E-2 0.7368 1.03E-3 0.8665 4.06E-3

20 4.08E-2 0.8399 3.23E-2 0.8468 1.32E-3 0.8062 4.17E-3

Here, all states are recurrent and they generate the same lattice as that gen-

erated by each of the two main cycles. Table III gives the values of dt and qt for

each of the two components, as well as for the combination. For comparison, the best

simple LCGs with modulus m = 231−1 cannot have a value of dt smaller than 0.01 in

dimension 5 and .20 in dimension 20 (approximately). The 32-bit combined generator

proposed by L’Ecuyer (1988), whose period length is near 261, can be approximated

by a LCG with d5 ≈ 0.0002, d10 ≈ 0.017, and d20 ≈ 0.10 (see L’Ecuyer and Tezuka

1991).

With δ1 = −δ2 = 1, one has Ψ+ = {2}, Ψ− is empty, and the bounds (15)

become

4.34 × 10−13 ≤ εn ≤ 9.31 × 10−4.

12

int m1 = 2147483647, m2 = 2145483479,
a12 = 63308, q12 = 33921, r12 = 12979,
a13 = -183326, q13 = 11714, r13 = 2883,
a21 = 86098, q21 = 24919, r21 = 7417,
a23 = -539608, q23 = 3976, r23 = 2071,
x10, x11, x12, x20, x21, x22;

double Invmp1 = 4.656612873077393e-10;

int Random()
{
int h, p12, p13, p21, p23;
/* Component 1 */
h = x10 / q13; p13 = -a13 * (x10 - h * q13) - h * r13;
h = x11 / q12; p12 = a12 * (x11 - h * q12) - h * r12;
if(p13 < 0) p13 = p13 + m1; if(p12 < 0) p12 = p12 + m1;
x10 = x11; x11 = x12; x12 = p12 - p13; if(x12 < 0) x12 = x12 + m1;
/* Component 2 */
h = x20 / q23; p23 = -a23 * (x20 - h * q23) - h * r23;
h = x22 / q21; p21 = a21 * (x22 - h * q21) - h * r21;
if(p23 < 0) p23 = p23 + m2; if(p21 < 0) p21 = p21 + m2;
x20 = x21; x21 = x22; x22 = p21 - p23; if(x22 < 0) x22 = x22 + m2;
/* Combination */
if (x12 < x22) return (x12 - x22 + m1); else return (x12 - x22);
}

double Uniform01()
{
int Z;
Z = Random (); if (Z == 0) Z = m1; return (Z * Invmp1);
}

Figure I: A C implementation of the combined generator of Example 4

In fact, over the entire period, the values of εn are distributed (practically) uniformly

between those two bounds. The Euclidean distance between the points un and ũn in

the t-dimensional unit torus is bounded by ∆
√

t = 0.000931
√

t, which is given in the

last column of Table III. One can see that in dimensions up to 20 (and more), the

lattice structure is “detroyed by the noise”, in the sense that the bound 0.000931
√

t

remains larger than the distance dt between successive hyperplanes. In some larger

dimension (around 40), that bound is getting close to dt, which means that ‖un−ũn‖
is then approximately uniformly distributed between zero and dt, so the “empty slices”

between the hyperplanes are nicely filled up.

Figure I gives an implementation of the combined generator (3) in the C

language. Translation into other procedural languages such as FORTRAN, Pascal,

Modula-2, and so on, is trivial. The two MRG components are implemented along

13

the lines described by L’Ecuyer (1990) and L’Ecuyer, Blouin, and Couture (1993).

The function Random returns an integer in the range [0, 231 − 2], while Uniform01

returns a value (strictly) between 0 and 1 (assuming that the “double” floating-point

real numbers are represented with at least 32 bits for their mantissa).

This code assumes that all integers in the range [−231, 231 − 1] are well rep-

resented. The global variables x10 to x22 hold the generator’s state and represent

x1,n, x1,n+1, x1,n+2, x2,n, x2,n+1, x2,n+2, respectively. They must be initialized, before

the first call, to values that satisfy 0 ≤ xj,i ≤ mj − 1 for j = 1, 2 and 0 ≤ i ≤ 2, and

xj,i > 0 for at least one i, for each j. For example, initializing each of those variables

to a value between 1 and 2145483478 will do. These six initial values constitute the

seed .

In terms of speed, we should expect this proposed generator to take approx-

imately twice the time as the 32-bit combined LCG proposed by L’Ecuyer (1988)

and used as the basis of the random number package of L’Ecuyer and Côté (1991),

because here we have four modular products to compute instead of two, and some

additional modular sums. We checked that empirically by running the two combined

generators on a SUN SPARCstation 20 under Solaris. Both were implemented in C

and compiled with the “cc” compiler at optimization level -O2. To generate one mil-

lion random numbers, the combined generator of L’Ecuyer (1988) took 7.8 seconds,

while the combined MRG of Figure I took 17.2 seconds. For both generators, these

timings correspond to implementations where the constants such as a12, q12, r12,

and so on, are first declared and then used in the code, as in Figure I, so that the

procedure is in generic form, independent of the specific multipliers and moduli. We

also tested versions where the specific constants were replaced directly by their nu-

merical values in the code, to speed up the execution. Then, the timings we got where

4.8 and 9.5 seconds, respectively. Finally, we also tried the latter implementations

compiled using the “-fast” option of the cc compiler and the two generators then

took 1.9 and 3.4 seconds, respectively, to generate the 106 random numbers. To make

sure that the compiler was not optimizing out the calls to the generators because the

random numbers where not used, we added up the random numbers while they where

generated and printed the sum.

Clearly, there is a price to pay in terms of speed to get the longer period

length and (theoretically) better properties of the combined MRG. That price could

be negligible when the random number generation takes only a small fraction of the

total computing time. If a program takes hours of cpu of a fast computer and most of

that time is for generating the random numbers, then the generator’s speed may be

14

critical, but its statistical robustness more so. In other words, the latter situation is

likely to be one for which “classical” LCGs, with period length of around 231 or 232,

could produce wrong results, because the fraction of the period length that is used is

too large. It takes less than half an hour of cpu time to exhaust the period of a LCG

with modulus 231−1 on our SPARCstation 20. The combined Tausworthe generators

proposed by Tezuka and L’Ecuyer (1991) are also faster than that of Figure I, but

have a shorter period length (near 260).

We applied a battery of empirical statistical tests to that generator: we ran

the same 21 tests as in L’Ecuyer (1988), as well as the 10 tests used in L’Ecuyer

(1992). The generator easily passed all those tests (the detailed results are available

from the author).

The sequence produced by the generator can be split into disjoint subtreams

by starting the generator from different initial states, spaced far apart in the original

sequence. Based on that, one can build a package with several virtual generators, as

in L’Ecuyer and Côté (1991). Those initial states can be computed easily if jumping

ahead facilities are available for the individual MRG components; that is, if an efficient

algorithm is available for computing the state of the MRG, say, ν steps ahead of the

current one, for large values of ν. L’Ecuyer (1990), p.88 explains one way of doing

that, based on the fact that the MRG (1) can be viewed as a LCG in matrix form,

whose state is a k-dimensional vector and whose multiplier is a k × k matrix A. To

jump ahead by ν values, just multiply the current state by Aν , modulo m. The matrix

Aν mod m can be precomputed in time O(log ν), using again the divide-to-conquer

algorithm mentioned in Section 1.

Example 5 Let us now combine an MRG with a LCG with power-of-two modulus.

We take J = 2, m1 = 232, k1 = 1, a1,1 = 738801091, b2 = 1, while m2 = 231 − 1 =

2147483647, k2 = 3, (a2,1, a2,2, a2,3) = (0, 377579228,−472831176), and b2 = 0. The

period lengths are ρ1 = 232 for component 1, ρ2 = (231 − 1)3 − 1 for component 2,

and ρ = ρ1ρ2/2 ≈ 2124 for the combination. Table IV gives the values of dt and qt for

each component and for the combination (for the recurrent states).

15

Table IV: The generator of Example 5:
dt and qt for each component and for the combination

t component 1 component 2 combination

dt qt dt qt dt qt

4 0.0112 0.4305 7.81E-7 5.9E-4 4.0E-10 0.8713

5 0.0249 0.5758 2.76E-6 0.8189 3.30E-8 0.7163

6 0.0347 0.8319 2.55E-5 0.6142 5.23E-7 0.8293

7 0.0700 0.7189 1.36E-4 0.4791 4.24E-6 0.6704

8 0.0839 0.7105 4.49E-4 0.6752 1.90E-5 0.7040

9 0.1163 0.6176 6.92E-4 0.8495 7.43E-5 0.6166

10 0.1250 0.7629 1.67E-3 0.4942 1.67E-4 0.6960

11 0.1543 0.7563 2.46E-3 0.7763 3.76E-4 0.6751

12 0.1667 0.7222 4.32E-3 0.7654 7.28E-4 0.7248

13 0.2500 0.7760 7.05E-3 0.5302 1.18E-3 0.8302

14 0.2500 0.7295 9.11E-3 0.7304 1.95E-3 0.7469

15 0.2500 0.7421 1.34E-2 0.7291 2.76E-3 0.8238

16 0.2887 0.6784 1.54E-2 0.8085 3.98E-3 0.7579

17 0.2887 0.7697 1.97E-2 0.8185 5.18E-3 0.7716

18 0.2887 0.8008 2.40E-2 0.8437 7.25E-3 0.8111

19 0.2887 0.7918 3.40E-2 0.7923 9.33E-3 0.7101

20 0.2887 0.8185 3.44E-2 0.7870 1.10E-2 0.7929

Acknowledgment

This work has been supported by NSERC-Canada grant # OGP0110050 and FCAR-

Québec grant # 93ER1654. I wish to thank Raymond Couture, David Kelton, and

the referees for their useful comments, Luc De Bellefeuille who helped writing the C

program of Figure 1, and Jean-François Cordeau who helped performing the statistical

tests.

16

References

Brassard, G., and P. Bratley. 1988. Algorithmics: Theory and Practice.

Prentice Hall.

Compagner, A. 1991. The hierarchy of correlations in random binary sequences.

Journal of Statistical Physics, 63, 883–896.

Couture, R., and P. L’Ecuyer. 1996. Orbits and lattices for linear random

number generators with composite moduli. Mathematics of Computation, 66.

To appear.

Knuth, D. E. 1981. The Art of Computer Programming, Volume 2: Seminumerical

Algorithms. second ed., volume 2. Addison-Wesley.

L’Ecuyer, P. 1988. Efficient and portable combined random number generators.

Communications of the ACM, 31(6), 742–749 and 774. See also the corre-

spondance in the same journal, 32, 8 (1989) 1019–1024.

L’Ecuyer, P. 1990. Random numbers for simulation. Communications of the

ACM, 33(10), 85–97.

L’Ecuyer, P. 1992. Testing random number generators. In Proceedings of the 1992

Winter Simulation Conference, 305–313. IEEE Press.

L’Ecuyer, P. 1994. Uniform random number generation. Annals of Operation

Research, 53, 77–120.

L’Ecuyer, P. 1995. Bad lattice structures for vectors of non-successive values

produced by some linear recurrences. ORSA Journal on Computing. To

appear.

L’Ecuyer, P., F. Blouin., and R. Couture. 1993. A search for good multiple

recursive random number generators. ACM Transactions on Modeling and

Computer Simulation, 3(2), 87–98.

L’Ecuyer, P., and S. Côté. 1991. Implementing a random number package

with splitting facilities. ACM Transactions on Mathematical Software, 17(1),

98–111.

L’Ecuyer, P., and R. Couture. 1995. An implementation of the lattice and

spectral tests for linear congruential and multiple recursive generators. Sub-

mitted.

L’Ecuyer, P., and S. Tezuka. 1991. Structural properties for two classes of

combined random number generators. Mathematics of Computation, 57(196),

735–746.

Lidl, R., and H. Niederreiter. 1986. Introduction to Finite Fields and Their

Applications. Cambridge: Cambridge University Press.

17

Niederreiter, H. 1992. Random Number Generation and Quasi-Monte Carlo

Methods. volume 63 of SIAM CBMS-NSF Regional Conference Series in

Applied Mathematics. Philadelphia: SIAM.

Tezuka, S., and P. L’Ecuyer. 1991. Efficient and portable combined Tausworthe

random number generators. ACM Transactions on Modeling and Computer

Simulation, 1(2), 99–112.

Wang, D., and A. Compagner. 1993. On the use of reducible polynomials as

random number generators. Mathematics of Computation, 60, 363–374.

Wichmann, B. A., and I. D. Hill. 1982. An efficient and portable pseudo-random

number generator. Applied Statistics, 31, 188–190. See also corrections and

remarks in the same journal by Wichmann and Hill, 33 (1984) 123; McLeod

34 (1985) 198–200; Zeisel 35 (1986) 89.

18

