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Pricing European-style Asian options based on the arithmetic average, under the Black and
Scholes model, involves estimating an integral (a mathematical expectation) for which

no easily computable analytical solution is available. Pricing their American-style counter-
parts, which provide early exercise opportunities, poses the additional difficulty of solving
a dynamic optimization problem to determine the optimal exercise strategy. A procedure
for pricing American-style Asian options of the Bermudan flavor, based on dynamic pro-
gramming combined with finite-element piecewise-polynomial approximation of the value
function, is developed here. A convergence proof is provided. Numerical experiments illus-
trate the consistency and efficiency of the procedure. Theoretical properties of the value
function and of the optimal exercise strategy are also established.
(Option Pricing; Asian Options; Path-Dependent Options; American Options; Bermudan Options;
Dynamic Programming; Piecewise Polynomials)

1. Introduction
A financial derivative is a contract that provides its
holder with a future payment that depends on the
price of one or more primitive asset(s), such as
stocks or currencies. In a frictionless market, the no-
arbitrage principle allows one to express the value of
a derivative as the mathematical expectation of its dis-
counted future payment, with respect to a so-called
risk-neutral probability measure. Options are particu-
lar derivatives characterized by nonnegative payoffs.
European-style options can be exercised at the expira-
tion date only, whereas American-style ones offer early
exercise opportunities to the holder.
For simple cases, such as for European call and put

options written on a stock whose price is modeled as
a geometric Brownian motion (GBM), as studied by

Black and Scholes (1973), analytic formulas are avail-
able for the fair price of the option. However, for more
complicated derivatives which may involve multiple
assets, complex payoff functions, possibilities of early
exercise, stochastic time-varying model parameters,
etc., analytic formulas are unavailable. These deriva-
tives are usually priced either via Monte Carlo sim-
ulation or via numerical methods (e.g., Boyle et al.
1997, Hull 2000, Wilmott et al. 1993, and other refer-
ences given there).
An important class of options for which no analytic

formula is available even under the standard Black-
Scholes GBM model is the class of Asian options, for
which the payoff is a function of the arithmetic aver-
age of the price of a primitive asset over a certain time
period. An Asian option can hedge the risk exposure
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of a firm that sells or buys certain types of resources
(raw materials, energy, foreign currency, etc.), on a
regular basis over some period of time. Because the
average in general is less volatile than the underly-
ing asset price itself, these contracts are less expensive
than their standard versions. Asian options are heav-
ily traded over the counter and because of the pos-
sible lack of depth of these markets, their theoretical
values often need to be computed on the fly for fair
negotiations.
Asian options come in various flavors. For exam-

ple, the average can be arithmetic or it can be geo-
metric. One talks of a plain vanilla Asian option if
the average is computed over the full trading period,
and a backward-starting option if it is computed over
a right subinterval of the trading period. This inter-
val usually has a fixed starting point in time. The
Asian option can be fixed strike (if the strike price is
a fixed constant) or floating strike (if the strike is itself
an average). It is called flexible when the payoff is a
weighted average, and equally weighted when all the
weights are equal. The prices are discretely sampled if
the payoff is the average of a discrete set of values
of the underlying asset (observed at discrete epochs),
and continuously sampled if the payoff is the integral
of the asset price over some time interval, divided by
the length of that interval. The options considered in
this paper are the most common: Fixed-strike, equally
weighted, discretely sampled Asian options based on arith-
metic averaging. The dynamic programming approach
could also be used to price other kinds of discretely
sampled Asian options.

European-style Asian (Eurasian) options can be exer-
cised at the expiration date only, whereas American-
style ones (Amerasian) offer earlier exercise opportu-
nities, which may become attractive intuitively when
the current asset price is below the current running
average (i.e., is pulling down the average) for a call
option, and when it is above the running average for a
put. Here, we focus on Amerasian call options, whose
values are harder to compute than the Eurasian ones
because an optimization problem must be solved at
the same time as computing the mathematical expec-
tation giving the option’s value. We assume that the
exercise opportunities are only at the observation epo-
chs (or a subset of them). These types of options are
also called Bermudan options.

There is an extensive literature on the pricing of
Eurasian options. In the context of the GBM model,
there is a closed-form analytic solution for the value
of discretely sampled Eurasian options only when
they are based on the geometric average (Turnbull and
Wakeman 1991, Zhang 1995). The idea is that under
the GBM model, the asset price at any given time
has the lognormal distribution, and the geometric
average of lognormals is lognormal. Geman and Yor
(1993) used Bessel processes and derived exact for-
mulas for a class of continuous-time Eurasian options.
For options based on the arithmetic average, solu-
tion approaches include quasi-analytic approximation
methods based on Fourier transforms, Edgeworth
and Taylor expansions, and the like (e.g., Bouaziz
et al. 1994, Carverhill and Clewlow 1990, Curran
1994, Levy 1992, Ritchken et al. 1993, Turnbull and
Wakeman 1991), methods based on partial differen-
tial equations (PDEs) and their numerical solution
via finite-difference techniques (e.g., Alziary et al. 1997,
Rogers and Shi 1995, Zvan et al. 1998), and Monte
Carlo simulation coupled with variance-reduction tech-
niques (e.g., Glasserman et al. 1999, Kemna and
Vorst 1990, L’Ecuyer and Lemieux 2000, Lemieux and
L’Ecuyer 1998, Lemieux and L’Ecuyer 2001).
Techniques for pricing Amerasian options are sur-

veyed by Barraquand and Pudet (1996), Grant et al.
(1997), and Zvan et al. (1998, 1999). Hull and
White (1993) have adapted binomial lattices (from
the binomial tree model of Cox et al. 1979) to
the pricing of Amerasian options. Klassen (2001)
has recently refined this approach. Broadie and
Glasserman (1997a) proposed a simulation method
based on nonrecombining trees in the lattice model
that produces two estimators of the option value,
one with positive bias and one with negative bias.
By taking the union of the confidence intervals cor-
responding to these two estimators, one obtains a
conservative confidence interval for the true value.
However, the work and space requirements of their
approach increases exponentially with the number
of exercise opportunities. Broadie and Glasserman
(1997b) then developed a simulation-based stochas-
tic mesh method that accommodates a large num-
ber of exercise dates and high-dimensional Amer-
ican options. Their method may be adaptable to
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Amerasian options, although this is not the route
we take here. While revising this paper, we learned
about related work by Wu and Fu (2000), who
prove some properties of the exercise frontier for
Amerasian options and propose an approach that
parameterizes the exercise frontier and optimizes
the parameters by a stochastic approximation algo-
rithm combined with a simulation-based perturbation
analysis gradient estimation method. Longstaff and
Schwartz (2001) propose yet another simulation-based
approach whose key idea is to approximate the same
function as the value function in dynamic program-
ming (DP) at each time step, but by fitting a lin-
ear combination of preselected basis functions to a
data set generated by simulation using least-squares
regression.
Zvan et al. (1998) have developed stable numeri-

cal PDE methods adapted from the field of computa-
tional fluid dynamics for pricing Amerasian options
with continuously sampled prices. Zvan et al. (1999)
have also adapted these PDE methods to options with
discretely sampled asset prices, and with barriers. The
numerical approach introduced in this paper is for-
mulated in discrete time directly.
Pricing American-style options can be formulated

as a Markov decision process, i.e., a stochastic DP
problem, as pointed out by Barraquand and Mar-
tineau (1995) and Broadie and Glasserman (1997b), for
example. The DP value function expresses the value of
an Amerasian option as a function of the current time,
current price, and current average. This value func-
tion satisfies a DP recurrence (or Bellman equation).
Solving this equation yields both the option value
and the optimal exercise strategy. For a general cover-
age of stochastic DP, we refer the reader to Bertsekas
(1995).
In this paper, we write the DP equation for Amer-

asian options under the GBM model. Using this equa-
tion, we prove by induction certain properties of the
value function and of the optimal exercise frontier
(which delimits the region where it is optimal to exer-
cise the option). We then detail a numerical solution
approach for the DP equation, based on piecewise
polynomial interpolation over rectangular finite ele-
ments. This kind of approach has been used in other
application contexts, e.g., by Haurie and L’Ecuyer

(1986) and L’Ecuyer and Malenfant (1988). In fact,
we reformulate the DP equation in a way that sim-
plifies significantly the numerical integration at each
step, thus improving the efficiency of the procedure.
Convergence and consistency of the method as the
discretization gets finer follow from the monotonic-
ity properties of the value function. We also use an
extrapolation method to accelerate the convergence.
Numerical experiments indicate that the method is
competitive, at least for certain situations. The DP
approach could also be used for pricing other low-
dimensional American-style products such as calls
with dividends, puts, lookback options, and options
with barriers. It would also work for other types of
models than the GBM for the evolution of the under-
lying asset, e.g., for a CEV process (Cox 1996, Boyle
and Tian 1999). The properties of the value func-
tion that we derive in §4 are easy to generalize. On
the other hand, the implementation details that we
develop in §5 are specific to the GBM model. These
details would have to be reworked for other types of
models.
The idea of this paper came after reading Grant

et al. (1997). These authors also formulate the prob-
lem of pricing an Amerasian option in the dynamic
programming framework, but use Monte Carlo simu-
lation to estimate the value function at each point of
some discretization of the state space, and identify a
“good” exercise frontier by interpolation. Their esti-
mate of the value function at the initial date is an esti-
mate of the option value. These authors also propose
to restrict the strategy of exercise to a class of sub-
optimal rules where the exercise frontier is approxi-
mated by two linear segments, at each date of exercise
opportunity. They observed in numerical examples
that restricting the class of strategies in this way did
not seem to diminish the value of the option signifi-
cantly, but they provided no proof that this is true in
general.
Here, we suggest replacing simulation at both

stages by numerical integration, which is obviously
less noisy, and we do not assume a priori a shape of
the exercise frontier. For both the simulation approach
and our approach, an approximation of the value
function must be memorized, so the storage require-
ment is essentially the same for the two methods.
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The rest of the paper is organized as follows. Sec-
tion 2 presents the model and notation. In §3 we
develop the DP formulation. In §4 we establish cer-
tain properties of the value function and of the opti-
mal region of exercise. Our numerical approximation
approach is detailed in §5. In §6 we report on numer-
ical experiments. Section 7 is a conclusion.

2. Model and Notation
2.1. Evolution of the Primitive Asset
We assume a single primitive asset whose price pro-
cess �S�t�� t ∈ �0�T 	
 is a GBM, in a world that sat-
isfies the standard assumptions of Black and Scholes
(1973). Under these assumptions (see, e.g., Karatzas
and Shreve 1998), there is a probability measure Q

called risk neutral under which the primitive asset
price S�·� satisfies the stochastic differential equation

dS�t�= rS�t� dt+�S�t� dW�t�� for 0≤ t ≤ T� (1)

where S�0� > 0, r is the risk-free rate, � is the volatil-
ity parameter, T is the maturity date, and �W�t�� t ∈
�0�T 	
 is a standard Brownian motion. The solution
of (1) is given by

S�t′′�= S�t′�e��t
′′−t′�+��W�t′′�−W�t′�	� for 0≤ t′ ≤ t′′ ≤ T�

(2)

where � = r −�2/2. An important feature is that the
random variable S�t′′�/S�t′� is lognormal with param-
eters ��t′′ − t′� and �

√
t′′ − t′, and independent of the

�-field � �t′� = ��S�t�� t ∈ �0� t′	
, i.e., of the trajectory
of S�t� up to time t′. This follows from the indepen-
dent increments property of the Brownian motion. In
addition, from the no-arbitrage property of the Black-
Scholes model, the discounted price of the primitive
asset is a Q-martingale:

��t′�S�t′�= E���t′′�S�t′′� 	 � �t′�	� for 0≤ t′ ≤ t′′ ≤ T�

(3)

where ���t�= e−rt� t ∈ �0�T 	
 is the discount factor pro-
cess and E is (all along this paper) the expectation
with respect to Q. Details about risk-neutral evalua-
tion can be found in Karatzas and Shreve (1998).

2.2. The Bermudan-Amerasian Contract
We consider a model similar to that of Grant et al.
(1997). Let 0 = t0 ≤ t1 < t2 < · · · < tn = T be a fixed
sequence of observation dates, where T is the time hori-
zon, and let m∗ be an integer satisfying 1≤m∗ ≤ n. The
exercise opportunities are at dates tm, for m∗ ≤m≤ n.
If the option is exercised at time tm, the payoff of
the (Bermudan)-Amerasian call option is ��Sm−K�+

def=
max�0��Sm−K�, where �Sm= �S�t1�+· · ·+S�tm��/m is the
arithmetic average of the asset prices at the observa-
tion dates up to time tm. This model is quite flexible.
For n = 1, we get a standard European call option.
For m∗ = n > 1, we have a Eurasian option. Here, we
are not really interested in these degenerate cases, but
in the case where m∗ < n. To simplify the exposition
we will assume that the observation dates are equally
spaced: ti− ti−1 = h for i= 1� � � � �n, for some constant
h. We will also drop the “Bermudan” qualifier, with
the implicit understanding that everything is really in
discrete time.

3. The Dynamic Programming
Formulation

3.1. Value Function and Recurrence Equations
For m = 0� � � � �n, denote by vm�s� s̄ � the value of the
option at the observation date tm when S�tm�= s and
�Sm = s̄, assuming that the decisions of exercising the
option or not, from time tm onwards, are always made
in an optimal way (i.e., in a way that maximizes the
option value). This optimal value is a function of
the state variables �s� s̄ � and of the time tm. We take
the state space as �0�
�2 for convenience, although at
each time step, only a subset of this space is reachable:
Because S�·� is always positive, at time tm one must
have s̄= s > 0 if m= 1 and s̄ > s/m> 0 if m> 1. At time
tn, vn�s� s̄ � ≡ vn�s̄ � does not depend on s, whereas at
time t0, s̄ is just a dummy variable in v0�s� s̄ �≡ v0�s�,
which depends only on s.
At time tm, if S�tm�= s and �Sm = s̄, the exercise value

of the option (for m≥m∗) is

vem�s̄�= �s̄−K�+� (4)
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whereas the holding value (i.e., the value of the option
if it is not exercised at time tm and if we follow an
optimal exercise strategy thereafter) is

vhm�s� s̄� = �Em�s� s̄�vm+1�S�tm+1��

�ms̄+S�tm+1��/�m+1��	

for 0≤m≤ n−1� (5)

where Em�s� s̄�·	 represents the conditional expectation
E�· 	 � �tm�� S�tm� = s��Sm = s̄ 	, and � = e−rh is the dis-
count factor over the period �tm� tm+1	. This holding
value vhm�s� s̄ � is the (conditional) expected value of
the option at time tm+1, discounted to time tm.
The optimal value function satisfies:

vm�s�s̄�=



vhm�s�s̄� if 0≤m≤m∗−1�
max

{
vem�s̄��v

h
m�s�s̄�

}
if m∗≤m≤n−1�

vem�s̄� if m=n�
(6)

The optimal exercise strategy is defined as follows:
In state �s� s̄ � at time tm, for m∗ ≤m < n, exercise the
option if vem�s̄ � > vhm�s� s̄ �, and hold it otherwise. The
value of the Amerasian option at the initial date t0,
under an optimal exercise strategy, is v0�s� = v0�s� s̄ �.
The functions vem�v

h
m, and vm are defined over the

entire state space �0�
�2 for all m, via the above recur-
rence equations, even if we know that part of the state
space is not reachable. (We do this to simplify the
notation and to avoid considering all sorts of special
cases.)
A natural way of solving (6) is via backward iter-

ation: From the known function vn and using (4)–(6),
compute the function vn−1, then from vn−1 compute
vn−2, and so on, down to v0. Here, unfortunately, the
functions vm for m≤n−2 cannot be obtained in closed
form (we will give a closed-form expression for vn−1
in a moment), so they must be approximated in some
way. We propose an approximation method in §5. In
the next section, we establish some properties of vm
and of the optimal strategy of exercise, which are
interesting per se and are also useful for analyzing
the numerical approximation techniques.

4. Characterizing the Value
Function and the Optimal
Exercise Strategy

4.1. The Value Function vn−1
Recall that the value function vn at the horizon T = tn
has the simple form vn�s� s̄ �= �s̄−K�+. We now derive
a closed-form expression for the value function at
time tn−1, the last observation date before the horizon.
We assume that 1 ≤ m∗ ≤ n− 1 (otherwise, one has
vn−1 = vhn−1 and the argument simplifies). From (5) we
have

vhn−1�s� s̄ � = �En−1� s� s̄

[(
�n−1�s̄+S�tn�

n
−K

)+]

= �

n
En−1� s� s̄

[
�S�tn�−�K�+]�

where �K = nK− �n−1�s̄.
We first consider the case where �K ≤ 0, i.e., s̄ ≥

Kn/�n− 1�. The holding value can then be derived
from (3) as the linear function

vhn−1�s� s̄ �= vlin�s� s̄ �= s

n
− �

n
�K = s

n
+�

n−1
n

s̄−�K�

and the exercise value equals s̄−K > 0. One can eas-
ily identify the optimal decision (exercise or not) for
any given state �s� s̄ � by comparing this exercise value
with the holding value vlin. This yields an explicit
expression for the value function. Consider the line
defined in the �s� s̄ � plane by s̄−K = vlin�s� s̄ �, that is,

s− �n− �n−1���s̄+nK�1−��= 0� (7)

The optimal strategy here is: Exercise the option if
and only if �s� s̄ � is above the line (7). This line passes
through the point �K�K�n/�n− 1� and has a slope of
1/�n− �n− 1��� < 1, so it is optimal to exercise for
certain pairs �s� s̄ � with s > s̄, a possibility neglected
by Grant et al. (1997). A partial intuition behind this
optimal strategy is that for sufficiently large s̄ and for
s < s̄, the average price will most likely decrease in
the future (it is pressured down by the current value),
so it is best to exercise right away.
We now consider the case �K > 0, i.e., s̄ < Kn/�n−1�.

In this case, the holding value is equivalent to
the value of a European call option under the
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GBM model, with strike price �K, initial price s for the
primitive asset, maturity horizon T − tn−1 = h, volatil-
ity � , and risk-free rate r . This value is given by the
well-known Black-Scholes formula:

vBS�s� s̄ �= 1
n

(
��d1�s−��K�

(
d1−�

√
h
))
�

where

d1 =
ln�s/�K�+ �r+�2/2�h

�
√
h

and � denotes the standard normal distribution func-
tion. If s̄≤K, one must clearly hold the option because
the exercise value is 0. For s̄ > K, the optimal decision
is obtained by comparing vBS�s� s̄ � with s̄−K, similar
to what we did for the case where �K ≤ 0. We now
have a closed-form expression for vn−1:

vn−1�s� s̄ �=




max�s̄−K� �s+ �n−1��s̄	/n−�K


if s̄ ≥ Kn/�n−1��

max�s̄−K�vBS�s� s̄ �


if s̄ < Kn/�n−1��

We could (in principle) compute an expression for
vn−2 by placing our expression for vn−1 in the DP
Equations (5) and (6), although this becomes quite
complicated. The functions vn and vn−1 are obviously
continuous, but they are not differentiable (vn is not
differentiable with respect to s̄ at s̄ = K). These func-
tions are also monotone nondecreasing with respect
to both s and s̄. Finally, the optimal exercise region
at tn−1 is the epigraph of some function  n−1, i.e.,
the region where s̄ >  n−1�s�, where  n−1�s� is defined
as the value of s̄ such that vhn−1�s� s̄ � = s̄−K. In the
next subsection, we show that these general proper-
ties hold as well at time tm for m≤ n−1.

4.2. General Properties of the Value Function
and of the Exercise Frontier

We now prove certain monotonicity and convexity
properties of the value function at each step, and use
these properties to show that the optimal strategy of
exercise at each step is characterized by a function  m
whose graph partitions the state space in two pieces:
At time tm, for m∗ ≤ m < n, if s̄ ≥  m�s� it is optimal
to exercise the option now, whereas if s̄ ≤  m�s� it is
optimal to hold it for at least another step. We derive

these properties under the GBM model, but the proofs
work as well if S�tm+1�/S�tm� has a different distribu-
tion than the lognormal, provided that it is indepen-
dent of � �tm� and that the relevant expectations are
finite.

Proposition 1. At each observation date tm, for 1 ≤
m< n, the holding value vhm�s� s̄ � is a continuous, strictly
positive, strictly increasing, and convex function of both s
and s̄, for s > 0 and s̄ > 0. The function v0�s� enjoys the
same properties as a function of s, for s > 0. For 1≤m<n,
the value function vm�s� s̄ � also has these properties except
that it is only nondecreasing (instead of strictly increasing)
in s.

Proof. The proof proceeds by backward induction
on m. At each step, we define the auxiliary random
variable !m+1= S�tm+1�/S�tm�, which has the lognormal
distribution with parameters �h and �

√
h, indepen-

dently of � �tm�, as in (2). A key step in our proof
will be to write the holding value vhm�s� s̄� as a convex
combination of a continuous family of well-behaved
functions indexed by !m+1.
For m= n−1, the holding value is

vhn−1�s� s̄� = �En−1� s� s̄�vn��Sn�	

= �
∫ 


0

(
�n−1�s̄+ s!

n
−K

)+
f �!�d!�

where f is the density of !n. The integrand is continu-
ous and bounded by an integrable function of ! over
any bounded interval for s and s̄. Therefore, the hold-
ing value vhn−1 is also continuous by Lebesgue’s dom-
inated convergence theorem (Billingsley 1986). The
integral is strictly positive because, for instance, the
lognormal distribution always gives a strictly posi-
tive measure to the event ��n−1�s̄+ s!n−nK ≥ n
, on
which the integrand is ≥1.
To show that vhn−1�s� s̄ � is strictly increasing in s̄, let

s̄ > 0 let # > 0. One has

vhn−1�s� s̄+#�−vhn−1�s� s̄ �

= �
∫ 


0

[(
�n−1��s̄+#�+ s!

n
−K

)+

−
(
�n−1�s̄+ s!

n
−K

)+]
f �!�d!
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≥ �
∫ 


�nK−�n−1�s̄�/s

[
�n−1��s̄+#�+ s!

n

− �n−1�s̄+ s!

n

]
f �!�d!

≥ n−1
n

# > 0�

The same argument can be used to prove that
vhn−1�s� s̄ � is strictly increasing in s. The convexity of
vhn−1�s� s̄ � follows from the fact that this function is a
positively weighted average (a convex combination),
over all positive values of ! , of the values of ��n−
1�s̄+ s!�/n−K�+, which are (piecewise linear) convex
functions of s and s̄ for each ! . It is also straightfor-
ward to verify directly the definition of convexity for
vhn−1 (e.g., Rockafellar 1970): For any pair �s1� s̄1� and
�s2� s̄2�, and any $ ∈ �0�1��vhn−1�$s1 + �1− $�s2�$s̄1 +
�1−$�s̄2�≤ $vhn−1�s1� s̄1�+ �1−$�vhn−1�s2� s̄2�.
Because the holding function is continuous and

strictly positive, the value function

vn−1�s� s̄�=max
(
�s̄−K�+�vhn−1�s� s̄ �

)
is also continuous and strictly positive. It is also con-
vex, nondecreasing in s, and strictly increasing in s̄,
because it is the maximum of two functions that sat-
isfy these properties. (The maximum can be reached
at �s̄−K�+ only if s̄ > K, since vhn−1�s� s̄ � > 0��
We now assume that the result holds for m+ 1,

where 1 ≤ m ≤ n− 2, and show that this implies that
it holds for m. The holding value at tm is

vhm�s�s̄� = �Em�s�s̄�vm+1�s!m+1��ms̄+s!m+1�/�m+1��	
= �

∫ 


0
vm+1�s!��ms̄+s!�/�m+1��f �!� d!� (8)

where f is the lognormal density of !m. The func-
tion vhm�s� s̄ � is also continuous and strictly positive
because the integrand is continuous, strictly positive,
and bounded by an integrable function of ! over
every bounded interval for s and s̄. The other prop-
erties can be proved via similar arguments as for the
case of m = n− 1. The proof for v0 is also similar, as
for m> 0. We omit the details. �

Lemma 2. For s > 0 and 0< s̄1 < s̄2, one has

vhm�s� s̄2�−vhm�s� s̄1� <
m

m+1
�s̄2− s̄1��

for 1≤m< n (9)

and

vm�s� s̄2�−vm�s� s̄1�≤ s̄2− s̄1 for 1≤m≤ n� (10)

Proof. The proof proceeds again by backward
induction on m. We will use the property that b+ −
a+ ≤ b− a when a ≤ b. For m = n, we have vn�s� s̄2�−
vn�s� s̄1� = �s̄2−K�+ − �s̄1−K�+ ≤ s̄2− s̄1, so (10) holds
for m = n. We now assume that (10) holds for m+ 1,
where m< n, and show that this implies (9) and (10)
for m. From (8), we have

vhm�s� s̄2�−vhm�s� s̄1�

= �
∫ 


0

(
vm+1

(
s!�

ms̄2+ s!

m+1

)

−vm+1

(
s!�

ms̄1+ s!

m+1

))
f �!�d!

≤ �
∫ 


0

(
ms̄2+ s!

m+1
− ms̄1+ s!

m+1

)
f �!�d!

≤ m

m+1
�s̄2− s̄1� ��

Moreover, vem�s̄2� − vem�s̄1� = �s̄2 − K�+ − �s̄1 − K�+ ≤
s̄2− s̄1. Now,

vm�s� s̄2�−vm�s� s̄1�

=max
(
vem�s̄2��v

h
m�s� s̄2�

)−max
(
vem�s̄1��v

h
m�s� s̄1�

)
≤max

(
vem�s̄2�−vem�s̄1��v

h
m�s� s̄2�−vhm�s� s̄1�

)
≤ s̄2− s̄1�

This completes the proof. �

Proposition 3. For m=m∗� � � � �n−1, there exists a
continuous, strictly increasing, and convex function  m '

�0�
�→ �K�
� such that

vhm�s� s̄�



>vem�s̄� for s̄ <  m�s�

=vem�s̄� for s̄ =  m�s�

<vem�s̄� for s̄ >  m�s��

(11)

Proof. Let s > 0 and m∗ ≤m≤ n−1. We know from
Proposition 1 and Lemma 2 that vhm�s� s̄� is always
strictly positive and strictly increasing in s̄, with a
growth rate always strictly less than �m/�m+ 1� < 1.
On the other hand, vem�s̄� = �s̄ −K�+ is 0 for s̄ ≤ K

and increases at rate 1 for s̄ > K. Therefore, there is a
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unique value of s̄ > K, denoted  m�s�, such that (11)
is satisfied.
To show that  m�s� is strictly increasing in s, let 0<

s1 < s2. If we suppose that  m�s1� ≥  m�s2�, we obtain
the contradiction

0 < vhm�s2� m�s2��−vhm�s1� m�s2��

= vhm�s2� m�s2��−vhm�s1� m�s1��+vhm�s1� m�s1��

−vhm�s1� m�s2��
=  m�s2�−K− � m�s1�−K	+vhm�s1� m�s1��

−vhm�s1� m�s2��
= vhm�s1� m�s1��−vhm�s1� m�s2��

−� m�s1�− m�s2�	≤ 0�

where the first inequality is by Proposition 1 and
the last inequality is by (9) in Lemma 2. Therefore,
 m�s1� <  m�s2�, i.e.,  m�s� is strictly increasing in s.
Now consider two states �s1� s̄1� and �s2� s̄2� where

it is optimal to exercise the option at time tm, i.e.,
for which s̄1 ≥  m�s1� and s̄2 ≥  m�s2�. Let �s$� s̄$� =
$�s1� s̄1�+ �1− $��s2� s̄2� for 0 ≤ $ ≤ 1. Because vhm is
convex by Proposition 1,

vhm�s$� s̄$� ≤ $vhm�s1� s̄1�+ �1−$�vhm�s2� s̄2�

≤ $�s̄1−K�+ �1−$��s̄2−K�

= s̄$−K = vem�s̄$��

Therefore, in state �s$� s̄$� it is also optimal to exercise
the option, i.e., s̄$ ≥  m�s$�. We have just proved that
for any two points lying above the function  m, the
straight line joining these two points is also above the
function  m. This implies that  m is a convex function.
The convexity then implies the continuity. �

For m=m∗� � � � �n−1, we define the (optimal) exer-
cise frontier at time tm as the graph of  m, i.e., the
locus of points �s� s̄� such that vhm�s� s̄� = vem�s̄�. The
function  m�s� is the optimal exercise function and its
epigraph is the (optimal) exercise region. It is opti-
mal to exercise the option at time tm if s̄ ≥  m�s�, and
hold it until the next exercise date tm+1 if s̄ ≤  m�s�.
The optimal exercise function is illustrated in §6 for a
numerical example.

5. Numerical Solution of the
DP Equations

We now elaborate on the numerical approach that we
have implemented for approximating the solution of
the DP equations and the optimal exercise function.
The general idea is to partition the positive quadrant
of the plane �s� s̄� by a rectangular grid and to approx-
imate the value function at each observation date by
a simple polynomial function on each rectangle of the
grid (i.e., piecewise polynomial). However, instead of
fitting the approximation to vm directly, we will make
the change of variable s̄′ = �ms̄ − s�/�m− 1� at time
tm and redefine the value function in terms of �s� s̄′�
by setting wm�s� s̄

′� = vm�s� s̄� before fitting a piece-
wise polynomial approximation to this new function
wm. This change of variable greatly simplifies the
integration when the approximation is incorporated
into Equation (5): It makes the integral unidimen-
sional and allows us to compute it formally (explic-
itly) instead of numerically. The polynomial functions
we tried are linear in s, and linear, quadratic, or cubic
in s̄′. Other types of approximations could also be
used for wm (see, e.g., de Boor 1978).

5.1. A Piecewise Polynomial Approximation
At time tm, let

s̄′ =
{
�ms̄− s�/�m−1� if m> 1�

0 if m≤ 1�
(12)

which is the value of �Sm−1 if S�tm�= s and �Sm = s̄ and
define

wm�s� s̄
′�= vm�s� s̄�� (13)

where s̄ = ��m−1� s̄′ + s�/m if m≥ 1 and s̄ = 0 if m= 0.
The function wm has the same properties as stated for
vm in Proposition 1, except that w1 does not depend
on s̄′. The recurrence (5)–(6) can be rewritten in terms
of wm as

we
m�s� s̄

′�= vem�s� s̄�= �s̄−K�+� (14)

wh
m�s� s̄

′�= vhm�s� s̄�= �Em�s� s̄�wm+1�s!m+1� s̄�	

for 0≤m≤ n−1� (15)
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wm�s� s̄
′�

=




wh
m�s� s̄

′� if 0≤m≤m∗ −1�

max �we
m�s� s̄

′��

wh
m�s� s̄

′�
 if m∗ ≤m≤ n−1�

we
m�s� s̄

′� if m= n�

(16)

The idea now is to approximate each value function
wm by a continuous and piecewise polynomial func-
tion of �s� s̄′�, of degree 1 (linear) in s and degree d
in s̄′. We have experimented with d = 1�2, and 3, i.e.,
(piecewise) bilinear, linear-quadratic, and linear-cubic
functions.
We first define a grid by selecting 0= a0 <a1 < · · ·<

ap < ap+1 = 
 and 0 = b0 < b1 < · · · < bq < bq+1 = 
.
The grid points G = ��ai� bj� ' 0 ≤ i ≤ p and 0 ≤ j ≤
q
, partition of the positive quadrant �0�
�× �0�
�
into the �p+1��q+1� rectangles Rij = ��s� s̄′� ' ai ≤ s <
ai+1 and bj ≤ s̄′<bj+1
, for i= 0� � � � � p and j = 0� � � � � q.
In our implementations, we always took a1 = b1 and
ap = bq , and, to simplify, we assume that these condi-
tions hold in the following discussion (however, our
convergence proof does not make this assumption).
Under these conditions, if �s� s̄′� ∈ G, then s̄ in (15)
is necessarily in the interval �b1� bq	 for m > 0, which
means that we need an approximation of wm+1 only
over the box B = �0�
�× �b1� bq	.
We regroup the rectangles covering the box B as

follows. Suppose for now that q−1 is a multiple of d.
For j ∈ J �d� def= �1�d+1�2d+1� � � � � q−d
, let

R�d�
i� j =




R0� j ∪· · ·∪R0� j+d−1
∪R1� j ∪· · ·∪R1� j+d−1 for i = 1�

Ri� j ∪· · ·∪Ri� j+d−1 for 1< i < p−1�

Rp−1� j ∪· · ·∪Rp−1� j+d−1
∪Rp� j ∪· · ·∪Rp� j+d−1 for i = p−1�

We consider approximating functions that are lin-
ear in s and polynomial of degree d in s̄′ over each
of these rectangles R�d�

i� j , and continuous across these
rectangles.
To construct these piecewise polynomials, at each

step m, for m = n− 2� � � � �2, we first compute an
approximation of wm at each point of G. This is
done via the DP equations (4)–(6), using an available
approximation ŵm+1 of the function wm+1 (in a manner

to be detailed in a moment). Given the approximation
w̃m�ai� bj� of wm�ai� bj� at each point �ai� bj� ∈G, we
interpolate w̃m with a piecewise polynomial of degree
d along the line s = ai for each i, and then interpo-
late linearly in s between the lines s = ai and s = ai+1,
for i = 1� � � � � p− 1. At time tn−1, we use the exact
closed-form expression for the value function (since
we know it) instead of an approximation. At times t1
and t0�wm�s� s̄

′� depends only on s, so only the piece-
wise linear interpolation in s is needed.
More specifically, for 2 ≤ m ≤ n− 2, over the line

segment defined by s = ai and s̄′ ∈ �bj� bj+d	 for j ∈
J �d�, we approximate wm by the Newton interpolation
polynomial

ŵm�ai� s̄
′� = Pmi� j�s̄

′�

def= 1mi� j�0+1mi� j�1�s̄
′ − bj�

+· · ·+1mi� j�d �s̄
′ − bj� · · · �s̄′ − bj+d−1�� (17)

The coefficients 1mi� j� 2 are obtained by interpo-
lating the known values of w̃m at the points
�ai� bj�� � � � � �ai� bj+d�, i.e., by solving the system of lin-
ear equations defined by

w̃m�ai� s̄
′�= Pmi� j�s̄

′� for s̄′ = bj� � � � � bj+d� (18)

This is done for i = 1� � � � � p, and j ∈ J �d�. Then,
over each rectangle R�d�

i� j for i < p, the approximation
ŵm�s� s̄

′� of wm�s� s̄
′� is defined by the linear interpo-

lation

ŵm�s� s̄
′� = ai+1− s

ai+1−ai
ŵm�ai� s̄

′�

+ s−ai
ai+1−ai

ŵm�ai+1� s̄
′�� (19)

In the case where q − 1 is not a multiple of d, if
j∗ is the largest j < q such that d divides j − 1, we
use a polynomial approximation of degree q− j∗ �<d�
in s̄′ over the rectangles R�d�

i� j∗ , redefined by R�d�
i� j∗ =

Ri� j∗ ∪ · · ·∪Ri�q−1.

5.2. Explicit Integration for Function Evaluation
We now examine how to compute the approxima-
tion w̃m�ai� bj� given the available approximation ŵm+1
of wm+1. Observe that wh

m in (15) is expressed as an
expectation with respect to a single random variable,
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!m+1, and we have chosen our change of variable
�s� s̄�→ �s� s̄′� precisely to obtain this property. More-
over, the fact that our approximation of wm+1 is piece-
wise linear in s makes the integral very easy to com-
pute explicitly when this approximation is put into
(15). More specifically, the holding value wh

m�s� s̄
′� is

approximated by

w̃h
m�s� s̄

′� = �Em�s� s̄ �ŵm+1�s!m+1� s̄�	

= �Em�s� s̄

[
p−1∑
i=1

(
ai+1− s!m+1
ai+1−ai

Pm+1
i� 3 �s̄�

+ s!m+1−ai
ai+1−ai

Pm+1
i+1� 3 �s̄�

)
Ii

]
� (20)

where 3 is the largest j ∈ J �d� such that s̄ ≥ bj and Ii is
the indicator of the event ��s!m+1� s̄� ∈ Ri�3
.
The function w̃h

m is to be evaluated only over the
points of G. For k = 0� � � � � p and l = 0� � � � � q, if
�s� s̄′� = �ak� bl�, we have s̄ = ck� l

def= ��m− 1� bl+ ak�/m.
By evaluating (20) at �s� s̄′� = �ak� bl� and rearranging
the terms, we obtain

w̃h
m�ak� bl�= �

p∑
i=1
Dk�i P

m+1
i� 3 �ck� l�� (21)

where 3 is the element of J �d� for which ck� l ∈ �b3� b3+d�,

Dk�i =




E

(
a2−ak!

a2−a1
I1

)
for i = 1�

E

(
ai+1−ak!

ai+1−ai
Ii+

ak!−ai−1
ai−ai−1

Ii−1

)
for 1<i<p�

E

(
ak!−ap−1
ap−ap−1

Ip−1

)
for i = p�

! is a lognormal random variable with parameters �h
and �

√
h, and Ii is the indicator of the event �ak! <

a2
 if i = 1� �ap−1 ≤ ak!
 if i = p− 1� �ai ≤ ak! < ai+1
 if
1 < i < p− 1. Defining Ak�i = E�Ii	 and Bk� i = E�ak!Ii	,
we can rewrite

Dk�i

=




a2Ak�1−Bk�1
a2−a1

for i = 1�

ai+1Ak�i−Bk� i
ai+1−ai

+ Bk� i−1−ai−1Ak�i−1
ai−ai−1

for 1<i<p�

Bk�p−1−ap−1Ak�p−1
ap−ap−1

for i = p�

Knowing that E� I�ak! < ai
	 = ��xk� i� and
E�! I�ak! < ai
	 = ��xk� i − �

√
h� erh where � is the

standard normal distribution and xk� i = �ln �ai/ak�−
�h	/��

√
h�, we find that

Ak�i =



��xk�2� for i = 1�

� �xk� i+1�−��xk� i� for 1< i < p−1�

1−��xk�p−1� for i = p−1�

and

Bk� i =




ak� �xk�2−�
√
h� erh for i = 1�

ak
[
��xk� i+1−�

√
h�

−��xk� i−�
√
h�
]
erh for 1< i < p−1�

ak
[
1−��xk�p−1−�

√
h�
]
erh for i = p−1�

The constants Ak�i�Bk� i, and Dk�i are precomputed
before doing the first iteration, and the Dk�i are then
used to evaluate (21) at each step m.
This yields the approximate value function

w̃m�ak� bl�=max �w̃h
m�ak� bl�� �ck� l−K�+�� (22)

These values at the grid points are then interpolated
to obtain the function ŵm as explained earlier. Inte-
gration and interpolation stages are repeated succes-
sively until m= 0, where an approximation of w0 and
of the option value v0�S�0�� is finally obtained. An
important advantage of choosing the same grid G
for all m is that the coefficients Dk�i can be precom-
puted once for all. It would also be possible to use
an adaptive grid, where the grid points change with
the observation dates. This could be motivated by the
fact that the probability distribution of the state vec-
tor changes with time. In that case, the mathemati-
cal expectations Dk�i would depend on m and would
have to be recomputed at each observation date.
With the approximation ŵm in hand, at any given

time step m the (approximate) optimal decision in any
state �s� s̄� is easily found by comparing ŵm�s� s̄

′� with
vem�s̄� = �s̄ −K�+. If one is willing to memorize the
approximations ŵm, nothing else is needed. In fact, it
suffices to memorize the approximations ŵm over a set
of rectangles that covers the optimal exercise frontier
for each m. If one does not want to store these approx-
imations, one may compute and memorize an approx-
imation of the function  m for each m. This involves
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additional work, but storing these one-dimensional
functions requires less memory than storing the two-
dimensional functions ŵm. To approximate  m, one
can first approximate  m�s� on a grid of values of s by
the value s̄ such that �s̄−K�+ = ŵm�s� s̄

′�. This value
of s̄, denoted  ̂m�s�, can be found by a bisection algo-
rithm or by more refined methods. One can then fit
a spline to the points �s�  ̂m�s�� by least squares or
something of that flavor, and retain it as an approxi-
mation of the optimal exercise frontier at each exercise
date.
As it turns out, this procedure evaluates, with no

extra cost, the option value and the optimal decision
at all observation dates and in all states. This could
be used, for instance, to estimate the sensitivity of the
option value with respect to the initial price. Eurasian
options can be evaluated via this procedure as well,
because they are a special case.

5.3. Computational Speed-up and
Complexity Analysis

Whenever w̃h
m�ak� bl� < we

m�ak� bl� at some point �ak� bl�
for m≥m∗, i.e., if it is optimal to exercise at that point,
we know that we are above the optimal exercise func-
tion, so for all j ≥ l� w̃h

m�ak� bj� < we
m�ak� bj� and there

is no need to compute w̃h
m�ak� bj�. Our implementa-

tion exploits this property to save computations for
the pricing of Amerasian options. If m<m∗, we can-
not avoid the computation of w̃h

m�ak� bj� because one
is not allowed to exercise the option. For this reason,
Amerasian options are somewhat faster to evaluate
than Eurasian options (see the numerical results in
§6). This is one example of how the theoretical results
proved in §4 can be exploited to improve computa-
tional efficiency. These results can be exploited not
only by DP but by other methods as well.
Computing time can also be reduced by exploiting

the fact that whenever w̃m�ak� bl� is small enough to
be negligible (say, less than some fixed threshold ;1),
there is no need to compute w̃m�ak� bj� for j < l; it can
be replaced by 0. We took ;1 = 10−6 for the numeri-
cal examples of §6. Time can also be saved by taking
advantage of the fact that (typically) several terms in
the sum (21) are negligible, so there is no need to sum
explicitly all the terms.

The time complexity of the algorithm for comput-
ing the value function is O�p2� to precompute the
Dk�is, plus O�np2q� to compute the sum (21) for each
of the pq grid points at each of the n time steps,
assuming that we compute all the terms of each sum,
plus O�npq� to solve the systems of linear equations
giving the coefficients in (18). The overall time com-
plexity is thus O�np2q�.
For comparison, the time complexity of the PDE-

based algorithm of Zvan et al. (1999) is O�n′pq�, where
n′ is the number of time steps in their time discretiza-
tion. If the distance h between the successive observa-
tion dates is very small, n′ can be of the same order as
n, but if h is large (the observation dates are sparse),
one must take n′ � n to reduce the time-discretization
error. With DP, there is no need to discretize the time.
This analysis suggests that PDE methods should be
favored when h is small and that DP should become
increasingly attractive as h increases.

5.4. Convergence Proof
Proving the convergence of the DP algorithm as the
grid size becomes finer and finer is not straightfor-
ward because the state space is unbounded and the
value function increases unboundedly when s or s̄
goes to infinity. However, if c =min�ap� bq�→
, then
by Lemma 3 of Conze and Viswanathan (1991) and
standard large deviations approximation for the nor-
mal distribution, we have

Q

[
max
0≤t≤T

S�t�/S�0� > c

]

=Q

[
max
0≤t≤T

ln�S�t�/S�0�	 > ln c
]

= 1−�

(
ln c−�t

�
√
t

)
+exp

(
2� ln c
�2

)
�

(− ln c−�t

�
√
t

)

=O

(
1
ln c

exp
[
− ln2 c
2�2t

+O�ln c�
])

=O

(
1
ln c

c− ln c/�2�2t�

)
� (23)

Thus, the probability that the trajectory of ��S�t�,
�S�t���0 ≤ t ≤ T
 ever exits the box B = �0� ap	× �0� bq	
decreases to 0 at a rate faster than O�1/p�c�� for any
polynomial p. On the other hand, one can show that
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the error on the value function can only increase lin-
early when s or s̄ goes to infinity. As a consequence,
the effect of the approximation error outside the box
B becomes negligible if the box is large enough. This
is the basic idea of the proof of the next proposi-
tion. Besides proving convergence, the proposition
also says that with the bilinear interpolation �d= 1�, if
we neglect the effect of the approximation error out-
side the box B, our DP procedure gives an upper bound
on the option value.
Define #a = sup1≤i≤p�ai−ai−1� and #b = sup1≤j≤q�bj−

bj−1�.

Proposition 4. Assume that each approximation ŵm

is nondecreasing. If p → 
� q → 
� ap → 
� bq → 
,
#a → 0, and #b → 0, then for any constant c > 0,

sup
0≤m<n

sup
�s� s̄′�∈�0� c	2

	ŵm�s� s̄
′�−wm�s� s̄

′�	 → 0�

Moreover, if d = 1, ŵm�s� s̄
′� ≥ wm�s� s̄

′� for all m and all
�s� s̄′� ∈ �0� c	2, when ap and bq are large enough.
Proof. In Lemma 2, we showed that the deriva-

tive of vm�s� s̄� and vhm�s� s̄� with respect to s̄ never
exceeds 1. We now show that their derivatives with
respect to s are also bounded by the constant Cm,
defined recursively by Cn = 0 and

Cm =
(
Cm+1+

m

�m+1�2

)
�E �!m+1	= Cm+1+

m

�m+1�2
�

By backward induction on m, it can be shown that for
s1 ≤ s2,

vm�s2� s̄�−vm�s1� s̄�≤ �s2− s1�Cm� (24)

This is clearly true for m= n, because vn�s� s̄ � does not
depend on s. If we assume that (24) holds for m+ 1,
then, using Lemma 2,

vhm�s2� s̄�−vhm�s1� s̄�

= �
∫ 


0

(
vm+1

(
s2!�

ms̄+ s2!

m+1

)

−vm+1

(
s1!�

ms̄+ s1!

m+1

))
f �!�d!

≤ �
∫ 


0

(
�s2− s1� !Cm+1+

m

m+1
�s2− s1�!

m+1

)
f �!�d!

= ��s2− s1�

(
Cm+1+

m

�m+1�2

)
E �!m+1	

= �s2− s1�Cm�

Note that the slope of vm with respect to s never
exceeds that of vhm. This implies (24) and completes
the induction. Moreover, the derivative of wm does not
exceed that of vm, and similarly for wh

m, so Lemma 2
and (24) hold for these functions as well.
Using these bounds on the slope, and the fact that

wm is increasing with respect to each of its arguments,
we obtain that

sup
1≤k<p�1≤2<q

�wm �ak+1� b2+1�−wm�ak� b2�	≤ Cm#a+#b�

(25)

Let us define ;n = 0 and, for m= n−1�n−2� � � � �0,

;m = 2�;m+1+Cm#a+#b�

We also define an increasing sequence of square boxes
Bm = �0� cm	2 as follows. Choose c0 = c arbitrarily, and
for m = 0� � � � �n−1, choose cm+1 ≥ c large enough so
that for all �s� s̄ � �∈ Bm,

Em�s� s̄�	ŵm+1�s!m+1� s̄ �−wm+1�s!m+1� s̄ �	
× I��s!m+1� s̄ � �∈ Bm+1�	≤ �;m+1� (26)

where I is the indicator function. Such a cm+1 exists
because both ŵm+1 and wm+1 are bounded by a linear
function and the probability of exiting the box Bm+1
decreases faster than the inverse of any (positive) lin-
ear function of cm+1 when cm+1 →
, thanks to (23).
We now show, by backward induction on m, that

	ŵm−wm	 is bounded by ;m over the box Bm. This is
clearly true for m = n, because ŵn = wn. Now, if we
assume that 	ŵm+1�s� s̄′�−wm+1�s� s̄′�	 ≤ ;m+1 for �s� s̄′�∈
Bm+1, then we have, for �s� s̄′� ∈ Bm,

w̃m�s� s̄
′�−wm�s� s̄

′�

≤ �
∫ 


0
	ŵm+1�s!� s̄ �−wm+1�s!� s̄ �	f �!�d!

≤ �;m+1Q��s!m+1� s̄ � ∈ Bm+1	

+Em�s� s̄�	ŵm+1�s!m+1� s̄ �−wm+1�s!m+1� s̄ �	
× I��s!m+1� s̄ � �∈ Bm+1�	

≤ 2�;m+1�
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Then, because ŵm is a nondecreasing interpolation of
w̃m in the box Bm and using (25), we have that

	ŵm�s� s̄
′�−wm�s� s̄

′�	 ≤ 2�;m+1+Cm#a+#b = ;m�

Under the assumptions of the proposition, ;m → 0 and
this proves the first part.
In the case of the piecewise-linear interpolation

�d = 1�, it is also easily seen that the interpolation
always overestimates wm, because wm is increasing and
convex. That is, by backward induction on m one can
show that ŵm ≥ w̃m ≥wm. �

5.5. Grid Choice, Refinement, and
Convergence Acceleration

In the experiments reported here, the grid G was
chosen as follows: We took p= q� bi = ai for all i, a1 =
S�0�exp��tn−1 − 5�

√
tn−1 �� ap−1 = S�0�exp��tn−1 +

5�
√
tn−1 �� ap = S�0�exp��tn−1+6�

√
tn−1 �, and for 2 ≤

i ≤ p− 2, ai was the quantile of order �i− 1�/�p− 2�
of the lognormal distribution with parameters �tn−1
and �

√
tn−1. This choice is heuristic and certainly not

optimal. Ideally, the density of grid points should be
increased in the regions that are visited with high
probability and where the value function tends to be
less linear.
To assess the discretization error, we applied the

algorithm repeatedly for different grid sizes, doubling
the value of p �=q� each time, until there was no sig-
nificant change in the option value estimate. We also
made a sensitivity analysis with respect to ;1: For ;1 <
10−6 (e.g., 10−7 or 10−8) the results for the option value
were the same as those reported here. Also, replacing
the numbers 5 and 6 by larger numbers in the defini-
tions of a1� ap−1, and ap did not change the results.
The sequence of DP approximations of the option

value for successive values of p, where each value
of p is twice the previous one, converges to the
true option value when p → 
. The straightfor-
ward way of estimating the option value is then to
take the approximation obtained with the finest grid
(largest p). But one can do better by using extrap-
olation methods designed for accelerating the con-
vergence of sequences and that transform a given
sequence into another sequence that converges more
rapidly under very broad conditions. One of these

methods (the most powerful, some say) is the ;-
algorithm introduced by Wynn in 1956 (see Wynn
1966, Brezinski 1978, Sidi 1996), which works as fol-
lows. Let s�1�1 � � � � � s�1�2 be the original (finite) sequence
of length 2, where 2 is odd, and let s�0�k = 0 for all k.
For j = 2� � � � � 2 and k = 0� � � � � 2− j+1, define

s
�j�
k = s

�j−2�
k+1 +

(
s
�j−1�
k+1 − s

�j−1�
k

)−1
�

The 2th and last sequence has a single term, s�2�0 ,
which is the final approximation of the conver-
gence point of the original sequence. This algorithm
performs surprisingly well in various contexts. The
reader can consult the references for the justification
and theory. In our context, we take it as a heuris-
tic and always use 2 = 3: The original sequence is
formed by taking the DP approximation for three suc-
cessive grid sizes, say �p/4�× �p/4�� �p/2�× �p/2�, and
p× p. The CPU time required for computing s�3�0 is
approximately the sum of CPU times required by DP
for the three grids, and is only marginally more than
the CPU time for the p× p grid alone. Of course,
such extrapolation methods can be used to acceler-
ate convergence of any method that uses successively
refined discretizations (e.g., PDE methods, binomial
trees, etc.), not just DP.

6. Numerical Experiments
and Examples

Example 1. For our first example, we take S�0� =
100�K = 100�T = 1/4 (years), � = 0�15� r = 0�05�h =
1/52�m∗ = 1, and n = 13. This is a 13-week con-
tract, with an exercise opportunity at each observation
epoch, which is every week. We also consider three
slight modifications of this example: We first increase
the volatility � from 0.15 to 0.25, we then increase T
from l/4 to l/2 (26 weeks) while keeping n= 13, and
finally we increase K from 100 to 105 to obtain an out-
of-the-money option. In each case, we evaluate the
Eurasian and Amerasian options with five grid sizes,
as indicated in Tables 1 and 2. We made the compu-
tations with the linear-linear �d = 1�, linear-quadratic
�d = 2�, and linear-cubic �d = 3� approximations. In
Tables 1 and 2, for each parameter set and each grid
size, the DP approximation of v0�S�0�� obtained with
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Table 1 Approximations of the Eurasian Call Option Prices

�K� T � � � p = 150 p = 300 p = 600 p = 1�200 p = 2�400 Simulation

(100, 0.25, 0.15) 2.16581 2.16510 2.16493 2.16489 2.16487
2.16547 2.16502 2.16491 2.16488 2.16487 [2.16483, 2.16492]

(100, 0.25, 0.25) 3.36556 3.36439 3.36411 3.36402 3.36402
3.36501 3.36426 3.36408 3.36403 3.36402 [3.3639, 3.3642]

(100, 0.50, 0.25) 4.92929 4.92765 4.92726 4.92716 4.92713
4.92851 4.92746 4.92721 4.92715 4.92713 [4.9269, 4.9274]

(105, 0.50, 0.25) 2.80811 2.80647 2.80607 2.80597 2.80595
2.80734 2.80628 2.80602 2.80596 2.80594 [2.8058, 5.8062]

CPU (h:min:sec) 0:00:01 0:00:10 0:01:16 0:09:47 1:18:25
0:00:01 0:00:10 0:01:15 0:09:50 1:23:13 00:00:13

d = 1 is given above that obtained with d = 2. We see
that the two values are essentially the same with the
finest grid, and that d = 2 does slightly better than
d = 1 for the coarse grids. We also tried with d = 3,
but the convergence was not really faster and the CPU
times were much higher.
The timings reported here are for a 750Mhz PC run-

ning the Linux operating system. The programs are
written in FORTRAN and were compiled with the
GNU g77 compiler. The CPU times are given for the
first set of parameters values and are approximately
the same for the other sets, in each the two tables.
With d = 2, there are more coefficients to determine
in each rectangular box than with d = 1, but there is
only half the number of boxes for the same grid size.
The approximation of v0�S�0�� converges rapidly

as the grid size is refined. With the coarsest grid of
150×150, the error is already less than one quarter of
a cent, and the result is obtained in less than 1 second.
The values provided by the ;-algorithm (not shown

Table 2 Approximations of the Amerasian Call Option Prices

�K� T � � � p = 150 p = 300 p = 600 p = 1�200 p = 2�400

(100, 0.25, 0.15) 2.32209 2.32114 2.32091 2.32085 2.32084
2.32156 2.32101 2.32088 2.32085 2.32084

(100, 0.25, 0.25) 3.65221 3.65058 3.65019 3.65009 3.65006
3.65129 3.65037 3.65013 3.65008 3.65006

(100, 0.50, 0.25) 5.33506 5.33273 5.33217 5.33203 5.33200
5.33375 5.33242 5.33209 5.33201 5.33199

(105, 0.50, 0.25) 2.96851 2.96633 2.96580 2.96567 2.96564
2.96732 2.96605 2.96573 2.96565 2.96563

CPU (h:min:sec) 0:00:01 0:00:06 0:00:48 0:06:04 0:48:37
0:00:01 0:00:06 0:00:48 0:06:16 0:51:15

in the table) converge even faster: With p= 600, these
values never differ by more than 0.00001 from the val-
ues given in the table for p = 2�400, which can be
considered as practically exact.
We have also estimated the value of the Eurasian

option by Monte Carlo simulation, using the geo-
metric average as a control variate, as suggested by
Kemna and Vorst (1990). The column labeled “simula-
tion” gives the 95% confidence interval thus obtained,
with one million replications. It agrees with the DP
approximations.
When we compare the value of the Amerasian

option with its Eurasian counterpart, we see that
the privilege of early exercise increases the value of
the option, as expected. The contract becomes more
expensive when the volatility or the maturity date is
increased, because this gives more chance of achiev-
ing a large average. It becomes cheaper when the
strike price is increased.
To quantify the impact of increasing the number of

early exercise opportunities (and observation dates),
we performed additional experiments with the same
parameter sets as in Table 2, but with different values
of n ranging from 1 to 52. For each of the four param-
eter sets in Table 3, the top and bottom lines give
the value of the Amerasian and Eurasian call options,
respectively, computed via DP with a 600× 600 grid.
The linear-linear and linear-quadratic approximations
give exactly the same values for the first four decimal
digits shown here.
We see that increasing n decreases the option value.

The explanation is that increasing the number of
observation dates increases the stability of the average
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Table 3 Amerasian (Top) and Eurasian (Bottom) Option Values As a
Function of n

n

�K� T � � � 1 2 4 13 26 52

(100, 0.25, 0.15) 3.635 2.842 2.512 2.321 2.289 2.276
3.635 2.842 2.443 2.165 2.103 2.072

(100, 0.25, 0.25) 5.598 4.395 3.920 3.650 3.608 3.592
5.598 4.395 3.788 3.364 3.270 3.222

(100, 0.50, 0.25) 8.260 6.463 5.745 5.332 5.266 5.239
8.260 6.462 5.558 4.927 4.787 4.716

(105, 0.50, 0.25) 5.988 4.245 3.475 2.966 2.858 2.804
5.988 4.245 3.389 2.806 2.678 2.614

prices, and this offsets the advantage of having more
exercise opportunities. Note that n= 1 corresponds to
a standard European call. For n = 2, it is optimal to
exercise at time t1 only if S�t1� = �S1 ≥ 2K (see §4.1),
which is an extremely rare event with our choice of
parameters. This is why the Amerasian and Eurasian
options have practically the same value when n= 2.
Figures 1 and 2 show the optimal exercise frontier

at times tn−2 and t2, respectively, for this example, for
the Amerasian option with parameters �K�T���n�=
�100�0�5�0�25�52�. These figures illustrate the fact that
the farther away from the time horizon we are, the
higher the exercise frontier is: It makes sense to wait
even if the current price is somewhat below the cur-
rent average, because things have time to change. The
function wn (not shown here) depends almost exclu-
sively on s̄ (very little on s) and is almost piecewise
linear when we are near the time horizon, but the
dependence on s and the nonlinearity increase when
we move away (backwards) from the time horizon.
Example 2. Our second example is the one consid-

ered by Grant et al. (1997). The time increment is fixed
at h = 1/365 (1 day), the first observation date is at
t1 = 91/365 (91 days), and the first exercise opportu-
nity is at tm∗ = 105/365 (105 days). The other parame-
ters are S�0�= 100�K= 100�T = 120/365�� = 0�20, and
r = 0�09. Table 4 gives our approximation of v0�S�0��
for the Amerasian option with different grid sizes, as
in Table 2, with d= 2 (the linear-quadratic approxima-
tion). In the second line of each entry (the numbers in
parentheses) we give the extrapolation value obtained
with the ;-algorithm with 2 = 3, based on the DP

Figure 1 The Optimal Exercise Frontier at Time tn−2 for Example 1
(Solid Line)

Note. The dotted line is the diagonal s̄= s.

approximations with p/4� p/2, and p. These extrapo-
lation values stabilize faster than the DP approxima-
tions themselves.
The column labeled GVW gives the 95% confidence

interval reported by Grant et al. (1997) for the value of
the option with the strategy obtained by their proce-
dure. The difference from our values can be explained
in part by the fact that their procedure systematically
underestimates the values of Amerasian call options,
because the exercise strategy found by their simula-
tion procedure is suboptimal, so when they use this
strategy in a simulation, their estimator of the opti-
mal price has a negative bias. Further negative bias is

Figure 2 The Optimal Exercise Frontier at Time t2 for Example 1
(Solid Line)

Note. The dotted line is the diagonal s̄= s.
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Table 4 Approximation of the Option Value for the GVW Example

�K� T � � � p = 150 p = 300 p = 600 p = 1�200 p = 2�400 GVW

(100, 0.2) 5.80859 5�80274 5�80059 5�79976 5�79943 5�80±0�02
�5�799� �5�799� �5�799� �5�799�

(105, 0.2) 3.35848 3�35284 3�35075 3�34994 3�34962 3�35±0�02
�3�349� �3�350� �3�349� �3�349�

(100, 0.3) 7.97369 7�96367 7�95988 7�95838 7�95776 7�92±0�02
�7�957� �7�958� �7�957� �7�957�

(105, 0.3) 5.57682 5�56705 5�56329 5�56185 5�56124 5�53±0�02
�5�560� �5�561� �5�561� �5�561�

CPU (h:min:s) 0:00:01 0:00:08 0:01:09 0:08:53 1:08:40

introduced when they assume that the exercise fron-
tier at each stage is determined by two straight lines.
With our DP procedure and the ;-algorithm, approx-
imately 10 seconds of CPU time suffice to obtain the
option value to within one-third of a cent.
Example 3. We tried our method with the example

given in Tables 3 and 4 of Zvan et al. (1999), denoted
here by ZFV. The parameters are n = 250� S�0� = K =
100�T = 0�25� r = 0�1, and � = 0�2 and 0.4. Such a large
value of n (i.e., frequent observation dates) should
favor the ZFV method, in view of the analysis of
§5.3. There are two important differences between the
model used by ZFV and ours: (1) ZFV define �Sm =
�S�0�+ · · · + S�tm��/�m+ 1�, i.e., they include S�0� in
the average and we do not; (2) ZFV try to approxi-
mate the value of a continuously sampled Amerasian
option that can be exercised at any time, whereas we
are really interested in the value of the Bermudan
option. To make the results somewhat more compa-
rable, we adopt their definition of �Sm for the present
example. But because of the second difference, we are
still not pricing exactly the same Amerasian contract,
and this will show up in the experimental results
(Table 6).

Table 5 Estimated Prices of Eurasian Call Options for the ZFV Example

DP with Linear-Quadratic Interpolation ZFV

p � = 0�2 � = 0�4 CPU � = 0�2 � = 0�4 CPU

145 2.988 5.278 0:00:07 2.929 5.160 0:02:42
289 2.942 (2.928) 5.187 (5.159) 0:00:51 2.929 5.161 0:11:50
600 2.932 (2.929) 5.167 (5.161) 0:07:32

1,200 2.930 (2.930) 5.163 (5.162) 0:58:14
2,400 2.930 (2.930) 5.162 (5.162) 7:23:37

The results are in Tables 5 and 6 for the Eurasian
and Amerasian cases, respectively, with the linear-
quadratic interpolation �d = 2�. The CPU times given
are for � = 0�2; those for � = 0�4 are similar. For each
entry, the number in parentheses is the extrapolation
value provided by the ;-algorithm for the correspond-
ing value of p. In Table 6, DP converges to slightly
different values than ZFV, and this can be explained
by the difference (2) between the two models, as dis-
cussed earlier. To confirm this, we tried DP on the
same model but with larger values of n, and the val-
ues were much closer to those of ZFV.
The CPU times used by ZFV and DP are not really

comparable because we used a 750 Mhz computer,
whereas ZFV used a 200 Mhz one. The ZFV method
converges faster than DP as a function of p; it gives a
better approximation for coarse grid sizes. The quality
of the approximation depends on the choice of grid
points and on the type of approximation used over
the boxes, and our DP implementation could proba-
bly be improved in this respect. According to the the-
oretical analysis in §5.3, the advantage of ZFV over
DP should decrease if the observation dates become
sparser and increase if they are more frequent.
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Table 6 Estimated Prices of Amerasian Call Options for the ZFV Example

DP with Linear-Quadratic Interpolation ZFV

p � = 0�2 � = 0�4 CPU � = 0�2 � = 0�4 CPU

145 3.267 5.919 0:00:04 3.213 5.828 0:02:48
289 3:217 (3.201) 5.830 (5.799) 0:00:30 3.213 5.825 0:11:54
600 3.206 (3.203) 5.807 (5.801) 0:04:05

1,200 3.204 (3.203) 5.803 (5.801) 0:34:24
2,400 3.203 (3.203) 5.802 (5.801) 4:21:10

Table 7 Approximation of v0�100� for the Hull and White
Example (Example 4)

DP Binomial Tree

p Eurasian CPU Amerasian CPU h Eurasian Amerasian

150 4.542 0:00:03 4.957 0:00:01 0.100 4.687 5.377
300 4.524 0:00:24 4.937 0:00:14 0.050 4.614 5.145
600 4.520 0:03:21 4.932 0:01:57 0.010 4.539 4.962

1,200 4.519 0:26:46 4.931 0:15:04 0.005 4.529 4.942
2,400 4.519 3:41:03 4.930 2:02:54 0.003 4.525 4.936

Example 4. Here we consider the same example
as in Table 5 of Hull and White (1993). We have
n = 80� S�0� = 50�K = 50�T = 1�� = 0�3� r = 0�1, and
S�0� is included in the average as for the previous
example (i.e., �Sm = �S�0�+ · · · + S�tm��/�m+ 1��. Hull
and White (1993) estimated the option value for this
example using a binomial tree. Table 7 compares their
results with ours. The h in the table refers to the
parameter h used by their method. Its value must be
quite small to get accurate results. The DP method
converges nicely and needs less than 30 seconds of
CPU time to approximate the value within one penny
for both the Eurasian and Amerasian calls.

7. Conclusion
We studied in this paper a pricing method for
the (Bermudan-)Amerasian option on a single asset,
under the GBM model, via dynamic programming
coupled with a piecewise-polynomial approximation
of the value function after an appropriate change
of variable. We proved continuity, monotonicity, and
convexity properties of the value function and of the
optimal exercise function (which delimits the optimal
region of exercise). These properties characterize the

optimal exercise strategy for the option. Our compu-
tational method appears competitive with other avail-
able methods.
One of our examples illustrates that increasing the

number of exercise opportunities tends to decrease
the value of the option when the average is taken over
the dates where there is an exercise opportunity: The
increase in the stability of the average price offsets the
value for having more exercise opportunities.
The DP approach does not rely on the form of the

exercise region and could be used for pricing other
types of discretely sampled American-style options
for which the relevant information process can be
modeled as a Markov process over a low-dimensional
state space (for the case considered in this paper, the
Markov process is two-dimensional). The GBM could
be replaced by a more general CEV process (Cox
1996), or by other models for the underlying asset.
For the CEV process, the quantities Dk�i in (21) can
also be computed in closed form. In general, however,
the implementation would have to be reworked. A
key ingredient is the ability to approximate the value
function at each time step. Here we have used piece-
wise polynomials, with the pieces determined by a
rectangular grid that remains the same at all steps.
Adapting the grid to the shape of the value function
at each step (with the same number of pieces) could
provide a better approximation but would bring addi-
tional overhead. Perhaps a good compromise would
be to readjust the grid every > steps (say), for some
integer >, and readjust it only in the areas just below
the optimal exercise frontier, where the value function
is significantly nonlinear.
It can be useful to study, for each case of practi-

cal interest, how to exploit the structure of the prob-
lem to characterize the value function and the optimal
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exercise strategy, and to improve the efficiency of the
numerical method, as we have done here. When the
dimension of the state space is large, e.g., if the payoff
depends on several underlying assets, approximating
the value function becomes generally much more dif-
ficult (we hit the “curse of dimensionality”) and pric-
ing the option then remains a challenging problem.
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