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Amroximation and  Bounds in Discrete  Event 
I I  

Dynamic Programming 

Abstmuct-This paper  presents  a  general  dynamic  programming  al- 
gorithm  for  the  solution of optimal  stochastic  control  problems  concern- 
ing  a  class of discrete  event  systems.  The  emphasis is put on the  numerical 
technique  used  for  the  approximation of the  solution of the  dynamic 
programming  equation. 

This  approach  can be efficiently  used  for  the  solution of optimal 
control  problems  concerning  Markov  renewal  processes.  This is illus- 
trated on a  group  preventive  replacement  model  generalizing  an  earlier 
work of the  authors. 

I. INTRODUCTION 

T HIS paper deals with the computation of optimal control laws 
for a class of discrete-event systems. These systems are 

typical of the modeling of queueing or maintenance problems, and 
we shall illustrate the computational techniques presented in this 
paper, with a preventive replacement model. 

In a typical preventive replacement problem (see [9], [lo]), the 
state of a component is described by its age or by an indication of 
failure. Replacement of the component restores its age at a  zero 
value. In a discrete event formulation of the problem, the system 
is observed at discrete random times. At  any of these times, also 
called intervention times, the controller observes the state of the 
system and chooses an action in an admissible set. Associated  with 
the state and action, a probability law  is governing the generation 
of the next intervention time and observed state. 

As the age is a continuous variable, the system can tentatively 
be modeled as a Markov decision process, provided that the state 
and action sets be defined as Borelian spaces. Bertsekas and 
Shreve [5] have proposed a rather complete theory of infinite 
horizon dynamic programming with such general state and action 
spaces. However, their theory is  based on a discrete-time 
formulation with a constant discount factor. 

In a discrete-event system, the times of intervention are 
random, so the discount factor will  not remain constant from one 
stage to the other. However, for a large class of problems this 
discount factor can be expressed as a function of the current state 
of the system (which may include the current time). 

Various authors [ l  11, [21], [25] have already studied infinite 
horizon multistage decision processes with state-dependent dis- 
count factors, usually assuming that  the integral of the stochastic 
transition kernel was uniformly bounded away from 1. However, 
for many discrete event systems, this assumption does not hold. 

Whittle [29] obtained a condition (the bridging condition) for a 
Markov decision process with nonnegative costs to  enjoy regular- 
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ity properties implying the limit of n-stage optimal policies to be 
optimal. 

Finally, a generalization of the Bertsekas-Shreve dynamic 
programming formalism has been achieved in [14] and [15], 
without the latter uniform boundedness assumption. The present 
paper is concerned with the numerical solution of the general 
dynamic programming equation obtained in [ 151. 

The simplest approach for the implementation of a numerical 
technique would be to discretize the time,  state, and action 
domains, and then get back to a standard problem of a discrete 
(although very large) Markovian decision process. This approach 
is illustrated in [IO], in the setting of an optimal group 
replacement problem. 

A more satisfactory approach consists of using numerical 
approximation techniques for the solution of the dynamic pro- 
gramming equation of the original problem. This is the approach 
followed in this paper. 

The paper is organized as follows. In Section I1  we review 
briefly the most relevant results of [15] which concern a general 
multistage decision process; in Section 111 we present the use  of 
approximation techniques for the solution of the dynamic pro- 
gramming equation. In Section IV we see that our model 
encompasses the Markov-renewal decision processes with Bore- 
lian state and action spaces. Finally in Section V we  use the 
approach for the numerical solution of a complex maintenance 
problem. 

11. A CLASS OF MULTISTAGE DECISION PROCESSES WITH 
STATE-DEPENDENT  DISCOUNT  FACTOR 

In this section we present some results which extend the 
dynamic programming theory of [5] to the case of a discounted 
Markov decision process with a state-dependent discount factor. 
The proof of these results is  given in [I41 and [15]. 

We consider a system with state x in X :  a given Borelian space. 
At each decision time, a controller chooses an action a in A ,  also a 
Borelian space. A state-dependent constraint on the action set is 
defined by an analytic subset r of X x A ,  called the set of 
admissible state-action couples, such that 

A ( X )  G {U E A :(X, a) E rl+4 v x  E x. (1) 

The dynamics of the system is described by a stochastic kernel 
Q, which is a family { Q(.  I x ,  a), (x, a) E X X A )  of probability 
laws on X .  Viewed as a functional Q : X  X A + @ ( X ) ,  Q is 
assumed to be Borel-measurable, where the set @(x) of probabil- 
ity measures on X is endowed with the topology of weak 
convergence. The one-stage cost function is a lower semi-analytic 
function g:r + R .  At stage n,  if the system is  in state x, and the 
controller picks action a, in A@,), then a cost g(x,, a,) is 
incurred for that stage, and the state at stage n + 1 is generated 
randomly according to the probability measure Q ( .  \x,, a,). The 
cost incurred at stage n is discounted to a given origin by a 
discount factor /3(x,), where /3:X + (0, 11 is a Bore1 measurable 
discounting function. The system is assumed to operate over an 
infinite time horiznn (i.e.. an infinite number of stages). 
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Remark 2.1: Notice that this definition of the discounting 
factor implies that the current time t is included as a component of 
the state x.  This is particularly true for the classical Markov 
renewal decision process with discounting [7]  which is encom- 
passed by the present model. The inclusion of time in the state 
variable permits also the consideration in a unique framework of 
stationary (time homogeneous) as well as nonstationary systems. 

The discounted cost for stage n is denoted by 

c n  P P(xn)g(xn, an). (2) 
We assume that the controller picks an action at each stage by 

using  an admissible stationary feedback control law defined as a 
function p : X  + A which is universally measurable and satisfies 

p(x )  E A ( x )   v x  E x. (3) 
Associated with any initial state x and control law, there is a 

uniquely defined probability measure P,& (see [14], 1151) on the 
set H of infinite sequences (xo, ao, x ] ,  a ] ,  . .) where 

(x i ,  a,) E X x A  for i = O ,  1, and xo=x. 

Definition 2.1: A multistage decision process with state- 
dependent discount factor is  well defined by (X, A ,  r, Q,  g, 0)  if, 
for any  initial state x in X ,  the series 

2 ci 
i = O  

is  well defined (finite or infinite) P,*v almost everywhere and the 
integral 

is also well defined. 
We introduce, when  they exist, the values 

and 
V*(x) P inf V,(x) 

PE’U 

where ‘U is the set of admissible control laws. 
A control law u in CU is said to be oDtimal (resDectivelv. E- 

Remark 2.2: An a  priori more general definition of a control 
law could be used, with memory and a random determination of 
the action at a given state x,. However, it could be shown [ 141, 
[ 151 that one can without loss of generality restrict the analysis to 
this simpler class of control laws. 

The single important difference between this class of systems 
and the one thoroughly analyzed in [5] stems from the consider- 
ation of a discount factor defined as a function P(xn) instead of b”, 
with /3 E (0, 1). 

In the latter case, the condition that 0 be in (0, 1) induces a 
geometrically decreasing sequence of discount factors. 

When the discount factor depends on x, one has to consider the 
expected discount factor from stage n + 1 to stage n which  is 
given by 

and we will introduce two versions of the model depending on the 
particular assumptions made on the functions g, a, and Q .  

Assumption 1.1: There exist a], go 5 0, g, L 0 such that 

A system which satisfies (6),  (7) will be called a “C-system” 

Another class of systems is associated with the next assump- 

Assumption 1.2: There exists a feedback control law l.i and 

where C means “contracting.” 

tion, and  many  of them are not C-systems. 

real numbers hl, K1, K2, g,  such that gl  L 0 and 

v x E x a ( x ,   i ( x ) ) s  61 < 1 (8) 

Kl+Kz>O (9) 

v ( x ,  a)  E r K I  +K2cw(x, a) s g ( x ,  a)  (10) 

v x E x g(x, i ( X N  sg1 (11) 

v (x ,  a) E r [ ; B ( x t ) , B ( x l ~ ( d x * ~ x ,  a)=O. (12) 

A system which satisfies (8)-(12) will be called an “LC- 
system” where LC stands for ”locally contracting.” 

The dynamic programming approach summarized in the two 
forthcoming theorems will  be valid under both assumptions. 

Let  CBo be the Banach space of  bounded functionals V : X  --f ( - 
03, 03) endowed with the norm 11 = supxEx 1 V(x) l ,  6 3 ,  the 
subspace of lower semianalytic functionals V in (BO which are also 
universally measurable, and finally (B2 the closed subset of C B l  

defined as follows: 

I‘ V E  631 : A s V s -  
1 - 0 1 1  1-01, 

for  version C 
632 = 

for version LC. 
For any V in C B I ,  we introduce 

H( V)(x,  a) P g(x, a)  

1 +- [ P(x‘)V(x’ )Q(&‘ Ix,  a) v (x, a) E r (13) 

Tp(V) (x)  P H( V ) k  A X ) )  V X E x, V p E ’u (14) 

T ( V ) ( x )  2 inf H ( V ) ( x ,  a)  v x E X .  (15) 

The following two theorems summarize the dynamic program- 

Theorem 2.1: Let V be a function belonging to a2. Then the 

a) T(V) = Viff V = V*. 
b)  If T( V) I V,  then V* s V.  
c) If T( V) 2 V,  then V* L V .  
d) limn+- )I F ( V )  - V* )I = 0. 
e) V* E CB2. 

f )  A control law p is optimal iff Tp( V * )  = V*. 
g) A control law p is optimal iff T( V,) = V, E 
Remark 2.3: This theorem gives a set of optimality conditions 

a), f), g), as well as the basis for a dynamic programming 
algorithm of successive approximations d) and properties permit- 
ting one to bound the optimal value function b), c). 

This theorem proved in [ 141 .[ 151 is complemented by the 
following, also proved in the same references. 

Theorem 2.2: The following holds for both versions, C and 
LC, of the model. 

a) There exists an optimal control law p iff the infOEA(,, 
H( V*) (x ,  a) is attained for all x in X. 

b) Let  V be  any function in (B2.  If for  some integer no the sets 

Un(V)(x,  X )  2 { a  E A(x) lH(T“ (   V ) ) (x ,  a ) s X }  

B(x) x 

a E A ( x )  

ming approach. 

following holds for versions C and LC of the model. 

are compact for any integer n greater than no, then there exists a 
sequence (p, of control laws such that 
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T,,(Tn(V))=Tn+l(V) V nrno ,  -- g' K I  -min (0, K2) 1-6, 
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and there exists a control law p which is a pointwise limit of 
{ P ~ } , ~ , ~ .  This control law p is also an optimal control law. 

Remark 2.4: The conditions for Theorem 2.2 b) are satisfied, 
in particular, if each set A(x) is finite or if each A(x) is compact, 
the product g - 0 and V are lower semicontinuous and Q is 
continuous on X X A .  

Notice also that b) is a constructive proof of the existence of an 
optimal control law. 

m. APPROXIMATION TECHNIQUES FOR THE SOLUTION OF THE DP 
EQUATION 

One of the last "frontiers" in the theory and applications of 
dynamic programming lies in the numerical solution of the DP 
equation by using approximation techniques. For example, Rishel 
[24] has proposed a value iteration method for the computation of 
the optimal control for a jump process describing a group 
preventive replacement problem. However, to be implemented, 
this approach would necessitate the use of approximation tech- 
niques in the computation of the value function at each iteration. 

In this section we introduce a general algorithm based  on a 
value iteration technique with approximate computation of the 
value function at each step.  This algorithm is adapted to the DP 
equation given in Section 11, and generalizes most  of the 
approaches proposed in the OR literature for the computation of 
approximations and bounds  in dynamic programs. 

The value iteration technique consists of applying the DP 
operator T repeatedly, until some convergence test has been 
passed. McQueen [ 161; Denardo [7], and Porteus [19], [20] have 
obtained bounds for the norms 11 T"( V )  - V*II and 11 V, - V*ll 
when T is applied exactly at each iteration. These bounds 
converge geometrically to 0 as n tends to inf~ty. 

When the state space is infinite: it  is necessary to use an 
approximate computation of T(V)  on X .  A natural approach 
consists of partitioning the set X into a finite class of subsets, 
selecting a representative state in each subset, and defining an 
approximate fmite state model. Bellman and Dreyfus [2] have 
proposed the approach, Fox [8] has given conditions for the 
convergence of the value function to V*. A similar scheme was 
proposed by Bertsekas [4]  with a discretization of  both the state 
and the action spaces. Whitt [28] extended the approach to the 
general comparison between dynamic programs. Hinderer [ 121 
Langen [ 131,  and several others have also contributed to the 
mathematical theory of the convergence of a sequence of dynamic 
programs. Typically, these authors obtain bounds for the norms 
11 V* - V, 11 and 11 V* - V,ll. Here V, is the optimal value 
function for the approximate model which is extended to the 
whole state space X as a function that is constant on each subset of 
the partition, and V, is the value-function obtained on X when one 
uses the optimal policy p of the approximate model, extended to X 
by a function which  is constant on each subset of the partition. 

The approximation of the optimal value function V* on X by a 
piecewise constant function could be advantageously replaced by 
more sophisticated schemes like polynomial approximation, 
spline interpolation or approximation, finite element methods, 
etc. Daniel [6] and Morin [18] have advocated such an approach. 

Based on the dynamic programming equations summarized by 
Theorems 2.1 and 2.2, a general algorithm can be designed for the 
approximate computation of the optimal cost-to-go function. This 
algorithm uses  bounds  on V* defined by the next theorem whose 
proof  is given in the Appendix. 

For any function V in a,, we denote 

!-'-(x) 2 max (0, V(x)) .  

Theorem 3.1: Let al satisfy (6) and no = 1 for version C.  Let 
cyl E (0, 1) and no be the smallest integer larger than 

~ I ( K I  +K2) 
for version LC of the model. 

6' in R +  such that 
Consider two functions Vand VI in and two numbers 6 -, 

- 6 - s T ( V ) - V 1 5 6 + .  

Define 

E +  A no6+ +(no- I)\[( VI - V)+ 11 (16) 

E -  & n&- +(no- 1)11( I/- VI)+ 11. (17) 

Then the following holds. 

1vl+E+ +- Il(V1+e'- V ) + I ( .  (19) 
a1 

1 -a1 
b) For any eo > 6 +  there exists a control law p such that 

T , ( V ) I T ( V ) + E ~ - ~ + I V I + E ~ .  (20) 
If there exists CY E [0, 1) such that 

T,( V3) - TJ V2) I 4 1  V3 - V2ll (21) 
for any pair ( V2, V,) E 63; satisfying V, 2 V2, then 

a 
+- ll(vl+€o- V+II. (22) 1-CY 

This theorem is complemented by the following one, due 
originally to MacQueen [17], which permits the elimination of 
nonoptimal actions. Various other elimination procedures are 
discussed in [ 5 ] ,  [19], [20], [22], [27], and [28]. 

Theorem 3.2: If _V and V are two functions in a2 such that 
V 1  v*s P 

and, if a E A(x) is such that 

ff(_V)(x, a) > m ,  
then a B A *(x). 

Proof: 
H(-V)(x, a) > V ( x )  = H( V*)(x,  a)> V*(x) 

= a a A*(x).  
These two theorems suggest the following algorithm. 

ALGORITHM 
0 Set (y, and no as in Theorem 3.1. 

Set 63 := a2. 
Choose an upper bound for the total number of itera- 
tions. 
Choose E > 0. 
Take any function V in 63 as an initial guess of V*. 

Define VI in 63 as an approximation of T(V)  on X. 
0 Compute T( V, at a finite number of points in X .  

0 Compute 6 - , 6 + in R + such that 
- 6 -  I T(V) - VI 5 6 +  
and compute E -  and E -  as in (16), (17). 
The inequalities (18), (19) determine bounds for V*. 
Stopping Rule I :  Stop if the difference between the two 
bounds (lower and upper) is smaller than E .  

0 Find a control law p and eo 2 0 such that 
T,(V)IVI+EO. 

If there exists a E [0, 1) such that 
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then p is a control law which is €-optimal. 
Stopping Rule 2: Stop when one has obtained  an E- 

optimal control law. 
0 Stopping Rule 3: Stop when the maximal number of 

iterations has been attained. 
0 Set 

V(x) : = max V(x), VI@) - E -  (- 

V : =  v, 
@ Goto  0. 

The following theorem whose  proof  is also given in the 

Theorem 3.3: a) Let VO in and a sequence 
Appendix establishes the convergence of  the algorithm. 

{(6;, S:, Vn))nE.V in R +  x R -  xa2 

be such that 

n-m n-m 
lim 6; = lim 6,; = O  

with 

Then 

b) For the version C of the model, if the sequences of 6 - , 6 + , 
and eo values obtained in steps @ and @ of the algorithm 
converge to 0, then for any E > 0 an €-optimal control law  is 
obtained in a finite number of iterations. 

Remarks 3. I :  a) After step 0 of the algorithm, an elimination 
of nonoptimal actions can  be done by using Theorem 3.2.  Also the 
parameters aI and no could be reevaluated. 

b) Step @ can be repeated any number of times before going to 
step 0, resetting V : = VI after each repetition. 

c) One of the originalities of this algorithm is that  it provides 
bounds which take into account simultaneously the errors due to 
the approximation, at each step of the DP procedure, and the 
errors due to the fact that  only a finite number of iterations are 
made. 

d)  The algorithm is  very flexible. One can choose any  method 
of approximation and even change the method from iteration to 
iteration. 

e) In the implementation of the algorithm, a nontrivial task is to 
obtain values for 6 -, 6 -, and eo. Obviously, finite values always 

exist. At worst, one can take P - Y, which is. of course, quite 
pessimistic. For most practical situations, better bounds for the 
approximation error can be obtained. For instance, if T(V) and VI 
are monotonous functions, and if T( V)(x) can be computed at any 
given x with negligible error, one can compute T( V) on a finite 
grid and interpolate to define VI. For example, if X is the real 
interval [a,  b] ~ one computes T( V) at the n points a = xl < x2 < 

< x, = b,  defines 

and set 

This also generalizes naturally to multidimensional state spaces. 
Unfortunately, the main drawback of these “guaranteed” 

bounds on r ( V )  - VI is that they provide bounds on V,  that are 
so conservative as to  be useless in most practical situations. This 
same drawback also applies to the bounds proposed in [20] (see 

Instead of computing guaranteed bounds, an alternative ap- 
proach could  be  to estimate the real approximation error, and 
obtain estimate bounds on T( - VI. 

For instance, one way  to estimate 6 and 6 + , when T( V) is 
reasonably smooth, is to recompute T( V) at a very large number 
of  new points and compute the real approximation error at these 
points. If these points are well chosen, numerous, and if T( V) - V 
behaves reasonably, then the smallest and largest of these errors 
can be  taken as estimates of 6 - and 6 + , respectively. 

~31). 

IV. A CLASS OF MARKOV-REKEWAL DECISION PROCESSES 
We consider in this section an important subclass of systems 

which can be modeled as discounted Markov decision processes 
with a state-dependent discount factor. These systems, called 
Markov-renewai decision processes (MRDP) have a state set X 
defined as  a Cartesian product 

X 2 R + x S  
where S is a given Bore1 space. 

At stage n the state of the system will  be thus represented by a 
pair x, = (r,, s,,), where t ,  corresponds to the time of occurrence 
of stage n and s,, will represent the “physical” state of the system. 

Furthermore, for this class of systems, the discount factor P(x,) 
is defined as 

p(x,) 2 e - p ‘ n  

where p is a positive (continuous) discount rate. 
Let A be the action space and A(x,,) the set of admissible 

actions when the system is in state X, = ( t , ,  sn) ,  which are 
defined as in  Section II. 

The system dynamics can be described as follows: at stage 0, 
the initial state x0 = ( t o ,  SO) is given; at any stage n ,  the controller 
observes the state x,, = (t, ,  s,) and chooses an action a, in A(x,). 
Then  the  time I,+ I of  the  next stage. with the next physical state 
s,,, I are determined as 

ln+1=f ,+< 

Sn+ I = S  

where the pair ({, sJ is generated randomly according to the_ 
probability mgasure Q ( .  It,, s,, u,). Here, the stochastic kernel Q 
is a family { Q(. Ix, a), (x, a) E X X A }  of probability laws on 
[O, a) x s. 

Such a system is called a semi-Markov decision process if the 
measure Q is such that almost surely { is nonzero. The cost of 
transition from stage n to stage n + 1 is given by 
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g(xn9 an)=g( tn ,  Sn, an). 
The important subclass of homogeneouz Markov-renewal 

decision processes is obtained when A ,  Q, and g are not 
dependent on the time component t,, of the state x, = (t,, s,). 
Then the control law p can be a mapping from S into A such  that 

v s ES p(s) E A(s).  

The Markov renewal decision process will define a C-system or 
a LC-system if  it satisfies Assumption 1 or Assumption 2. Notice 
that. for this model  we  have 

a(t, s, a)= \ e-pcQ(d<, ~ \ s ,  a). 
R' 

and 

H (  YNt, s, a) =g(s, a)  

Remark 4.1: If V(t,  S) is independent of t ,  then H(V)(f ,  S, a) 
and T( V(t, s) are also independent of t .  This shows that, for the 
homogeneous modell the time could be eliminated from the state 
description, and the class of functions V ,  H( V), T( V) would now 
have only s and a for arguments. 

v. EXAMPLE: A MULTICOMPONENT SYSTEM WITH  IDENTICAL 
ELEMENTS 

Consider a system comprised of rn identical and stochastically 
independent components, each having a known  and nondecreasing 
failure rate h(t), a lifetime distribution function F( t )  = exp ( - 
X(s)ds), and a survival function E( t )  = 1 - F(t). Whenever a 
component fails: the repairman is  instantly informed: must 
replace it at once by a new one (emergency replacement), and 
may replace at the same time any  number of working components 
(preventive replacement). He can also halt the system at any 
moment and replace preventively any number of working compo- 
nents. All the replacement durations are assumed to be negligible. 

The cost of an intervention is composed of a fixed cost ci , and a 
replacement cost c, for each component replaced. A failure cost cf 
is also incurred each time a component fails, and  all the costs are 
discounted at rate p < 0. 

This generalizes the model studied in [ 11, [lo], and [24], since 
neither the failure cost c, nor the possibility to intervene at  any 
moment were considered then. 

The system is observed whenever a component fails or a 
preventive replacement is performed. These observation times are 
also the decision points, at each of which an action is taken. An 
action is a couple ( I ,  d) where I E { 1 ,  . - e, r n )  is a number of 
components to replace, and d E [0, a] is a time interval until  the 
next  planned preventive replacement. The state of a component is 
given by its age, where by convention the age of a failed 
component is a. 

Owing to the nondecreasing failure rate, and since the 
components are identical, the I components to be replaced are 
certainly the oldest ones. Hence, at any decision point, the  oldest 
component is always to be replaced, and it suffices to consider 
only  the states (ages) of the rn - 1 others. in decreasing order. 

The state and action spaces are defined as X = [0, a) X S 
where 

S=((xt ,  x2, ..., & - I )  E R " ~ - ' \ x l ~ x z ~ . . . r ? c , - 1 r O )  

and 

A = { l ,  - . - ,  m}x[O,  w] 

respectively. One can easily define1 Q (using h) and g. set r = X 
X A and verify that (X, A ,  r, Q, g, p )  is a homogeneous MRDP 
model version LC, with 

K z = O  

' We do not write it extensively since it involves a rather heavy notation. 

K , = c ; + c ,  

gl = ci + mc, + cr 

and 
F(x) = ( m ,  a) for all x E X .  

Remark 5.1: Notice that, since the decision variable d is not 
bounded  away from 0, the expected discount factor a is  not 
bounded away from 1. Therefore, the assumptions of model C, 
which are included in the formulation of most other authors ([7], 
[ l l ] ,  [ 1 3 ] ,  [23],  [25]) dealing with MRDP's: are not satisfied. 

A replacement policy p is a universally measurable function 
p : S  4 A ,  and we are looking for an €-optimal policy, where E is 
sufficiently small. For this purpose we shall use the algorithm 
proposed in Section 111, with state space reduced to S as discussed 
in Remark 4.1. 

Initially, we set 

_V=Kl, P=gl/(l -6l), (Yl=o.5 

and no is  the smallest integer larger than or equal to 2( P - K1)/ 
K1.  For any Vin and (x, I ,  d) in S X A ,  we have 

H( v)(x, I ,  d )  

rn 

+ e - p d n  E(rJ+d l r j )V(s l (d ) )+c i+ /c ,  
j =  I 

where 

rj = 
I o  

x j + / - l  for j = 1 ,  ..., m - /  

E(rJ+  <\r , )=F(rj+  { ) /E(r , )  
and si({) is  the vector (rl + [, * . . , r,- I + 5; ri+ + {, * - e ,  rrn + 
{): which is an element of S. 

As a numerical illustration, let rn = 3, ci = c, = 1 ,  c, = 2, p 
= 0.1, and 

for j = m - l + l ,  - e . ,  m 

h(t)=O.O2t for tr 0. 
This failure rate corresponds to a Weibull distribution,One easily 
obtains Kl = 2, gl = 6 ,  h1 = 0.62011, J' = 2 and V = 15.88. 
We choose V 2 as the initial function, a1 = 0.5, and obtain no 
= 14. 

At each iteration of the algorithm (Step 2), let us choose 0 = p 1  
< p z  < ... < p ,  and define Q = { ( p i ,  p j ) l l  I j I i I n } .  
This is the finite set of points at which T( V) is to be evaluated. 
These points determine a covering of  the conical state space S = 
{(xl, x2)1xl 2 x2 2 0} by n(n + 1)/2 subsets, as shown in Fig. 
1.  Among these subsets, n - 1 are triangles, (n - l)(n - 2)/2 
are rectangles, and n are unbounded polyedra. 

We then choose as follows a functional VI that interpolates 
T( V) at the points of W: VI is an interpolating affine function on 
each triangle, a bilinear function on each bounded rectangle, and 
an affine function which  is constant in x1 on each unbounded 
polyedron . 

Let  us take 
p i=2 .5( i - l ) ,   i= l ,  ... , 5  

for the first 30 iterations. At the last  of these iterations, we obtain 
Il(Vl - V ) + I I  = 0.000075 and ll(V - VI) 11 = 0.0. Table I 
gives, for each point (p,, p j )  in Q, the value of T( V)(p,, p j ) ,  as 
well as the values of I and d for which the minimum is attained in 
the definition of T( V), after these 30 iterations. 

Authorized licensed use limited to: Université de Montréal. Downloaded on June 10,2020 at 22:07:04 UTC from IEEE Xplore.  Restrictions apply. 



232 IEEE  TRANSACTIONS ON AUTOMATIC  CONTROL, VOL. AC-31. NO. 3,  MARCH 1986 

Fig. 1. A partition of the  set X .  

TABLE I 

CORRESPONDS TO A POINT IN n. THE FIRST NUMBER IN THE CASE IS THE 
FIRST APPROXIMATION RESULTS, AFTER 30 ITERATIONS.  EACH CELL 

VALUE OF T ( V )  AT THAT POINT. THE OTHER TWO ARE  THE CURRENT 
BEST VALUES OF d AND 

13.119 13.388 
8.42  7.59  6.76 

2  2 
7.5 

Notice that a better approximation of T( V)(xl, x2) for xI > 5 is 
useless here, since we replace every component whose age is 
greater than 5. A good approximation to T( V) is  useful  only  in  the 
region where the best value of I is 1. 

We  then refine the grid, taking 

pi=(j - l ) /4 ,  i = l ,  - . e ,  22, 

and do 15 more iterations. At the last iteration, we obtain 

Il(V1- ~ + [ ~ = 0 . 0 0 0 0 8 ,  Il(V- V,)-[I=O.O, 

and Vl(O, 0) = 11.148. 

Now, in order to obtain bounds for V* - V I ,  we  need  the 
values 6 - and 6 +, which are bounds on T( V) - VI at the last 
iteration. Clearly, it is not  easy to obtain bounds for T( V) - VI, 
since this function is defined on a continuous domain. As 
proposed in Remark 3.1 e) we will  thus evaluate T( V) - VI on a 
very fine grid, much finer than the preceding one, and estimate 6 ~ 

and 6 + by the minimum and maximum values of T( V, - VI on 
that grid, respectively. This procedure seems reasonable since VI 
and T( V) are smooth monotonous functions. 

Taking 

p i = ( i - l ) / 1 6 ,  i = l ,  , 88 
this yields 6 -  = 0.00073 and 6 +  = 0.00000. Using (18): (19), 
one easily computes the “estimate bounds” for V* 

Fig. 2. Number of components  to  replace as a function  of  the  state of the 
system,  as  suggested by  the  retained policy. 

- 0.021 5 v* - V I  10.002. 

The relative error on V* is at most 0.2 percent, which is very 
satisfactory. 

In a similar fashion, the optimal value of d can also be 
interpolated in the same way as T( V), in order to define the finally 
retained policy p .  We then compute T,( V) - VI on the finer grid 
to estimate eo, and compute the RHS of (23). This expression has a 
value of 0.021 suggesting that the retained policy is at worst 
0.02 1 -optimal. 

The conical state space X is partitioned into three regions, 
according to the number of components that this €-optimal policy 
tells us to replace. These regions can be seen in Fig. 2. Notice that 
the number of components to replace is  not a monotonously 
increasing function of the ages of the components. This property 
was also observed in the discrete-time case (see [lo]), and has an 
easy interpretation. For instance, in state (4.5, 0), replacing two 
components makes the system completely new: which is profit- 
able. In state (4.5, 4.0), replacing two components leaves one 
component at age 4.0, while replacing three is more expensive. 
Replacing only one and waiting for the next intervention happens 
to be the best action to choose. 

APPENDIX 
PROOFS OF THE THEOREMS OF SECTION 111 

In the proof of Theorem 3.1 ,  we  need the following lemma. 
This lemma is somewhat related to Proposition 4.6 of Bertsekas 
and Shreve [5], but different, since the assumption C of [5] is not 
satisfied here. 

Lemma: Let Y 5 P be two bounded elements of (5-3 I and a3 be 
the  closed subset of 6 3 ,  defined as a3 A { V E 1 - V  5 V 5 P]. 
If c p : ( B 3  -+ a3 and CY E (0, 1) are such that 

05P(v2)-P(vI)1~ll v2- VI11 64.1) 

for every pair V2 2 VI in 6 3 3 ,  then there exists P i n  a3 such that 
for any V E a3. we have 

Iirn \ lpn (V) -  PI1 = O  6 2 )  
n-cr 

and 
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Proof: First, we show that cp is contracting on a33. Let VI 
and V, be two arbitrary elements of a3. For each x in X ,  let V3(x) 
& max (V,(x), V,(x)). V3 is  in GIq, and from (A.l), 

a(v,)-~P(V2'2)4ro(V3)-~(v~)sffIl v3- vzllsffll vi- Vzll- 

Since Vi and V2 can be interchanged, we obtain 

l l d ~ 2 ~ - d ~ 1 ~ l l ~ f f l l  v2- VIII. ('4.4) 
a3 being a closed subset of the Banach space aO2 the fixed point 
theorem (see [5 ,  p. 551) implies that there exists Vin a3 such  that 

lim lipn( V) - 911 = O 

for all Vin a3. It remains to prove (A.3). 

n - m  

Let V be  in a3 and for n = 1,2,  . . , let yn in be defined as 

Yn(x)=min (v(x)-v(x),  l l ( ~ ( ~ - ~ + l l  ai) . 
n- 1 

i = O  

We will show by induction on n that 

(A.5) 

for all n 2 2. Since cp( rl, is  in a3, we certainly have cp( V) I I/ 
+ yl, and since yI  I V - V ,  I/ + y, is in a3. 

Assuming that p"( V) I V + yn E a3, we have 

C . " " ( v ) = ( o ( ~ " ( v ) ) ~ ~ ( ~ + Y n )  

sP(V)+ f f l lYn I I  (A. 6) 

Since cp: a3 + a3, we also have 

p n + y  V)l P 
and  then 

p " + l ( v ) s v + y n + I s P  (A. 8) 
so V + -yn+ I is  in a3. Notice that we have to introduce the 
functions yn since we have no guarantee that the RHS in (A.7) 
belongs to a3, and so we cannot directly apply cp on this function. 
Equation (AS) now follows from (A.6) and (A.8). Taking the 
limit  in (A.6), we obtain 

5cp(V)+ I l (dV-  v)+Ila/(l-ff). 
In a similar way, we can show that 

ff 
Pzcp(v)-- l l ( ~ - d v ) ) + l l  1 -ff 

and  that completes the proof. rn 
Proof of Theorem 3.1: a) First, we show by  induction  on n 

that for n = 1, * -, no, we have 

-n6- -(n- l)ll(V- VI)+II 

IT"(v)-V,sn6++(n-l)11(vl-v)+11. 
For n = 1, it follows directly from the definitions. Assume that it 
is true for n - 1, where 1 5 n - 1 < no. Then 

~"(v)-v,=T"(v)-T"~l(v)+T"-I(V)-V, 

~ I I ( ~ ( v ) - v ) + I I + ( ~ - 1 ) ~ - + ( ~ - 2 ) 1 1 ( ~ i - v ) + 1 1  

~ l l ~ ~ ~ v ) - ~ l ~ + l l + l l ~ ~ l - v ) + l l  
+ (n - 1)6 : + (n - 2)11( VI - J / ) A  11 

5n6++(n-l) l l (vI-  v ) + I I  

T"(V)-v,L-nns--(n-l)II(v-v~)+l1. 

and in a similar way, 

Letting n = no, we thus obtain 

-€-5P(J")- VISE- .  (A. 9) 

On the other hand, if V2 2 VI are two functions in a,, then by 
[ 15, Lemmas 3 and 71, we have 

OrT"O(v2)-T"0(vl)sffl~~V2-vi~~. (A.lO) 

Applying the preceding lemma (with a3 = a2, cp = Tn0 and P 
= V*),  we obtain 

d O ( v ) - L  Il(v-T"o(V))iII 
V* 

1 - f f i  
(A. 11)  

Using (A.9) and (A.lI),  (lS), (19) follow easily. 
b) The first statement follows from [5 ,  Proposition 7.501.  In 

(22), the first inequality is obvious by definition of V*, and it 
remains to prove the second inequality. From [5,  Lemma 7.30 and 
Proposition 7.481  we see that T,( E fo: each Win aI. For 
the version C of the model, by [ 15, Lemma 31 we also have T,: 63, 

For the version LC, define Y 3 K ,  + min (0, K2), g, gl/(l 
- 6, )  + eo - 6' + IIVll, v =  (g2 + (1 + cu)\lJll)/(l - a)and 
a3 as in the previous lemma. For each Win %3, we have T,( W )  
2 TJ-0  2 T(-v) 2 _V. From (13), (14) and since Vis in B2, we 
have 

T,(V)(x)>g(x, p(x))- Il_Vll, for all x in X .  (A.12) 

+ 632.  

From (20), (A.12) and since VI is  in a2, we obtain 

g(x,  /4x))sgl/(l - - I ) + E O - ~ ~  + IIYll=g2. (A.13) 
From (21), (12)-(14) and (A.13), we thus have 

T,( w = TJ-0 + T,( w - T,W 

=gz+ IlYll f f f l l  W-Yl l  

sg2+  IlYll +ff(II V I  + IlYll) 
5 ( g ~ + ( 1 + f f ) ~ ~ ~ ~ ~ ) ( l + f f / ( l - f f ) ) =  v. 

Thus, T,: a3 + a3. For both versions of the model, the previous 
lemma applies (with = @,-for vsrsion C, a3 as defined above 
for version LC, (a = T, and V = V,). Further, as in the proof of 
Lemma 10 in [15], we can show that V, = V,. We then obtain, 
since V E CB2 a3, 

(A. 14) 

Using  (20)  in (A.14), we obtain 

and from (1 S), (22) follows. rn 
Proof of Theorem 3.3. a) Let E > 0. Choose a positive 

integer i such that 
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where _V and P are the bounds of CB2, and then k > i such  that 

correct and improve the final version of this paper. All possible 
remaining errors are the  sole responsibility of the authors. 

for all j I no(k - 9. For each integer n > n&, we obtain using 
[ 15, Lemmas 3 and 71 and equations (12)-( 15) 

~ ~ V n - V * ~ ~ I ~ ~ V * - T ‘ “ ~ ( V , - i n o ~ ~ ~ + ~ I T i n ~ ~ V n - i n o ~ - V , ~ J  P I  
[31 

[41 

1171 
Since E is arbitrary, this completes the proof. 

the algorithm converges to 0, as well as the sequence of values of 

< 211 V - V* 11. The sequence of values of 11 V,  - VI\ also 

b) From a), the sequence of values of 11 V - V* )I obtained in C L 8 ]  

II T(V)  - VI, since II T(V) - VI < II T(V)  - I/* 11 + 11 V* - [I91 

converges to 0, since 1201 

12 11 

1221 
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