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Online Supplement

In this Online Supplement, we detail the methods we have developed to compute (or approxi-

mate) MLEs for the PG2, PG2pow, and PGnorta models. Section A deals with the PG2 model.

In Section A.1, we derive MMEs for that model. These estimators turn out to be less reliable

and robust than the MLEs, but we use them as starting points in our optimization algorithm to

compute the MLEs. In Section A.2, we derive an expression for the log-likelihood function and

find that it has an integral form that we do not know how to evaluate exactly. In Section A.3, we

develop a Monte-Carlo estimator of this log-likelihood, in functional form. This provides a sample

average approximation (SAA) of the exact likelihood function. We show that this SAA converges

uniformly to the exact one, and that its optimal value and set of optimizers converge as well, when

the Monte Carlo sample size increases. For a fixed Monte Carlo sample, this SAA is in fact a smooth

deterministic function which can be optimized by known nonlinear optimization techniques. In

Section A.4 we derive expressions for the derivatives of this SAA with respect to each parameter.

These derivatives can be used in a nonlinear optimization algorithm that maximizes the SAA, as

discussed in Section A.5. This approximate optimizer of the SAA can be taken as an approximate

optimizer of the exact likelihood function. In Section A.6, we extend this methodology to cover a

restricted form of the PG2 model where the shape parameter αj of the busyness factor for period
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j must follow a smooth function of j. In Sections B and C, we explain how we compute the MLEs

for the PG2pow and PGnorta models. In Section D, we explain the kernel density estimators we

have used to compute 95% confidence intervals. In Section E, we report some additional correlation

plots for our data.

In this Supplement, we suppose that we have data for I (independent) days of operation of

the call center. We denote by Xi = (Xi,1, . . . ,Xi,p) the vector of arrival counts for day i, and let

X= (X1, . . . ,XI).

Appendix A: Parameter Estimation for the Two-Level Busyness Factor Model PG2

A.1. Moment Matching Estimators

The easiest way of estimating the parameters of the PG2 model is via moment matching. It only

provides a crude estimator that is not always very reliable, but it is simple and easy to compute

for all model parameters, and can be used very conveniently as a starting point in the optimization

algorithm for MLEs.

The empirical means, variances, and covariances of the Xi,j’s are:

µ̂j =
1

I

I∑
i=1

Xi,j,

σ̂2
j =

1

I

I∑
i=1

(Xi,j − µ̂j)2,

r̂j,k =
1

I

I∑
i=1

(Xi,j − µ̂j)(Xi,k− µ̂k)

We match the moments of our model to the empirical moments separately for the means, variances,

and covariances.

Matching the means gives the MME for the base rates: λ̂j = µ̂j. Given this estimate, by matching

the covariances, solving the least squares matching problem, and after some algebraic manipula-

tions, we obtain the estimator of β:

β̂ = arg min
β

p−1∑
j=1

p∑
k=j+1

(
r̂j,k−

λjλk
β

)2

=

∑p−1

j=1

∑p

k=j+1 µ̂jµ̂k∑p−1

j=1

∑p

k=j+1 r̂j,k
. (1)

On close examination, we see that this estimator can take a negative value if the sum of empirical

covariances in (1) is negative. When this happens, it means that the sum of covariances is likely

to be close to 0, and therefore we suggest to replace β̂ by ∞ (or a very large value), which means

that B̄ has a degenerate distribution with mean 1 and variance 0. This is equivalent to removing

B̄ from the model, and brings us back to the PGindep model.
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Finally, by matching the variance we obtain the estimator of αj:

α̂j = arg min
αj

(
σ̂2
j −λj −

(1 +β+αj)λ
2
j

βαj

)2

=
(1 + β̂)µ̂2

j

β̂σ̂2
j − µ̂2

j − β̂µ̂j
. (2)

Here too it could happen that this estimator takes a negative value, if the empirical variance σ̂2
j is

too small. In this case, we remove B̃j from the model, or assume (equivalently) that Var(B̃j) = 0.

In our experiments, we found that this estimator of αj is sometimes very noisy, because it uses

noisy single period estimates σ̂2
j and µ̂j (in contrast to β̂ which uses averages). Problems may arise

especially when the denominator is close to zero. This difficulty can be alleviated to some extent

via smoothing (akin to the moving-average filter), by replacing (2) by

α̂j = arg min
αj

j+M∑
k=j−M

(
σ̂2
k−λj −

(1 +β+αj)λ
2
j

βαj

)2

.

Here, 2M + 1 is the size of window within which we assume αj to be constant. In this case, we

obtain a more robust and often better behaved estimator:

α̂j = (1 + β̂)

(
β̂

∑j+M

k=j−M µ̂2
k(σ̂

2
k− µ̂k)∑j+M

k=j−M µ̂4
k

− 1

)−1

.

In our experiments, we had good results when using this estimator with M = 5. Still, the MLE

developed in forthcoming subsections is generally better than this modified MME.

A.2. The Likelihood and Log-Likelihood Functions

For the PG2 model, let B̃i,j be the realization of the busyness factor B̃j of period j and B̄i the

realization of the daily busyness factor B̄, for day i of the data set. All these busyness factors

are unobserved (unknown). We denote the vector of daily busyness factors by B = (B̄1, . . . , B̄I)

and define α = (α1, . . . , αp). In our model, the counts are conditionally independent given the

realizations of the busyness factors, so the joint distribution of the (observed) counts conditional

on B can be written as

p(X|B, β,α,λ) =

∫ ∞
0

. . .

∫ ∞
0

I∏
i=1

p∏
j=1

(λjB̃i,jB̄i)
Xi,je−λjB̃i,jB̄i

Xi,j!

α
αj
j B̃

αj−1

i,j e−αjB̃i,j

Γ(αj)
dB̃i,j

=
I∏
i=1

p∏
j=1

∫ ∞
0

(λjB̃i,jB̄i)
Xi,je−λjB̃i,jB̄i

Xi,j!

αj
αj B̃

αj−1

i,j e−αjB̃i,j

Γ(αj)
dB̃i,j

=

[
p∏
j=1

αj
Iαj

Γ(αj)I

]
I∏
i=1

p∏
j=1

Γ(αj +Xi,j)

Xi,j!

(B̄iλj)
Xi,j

(αj + B̄iλj)
Xi,j+αj

.

Note that we are conditioning on the daily busyness factors B̄i, but integrating with respect to the

B̃i,j’s. Then, we can write the likelihood function by integrating out with respect to the B̄i:

p(X|β,α,λ) =

[
p∏
j=1

αj
Iαj

Γ(αj)I

][
I∏
i=1

p∏
j=1

Γ(αj +Xi,j)

Xi,j!

]
I∏
i=1

∫ ∞
0

[
p∏
j=1

(B̄iλj)
Xi,j

(αj + B̄iλj)
Xi,j+αj

]
ββB̄β−1

i e−B̄iβ

Γ(β)
dB̄i.

(3)
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For convenience, we will work with the log-likelihood function

L=L(β,α,λ) = log p(X|β,α,λ), (4)

which is the logarithm (in natural basis) of (3) and has the same maximizer. Using the shorthand

notation

ϕ(α,X) =

[
p∏
j=1

αj
Iαj

Γ(αj)I

]
I∏
i=1

p∏
j=1

Γ(αj +Xi,j)

Xi,j!
, (5)

Θi(B̄i,α,λ,X) =

p∏
j=1

(B̄iλj)
Xi,j

(αj + B̄iλj)
Xi,j+αj

, (6)

p(B̄i|β) =
ββB̄β−1

i e−B̄iβ

Γ(β)
, (7)

we can rewrite

L= logϕ(α,X) +
I∑
i=1

log

∫ ∞
0

Θi(B̄i,α,λ,X)p(B̄i|β)dB̄i. (8)

To avoid numerical problems and to ensure convergence when optimizing the log-likelihood, we

will assume that the parameter θ = (β,α,λ) lies in the compact set S = [ε,K1]p+1 × [0,K2]p, for

some constants ε > 0, K1 > ε, and K2 > 0, and restrict our maximization to that compact set.

Reasonable values for these constants can be selected after a quick assessment of the data. One

can easily verify that given the data, the log-likelihood function L is continuous and bounded in

S, so it has at least one maximizer θ0 ∈ S. We have no proof that there cannot be multiple local

maximizers, but we never had a problem with this in our experiments, either for L or its estimator

L̂N defined in the next subsection.

A.3. Estimating the Log-likelihood Function

One significant problem in maximizing L is that we do not know how to evaluate exactly the

integrals with respect to B̄i in (8). We will replace these integrals, as functions of the parameter

vector θ = (α, β,λ), by Monte Carlo estimates, and then optimize the resulting estimated log-

likelihood function. This approach is known as the sample average approximation (SAA) method

Ruszczyński and Shapiro (2003). SAA replaces the log-likelihood function L by an estimated log-

likelihood function L̂N , defined by estimating all the integrals with a fixed sample size N and

with common random numbers across all values of θ, This sample function L̂N (which becomes

deterministic) is then optimized via any nonlinear optimization algorithm. Convergence of SAA is

usually studied in two steps: (a) proving that the approximate log-likelihood function L̂N converges

to L in a sufficiently strong way when N →∞, so that its optimal value and its set of optimizers
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converge to those of L in some sense; and (b) showing that the retained optimization algorithm

converges to an optimum of L̂N . We start by defining L̂N more precisely and addressing (a).

To construct L̂N , we proceed as follows. For each i, we generate an i.i.d. sample ξ
(1)
i =

ξ
(1)
i (β), . . . , ξ

(N)
i = ξ

(N)
i (β) from the gamma density p(B̄i|β) and define the “weights”

ω
(n)
i = ω

(n)
i (β) = Θi(ξ

(n)
i (β),α,λ,X), n= 1, . . . ,N. (9)

The log-likelihood function estimator is defined using these sample weights:

L̂N = L̂N(β,α,λ) = logϕ(α,X) +
I∑
i=1

log

[
1

N

N∑
n=1

ω
(n)
i (β)

]
. (10)

We further assume that the samples ξ
(n)
i (β) are drawn by inversion of the gamma cdf, with common

random numbers across all values of β. That is, we generate u
(1)
i , . . . , u

(N)
i from the uniform distri-

bution over (0,1), and put ξ
(n)
i (β) =G−1

β (u
(n)
i ), where G−1

β (·) is the inverse of Gβ(·), the gamma

cdf with mean 1 and variance 1/β. Note that L̂N is defined as a function of the parameters, for

fixed realizations of these uniform random variables.

With the standard (or crude) Monte Carlo approach, the random numbers u
(n)
i are taken as

independent. One may also improve the accuracy (reduce the variance without introducing bias)

by introducing some dependence between those random numbers. One way to do this is by taking

a stratified sample over the interval (0,1): draw u
(1)
i uniformly from the interval (0,1/N), u

(2)
i

uniformly from the interval (1/N,2/N), etc. Another way is to take a randomized quasi-Monte

Carlo (RQMC) point set for these random numbers (L’Ecuyer 2009). As an example, one may

take a randomly-shifted lattice followed by a baker’s transformation, defined as follows: generate

a single uniform random number u over (0,1), put u
(n)
i = 2(n− 1 +u)/N for n= 1, . . . , bN/2c and

u
(n)
i = 2−2(n−1 +u)/N = 2(N −n+ 1−u)/N for n= bN/2c+ 1, . . . ,N . The convergence analysis

that follows is developed for standard Monte Carlo, but it can be extended to stratification and

RQMC.

Let `∗ = maxθ∈S L(θ), ˆ̀∗
N = maxθ∈S L̂N(θ), S∗ = {θ ∈ S :L(θ) = `∗}, S∗N = {θ ∈ S : L̂N(θ) = ˆ̀∗

N}.

These are the optimal values of L and L̂N , and the sets where these optimal values are reached.

Proposition 1. For any X, with probability 1, we have:

(a) L̂N is continuous and bounded uniformly over all possible realizations of the u
(n)
i ’s, over S;

(b) L̂N converges to L uniformly over S when N →∞;

(c) ˆ̀∗
N converges to `∗;

(d) supθ∈S∗
N

infθ∗∈S∗ ‖θ−θ∗‖→ 0.
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Proof. For (a), note that for any X, ϕ(α,X) is bounded over S and continuous in α. Each

term of the product in (6) is continuous in αj, λj, and B̄i, and it is also bounded over S by

(αj + B̄jλj)
−αj ≤ α−αjj ≤ ε−ε. It follows that L̂N is continuous and bounded over S, uniformly over

all possible realizations of the u
(n)
i ’s. This proves (a). For (b), by the strong law of large numbers

applied to the average in (10), we know that L̂N(θ)→ L(θ) w.p.1 when N →∞ for all θ ∈ S
(point-wise convergence). To show that this convergence is uniform over S, one can verify that the

derivative of L̂N(θ) with respect to any coordinate of θ is bounded uniformly (in absolute value)

over S and over all possible realizations of the u
(n)
i ’s. Explicit formulas for these derivatives are

developed later in this Supplement, in Section A.4. Then, the family of functions {L̂N , N ≥ 1} are

equicontinuous over the compact set S, and it follows from the Arzelà-Ascoli Theorem that their

sequence must converge uniformly over S, which proves (b). Since the function L is continuous over

S, (c) and (d) then follow from Proposition 6 in Chapter 6 of Ruszczyński and Shapiro (2003).

We now know that the estimated log-likelihood function, its optimal value, and its set(s) of

optimizers, converge to the exact ones, in the sense defined by the proposition. In the next sections,

we develop formulas for the derivatives of L̂N , and then we discuss how to use these derivatives to

seek an optimizer.

A.4. Derivatives of the Estimated Log-likelihood Function

We now develop formulas for the derivatives of L̂N with respect to each of the parameters β, αj,

and λj.

By differentiating (10) with respect to αj, we obtain

∂L̂N
∂αj

=
∂

∂αj
logϕ(α,X) +

I∑
i=1

∂

∂αj
log

[
1

N

N∑
n=1

Θi(ξ
(n)
i ,α,λ,X)

]

=
∂

∂αj
logϕ(α,X) +

I∑
i=1

∑N

n=1
∂
∂αj

Θi(ξ
(n)
i ,α,λ,X)∑N

n=1 Θi(ξ
(n)
i ,α,λ,X)

. (11)

The first term on the right of (11) can be computed explicitly via

∂

∂αj
logϕ(α,X) = I · (logαj + 1−Ψ0(αj)) +

I∑
i=1

Ψ0(αj +Xi,j), (12)

where Ψ0(·) is the digamma function, defined as Ψ0(x)
def
= Γ′(x)/Γ(x) . To develop a computable

expression for the derivative ∂
∂αj

Θi(ξ
(n)
i ,α,λ,X) in (11), we use the fact that for any positive

function f we have ∂
∂x
f(x) = f(x) ∂

∂x
log f(x), and apply this to f(αj) = Θi(ξ

(n)
i ,α,λ,X) seen as a

function of αj only. This gives

∂

∂αj
Θi(ξ

(n)
i ,α,λ,X) = Θi(ξ

(n)
i ,α,λ,X)

∂

∂αj
log Θi(ξ

(n)
i ,α,λ,X)

= Θi(ξ
(n)
i ,α,λ,X)ϑ′i,αj (ξ

(n)
i ),
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where

ϑ′i,αj (ξ
(n)
i ) =

∂

∂αj
log Θi(ξ

(n)
i ,α,λ,X)

=
∂

∂αj

p∑
k=1

(
Xi,k log(ξ

(n)
i λk)− (Xi,k +αk) log(ξ

(n)
i λk +αk)

)
= − log(ξ

(n)
i λj +αj)−

αj +Xi,j

αj + ξ
(n)
i λj

.

This gives:

∂L̂N
∂αj

=
∂

∂αj
logϕ(α,X) +

I∑
i=1

∑N

n=1 ϑ
′
i,αj

(ξ
(n)
i )ω

(n)
i∑N

n=1ω
(n)
i

. (13)

The derivative of L̂N with respect to λj is derived in a similar way. We have:

∂L̂N
∂λj

=
I∑
i=1

∑N

n=1 ϑ
′
i,λj

(ξ
(n)
i )ω

(n)
i∑N

n=1ω
(n)
i

(14)

where

ϑ′i,λj (ξ
(n)
i ) =

∂

∂λj
log Θi(ξ

(n)
i ,α,λ,X) =

Xi,j

λj
− ξ

(n)
i (αj +Xi,j)

αj + ξ
(n)
i λj

.

The derivative with respect to β can be written as

∂L̂N
∂β

=
I∑
i=1

∑N

n=1 ϑ
′
i,β(ξ

(n)
i )ω

(n)
i∑N

n=1ω
(n)
i

. (15)

where

ϑ′i,β(ξ
(n)
i ) =

∂

∂β
log Θi(ξ

(n)
i ,α,λ,X)

=

(
∂

∂ξ
(n)
i

log Θi(ξ
(n)
i ,α,λ,X)

)
∂ξ

(n)
i

∂β

=

(
p∑
j=1

Xi,j

ξ
(n)
i

− λj(αj +Xi,j)

αj + ξ
(n)
i λj

)
∂G−1

β (u
(n)
i )

∂β
,

using the fact that ξ
(n)
i = G−1

β (u
(n)
i ) where u

(n)
i is the (fixed) realization of a uniform random

variable. We have no closed form formula for G−1
β and no direct way of evaluating its derivative

∂G−1
β (u

(n)
i )/∂β. However, it can be expressed in terms of the cdf Gβ and its density gβ by using

the inverse function theorem (Rudin 1976, pp. 221–223), as follows.

By differentiating the identity Gβ(G−1
β (u

(n)
i )) = u

(n)
i with respect to β, we obtain

∂Gβ

∂β
(G−1

β (u
(n)
i )) +

∂

∂x
Gβ(x)

∣∣∣∣
x=G−1

β
(u

(n)
i )

∂G−1
β (u

(n)
i )

∂β
= 0,



Oreshkin, Régnard and L’Ecuyer: Rate-Based Arrival Process Models for Call Centers
8 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

which gives

∂G−1
β (u

(n)
i )

∂β
=−

∂Gβ
∂β

(G−1
β (u

(n)
i ))

gβ(G−1
β (u

(n)
i ))

. (16)

where gβ(x) = ∂Gβ(x)/∂x= ββxβ−1e−βx/Γ(β) is the density associated with Gβ. The numerator on

the right side of (16) can be rewritten in terms of the lower incomplete gamma function γ(β,x) =∫ x
0
tβ−1e−tdt (with the change of variable t= βξ

(n)
i ) as

∂

∂β
Gβ(ξ

(n)
i ) =

∂

∂β

γ(β,βξ
(n)
i )

Γ(β)
=

1

Γ(β)

(
∂

∂β
γ(β,βξ

(n)
i )− γ(β,βξ

(n)
i )

∂

∂β
lnΓ(β)

)
.

The derivative of the incomplete gamma function in this expression can be further developed in

terms of the generalized hypergeometric function 2F2 (Olver et al. 2010) as

∂

∂β
γ(β,βξ

(n)
i ) = e−βξ

(n)
i ββ−1ξ

(n)
i

β
+ γ(β,βξ

(n)
i ) ln(βξ

(n)
i )

− (βξ
(n)
i )β

β2 2F2(β,β;β+ 1, β+ 1;−βξ(n)
i ).

By plugging these expressions in (16) and then in (15), we obtain an expression for the derivative.

However, this expression involves quantities that are difficult or costly to evaluate. In particular,

2F2 is costly to evaluate for large values of β, and the asymptotic expansions we know do not work

when both the argument and the parameters become large simultaneously.

For this reason, we found in our experiments that just using finite differences to approximate

the derivative ∂
∂β
Gβ(ξ

(n)
i ) was faster and more robust. Another possibility could be to apply finite

differences to the inverse cdf G−1
β to approximate directly the derivative ∂

∂β
G−1
β (u

(n)
i ). However,

the available methods we have to evaluate G−1
β use root finding based on methods that evaluate

Gβ. In our experiments, Gβ was evaluated by an approximation method for the incomplete gamma

function proposed by Bhattacharjee (1970), modified to control the accuracy and implemented in

SSJ (L’Ecuyer 2008).

A.5. Optimization Algorithm

Now that we know how to evaluate the smooth function L̂N and its gradient at each point, we can

use in principle any of the several standard first-order nonlinear optimization algorithms available

to find a maximizer. Most of those algorithms are guaranteed to converge (at least) to a point

where the gradient vanishes, under appropriate conditions.

In our experiments, we decided to stay away from second-order methods, which require a approx-

imation of the Hessian (the matrix of the mixed second derivatives) at each visited point, because

the gradient is already very costly to evaluate, and approximating the Hessian would require much

more work. We do not believe it is worth doing. For a model with 48 periods, for example, there are
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97 parameters and the Hessian has 97×97 = 9409 entries. We went the opposite way: we started by

implementing a simple heuristic method which moves the coordinates one at a time, and makes the

move only when the improvement is deemed good enough. We do not have a formal convergence

proof for this heuristic to a global maximizer, but it cannot converge anywhere else than to a point

where the gradient vanishes, and in all the examples that we tried, it always performed very well

and sufficiently fast. It took between 20 minutes and two hours to estimate all parameters of a

model on any given dataset.

Our heuristic method is summarized in Algorithm 1, in a generic form that maximizes a function

f(θ) = f(θ1, . . . , θs), in the s-dimensional real space. For our application, this f is L̂N . At each

iteration, for each coordinate p, the algorithm computes the derivative of f at the current point

with respect to coordinate p, and tests a move of that coordinate in the direction of the positive

slope, by a distance equal to that derivative multiplied by a scaling factor. If the move takes the

parameter outside of the box S, then we project the move to the boundary. If the improvement

from that tentative move is deemed good enough relative to the square derivative, the move is

accepted (coordinate p is changed). If the relative improvement is deemed excellent, the scaling

factor for p is increased (multiplied by a factor g1 > 1), and if the improvement is deemed bad, the

scaling factor for p is decreased (multiplied by a factor g0 < 1). We repeat this for all coordinates

p= 1, . . . , s, in succession.

Note that when a move for coordinate p is deemed not good enough (refused), there is no change

in coordinate p at this iteration. Alternatively, we could shrink the scaling factor until the move

is accepted, but this may require several function evaluations to find the right factor. We tried

this and it did not result in any tangible gain. We prefer to just shrink the scaling factor for this

coordinate and wait for the next iteration. Our main reason for adopting a heuristic that moves one

coordinate at a time is that the different coordinates generally require different scaling factors for

the method to work well, because the second derivatives can be quite different along the different

coordinates, and finding appropriate factors can be tedious unless we are ready to compute good

estimates of the second derivatives and of the inverse Hessian, which is hardly viable given the size

of problems we have to handle. Our method adjusts those factors adaptively in a very simple way.

The displayed version of the algorithm simply performs a fixed number T of iterations, and then

returns an approximate optimal solution.

For the results reported in this paper, the parameter values for the algorithm were c0 = 0.1,

c1 = 0.5, g0 = 1/1.21≈ 0.826, c1 = 1.1, T = 1000, and we initialized γp = 0.1 for each p. These values

worked very well for all our data sets. We also tried other combinations of parameter values from

c0 ∈ [0,0.1], c1 ∈ [0.3,0.8], g0 ∈ (1/1.1025,1/2.25), g1 ∈ (1.05,1.5), γp ∈ [10−4,10−1], and they all

worked almost equally well. For the initial value of θ, we used the MMEs described in Section A.1.
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Algorithm 1 Coordinate-wise ascent method with adaptive scaling to maximize f(θ) =

f(θ1, . . . , θs)

Choose an initial value for the parameter vector θ = (θ1, . . . , θs);

Select initial scaling factors for the derivatives, γ1, . . . , γs;

Select thresholds for rescaling, 0< c0 < c1, and multipliers 0< g0 < 1< g1;

for t= 1 to T do

for p= 1 to s do

Compute fp(θ), the derivative at θ with respect to θp;

θ′p← θp + γpfp(θ) {tentative update}

θ′← (θ1, . . . , θ
′
p, . . . , θs);

If θ′ 6∈ S, project θ′ to S (take the nearest point in S);

ρp← [f(θ′)− f(θ)]/[γpf
2
p (θ)]; {scaled improvement from update}

if ρp > c0 {linear model appears sufficiently good} then

θp← θ′p; {apply parameter update}

end if ;

if ρp > c1 {linear model looks very good} then

γp← g1γp {expand scaling for p}

else if ρp < c0 {linear model looks poor} then

γp← g0γp {shrink scaling for p}

end if

end for;

end for;

return approximate solution θ.

We made additional experiments to test robustness by taking 100 random initial values of θ in a

neighborhood of the MME (with up to 100% relative distance for each parameter), and also with

independent realizations of the sample function L̂N . The parameter estimates were always very

close to each other (always less than 1% difference, and much less for most parameters), and the

relative difference between the largest and the smallest of the values of the likelihood at the 100

estimates was less than 10−6.

A.6. Penalized Maximum Likelihood Estimation with a Smoothing Cubic Spline

We now explain how to modify the MLE computation algorithm for the version of the PG2 model

where we fit a smoothing cubic spline to the gamma shape parameter αj as a function of the

successive periods j, while minimizing a criterion that accounts for both the smoothness of the

spline and the quality of fit.
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The smoothing cubic spline is a piecewise cubic polynomial function subject to continuity con-

straints between the pieces, for which the break points between the pieces (the knots) have the same

abscissas as the data points (Reinsch 1967, de Boor 2001, Pollock 1993). Our spline curve S thus

consists of segments Sj, each bridging the gap between adjacent knot points (j,αj) and (j+1, αj+1),

for j = 1, . . . , p − 1. The zero-order continuity property of the spline results in Sj(j) = αj and

Sj(j + 1) = αj+1. There is no loss of generality in supposing that S is defined over the unity knot

grid 1,2, . . . , p, since the change of scale of the ordinate does not affect the overall solution. The

smoothing cubic spline penalized likelihood function is defined as the weighted sum of the original

log-likelihood function and the smoothness penalty term:

LS =ϕL+ (1−ϕ)

∫ p

1

[
∂2

∂x2
S(x)

]2

dx,

where the weight ϕ ∈ [0,1] determines the relative importance of the data and smoothing terms.

The smoothness penalty term can be written as∫ p

1

[
∂2

∂x2
S(x)

]2

dx=

p−1∑
j=1

∫ j+1

j

[
∂2

∂x2
Sj(x)

]2

dx

and can be further developed and computed explicitly by differentiating each cubic polynomial Sj.

After some algebraic manipulations with the latter expression taking into account the smoothness

constraints (see Pollock 1993 for details) and upon introducing the vector α= [α1, . . . , αp], and the

following (p− 2)× (p− 2) matrix P and (p− 2)× p matrix F:

P =


4 1 0 . . . 0 0
1 4 1 . . . 0 0
0 1 4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 4

 , F =


3 −6 3 0 . . . 0 0
0 3 −6 3 . . . 0 0
0 0 3 −6 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −6 3

 ,
we obtain the following expression for the penalized log-likelihood function:

LS =ϕL+
2

3
(1−ϕ)αTFTP−1Fα.

The gradient of this function with respect to α is

∂

∂α
LS =ϕ

∂

∂α
L+

4

3
(1−ϕ)FTP−1Fα.

The derivatives of LS with respect to other parameters coincide with those obtained for L. The

computation of the cubic spline penalized MLE can then be performed by an adaptation of the

MLE methodology described in Section A.2, with the addition of the smoothness terms to both

the log-likelihood function and its derivatives with respect to αj.
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Appendix B: Log-likelihood for the PG2pow Model

MLE for the PG2pow model can be done in the same way as for the PG2 model, but with a slightly

different log-likelihood function. The changes include the introduction of additional gradient pre-

scaling factors for the parameters pj in the optimization algorithm, and new expressions for the

derivatives with respect to β and pj. These expressions use the following modified function Θ:

Θi(ξ
(n)
i ,α,λ,p,X) =

p∏
j=1

(ξ
(n)
i

pj
λj/γ(pj))

Xi,j

(αj + ξ
(n)
i

pj
λj/γ(pj))

Xi,j+αj
.

The derivative of the estimated log-likelihood function w.r.t. the parameter β of the gamma dis-

tribution of the daily busyness factor is given by:

∂L̂N
∂β

=
I∑
i=1

∑N

n=1 ϑ
′
i,β(ξ

(n)
i )ω

(n)
i∑N

n=1ω
(n)
i

,

where by analogy ω
(n)
i = Θi(ξ

(n)
i ,α,λ,p,X) and

ϑ′i,β(ξ
(n)
i ) =−

p∑
j=1

ξ
(n)
i

pj
λj

γ(pj)

Xi,j

[
ξ

(n)
i

pj
λj

γ(pj)

]−1

− (Xi,j +αj)

[
αj +

ξ
(n)
i

pj
λj

γ(pj)

]−1
( pj

ξ
(n)
i

∂ξ
(n)
i

∂β
−
γ′β(pj)

γ(pj)

)
,

where

γ′β(pj) =
β−pjΓ(pj +β)(−pj/β+ Ψ0(pj +β)−Ψ0(β))

Γ(β)
.

The derivative of the estimated log-likelihood function with respect to the power pj is given by:

∂L̂N
∂pj

=
I∑
i=1

∑N

n=1 ϑ
′
i,pj

(ξ
(n)
i )ω

(n)
i∑N

n=1ω
(n)
i

,

where

ϑ′i,pj (ξ
(n)
i ) =Xi,jλj

ξ
(n)
i

pj
log[ξ

(n)
i γ(pj)]− γ′pj (pj)ξ

(n)
i

pj

γ(pj)2

[ξ(n)
i

pj
λj

γ(pj)

]−1

−

[
αj +

ξ
(n)
i

pj
λj

γ(pj)

]−1
 ,

and

γ′pj (pj) =
β−pjΓ(pj +β)(− logβ+ Ψ0(pj +β))

Γ(β)
.

Appendix C: Matching Spearman Correlations in the PGnorta Model

For each pair (j, k), we need to find the correlation ρZ
j,k = Corr(Zj,Zk) such that the Spearman

correlation rXj,k = Corr(Fj(Xj),Fk(Xk)) matches the value r̂Xj,k observed in the data. For this, we use

Monte Carlo to estimate the (unknown) expectation in (14), and we use stochastic approximation

(SA) as a root-finding method to solve this equation. See Pasupathy and Kim (2011) for a recent

coverage of this SA approach.
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Algorithm 2 An SA method to find appropriate correlations ρZ
j,k in the PGnorta model

Require: j, k, initial value ρZ
j,k(0);

get the MLEs of parameters αj, for j = 1 . . . p;

for t= 1 to T do

{generate a sample of size M for (Xj,Xk) under the PGnorta model}

for m= 1 to M do

[Z
(m)
j ,Z

(m)
k ]∼Normal

([
0
0

]
,

[
1 ρZ

j,k(t− 1)
ρZ
j,k(t− 1) 1

])
;

U
(m)
j ←Φ(Z

(m)
j ), U

(m)
k ←Φ(Z

(m)
k );

B
(m)
j ←G−1(U

(m)
j , αj, αj), B

(m)
k ←G−1(U

(m)
k , αk, αk);

T
(m)
j ← λjB

(m)
j , T

(m)
k ← λkB

(m)
k ;

X
(m)
j ∼Poisson(T

(m)
j ), X

(m)
k ∼Poisson(T

(m)
k );

end for

r̃Xj,k(t)← 1
σ̃
F̂j
σ̃
F̂k

[
1
M

∑M

m=1 F̂j(X
(m)
j )F̂k(X

(m)
k )− µ̃F̂j µ̃F̂k

]
; {sample correlation}

ρZ
j,k(t)← ρZ

j,k(t− 1) +κt(r̂
X
j,k− r̃Xj,k(t)); {SA iteration}

end for

Algorithm 2 summarizes our implementation. In this algorithm, κt is a step sequence that satisfies

the conditions
∑

t>0 κt =∞ and
∑

t>0 κ
2
t <∞ (see Pasupathy and Kim 2011). In our experiments

we used κt = 0.1t−ζ with ζ = 9/16. These constants are not hard to select in our case, because

the correlation coefficient is bounded to the interval [−1,1]. We run the algorithm over T = 1000

iterations. Each iteration consists of (i) generating M = 200 samples from the NORTA model for the

rate, (ii) computing the empirical Spearman correlation based on the sample counts generated in

step (i), and (iii) applying one SA iteration using the difference between the Spearman correlation

in the data and in the model. We initialize the algorithm by setting ρZ
j,k(0)← r̂Xj,k.

For comparison, to estimate the copula for the model of Channouf and L’Ecuyer (2012), this

algorithm would have to be modified (simplified) by taking X
(m)
j = F−1

j (U
(m)
j ) inside the “for” loop,

where Fj is the cdf of X
(m)
j , which is negative binomial. However, these authors used a different

approach to find the appropriate correlations for their model.

Appendix D: Bootstrap KDE Bandwidth Selection

We explain the kernel density estimator (KDE) method used in the bootstrapping procedures to

the compute confidence intervals displayed in the plots of Section 6. Given a sample {x1, . . . , xN}

of size N from density p(·), a KDE p̂(·) is defined as

p̂(x) =
1

Nh

N∑
i=1

k

(
x−xi
h

)
,
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where k(·) is a suitable kernel density and h is the kernel bandwidth. It is easy to show that the

mean of the KDE coincides with the empirical mean µ̂= 1
N

∑N

i=1 xi and the variance of the KDE

is related to the unbiased variance estimator σ̂2 = 1
N−1

∑N

i=1(xi− µ̂)2 via∫ ∞
−∞

(x− µ̂)2p̂(x)dx= h2 +
N − 1

N
σ̂2.

Thus in general the KDE variance is biased w.r.t. the sample variance. To avoid introducing this

bias into the bootstrapping procedures that rely on the KDE and which are used to obtain 95%

confidence intervals for quantities involving σ̂2, we match the variance of the KDE to σ̂2. By using

the formula for the KDE variance presented above, we find that the required matching is achieved

by taking the bandwidth h= σ̂/
√
N .

To compute confidence intervals for the DI as in Figure 3, we proceeded as follows, one period

at a time. For each period p, we used the N observed counts for that period to estimate the

KDE of the count. Then we resampled N independent observations from this KDE (a bootstrap

sample), and computed the mean, variance, and DI from that sample. We repeated this K = 1000

times independently, to obtain K independent resamples of the DI, and computed the 0.025 and

0.975 quantiles of their empirical distribution. Those quantiles are the boundaries of the confidence

interval.

For the confidence intervals on the correlation as in Figure 4, we used the same methodology,

except that the counts Xj were replaced by pairs of counts (Y1,j, Yj+1,p−j), and the one-dimensional

KDE was replaced by a two-dimensional KDE based on a two-dimensional normal kernel with

mean zero and a diagonal covariance matrix with variance elements given by 1/N times the empir-

ical variances of the corresponding counts. We computed K = 1000 bootstrap replicates of the

correlation and then the 0.025 and 0.975 quantiles of the corresponding empirical distribution.

Appendix E: Additional Plots

This appendix provides additional plots for the empirical correlations observed in the data, for the

three call centers. In Figures 1 to 3, the first panel shows the correlations between counts over all

pairs of periods, and the other panels give the correlations between aggregated counts over blocks

of 2 periods, 4 periods, and 8 periods. In the last panel, for example, each square represents a

pair (Yj,8, Yk,8) where j and k are multiples of 8. The color indicates the value of the empirical

correlation.

We see that the correlations are generally much smaller for first call center (emergency) than

for the other two. For the emergency center, there is much more dependence between the evening

periods than for the other periods of the day. In all cases, we also observe more correlation between

aggregated counts than between the original counts (no aggregation). This agrees with (7).
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Figure 1 Correlations Corr(Yj,d, Yk,d) for j and k multiples of d, for d= 1,2,4,8 (30 minutes to 4 hours), for the

emergency call center dataset.
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Figure 3 Correlations Corr(Yj,d, Yk,d) for j and k multiples of d, for d= 1,2,4,8 (15 minutes to 2 hours), for the

utility call center.


