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Abstract

We propose and examine a probabilistic model for the multivariate distribution of the number

of calls in each period of the day (e.g., 15 or 30 minutes) in a call center, where the marginal

distribution of the number of calls in any given period is arbitrary, and the dependence

between the periods is modeled via a normal copula. Conditional on the number of calls in a

period, their arrival times are independent and uniformly distributed over the period. This

type of model has the advantage of being simple and reasonably flexible, and can match

the correlations between the arrival counts in different periods much better than previously

proposed models. For the situation where the number of periods is large, so the number

of correlations to estimate can be excessive, we propose simple parametric forms for the

correlations, defined as functions of the time lag between the periods. We test our proposed

models on three data sets taken from real-life call centers and compare their goodness of fit

to the best previously-proposed methods that we know. In the three cases, the new models

provide a much better match of the correlations and of the coefficients of variation of the

arrival counts in individual periods.

Keywords: call center; arrival process; Poisson process; copula model; correlation; simu-

lation.
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1 Introduction

Telephone call centers are a central component in several public and private organizations

(Gans et al., 2003; Akşin et al., 2007). They employ approximately 3% of the workforce in

North America, so their economic importance is unquestionable. A key aspect of their man-

agement is the staffing and scheduling of agents (who answer the calls), which is made difficult

in particular by the high uncertainty associated with the volume and time-distribution of

external call arrivals. Large call centers are complicated nonstationary stochastic systems

and discrete-event simulation is the only truly reliable tool to evaluate their performance

and to eventually optimize the staffing, the work schedules of agents, and the routing rules

of different call types to the different classes of agents, for example (Gans et al., 2003; Brown

et al., 2005; Cez̧ik and L’Ecuyer, 2008; Avramidis et al., 2010). Realistic modeling of call

arrival processes is an important ingredient for building valid simulation models of call cen-

ters as well as for short-term forecasting methods, which in turn are key tools to support

decision making for the management of these centers.

Call arrivals certainly do not follow a stationary Poisson process. The next model that

may come to mind is a non-homogeneous Poisson process (NHPP), with a time-varying

rate, where the rate may depend on the time of the day and the day of the week, for

example. Such a model implies that the call volume over any given time period has a Poisson

distribution, which implies in turn that the variance and the mean of that volume should

be approximately equal. But data collected from call centers disagree with this property:

the variance is typically several times the mean, which means that there is more uncertainty

than for a Poisson process (Jongbloed and Koole, 2001; Avramidis et al., 2004; Brown et al.,

2005; Steckley et al., 2006, 2009). Another important feature observed in empirical studies

is the positive dependence between arrival volumes in disjoint time periods of the same day

(Tanir and Booth, 1999; Whitt, 1999; Avramidis et al., 2004; Shen and Huang, 2008). This

is illustrated in Figure 1, which shows a scatter plot of the number of calls received after

10 a.m. vs the number received before 10 a.m., using different colors for the different days

of the week, in one of our data sets. Neglecting this arrival rate randomness and positive

dependence can have a huge impact on the long-term performance measures as well as on

its probability distribution on a given day (Deslauriers et al., 2007; Steckley et al., 2009).

Models that account for these two properties have been proposed and studied by Whitt

(1999) and Avramidis et al. (2004), for example. Whitt (1999) proposed a doubly stochastic

Poisson process (DSPP) model where a time-varying arrival rate function is multiplied by a

random business factor W of mean 1, for each day. Avramidis et al. (2004) studied this model

for the case where W has a gamma distribution, showed that the vector of arrival counts in
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Figure 1: Scatter plot of arrivals before and after 10:00 a.m. in one call center studied.

disjoint time periods then has a negative multinomial distribution, and provided expressions

for the maximum likelihood parameter estimators. One weakness of this model is that it

tends to give too much correlation across periods of the same day, and that correlation does

not depend on the distance between periods, whereas in real life it tends to decrease with that

distance (Avramidis et al., 2004). Another drawback is that the variance (and coefficient of

variation) of the number of calls in a given time period depends of the distribution of W ,

which depends (in the model) on what happens in all the periods. As a result, this DSPP

model, which we call Model 1 of Avramidis et al. (2004), does not provide a good match

for the variance (and marginal distribution) of the number of calls in each period, as we

will show in our examples. Jongbloed and Koole (2001) proposed a similar idea, but using

independent business factors W across the different time periods of the day, instead of a

single factor. This fails to account for the correlation across periods.

Avramidis et al. (2004) introduced two additional models that involve the Dirichlet dis-

tribution. The day is partitioned into d time periods of equal length, and the arrival rate

is assumed constant in each time period, as is usually done in practice (typically with pe-

riods of 15 or 30 minutes). If X = (X1, . . . , Xd) is the vector of arrival counts in those

periods, the Xj arrivals in period j occur at independent and uniformly distributed time

points in that period. In the first model, a dummy variable Xd+1 is added and the vector

X = (X1, . . . , Xd, Xd+1) is assumed to have a negative multivariate distribution whose vector

of parameters is random with a Dirichlet distribution. In the second model, the proportion

of calls falling in the different time periods obeys a Dirichlet distribution, and their total

3



number is an independent random variable from another distribution. In their empirical

study, these authors take this second distribution as gamma. With these two models, the

correlations between arrival counts across periods, for the examples they examine, are closer

to the real-life ones than for the model with a single busyness factor, but they are still some-

what too high. Thus, Models 2 and 3 of Avramidis et al. (2004) do not seem to provide

enough flexibility to match the correlations well enough.

In this paper, we propose and study an alternative model for the discrete multivariate

distribution of X, where the dependence structure is specified by a normal copula, and the

marginal distributions of the Xj ’s are specified separately. In some circles, this is known as

the NORTA (NORmal To Anything) method. For good general references on copula models,

see Joe (1997) and Nelsen (1999). In our implementation, the marginals Xj have a negative

binomial distribution, and the arrival times conditional on Xj are independent and uniformly

distributed over the time period. This corresponds to a Poisson arrival process whose rate

over each time period has a gamma distribution and is constant over the period.

Two important advantages of the normal copula are its simplicity and reasonable flexi-

bility: It is specified simply by specifying a valid correlation matrix. Then the corresponding

vector of dependent uniforms is easy to generate, by generating a vector of standard normals

(with mean 0 and variance 1) having the given correlation matrix, and applying the probabil-

ity integral transformation. The correlation matrix is selected so that the rank correlations

between the Xj ’s matches those observed in the data as closely as possible. However, in

d dimensions, the correlation matrix has d(d − 1)/2 degrees of freedom (or parameters to

estimate). For real-life call centers, d is often as large as 50, in which case we have more than

1000 different correlations (or parameters) to estimate. This may be too many. To reduce

the number of parameters in the model (and avoid excessive overfitting), we also restrict the

correlation matrices to certain parametric classes, whose choice is a matter of compromise

between a better fit (or more flexibility) and fewer parameters. In our experiments, this

choice is made based on the Akaike information criterion (Akaike, 1973).

We apply our proposed method to three data sets taken from real-life call centers, two

from Bell Canada and one from a major U.S. commercial bank, and compare the goodness-of-

fit to that of what we think are the best previously-proposed methods, studied in Avramidis

et al. (2004). In all the test cases, our new method provides a much better match of the

correlations and of the coefficients of variation (CV) of the arrival counts in individual

periods.

The remainder of the paper is organized as follows. In the next section we define the

proposed method, explain how to find a correlation matrix for the normal copula to best

match a target (linear or rank) correlation matrix for X, and propose classes of correlation

4



matrices having a specific structure and a limited number of parameters. In Section 3, we

compare the performance of our proposed method to that of other methods on three data

sets. A conclusion follows in Section 4. Much of the material of this paper is adapted from

Channouf (2008), which also contains other variants and results.

2 A NORTA model for the arrival process

In most call centers, the day is partitioned in d periods of equal length, and the statistics are

typically collected only in aggregated form, as averages and counts per period. In particular,

statistics on call arrival are usually in the form of number of arrivals in each period.

Let t0 < t1 < · · · < td be the end points of the time periods, so t0 and td are the

opening and closing times of the call center, and period i corresponds to the time interval

[ti−1, ti). For simplicity we take t0 = 0. Let X(t) be the number of calls received in the time

interval [0, t), so Xi = X(ti)−X(ti−1) is the number of arrivals in period i, for i = 1, . . . , d.

The vector of arrival counts during the day is X = (X1, . . . , Xd), as defined earlier. For

1 ≤ i, j ≤ d, let ρXi,j and rXi,j be the product moment (or Pearson) correlation and the rank

correlation (or Spearman coefficient) between Xi and Xj, respectively, and let RX
ρ and RX

r

be the corresponding correlation matrices.

The normal copula (or NORTA) method operates as follows. We first specify a valid

correlation matrix RZ
ρ , with elements ρZi,j, and a marginal distribution function Fi for each

Xi. To generate X, we start by generating a multivariate normal vector Z = (Z1, . . . , Zd)

with mean 0 and covariance matrix RZ
ρ (so each Zi has mean 0 and variance 1). We then

compute

Ui = Φ(Zi) and Xi = F−1

i (Ui), (1)

for i = 1, . . . , d, where Φ is the standard normal cumulative distribution function. Thus,

U = (U1, . . . , Ud) and X are vectors of dependent random variables, and each Ui is uniformly

distributed over (0, 1). A standard way of generating Z is to decompose its correlation

matrix as RZ
ρ = AAt (where t means “transposed”), generate a vector W = (W1, . . . ,Wd)

of independent standard normal variables, and put Z = WA (here we use row vectors).

The marginal distributions Fi can be estimated from the data, and the correlation matrix

RZ
ρ selected in a way that the resulting correlation matrix RX

ρ , or rank correlation matrix

RX
r , approximates the corresponding matrix from the data. We discuss this in the next

section. The rank correlations are generally preferred to the product moment correlations

because this yields a simpler and more stable method (Hörmann et al., 2004; Avramidis

et al., 2009).
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2.1 Fitting the copula

To find a matrix RZ
ρ that corresponds to a target matrix RX

r for given marginal distributions

Fi, we first compute the correlation ρZi,j that yields r
X
i,j for each of the d(d− 1)/2 pairs (i, j)

with i < j. The other elements can be determined by ρZi,j = ρZj,i and ρZi,i = 1. Each ρZi,j is

computed as the root of the equation

rXi,j = Corr (Fi(Xi), Fj(Xj)) = Corr(Fi(F
−1

i (Φ(Zi))) , Fj(F
−1

j (Φ(Zj))))

=
E
[

Fi(F
−1

i (Φ(Zi)))Fj(F
−1

j (Φ(Zj)))
]

− µFi
µFj

σFi
σFj

=
gr(ρ

Z
i,j)− µFi

µFj

σFi
σFj

, (2)

where

gr(ρ
Z
i,j) =

∫ ∞

−∞

∫ ∞

−∞

Fi(F
−1

i (Φ(zi)))Fj(F
−1

j (Φ(zj)))φ(zi, zj , ρ
Z
i,j)dzidzj, (3)

µFi
and σ2

Fi
are the mean and variance of Fi(Xi), F

−1(u) = inf{x : F (x) ≥ u} for 0 ≤ u ≤ 1,

and φ is the density of the bivariate normal distribution with correlation ρZi,j , where the

marginals have mean 0 and variance 1.

In the case where both Xi and Xj have a continuous distribution, the mean and variance

are 1/2 and 1/12, and the above integral equation has the analytic solution (Li and Ham-

mond, 1975) ρZi,j = 2 sin
(

πrXi,j/6
)

. But when the marginal distributions are discrete, as is

the case here, there is no such analytic solution and we need a root-finding algorithm for a

function whose evaluation involves an integral over the (infinite) two-dimensional real space.

This is studied by Avramidis et al. (2009), who develop and compare numerical algorithms

for this particular application. For our numerical experiments we have adopted one of their

algorithms, specifically algorithm NI3 based on the Newton-type method.

Similarly, for the product-moment correlation, we have

ρXi,j = Corr (Xi, Xj) = Corr(F−1

i (Φ(Zi)) , F
−1

j (Φ(Zj)))

=
E
[

F−1

i (Φ(Zi))F
−1

j (Φ(Zj))
]

− µiµj

σiσj

=
gl(ρ

Z
i,j)− µiµj

σiσj

, (4)

where

gl(ρ
Z
i,j) =

∫ ∞

−∞

∫ ∞

−∞

F−1

i (Φ(zi))F
−1

j (Φ(zj))φ(zi, zj , ρ
Z
i,j)dzidzj, (5)

and µi and σ2
i are the mean and variance of Xi.

Recall that a valid correlation matrix must be symmetric and nonnegative definite, with

all its elements in the interval [−1, 1], and the diagonal elements must be 1. After finding all

correlations ρZi,j by solving one of two above equations, it often turns out that the resulting
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correlation matrix RZ
ρ fails to be nonnegative definite. In fact, Ghosh and Henderson (2003)

have shown empirically that for a random correlation matrix RX
ρ generated uniformly over

the set of all valid correlation matrices for uniform marginals Fj, the probability that RZ
ρ is

nonnegative definite converges to 0 very quickly with the dimension d, and is almost 0 for d >

15. This problem can be resolved by modifying RZ
ρ slightly to make it nonnegative definite

whenever it is not. Various procedures for doing this have been proposed in the literature

(Davenport and Iman, 1982; Lurie and Goldberg, 1998; Ghosh and Henderson, 2002). Most

are based on the idea of defining a measure of distance between matrices, and computing a

nonnegative definite matrix whose distance to the target RZ
ρ is as small as possible. This

can be formulated and solved as a nonlinear optimization problem with constraints, and

the solution is typically quite close to the target. For our numerical experiments, we used

the algorithm of Davenport and Iman (1982). This algorithm converges to a nonnegative

definite matrix very close to the target in just a few iterations, provided that the number

of negative eigenvalues is relatively small compared to the dimension of the matrix and to

the number of nonnegative eigenvalues, and that those negative eigenvalues and some of the

nonnegative eigenvalues are close to zero. In all our numerical examples, these conditions

were verified, and in each case we easily obtained a positive semi-definite matrix that was

close to the original (target) matrix. As a typical illustration, in one of our examples, we

had a correlation matrix of 48 dimensions, with 3 negative eigenvalues out of 48, all larger

than −0.01, and 4 positive eigenvalues smaller than 0.01.

2.2 Parameterizing the correlation matrix

There are d(d−1)/2 different elements to estimate in the matrixRZ
ρ . We refer to the NORTA

model with all these d(d− 1)/2 correlation estimated separately as the full NORTA model,

or Model N0.

In the context of call centers, the dimension d is typically large; for example, around 50

for 15-minute time periods. With d = 50, we have d(d−1)/2 = 1225 correlations to estimate

in the full NORTA model, quite a large number, which could lead to overfitting unless we

have data for a very large number of days.

In what follows, we propose and compare more parsimonious parameterizations of the

rank correlation matrix RX
ρ . The aim is to reduce the number of quantities (or parameters)

that need to be estimated. Brigo (2002) discusses several such parameterizations in the

context of interest rate modeling in finance. Some of them reduce the rank of the correlation

matrix and other preserve the rank. The parameterizations considered here differ from those

in Brigo (2002) and they all preserve the rank.

Let θ denote the vector of parameters and rXi,j(θ) the rank correlation as a function of θ.
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We will select θ by least-squares fitting, that is, select θ that minimizes

min
θ

d
∑

i=1

i−1
∑

j=1

(

rXi,j − rXi,j(θ)
)2

. (6)

In the full NORTA model, θ is the vector of all d(d− 1)/2 correlations and rXi,j(θ) = rXi,j .

A natural idea is to model the rank correlations rXi,j as functions of the difference |i− j|

between the time intervals. We expect them to decrease with that difference. A first

simple model that captures this property is obtained by taking one distinct parameter for

each value of the difference |j − i|. We have:

• Reduced NORTA Model RN1 : θ = (p1, . . . , pd−1) and

rXi,j(θ) = p|j−i|, for j 6= i. (7)

This gives d− 1 parameters to estimate instead of d(d− 1)/2. Note that there is fewer data

to estimate pk for the values of k close to d − 1. For k = d − 1, for example, there is only

one observation per day to estimate the correlation of lag k, and this could be problematic

if there is only a small number of days.

We also considered a variety of more parsimonious models in which p|j−i| was a parame-

terized function of |j− i| with less than d−1 parameters. We tried polynomial, rational, and

exponential (or geometric) functions, and used the curve fitting toolbox cftool in MATLAB

to find the best fit in each case. These three types of functions gave very comparable fits.

We have retained the exponential function, which has only two parameters. This gives:

• Reduced NORTA Model RN2 (exponential): θ = (a, b) and

rXi,j(θ) = a|j−i| + b, for j 6= i. (8)

With this model, the parameterized correlation matrix has the same rank as the original one

and is always nonnegative definite.

To compare the different models, we use the Akaike information criterion (AIC) (Akaike,

1973), which takes into account both the standard error and the number of parameters

estimated in the model. Under the assumption that the model has the form

rXi,j = rXi,j(θ) + ǫi,j , j 6= i,

where the residuals ǫi,j are independent and normally distributed with mean 0 and variance

σ2
ǫ , the AIC is defined by

AIC(s) = n ln(σ̂2

ǫ ) + 2s, (9)
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where n is the number of observations (the number of days multiplied by the number of time

periods of the day), s is the number of parameters estimated in the model, and σ̂2
ǫ is the

empirical variance of the residuals when the parameters are estimated by the maximum like-

lihood method. Note that for the full NORTA model, the residues are all zero, so technically

the AIC is −∞ in this case and cannot be used for comparison.

3 Numerical examples

In this section, we take data sets from three call centers, fit our proposed models to this

data, and compare the goodness-of-fit to that of previously proposed models. In this data,

different days of the week have different statistical behavior, so we only considered days

having a similar behavior and we removed the data from special days such as Christmas and

January 1.

To compare the ability of the different models to match correlations observed in the data,

after estimating the model parameters, we computed

ρm = Corr

(

m
∑

i=1

Xi,
d
∑

i=m+1

Xi

)

, (10)

the correlation between the volume of arrivals in the firstm periods and that in the remaining

d −m periods, for m = 1, . . . , d − 1, as in Avramidis et al. (2004). We also computed and

compared the coefficient of variation (CV) for each time interval i:

CV(Xi) =

√

Var(Xi)

E[Xi]
. (11)

With the proposed copula model, these CVs can match the sample values in the data as

closely as we want if the marginals are well chosen, but for Model 1 of Avramidis et al.

(2004), where an arrival rate function is multiplied by a single random busyness factor for

the whole day, all the CV(Xi)’s are determined by the variance of this busyness factor and

the mean E[Xi] over each period, so they cannot be matched as well. We denote by ρ̂m and

ĈV(Xi) the empirical counterparts of ρm and CV(Xi) observed in the data.

Following Avramidis et al. (2004), the marginal distribution of the number of calls in

each time period was assumed to be negative binomial. For each data set, we started by

estimating the parameters of these negative binomial marginals, then we computed the rank

correlation matrices, fitted the proposed full and reduced NORTA models, and compared

the AICs of the various models. We emphasize that with our reduced NORTA Models RN1

and RN2, the correlation matrix RZ
ρ is always nonnegative definite. This has the advantage

of simplifying the fitting procedure. For the first two call centers, we compare our proposed
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Figure 2: Rank correlations rX5,j between arrival counts in period 5 and in periods j =
1, . . . , 25, for Models RN1 and RN2, for the call center C1. For the full NORTA model,
these correlations equal the sample values in the data, shown in the figure.

models to Models 1 to 3 of Avramidis et al. (2004), whereas for the third call center we

compare with their Model 1 (we do not have estimations for their other two models).

3.1 C1: A first call center from Bell Canada

Our first data set comes from a call center from Bell Canada that was handling both inbound

and outbound calls. This same data set was analyzed and used by Deslauriers (2003) and

Avramidis et al. (2004). The data is for 253 days, from May 2001 to March 2002. The

arrival counts are aggregated by half hour: we only have the number of incoming calls in

each half-hour period (and not the arrival times or call types). The center operates from 8:00

a.m. to 8:30 p.m., for a total of d = 25 time periods per day. Based on a preliminary data

analysis for this center, it was concluded in Deslauriers (2003) that Tuesday, Wednesday,

and Thursday can be considered as similar days, with similar arrival process distributions,

so we regrouped those days to obtain a total sample size of 120 days.

As it turns out, the correlations produced by the full and reduced NORTA models do

not differ by much. This is illustrated in Figure 2, which gives the rank correlation between

X5 and each other Xi, for the data and Model N0 (those are equal) and for the reduced

NORTA Models RN1 and RN2. For Model RN2, the estimated values of (a, b) are (0.990±

0.002, −0.467± 0.019). The trend for Model RN2 in Figure 2 looks linear because a is very

close to 1.
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Figure 3: Comparison of models by the correlation ρm defined in (10), for the center C1.
The values for Model N0 are identical to the empirical values in the data.
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Figures 3 and 4 show the values of ρm and CV(Xi), for m = 1, . . . , 24, and i = 1, . . . , 25,

for Models N0, RN1, RN2, and the three models previously proposed in Avramidis et al.

(2004) for the same data set. The values of ρm and CV(Xi) in the NORTA models were

computed exactly, after estimating the parameters. They are compared with the sample

values ρ̂m and ĈV(Xi) in the data. Note that for the full NORTA model N0, we have

ρm = ρ̂m for m = 1, . . . , 24, and that all NORTA models have identical values of the CVs,

because they use the same marginal distributions, independently from the copula. We can

observe that the three NORTA models provide a better fit to the empirical correlations and

CVs than the other (previous) models, and the full NORTA model fits them more closely

than the reduced ones, although it estimates many more parameters. Note that there is

more relative variability early and late in the day. Models 1 to 3 of Avramidis et al. (2004)

overestimate the correlations and Models 1 and 2 underestimate the variances of the Xi’s.

A simple NHPP model also largely underestimates these variances.

For this data set, the AIC took the values −14697.0 and −14355.9 for Models RN1 and

RN2, with corresponding standard errors σ̂ǫ (the standard deviation of residues) of 0.0859

and 0.0913, respectively. Model RN1 has the smallest AIC between those two.

3.2 C2: A second call center from Bell Canada

Our second set of data concerns a large call center open from 8:00 a.m. to 8:00 p.m. Monday

to Friday. We have data on incoming calls for 72 days of type Wednesday, Thursday, and

Friday, for the period between January and June, 2005. In this data the observations are

aggregated by 15-minute intervals. This gives d = 48 time periods.

Figure 5 gives the rank correlation between X10 and each other Xi, for the Models N0,

RN1, and RN2. These correlations decrease faster with the lag than in the previous example

(Figure 2) and they are quite small for large lags. Note that for Models RN1 and RN2, the

parameters a and b are not optimized to match only the correlations shown in this figure,

but also the rank correlations rXi,j for other values of i. Figures 6 and 7 show the values of ρm

and CV(Xi), for m = 1, . . . , 47, and i = 1, . . . , 48, for various models and for the data. The

full NORTA model matches the correlations perfectly, while the reduced NORTA models do

not match them as well but nevertheless much better than Models 1 to 3 of Avramidis et al.

(2004), which largely overestimate the correlations. Figure 7 indicates that there is more

variability early in the day. Again the three NORTA models give identical CVs, whose values

are very close to the empirical ones, much closer than those of Models 1 to 3 of Avramidis

et al. (2004).

The AIC values for models RN1 and RN2 are −9417.9 and −9416.3, with standard

errors σ̂ǫ of 0.2526 and 0.2559. These simplified models are a compromise and not perfect.
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Figure 6: Comparison of models in terms of the correlation ρm defined in (10), in center C2.
The values for Model N0 are the same as for the data.
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Figure 7: Comparison of models in terms of the CV(Xi)’s, in call center C2. The three
NORTA models give identical values.

To illustrate this, we show in Figure 8 the rank correlations for pairs having the same

differences (2 and 5) rXi,i+2, i = 1, . . . , 46, and rXi,i+5, i = 1, . . . , 43. We can observe that the

correlations of the same lag are about the same, except for correlations in the time periods

between 9 and 11 A.M., which corresponds to the peak period of the morning. This is also

less true for lag 2 than for lag 5.

3.3 C3: A call center of an American bank

Our third example is a large call center of a commercial bank where calls come from customers

in the states of New York, Pennsylvania, Rhode Island and Massachusetts (Trofimov et al.,

2004). The center receives up to 300,000 calls per day, soliciting banking services. The data

covers a period from March 2001 to April 2003. For our statistical analysis, we consider only

the days of type Wednesday, Thursday and Friday, for a total of 143 days. Those days have

approximately the same type of arrival patterns. Each day is split into d = 34 periods of 30

minutes each, from 7:00 a.m. to midnight.

Figure 9 gives the rank correlation between X14 and each other Xi, for the three NORTA

models, while Figures 10 and 11 show the values of ρm and CV(Xi), for m = 1, . . . , 33,

and i = 1, . . . , 34, for all the models and for the data. The full NORTA model matches

the correlations exactly, while the reduced NORTA models do not match them as well but

perform much better than Model 1 of Avramidis et al. (2004). Here, we have more relative
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Figure 8: Rank correlations for pairs having the same differences (2 and 5) in call center C2.
The symbols “+”are for rXi,i+2 and the symbols “o” are for rXi,i+5.

variability early in the day and also in the last four or five hours in the evening. As in the

previous examples, the three NORTA models give identical CV values, and they match the

CVs of the data much better than Model 1 Avramidis et al. (2004).

The AIC values for Models RN1 and RN2 are −15626.0 and −15391.1, with standard

errors σ̂ǫ of 0.1991 and 0.2053, respectively.

4 Conclusion

We developed an arrival process model for a call center, based on a copula model for the

vector of arrival counts in the different periods in a given day. We showed empirically

that such a model provides a better fit to the correlations between time periods and to

the CVs within each period than previously proposed models. An important challenge for

future work is the development of extensions for the common situation where several types

of calls must be distinguished, and their arrival processes are not independent, in addition

to being nonstationary with stochastic rates. Such models are important for simulation

(for performance evaluation and optimization) as well as for the construction and real-time

update of distributional call-volume forecasts.
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Figure 9: Rank correlations rX14,j between arrival counts in period 14 and periods j =
1, . . . , 34, for Models N0, NR1, NR2, and the data, for call center C3.
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Figure 10: Comparison of models in terms of the correlations ρm defined in (10), for call
center C3.
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Figure 11: Comparison of models in terms of the CV(Xi)’s, for call center C3. The three
NORTA models give identical values.
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