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Abstract

We present clRNG, a library for uniform random number generation in OpenCL.
Streams of random numbers act as virtual random number generators. They can be
created on the host computer in unlimited numbers, and then used either on the host or
on other computing devices by work items to generate random numbers. Each stream
also has equally-spaced substreams, which are occasionally useful. The API is currently
implemented for four different RNGs, namely the MRG31k3p, MRG32k3a, LFSR113,
and Philox-4x32-10 generators.

1 Introduction

We introduce c1RNG, an OpenCL library for generating uniform random numbers. It provides
multiple streams that are created on the host computer and used to generate random numbers
either on the host or on computing devices by work items. Such multiple streams are essential
for parallel simulation [7] and are often useful as well for simulation on a single processing
element (or within a single work item), for example when comparing similar systems via
simulation with common random numbers (CRNs) [1I, [4, 5, ©]. Streams can also be divided
into segments of equal length called substreams, as in [5, 6, [9]. Users for which streams are
sufficient can simply ignore the existence of substreams.

In the examples given here, we use the MRG31k3p from [10], whose implementation is de-
scribed briefly in Section [5] In general, a stream object contains three states: the initial state
of the stream (or seed), the initial state of the current substream (by default it is equal to the
seed), and the current state. With MRG31k3p, each state is comprised of six 31-bit integers.
Each time a random number is generated, the current state advances by one position. There
are also functions to reset the state to the initial one, or to the beginning of the current



substream, or to the start of the next substream. Streams can be created and manipulated in
arrays of arbitrary sizes. For a single stream, one uses an array of size 1. One can separately
declare and allocate memory for an array of streams, create (initialize) the streams, clone
them, copy them to preallocated space, etc.

In what follows, we specify the API and illustrate its usage. We start in Section [2| with small
examples that show how to create and use streams. In Section [3, we give examples, based
on a simple inventory model, which show why and how multiple streams and substreams are
useful. The API is detailed in Section [5l

2 Small examples

2.1 Using streams on the host

We start with a small artificial example in which we just create a few streams, then use them
to generate numbers on the host computer and compute some quantity. This could be done
as well by using only a single stream, but we use more just for illustration.

The code, shown in Figure [T includes the header for the MRG31k3p RNG. In the main
function, we create an array of two streams named streams and a single stream named
single. Then we repeat the following 100 times: we generate a uniform random number in
(0,1) and an integer in {1,...,6}, and compute the indicator that the product is less than 2.
We then print the average of those indicators. The uniform random numbers over (0,1) are
generated by alternating the two streams from the array.

#include <mrg31k3p.h>

int main() {
clrngMrg31k3pStream* streams = clrngMrg31k3pCreateStreams(NULL, 2, NULL, NULL);
clrngMrg31k3pStream* single = clrngMrg31k3pCreateStreams(NULL, 1, NULL, NULL);
int count = 0;
for (int i = 0; i < 100; i++) {
double u = clrngMrg31k3pRandomU01 (&streams[i % 21);
int x = clrngMrg31k3pRandomInteger(single, 1, 6);
if (x * u < 2) count++;
}
printf ("Average of indicators = 7%f\n", (double)count / 100.0);
return 0O;

Figure 1: Using streams on the host




#include <mrg31k3p.h>

size_t streamBufferSize;
clrngMrg31k3pStream* streams = clrngMrg31k3pCreateStreams(NULL, numWorkItems,
&streamBufferSize, &err);

// Create buffer to transfer streams to the device.
cl_mem buf_in = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
streamBufferSize, streams, &err);

// Create buffer to transfer output back from the device.
cl_mem buf_out = clCreateBuffer(context, CL_MEM_WRITE_ONLY | CL_MEM_HOST_READ_ONLY,
numWorkItems * sizeof (cl_double), NULL, &err);

// The kernel takes two arguments; set them to buf_in, buf_out.
err = clSetKernelArg(kernel, 0, sizeof(buf_in), &buf_in);
err |= clSetKernelArg(kernel, 1, sizeof(buf_out), &buf_out);

// Enqueue the kernel on device.
cl_event ev;
err = clEnqueueNDRangeKernel (queue, kernel, 1, NULL, &numWorkItems, NULL, O, NULL, &ev);

// Wait for all work items to finish.
err = clWaitForEvents(1, &ev);

// Retrieve the contents of the output buffer from the device.
double* out = (double*) malloc (numWorkItems * sizeof (double));
err = clEnqueueReadBuffer(queue, buf_out, CL_TRUE, O,
numWorkItems * sizeof (out[0]), out, O, NULL, NULL);

Figure 2: Streams in work items: the host code

2.2 Using streams in work items

In our second example, we create an array of streams and use them in work items that
execute in parallel on a GPU device, one distinct stream per work item. It is also possible
(and sometimes useful) to use more than one stream per work item, as we shall see later. We
show only fragments of the code, to illustrate what we do with the streams. This code is only
for illustration; the program does no useful computation.

Figure [2| shows pieces of the host code, whose first line includes the cIRNG header for the
MRG31k3p RNG. The code assumes that we have an integer variable numWorkItems which
indicates the number of work items we want to use. It is also assumed that the OpenCL
context and command queue objects have already been created and stored in the context
and queue variables. We create an array of numWorkItems streams (this allocates memory for
both the array and the stream objects). The creator returns in streamBufferSize the size
of the buffer that this array occupies (it depends on how much space is required to store the




#include <mrg31k3p.clh>

__kernel void example(__global clrngMrg31ik3pHostStream* streams, __global double* out) {
int gid = get_global_id(0);
clrngMrg31k3pStream private_stream_d; // This is not a pointer!
clrngMrg31k3pCopyOverStreamsFromGlobal (1, &private_stream_d, &streams([gid]);
out [gid] = clrngMrg31k3pRandomUO1(&private_stream_d) +
clrngMrg31k3pRandomU01 (&private_stream_d);
X

Figure 3: Streams in work items: the device code

stream states), and an error code.

Then we create an OpenCL buffer of size streamBufferSize and fill it with a copy of the
array of streams, to pass to the device. We also create and pass a buffer that will be used by
the device to return the results of the computations in an array of numWorkItems values of
type cl_double. (OpenCL buffer creation is not specific to c1RNG, so it is not discussed here).
We finally enqueue the kernel with these two buffers as kernel arguments. The creation,
compilation and linkage by the OpenCL C compiler of the code of Figure [2| is not shown
here. We simply assume that the OpenCL kernel associated to the example function given in
Figure |3 is stored in the kernel variable.

In the device code, partially shown in Figure [3| we include the device-side clRNG header for
the chosen RNG (it ends with .clh instead of .h). Pointers to the global memory buffers
received from the host and to the output array are passed to the kernel as arguments. (The
correspondence between the kernel arguments and the buffers on the host is specified in the
host code, not shown here). For each work item, we make a private copy of its stream named
private_stream_d, in its private memory, so we can generate random numbers on the device.
The private memory must be allocated at compile time (its declaration must allocate memory);
this is why private_stream d is not declared as a pointer (and we name it private_stream d
instead of private_stream to emphasize that it is “data” rather than a pointer to data). The
kernel just generates two random numbers, computes the sum, and places it in out [gid] as
a cl_double. The host can then recover the array of size numWorkItems that contains these
sums; this is done with the last two lines of Figure 2]

3 Examples with a Simple Inventory Model

We now take a slightly more realistic example in which performance can be improved by
performing simulation runs in parallel on a GPU device. This requires generating the random
numbers directly on the devices when they are needed. The model is simplified compared with
models that are commonly simulated by computer, but it provides an illustration of the typical
use of multiple random streams and substreams in parallel computing, and in particular to




double inventorySimulateOneRun (int m, int s, int S,
clrngMrg31k3pStream *stream_demand, clrngMrg31k3pStream *stream_order) {
// Simulates the inventory model for m days, with the (s,S3) policy,
// and returns the average profit per day.
int Xj = S, Yj; // Stock Xj in the morning and Yj in the evening.
double profit = 0.0; // Cumulated profit.
for (int j = 0; j < m; j++) {
// Generate and subtract the demand for the day.
Yj = Xj - clrngMrg31lk3pRandomInteger (stream_demand, 0, L);
if (Yj < 0)
Yj = 0; // Lost demand.
profit += ¢ * (Xj - Yj) - h * Yj;
if ((Yj < s) && (clrngMrg31k3pRandomUO1 (stream_order) < p)) {
// We have a successful order.
profit -= K + k * (S - Yj);

X3 =83
} else
Xj =Yj;

}
return profit / m;

}

Figure 4: Code to simulate the simple inventory system over m days

properly implement CRNs.

3.1 The Inventory Model and its Simulation

This simple inventory model is a modified version of the model given in Section 3.3 of the “Ex-
amples” document provided in [5]; see http://simul.iro.umontreal.ca/ssj/examples/
examples.pdf. The Poisson distribution is replaced by a discrete uniform, so we can generate
all the required random numbers directly from the uniform RNGs. Many simulation models
encountered in finance (for example) have a similar structure to this one in terms of the need
for multiple streams.

In this model, demands for a product on successive days are independent uniform random
variables over the set {0, 1,..., L}. If X, denotes the stock level at the beginning of day j and
D; is the demand on that day, then there are min(D;, X;) sales, max(0, D; — X;) lost sales,
and the stock at the end of day j is Y; = max(0, X; — D;). There is a revenue c for each sale
and a cost h for each unsold item at the end of the day. The inventory is controlled using a
(s,9) policy: If Y; < s, order S — Y] items, otherwise do not order. When an order is made in
the evening, with probability p it arrives during the night and can be used for the next day,
and with probability 1 — p it never arrives (in which case a new order will have to be made
the next evening). When the order arrives, there is a fixed cost K plus a marginal cost of k
per item. The stock at the beginning of the first day is Xy = 5.



http://simul.iro.umontreal.ca/ssj/examples/examples.pdf
http://simul.iro.umontreal.ca/ssj/examples/examples.pdf

We want to simulate this system for m successive days (note that these m days are not
independent), for a given set of parameters and a given control policy (s,.S), and replicate
this simulation n times independently to estimate the expected profit per day over a time
horizon of m days. Later, we will compare different choices of (s, S) by simulating each one n
times, using CRNs across the values of (s, 5). We will see that to do this properly, controlling
the streams and substreams is crucial. Comparing values of (s,S) with CRNs is a basic
ingredient in case we want to optimize (s, S) efficiently via simulation [12].

Figure |4/ shows a C function that simulates the system for m days and returns the average cost
per day. The device code will differ from the host code only by the presence of the __kernel
and __global keywords. The procedure uses two different random streams: stream demand,
to generate the demands Dj;, and stream_order, to decide which orders are received. For the
latter, a uniform random variate over (0, 1) is generated each time an order is made and the
order is received if this variate is less than p. Why use two different streams? Because we will
want to simulate the same model with the same random numbers for different values of (s, .S)
and we want to make sure that the same random numbers are used for the same purpose
(e.g., each D; should be the same) when (s, .5) is changed, even if it changes the decisions of
when and how to order. If we use a single stream for everything, a random number used to
generate a demand for a given pair (s,.5) could be used to decide if an order has arrived for
another pair (s,.5). We will see the impact of this later on. Here we only use two streams,
but in practice, when simulating large systems, we may need hundreds of distinct streams to
simulate different parts of the system. For example, one may think that the inventory system
has hundreds or thousands of different products, that they are stored in different warehouses
and the delivery times are random, etc.

To simulate n independent runs of this system, and make sure that the same random numbers
are used for the same purpose for all choices of (s,.5) in any given run, the standard approach
is to use one distinct substream for each run, for each of the two streams [5, [6] ©9]. This
ensures that for any given run number, the streams start at the same place for all choices
of (s,S5). Another approach is to use a new pair of streams for each run, for a total of 2n
distinct streams. For this small inventory example, this also works well, so one may argue
that substreams are not really necessary. But for large simulation models that require many
streams, using the same streams (and different substreams) across all runs is often much more
convenient from a programming viewpoint and requires the creation of much fewer streams.
The notion of streams with substreams also provides a good match with quasi-Monte Carlo
(QMC) points, so using them can facilitate the transition from Monte Carlo to QMC in a
simulation; see [5].

We will run experiments for this system with the following values: L = 100, ¢ = 2, h = 0.1,
K =10, k=1, and p = 0.95. We assume that L, ¢, h, K, k, and p have been set elsewhere in
the code. We put s and S as parameters because we will vary them. We will also try different
values of m and n.

We will consider the following two types of simulation experiments. In the first type, we select
(m, s, 5,n) and we want to estimate the expected average profit per day over m days. For this,
we compute the average P, and empirical variance S? of the n values P, . .., P, returned by the



void computeCI (int n, double *stat_tally) {
// Computes and prints the average, variance, and a 957, CI on the mean
// for the n values in stat_tally.
// The variance is computed in a simple (unsafe) way, via a sum of squares.
double sum = 0.0;
double sum_squares = 0.0;
for (dnt i = 0; 1 < n; i++) {
sum += stat_tally[i];
sum_squares += stat_tally[i] * stat_tally[i];
}
double average = sum / n;
double variance = (sum_squares - average * sum) / (n - 1);
double halfwidth = 1.96 * sqrt (variance / n); // CI half-width.
printf ("numObs\t\tmean\t\tvariance\t95%% confidence intervall\n");
printf ("%d\t\t%f\t%f", n, average, variance);
printf ("\t[%f, %f]l\n", average - halfwidth, average + halfwidth);

Figure 5: Computing and printing the average and a confidence interval

inventorySimulateOneRun function, and we compute and report a 95% confidence interval
(CI) on the expected value. The boundaries of this CI are given by (P,£1.96S,/y/n). Figurej)
shows code to compute this, assuming that stat_tally points to an array that contains the
n observations.

In the second type, we select m, n, and a set {(sg, Sk), & =0,...,p — 1} of distinct policies
(s,S), and we want to estimate the expected average profit for each policy, with CRNs across
policies. As a special application of this, we may have p = 2 and want to estimate the
difference in expected average profit between two policies (sg, Sp), and (s1,.57).

We will show how to make such experiments first on a single CPU, then on a GPU device
with several work items. This will illustrate various ways of using streams and substreams,
and why they are useful.

3.2 Simulating n independent runs on a single CPU

Figure [6] shows three different ways of simulating n runs for a single policy, on a single
CPU. The first approach, in function inventorySimulateRunsOneStream(), uses the first
substream of a single stream to generate all the random numbers. The parameter stream
contains this single stream, which is never reset to a new substream.

The second approach, in function inventorySimulateRunsSubstreams, uses two streams,
named stream_demand and stream_order, and resets these two streams to a new substream
after each run. This is a commonly used approach [5, [@]. It requires only two streams,
regardless of the value of n.




void inventorySimulateRunsOneStream (int m, int s, int S, int n,
clrngMrg31k3pStream *stream, double *stat_profit) {
// Performs n independent simulation runs of the system for m days with the
// (s,S) policy, using a single stream and the same substream for everything,
// and saves daily profit values.
for (int i = 0; i < n; i++)
stat_profit[i] = inventorySimulateOneRun (m, s, S, stream, stream);

}

void inventorySimulateRunsSubstreams (int m, int s, int S, int n,
clrngMrg31k3pStream *stream_demand, clrngMrg31k3pStream *stream_order,
double *stat_profit) {

// Similar to inventorySimulateRuns, but using two streams and their substreams.

for (int i = 0; i < n; i++) {
stat_profit[i] = inventorySimulateOneRun (m, s, S, stream_demand, stream_order);
clrngMrg31k3pForwardToNextSubstreams (1, stream_demand) ;
clrngMrg31k3pForwardToNextSubstreams (1, stream_order);

}

void inventorySimulateRunsManyStreams (int m, int s, int S, int n,
clrngMrg31k3pStream *streams_demand, clrngMrg31k3pStream *streams_order,
double *stat_profit) {

// Same as inventorySimulateRuns, but with two arrays of n streams each,
// using a new pair of streams for each run.
for (int i = 0; i < n; i++) {
stat_profit[i] = inventorySimulateOneRun (m, s, S, &streams_demand[i],
&streams_order[i]);

Figure 6: Simulating n runs on a single CPU, in three different ways

The third approach, in function inventorySimulateRunsManyStreams, uses a new pair of
streams for each run, and only the first substream of each. This requires 2n distinct streams in
total, whereas the first and second approaches require only one and two streams, respectively.
Here we use n streams for the demands and n streams to determine which orders arrive. When
n is very large, e.g., in the millions or more, creating and storing all those streams may add
significant overhead. The piece of code in Figure [7] uses the latter function to simulate on the
host (the other cases are similar).

3.3 Simulating n independent runs using n work items on a GPU

We now look at how to simulate the n independent replications with n work items running
in parallel on a GPU device. Figure [§ shows a kernel to be executed on each work item to
simulate one run. Figure [J9] gives the skeleton of a function inventorySimulateRunsGPU()
that prepares and launches the kernel to simulate n runs using 2n streams (we skip the details




clrngMrg31k3pStream *streams_demand = clrngMrg31k3pCreateStreams (NULL, n, NULL, NULL);
clrngMrg31k3pStream *streams_order = clrngMrg31ik3pCreateStreams (NULL, n, NULL, NULL);
double *stat_profit = (double *) malloc (n * sizeof (double));

inventorySimulateRunsManyStreams (m, s, S, n, streams_demand, streams_order, stat_profit};
computeCI (n, stat_profit);

Figure 7: Simulating n runs on a single CPU, third approach

__kernel void inventorySimulateGPU (int m, int s, int S,
__global clrngMrg31k3pStreams *streams_demand,
__global clrngMrg31k3pStreams *streams_order,
__global double *stat_profits) {
// Each of the n work items executes the following code.
int gid = get_global_id (0); // Id of this work item.
// Make local copies of the stream states, in private memory.
clrngMrg31k3pStreams stream_demand_d, stream_order_d; // Not pointers!
clrngMrg31k3pCopyOverStreamsFromGlobal(1l, &stream_demand_d, &streams_demand[gid]);
clrngMrg31k3pCopyOverStreamsFromGlobal(1l, &stream_order_d, &streams_order[gid]);
stat_profits[gid] = inventorySimulateOneRun (m, s, S, &stream_demand_d,
&stream_order_d);

Figure 8: Kernel that calculates the daily profits on a work item

of this function). The figure then shows how to invoke this function to simulate the n runs
by emulating the second and third approaches seen earlier, namely: (a) two streams with n
substreams for each stream, and (b) 2n distinct streams. Here, we want to produce on the
device eractly the same results as on a single CPU, for these two cases (a) and (b). We explain
how to implement these two cases on n work items, and the consider other cases where we
want to use only n; < n work items (this may happen if n is very large).

Case (a). We need to construct an array that contains the starting points of the first n
substreams, for each of the two streams, and pass them to the device. When executing the
kernel, we need to maintain only the current state of each substream in the private memory of
the work item. But each substream must be seen as a stream within the work item, because
the functions that generate random numbers require a stream object as their first parameter.
For this reason, by invoking clrngMrg31k3pMakeSubstreams (), we “create” two arrays of n
streams which are actually n substreams of the same stream, and are copied from the host to
the global memory of the device (inside the function inventorySimulateRunsGPU()). Each
work item then picks its two streams from there and copies their current states (only) to its
private memory. When random numbers are generated, only the states in private memory are
changed.




// This function (details not show here) performs n runs in parallel on a GPU device,
// with two arrays of n streams, and saves the daily profit values.
void inventorySimulateRunsGPU (int m, int s, int S, int n,
clrngMrg31k3pStreams *streams_demand, clrngMrg31k3pStreams *streams_order,
double *stat_profit) {
// Create structure that contains context, program, queue, etc.

// Launch the kernel inventorySimulateGPU to execute on the GPU.

}

// (a) Simulate n runs on n work items using two streams and their substreams.
clrngMrg31k3pStream* stream_demand = clrngMrg31k3pCreateStreams(NULL, 1, NULL, NULL);
clrngMrg31k3pStream* stream_order = clrngMrg31k3pCreateStreams(NULL, 1, NULL, NULL);
clrngMrg31k3pStream* substreams_demand = clrngMrg31k3pMakeSubstreams(stream_demand, n,

NULL, NULL);
clrngMrg31k3pStream* substreams_order = clrngMrg3ilk3pMakeSubstreams(stream_order, n,
NULL, NULL);

double *stat_profit = (double *) malloc (n * sizeof (double));
inventorySimulateRunsGPU (m, s, S, n, substreams_demand, substreams_order, stat_profit);

// (b) Simulate n runs on n work items using n distinct streams.

clrngMrg31k3pStream* streams_demand = clrngMrg31k3pCreateStreams(NULL, n, NULL, NULL);
clrngMrg31k3pStream* streams_order = clrngMrg31k3pCreateStreams(NULL, n, NULL, NULL);
double *stat_profit = (double *) malloc (n * sizeof (double));
inventorySimulateRunsGPU (m, s, S, n, streams_demand, streams_order, stat_profit);

Figure 9: Simulating n runs on the GPU (a) with two streams and (b) with 2n streams

Perhaps one could think that instead of precomputing and storing the starting points of all
these substreams in global memory, one could store only the stream in global memory, and
each work item would find its appropriate substream. But then each work item would have
to invoke clrngMrg31k3pForwardToNextSubstreams() a number of times that corresponds
to its gid on its own copy of the stream. This would be highly inefficient, especially on
a GPU device, where work items that take distinct execution paths, in this case by calling
clrngMrg31k3pForwardToNextSubstreams () a distinct number of times, execute sequentially
and not simulutaneously.

Case (b). Here, two arrays of n distinct streams are created and passed, instead of using
substreams. The code is much simpler in this case.

10




#define CLRNG_ENABLE_SUBSTREAMS
#include <mrg31k3p.clh>

__kernel void inventorySimulSubstreamsGPU (int m, int s, int S, int n2,
__global clrngMrg31k3pStreams *streams_demand,
__global clrngMrg31k3pStreams *streams_order,
__global double *stat_profit) {
// Each of the n work items executes the following to simulate n2 runs.
int gid = get_global_id (0); // Id of this work item.
int n1 = get_global_size (0); // Total number of work items.
// Make local copies of the stream states, in private memory.
clrngMrg31k3pStreams stream_demand_d, stream_order_d;
clrngMrg31k3pCopyOverStreamsFromGlobal(l, &stream_demand_d, &streams_demand[gid]);
clrngMrg31k3pCopyOverStreamsFromGlobal (1, &stream_order_d, &streams_order[gid]);
for (int i = 0; i < n2; i++) {
stat_profit[i * nl + gid] = inventorySimulateOneRun (m, s, S,
&stream_demand_d, &stream_order_d);
clrngMrg31k3pForwardToNextSubstreams (1, &stream_demand_d);
clrngMrg31k3pForwardToNextSubstreams (1, &stream_order_d);

}

// This function (details not show here) performs n = nl * n2 runs on a GPU device,
// with two arrays of nl streams, and saves the daily profit values.
void inventorySimulateRunsSubstreamsGPU (int m, int s, int S, int nl, int n2,
clrngMrg31k3pStreams *streams_demand, clrngMrg31k3pStreams *streams_order,
double #*stat_profit) {
// Create structure that contains context, program, queue, etc.

// Launch the kernel inventorySimulateGPU to execute on the GPU.

}

// (c) Simulate n = nl * n2 runs on nl work items using n2 substreams on each.

double *stat_profit = (double *) malloc (n * sizeof (double));

clrngMrg31k3pStream* streams_demand = clrngMrg31k3pCreateStreams(NULL, nl, NULL, NULL);
clrngMrg31k3pStream* streams_order = clrngMrg31k3pCreateStreams(NULL, nl, NULL, NULL);
inventorySimulateRunsSubstreamsGPU (m, s, S, nl, n2, streams_demand, streams_order, stat_pr
computeCI (n, stat_profit);

Figure 10: Simulating n runs on the GPU (a) with two streams and (b) with 2n streams
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fit);



3.4 Simulating n independent runs using n; < n work items on a

GPU

Case (c¢). Suppose now that n is very large and that instead of using n work items, we
want to use n; work items to perform ny runs per work item, where nyny, = n. This would
make sense when n is very large, say several millions. A natural way of implementing this
is to use distinct streams across the work items, and ny substreams within each work item,
without storing the initial states of those substreams in an array. The work item will run a
loop very similar to that of inventorySimulateRunsSubstreams() in Figure[6] This is shown
in Figure [I0] The code marked _kernel simulates ny independent runs and is executed on
each of the ny work items. The results of each run are stored in the stat_profit array. Note
that the results of the n; runs that are simulated in parallel on the work items are stored
in n; successive positions in the output buffer; this makes the access more efficient. The
function inventorySimulateRunsSubstreamsGPU constructs the kernel required to run the
simulations on the device. The code marked (c), below this function, shows how to call it. The
advantage of doing this is that jumping to the next substream n, times within the work item
is likely to be faster than creating ny streams on the host, copying them to global memory, and
getting a new stream ny times from global memory, at least on a GPU. On an APU or other
shared-memory computer, there may be no significant difference between the two approaches.
Our experimental results will confirm this. This case (c) illustrates the usefulness of having
substreams in the work items.

Case (d). To obtain exactly the same results as in Case (b), but using n; work items to
make the computations, one can create 2n distinct streams, and use 2ns distinct streams on
each work item instead of using substreams. We can create the streams as in (b), and in the
kernel, each work item will pick a new stream for each run. The downside of this is the need
to store many more streams in global memory than in Case (c), so on a GPU, we expect this
to be slower than Case (c) when ny is large. Our experiments will confirm this.

Case (e). To obtain exactly the same results as in (a), but using n; work items, we must
use only two streams and n substreams for each, one substream for each run on each work
item. For each stream, the n initial states of the substreams can be computed in advance and
stored, exactly as in (a), then picked by the work items when needed. This also requires more
memory, as in case (d).

Case (f). In what we have examined so far, we have different streams for the different types
of random numbers required by the model, and substreams are only associated with simulation
runs. This is what is typically done for a single processor. We could also consider an approach
(f) where the roles of streams and substreams are interchanged. That is, we use one single
stream for each simulation run, and one substream for each type of random numbers. Figure
shows a kernel that does that. In the present example, this means two substreams only, but
this number can be much larger in more complex models. The advantage is that only one
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stream needs to be passed to each work item when launching the kernel. One disadvantage is
that one must then compute many substreams and transform each one into a stream inside
each work item. This way of using streams and substreams may be convenient to the user in
certain parallel applications. For serial simulation on a single processor, however, the need to
copy each substream into a stream makes it unattractive and needlessly complicated.

__kernel void inventorySimulateGPU (int m, int s, int S,

__global clrngMrg31k3pStreams *streams,

__global double *stat_profits) {
int gid = get_global_id (0); // Id of this work item.
// Make local copies of the substream states, in private memory.
clrngMrg31k3pStreams stream_demand_d, stream_order_d; // Not pointers!
clrngMrg31k3pCopyOverStreamsFromGlobal (1, &stream_demand_d, &streams([gid]);
clrngMrg31k3pCopy0verStreamsFromGlobal (1, &stream_order_d, &streams[gid]l);
clrngMrg31k3pForwardToNextSubstreams (1, &stream_order);
stat_profits[gid] = inventorySimulateOneRun (m, s, S, &stream_demand_d,

&stream_order_d) ;

Figure 11: A kernel in which streams and substreams are interchanged

We report on experiments that compare cases (a) to (d) for n = 222 (about 4 millions), m = 10
and 100, and three choices of (n1,n2) for cases (c) and (d). We report the time for running
the simulation on two different GPUs, and also on one CPU (or host) alone, and compare.
For the “CPU” (host), we used a single core on an AMD A10-7850K APU. The first GPU was
the GPU on this APU processor (on the same chip as the CPU); it is an AMD Radeon R7
Graphics with 720 Mhz clock frequency and 2GB of global memory, with 8 compute units and
a total of 512 processing elements. The second GPU was an AMD Radeon HD 7900 Series
with 925Mhz clock frequency and 3GB of global memory; it is a discrete GPU device located
on a separate card, with 32 compute units and a total of 2048 processing elements. We call
them GPU-A and GPU-D, respectively.

Table [1| first gives the statistical results (average, variance, and confidence interval) for the
first method on the CPU (all other methods give approximately the same results). Then, for
each case considered, it gives the timings (in seconds), and the speedup factor with respect
to running n runs on a single CPU with a single stream, which is approach (1). The speedup
factor is defined as the running time on the CPU divided by the running time for the considered
method (e.g., a factor of 100 means that the considered method is faster by a factor 100). The
given timings are averages over three trials. For cases (c¢) and (d), the best results are usually
obtained with n; somewhere around 2! to 2'® work items. On the discrete GPU, method
(c) does much better than (d), which confirms our expectations (see the descriptions of those
methods).
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Table 1: Simulation results and timings for simulating n runs with n; work items for a single
policy. In the second panel, for each entry, the first number is the computing time in seconds
and the second number (in parentheses) is the speedup factor with respect to running n runs
on a single CPU with a single stream, which is approach (1). Approaches (1) to (3) on the
CPU and Cases (a) to (d) on the two GPUs are those explained earlier.

m n | average P, variance S? 95% CI
100 2% 36.583 9.0392 [36.5808, 36.5865]

computing time in seconds (speedup factor)

ny | (m,n) = (10,2%) | (m,n) = (100, 2%%)
CPU-host (1) 4.32 (1) | 43.24 (1)
CPU-host (2) 7.21 (0.6) | 46.85 (0.9)
CPU-host (3) 4.43 (1.0) | 44.25 (1.0)
GPU-A (a) 0.370 (12) | 0.682 (63)
GPU-A (b) 0.287 (15) | 0.638 (68)
GPU-A (c) 2111 0.177 (24) | 0.709 (61)
GPU-A (c) 2161.0.170 (25) | 0.674 (64)
GPU-A (c) 218 10.176 (25) | 0.677 (64)
GPU-A (d) 214 10.243 (18) | 0.593 (73)
GPU-A (d) 216 1 0.227 (19) | 0.549 (79)
GPU-A (d) 218 1 0.231 (19) | 0.524 (82)
GPU-D (a) 0.219 (20) | 0.259 (167)
GPU-D (b) 0.217 (20) | 0.269 (161)
GPU-D (c) 214 10.041 (103) | 0.095 (456)
GPU-D (c) 2% 10.039 (110) | 0.086 (501)
GPU-D (c) 218 1 0.046 (93) | 0.093 (466)
GPU-D (d) 2111 0.230 (19) | 0.339 (128)
GPU-D (d) 2161 0.219 (20) | 0.282 (153)
GPU-D (d) 218 1 0.275 (16) | 0.268 (161)
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// Assume that for k=0,...,p-1, (s[k], S[k]) defines policy k and has been initialized.

// Simulate n = nl * n2 runs on nl work items using n2 substreams, for p policies.
// We use the same 2 * nl streams for all policies.
clrngMrg31k3pStream* streams_demand = clrngMrg31k3pCreateStreams(NULL, nl, NULL, NULL);
clrngMrg31k3pStream* streams_order = clrngMrg31k3pCreateStreams(NULL, nl, NULL, NULL);
double *stat_profit = (double *) malloc (p * n * sizeof (double));
for (int k = 0; k < p; k++) {
inventorySimulateRunsSubstreamsGPU (m, s[k], S[k], ni, n2,
streams_demand, streams_order, &stat_profit[k*n]);
clrngMrg31k3pRewindStreams(nl, stream_demand);
clrngMrg31k3pRewindStreams(nl, stream_order);
computeCI (n, &stat_profitl[k*n]);
}

// Here we can compare the different policies.
// For example, in the simplest case where p=2, we may do:
double *stat_diff = (double *) malloc(n * sizeof (double));
for (int i = 0; i < n; i++)

stat_diff[i] = stat_profit[n+i] - stat_profitl[i];
computeCI (n, stat_diff);

Figure 12: Simulating n runs for p policies on a device, with CRNs across policies, with n;
work items and ny runs per work item, for n = nins.

3.5 Comparing Several Inventory Policies

We now give an example that illustrates why multiple streams and substreams are useful
when comparing several similar systems via simulation using CRNs, and what difference in
statistical accuracy CRN can make.

Simulating the policies sequentially. Suppose we want to compare several inventory
policies, say {(s,Sk), & =0,...,p — 1}, and run each policy on a GPU device, with CRNs
across policies. We want to simulate each policy n times, using n; work items for each policy
and no independent runs per work item, where n = nyn, as before. One simple way to do this
is to simulate one policy after the other, using n; work items in parallel, as shown in Figure|12]
This code reuses the function inventorySimulateRunsSubstreamsGPU() from Figure

The two statements clrngMrg31k3pRewindStreams () in the loop reset all the streams to their
initial states after simulating each policy. Combined with the clrngMrg31k3pResetNext-
Substreams () statements in the inventorySimulSubstreamsGPU kernel of Figure [I0] this
ensures that exactly the same random numbers will be used for any given run, for all policies.
That is, for any policy, run ¢ on work item gid= j will (re)use substream i of stream j. This
procedure ensures the synchronization of random numbers across policies even if different
policies would use a different number of random numbers from certain streams for a given run
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number. This is the main reason why we reset the streams to a new substream after each run.

In fact, the statements clrngMrg31k3pRewindStreams () could be removed here, because dur-
ing the execution of inventorySimulateRunsSubstreamsGPU(), only a copy of each stream
is modified on the GPU; the streams contained in the two arrays located on the host are
still at their initial states and it would suffice to pass them again to the GPU via the ker-
nel without invoking clrngMrg31k3pRewindStreams. We nevertheless leave the redundant
clrngMrg31k3pRewindStreams () statements in the code, because in other situations, such
as when everything is run on the host, the simulations might work directly with the original
streams, and then the streams must be reset to their initial states.

Simulating the policies in parallel. The code of Figure (12 should be satisfactory if n is
large enough. But in case n is not large and p is large, we may prefer to simulate the p policies
in parallel instead. In Figure we use nyp work items and each one makes ny simulation
runs. We use 2n; streams and nsy substreams per work item, as in Figure and the codes
from the two figures should produce exactly the same results, provided that they use the same
2n; streams starting from the same seeds.

The buffer stat_profit in Figure has dimension np and it contains the results in the
following order. The first nyp values are for the first run on each work item, then the next
ny1p values are for the second run, etc. Within each block of n,p values, the first ny successive
values are for the first policy, the next n; values are for the second policy, etc. Thus, all the
results of a given run for any given policy are in a block of n; successive positions in the array.
And all the results that are computed in parallel at the same iteration number ¢ of the loop
are in a block of nyp successive positions.

Comparing two policies: CRNs vs IRNs We performed an experiment with p = 2,
with a code like in Figure to estimate the expected difference in average daily profits
for policies (sg, Sy) = (80,198) and (s1,S;) = (80,200), with m = 100 and n = 2%2. We
obtained P, = 0.05860, S? = 0.190, and a 95% confidence interval for the difference given by
(0.05818, 0.05902).

To assess the benefit of using well-synchronized CRNs when comparing policies, we performed
the same simulation experiments but with independent streams of random numbers across
policies. To do this, we simply create new independent streams instead of resetting the
streams to their initial states, after simulating each policy. That is, we replace the state-
ments clrngMrg31k3pRewindStreams in Figure by clrngMrg31k3pCreateOverStreams
statements. For this, with the same values as above, we obtained P, = 0.0569, S? = 18.1,
and a 95% confidence interval for the difference given by (0.0528, 0.0610). The variance S? is
approximately 95 times larger than with CRNs. This means that with properly synchronized
CRNs, we need approximately 95 times fewer simulation runs to obtain the same accuracy
than with independent random numbers. This is a significant saving.
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#define CLRNG_ENABLE_SUBSTREAMS
#include <mrg31k3p.clh>

__kernel void inventorySimulPoliciesGPU (int m, int p, int *s, int *S, int n2,
__global clrngMrg31k3pStreams *streams_demand,
__global clrngMrg31k3pStreams *streams_order,
__global double *stat_profit) {
// Each of the nl*p work items executes the following to simulate n2 runs.

int gid = get_global_id(0); // Id of this work item.

int nlp = get_global_size(0); // Total number of work items.

int n1 = nlp / p; // Number of streams.

int k = gid / ni; // Index of the policy this work item uses.

int j = gid % ni; // Index of the stream that this work item uses.

// Make local copies of the stream states, in private memory.
clrngMrg31k3pStream stream_demand_d, stream_order_d;
clrngMrg31k3pCopyOverStreamsFromGlobal (1, &stream_demand_d, &streams_demand[j]);
clrngMrg31k3pCopyOverStreamsFromGlobal (1, &stream_order_d, &streams_order([j]);

for (int 1 = 0; i < n2; i++) {
stat_profit[i * nlp + gid] = inventorySimulateOneRun(m, s[k], S[k],
&stream_demand_d, &stream_order_d);
clrngMrg31k3pForwardToNextSubstreams (1, &stream_demand_d);
clrngMrg31k3pForwardToNextSubstreams (1, &stream_order_d);

}

// This function (details not show here) performs n = nl * n2 runs on a GPU device,
// with two arrays of nl streams, and saves the daily profit values.
void inventorySimulateRunsPoliciesGPU (int m, int p, int *s, int *S, int nl, int n2,
clrngMrg31k3pStreams *streams_demand, clrngMrg31k3pStreams *streams_order,
double *stat_profit) {
// Create structure that contains context, program, queue, etc.

// Launch the kernel inventorySimulPoliciesGPU to execute on the GPU.

Figure 13: Simulating n runs for p policies on a device, with CRNs across policies, with nip
work items in parallel and ns runs per work item, for n = nins.
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156 157 158 159 160 161 162 163 164 165 166 167

50 37.94537 37.94888  37.95166 37.95319  37.95274  37.95318  37.94887 37.94584  37.94361 37.94074 37.93335  37.92832
51 37.95740 37.96169  37.96379 37.96524  37.96546  37.96379  37.96293  37.95726  37.95295 37.94944  37.94536  37.93685
52 37.96725 37.97117  37.97402 37.97476  37.97492  37.97387 37.97100 37.96879  37.96184  37.95627 37.95154  37.94626
53  37.97356 37.97852  37.98098 37.98243 37.98187 37.98079 37.97848 37.97436 37.97088  37.96268  37.95589  37.94995

54  37.97593  37.98241  37.98589 37.98692 37.98703 37.98522 37.98290 37.97931 37.97397 37.96925 37.95986  37.95186
55 37.97865 37.98235  37.98740 37.98940 37.98909 37.98790 37.98483 37.98125 37.97641 37.96992 37.96401  37.95343
56  37.97871  37.98269  37.98494 37.98857 37.98917 37.98757 37.98507 37.98073 37.97594  37.96989  37.96227  37.95519
57 37.97414  37.98035  37.98293 37.98377 37.98603 37.98528 37.98239 37.97858 37.97299 37.96703  37.95981  37.95107

58 37.96869  37.97207  37.97825 37.97944 37.97895 37.97987 37.97776  37.97358  37.96848 37.96170  37.95461  37.94622

59  37.95772 37.96302 37.96630 37.97245 37.97234 37.97055 37.97010 37.96664  37.96122  37.95487 37.94695 37.93871

60 37.94434 37.94861 37.95371 37.95691 37.96309 37.96167 37.95860 37.95678 37.95202 37.94540 37.93785  37.92875

61  37.92200 37.93169  37.93591 37.94085 37.94401 37.95021 37.94751 37.94312  37.94000 37.93398 37.92621  37.91742
CRN

38.00000
37.98000

37.96000

37.94000 60
37.92000 58
37.90000 56
37.88000 54
156
157 453 g .
160 46
> 162 .
163 164 50
165 5
165 166
167
@37.88000-37.90000 37.90000-37.92000 37.92000-37.94000 37.94000-37.96000 W 37.96000-37.98000 M 37.98000-38.00000

Figure 14: Comparing 144 policies with CRNs

Comparing many policies and estimating the cost function. To illustrate the use of
simulation with CRNs to compare and possibly optimize policies, we now simulate a large
number of policies (s, S) that belong to a grid, and plot the estimated cost as a function of
(s,S5). To define the grid, we take all 12 values of s € {50,51,...,61} and all 12 values of
S € {156,157,...,167}, and consider the cartesian product of these two sets, that is, the
p = 144 policies defined by selecting one value from each set. Before calling the appropriate
function in Figure [12] or [13, we must fill up two arrays of size p = 144, one for s and one for
S, that contain the parameters of the 144 policies. We have estimated the expected profit per
day for each of those p = 144 policies, first using CRNs with the code of Figure [12] and then
with IRNs. For the latter, it suffices to replace the statements clrngMrg31k3pRewindStreams
in Figure by clrngMrg31k3pCreateOverStreams statements, to create 2n; new streams
for each policy.

We took m = 100, n = 2'¥, and n; = 22 work items. We verified that the code of Figure
gives the same results for CRNs. Clearly, the sample function computed by the simulation
varies much more smoothly with CRNs than with IRNs. Also, the optimizer of the sample
function (the point where it reaches its maximum) is a much better (less noisy) estimate of
the true optimal policy (the point (s,.S) where the expected profit has its maximum) with
CRNs than with IRNs. The optimum appears to be at (or very near) (s,.S) = (55, 159).
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50
51
52
53
54
55
56
57
58
59
60
61

156 157 158 159 160 161 162 163 164
37.94537 37.94888 37.94736 37.95314  37.95718 37.97194 37.95955 37.95281 37.96711

37.95740 37.96650

37.97356 37.96999
37.97593 37.98520

37.97865 37.97297 37.98383

37.95732
37.96725 37.96166 37.97192
37.97977

37.97337 37.98137 37.94273 37.96965 37.97573 37.95425

37.98856 37.98266 37.94671 37.95961
37.97693 37.98191
37.98817 37.98168
37.96897

056 37.97440 37.98008

37.97871 37.97672 37.97440 37.97120 37.96967 37.97736

37.97414  37.97797  37.98816  37.99192  37.96780

37.98415 37.97774

37.96869 37.97435 37.96250 37.96581 37.97331 37.95655 37.98382 37.97144 37.97409
37.95772 37.94725 37.97110 37.97905 37.97504 37.96237 37.98182 37.97656 37.97212
37.94434 37.95081 37.94275 37.95515 37.98134 37.95863 37.96581 37.95548 37.96573

38.02000
38.00000
37.98000
37.96000
37.94000
37.92000
37.90000
37.88000
37.86000
37.84000

37.94999 37.95799 37.96368 37.94849 37.95400

IRN

156 157

158 159

160 161
162
163
164 165

166

167

165

37.95221
37.96074
37.97238
37.97217
37.97703
37.96675
37.97275
37.96531
37.96631

50

52

[@37.84000-37.86000 @ 37.86000-37.88000 E37.88000-37.90000 [ 37.90000-37.92000 @ 37.92000-37.94000

[@37.94000-37.96000 @ 37.96000-37.98000 @ 37.98000-38.00000 @ 38.00000-38.02000 @ 38.02000-38.02000

Figure 15: Comparing 144 policies with IRNs
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Reusing the same streams and the convenience of multiple stream creators. As
we said earlier, the codes of Figures [12] and [13| will produce exactly the same results if they
use the same streams, starting from the same states. This will work if we run these codes in
two different programs that execute independently, using the default stream creator in each
case. Then the same streams will be created in the two programs.

In case we want to run the two codes sequentially in the same program, we must rewind and
reuse the same streams for the second code, and not create new streams again, because then
the new streams (and the results) will be different. In fact the code in Figure (12| already
does the rewind at the end of the loop, so it would suffice to just reuse the streams already
created.

In this example, the streams are created externally and passed as parameters to a function that
simulates the system, for each policy. But for much larger and complicated simulation models,
the number of streams can be very large and it is often more convenient to create them (as well
as other objects used in the simulation) inside the simulation code (in a part that will run on
the host). In that case, if we want to run the simulation several times with exactly the same
streams (perhaps with different model parameters), then we need to reset the stream creator
between those simulations so it can create the same streams over and over again. This can be
achieved via the function clrngRewindStreamCreator (). An equivalent approach is to clone
the default creator into multiple copies via the function clrngCopyStreamCreator(), and
pass one of those copies to each simulation. This approach can be convenient when running
the different simulations in parallel on different computers in a cluster, for example.

4 The API in a generic form

In this section, we discuss and define the API. The function and type names in this API all
start with clrng. In each specific implementation, this prefix is expanded to a specific prefix;
e.g., clrngMrg31k3p for the MRG31k3p generator.

In the standard case, streams and substreams are defined as in [5 [6] 9]. The sequence of
successive states of the base RNG over its entire period of length p is divided into streams
whose starting points are Z steps apart. The sequence for each stream (of length 7) is further
divided into substreams of length . The integers Z and W have default values that have been
carefully selected to avoid detectable dependence between successive streams and substreams,
and are large enough to make sure that streams and substreams will not be exhausted in
practice. It is strongly recommended to never change these values (even if the software allows
it). The initial state of the first stream (the seed of the library) has a default value. It can be
changed by invoking clrngSetBaseCreatorState() before creating a first stream.

A stream object is a structure that contains the current state of the stream, its initial state
(at the beginning of the stream), and the initial state of the current substream. Whenever
the user creates a new stream, the software automatically jumps ahead by Z steps to find its
initial state, and the three states in the stream object are set to it. The form of the state
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depends on the type of RNG.

Some functions are available on both the host and the devices (they can be used within
a kernel) whereas others (such as stream creation) are available only on the host. Many
functions are defined only for arrays of streams; for a single stream, it suffices to specify an
array of size 1.

When a kernel is called, one should pass a copy of the streams from the host to the global
memory of the device. Another copy of the stream state must be stored in the private
memory of the work item that uses it in the kernel code to generate random numbers. In
the current implementation, to avoid wasting (scarce) private memory, without the option
CLRNG_ENABLE_SUBSTREAMS (see below), only the current state of the stream is stored explic-
itly in the work-item’s private memory. The work item also keeps in private memory a pointer
to the initial state of the stream, but this initial state is not copied into private memory, and
the work item does not keep track of the initial state of the current substream. With the
option CLRNG_ENABLE SUBSTREAMS (see below), the initial state of the current substream is
also stored into private memory. This permits one to rewind the current state to it or move
forward to the next substream.

To use the cIRNG library from within a user-defined kernel, the user must include the clRNG
header file corresponding to the desired RNG via an include directive. Other specific prepro-
cessor macros can be placed before including the header file to change settings of the library
when the default values are not suitable for the user. The following options are currently
available:

CLRNG_SINGLE_PRECISION: With this option, all the random numbers returned by clrng-
RandomU01 () and clrngRandomUO1Array (), and those generated by clrngDeviceRandom-
UO1Array (), will be of type c1_float instead of cl_double (the default setting). This
option affects all implemented RNGs. This option can be activated on the device and
the host separately (i.e., on either one on or both), and affects all implemented RNGs.

CLRNG_ENABLE_SUBSTREAMS: With this option, the current state of a stream can be reset
on the device to the initial state of the current or next substream. This is made possible
by storing in private memory the initial substream state. Without this option, by
default, this is not possible and only the current state of the stream and a pointer to its
initial state (left in global memory) are kept in private memory and is accessible, in a
work item. This option applies only to the device; operations on substreams are always
available on the host.

For example, to enable substreams support, generate single-precision floating point numbers
on the device, and use the MRG31k3p generator, one would have:

#define CLRNG_ENABLE_SUBSTREAMS
#define CLRNG_SINGLE_PRECISION
#include <mrg31k3p.clh>
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4.1 Host interface

The functions described here are all available on the host, in all implementations, unless
specified otherwise. Only some of the functions are also available on the device in addition to
the host; they are listed in Section [£.2] Some functions return an error code in err.

typedef struct { /x ... */ } clrngStreamState;

Contains the state of a random stream. The definition of a state depends on the type of generator.

typedef struct { /x ... */ } clrngStream;

A structure that contains the current information on a stream object. It generally depends on
the type of generator. It typically stores the current state, the initial state of the stream, and
the initial state of the current substream.

The device API offers a variant of this struct definition called clrngHostStream to receive stream
objects from the host. Stream objects, as defined on the device, do not store as much information
as stream objects on the host, but keep pointers to relevant information from the host stream
object. The definition of the clrngStream type on the device also depends on whether substreams
support is required by the user (with the CLRNG_ENABLE_SUBSTREAMS option).

typedef struct { /* ... */ } clrngStreamCreator;

For each type of RNG, there is a single default creator of streams, and this should be sufficient
for most applications. Multiple creators could be useful for example to create the same successive
stream objects multiple times in the same order, instead of storing them in an array and reusing
them, or to create copies of the same streams in the same order at different locations in a
distributed system, e.g., when simulating similar systems with common random numbers.

clrngStreamCreator* clrngCopyStreamCreator(const clrngStreamCreator* creator,
clrngStatus* err);

Create an identical copy (a clone) of the stream creator creator. To create a copy of the
default creator, put NULL as the creator parameter. All the new stream creators returned by
clrngCopyStreamCreator (NULL, NULL) will create the same sequence of random streams, unless
the default stream creator is used to create streams between successive calls to this function.

clrngStatus clrngDestroyStreamCreator(clrngStreamCreator* creator);

Release the resources associated to a stream creator object.

clrngStatus clrngRewindStreamCreator (clrngStreamCreator* creator);

Resets the stream creator to its original initial state, so it can re-create the same streams over
again.
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clrngStatus clrngSetBaseCreatorState(clrngStreamCreator* creator,
const clrngStreamState* baseState);

Set the base state of the stream creator, which can be seen as the seed of the underlying RNG.
This will be the initial state (or seed) of the first stream created by this creator. Then, for most
conventional RNGs, the initial states of successive streams will be spaced equally, by Z steps in
the RNG sequence. The type and size of the baseState parameter depends on the type of RNG.
The base state always has a default value, so this function does not need to be invoked.

clrngStatus clrngChangeStreamsSpacing(clrngStreamCreator* creator,
cl_int e, cl_int c);

This function should be used only in exceptional circumstances. It changes the spacing
Z between the initial states of the successive streams from the default value to Z = 2¢ + ¢ if
e>0,ortoZ =cif e=0. One must have e > 0 but ¢ can take negative values. The default
spacing values have been carefully selected for each RNG to avoid overlap and dependence between
streams, and it is highly recommended not to change them.

clrngStream* clrngAllocStreams(size_t count, size_t* bufSize, clrngStatus* err);

Reserve memory space for count stream objects, without creating the stream objects. Returns a
pointer to the allocated buffer and returns in bufSize the size of the allocated buffer, in bytes.

clrngStatus clrngDestroyStreams(clrngStream* streams);

Release the memory space taken by those stream objects.

clrngStream* clrngCreateStreams(clrngStreamCreator* creator, size_t count,
size_t* bufSize, clrngStatus* err);

Create and return an array of count new streams using the specified creator. This function also
reserves the memory space required for the structures and initializes the stream states. It returns
in bufSize the size of the allocated buffer, in bytes. To use the default creator, put NULL as the
creator parameter. To create a single stream, just put count = 1.

clrngStatus clrngCreateOverStreams(clrngStreamCreator* creator,
size_t count, clrngStream* streams);

This function is similar to clrngCreateStreams (), except that it does not reserve memory for
the structure. It creates the array of new streams in the preallocated streams buffer, which
could have been reserved earlier via either clrngAllocStreams() or clrngCreateStreams(). It
permits the client to reuse memory that was previously allocated for other streams.

clrngStream* clrngCopyStreams(size_t count, const clrngStream* streams,
clrngStatus* err);

Create an identical copy (a clone) of each of the count stream objects in the array streams. This
function allocates memory for all the new structures before cloning, and returns a pointer to the
new structure.

23



clrngStatus clrngCopyOverStreams(size_t count, clrngStream* destStreams,
const clrngStream* srcStreams);

Copy (or restore) the stream object srcStreams into the buffer destStreams, and each of the
count stream objects from the array srcStreams into the buffer destStreams. This function
does not allocate memory for the structures in destStreams; it assumes that this has already
been done. Note: The device API offers variants of this function to convert stream objects across
their host and device representations, while copying across different types of memory.

cl_double clrngRandomUO1(clrngStream* stream);

Generate and return a (pseudo)random number from the uniform distribution over the interval
(0,1), using stream. If this stream is from an RNG, the stream state is advanced by one step
before producing the (pseudo)random number.

By default, the returned value is of type c1_double. But if the option CLRNG_SINGLE_PRECISION
is defined on the host, the returned value will be of type c1_float. Setting this option changes the
type of the returned value on the host for all RNGs and all functions that use clrngRandomU01 ().

cl_int clrngRandomInteger(clrngStream* stream, cl_int i, cl_int j);

Generate and return a (pseudo)random integer from the discrete uniform distribution over the
integers {i,...,j}, using stream, by calling clrngRandomU01 () once and transforming the output
by inversion. That is, it returns i + (cl_int) ((j-i+1) * clrngRandomUO01(stream)).

clrngStatus clrngRandomUOlArray(clrngStream* stream, size_t count,
cl_double* buffer);

Fill preallocated buffer with count successive (pseudo)random numbers. Equivalent to calling
clrngRandomUO1 (stream) count times to fill the buffer.

In case CLRNG_SINGLE PRECISION is defined, the buffer will be filled by count values of type
cl _float instead.

clrngStatus clrngRandomIntegerArray(clrngStream* stream, cl_int i, cl_int j,
size_t count, cl_int* buffer);

Same as clrngRandomUO1Array(), but for integer values in {i,...,j}. Equivalent to calling
clrngRandomInteger () count times to fill the buffer.

clrngStatus clrngRewindStreams(size_t count, clrngStream* streams);

Reinitialize all the streams in streams to their initial states. The current substream also becomes
the initial one.

clrngStatus clrngRewindSubstreams(size_t count, clrngStream* streams);
Reinitialize all the streams in streams to the initial states of their current substream.
clrngStatus clrngForwardToNextSubstreams(size_t count, clrngStream* streams);

Reinitialize all the streams in streams to the initial states of their next substream. The current
states and the initial states of the current substreams are changed.
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clrngStream* clrngMakeSubstreams(clrngStream* stream, size_t count,
size_t* bufSize, clrngStatus* err);

Make and return an array of count copies of stream, whose initial and current states are the initial
states of the next count successive substreams of stream. The first substream in the returned
array is simply a copy of stream. This function also reserves the memory space required for
the structures and initializes the stream states. It returns in bufSize the size of the allocated
buffer, in bytes. To create a single stream, just put count = 1. When this function is invoked,
the substream state and initial state of stream are advanced by count substreams.

clrngStatus clrngMakeOverSubstreams(clrngStream* stream,
size_t count, clrngStream* substreams);

This function is similar to clrngMakeStreams(), except that it does not reserve memory for
the structure. It creates the array of new streams in the preallocated substreams buffer, which
could have been reserved earlier via either clrngAllocStreams(), clrngMakeSubstreams() or
clrngCreateStreams (). It permits the client to reuse memory that was previously allocated for
other streams.

clrngStatus clrngAdvanceStreams(size_t count, clrngStream* streams,
cl_int e, cl_int c);

This function should be used only in very exceptional circumstances. It advances the
state of the streams in array streams by k steps, without modifying the states of other streams,
nor the initial stream and substream states for those streams. If e > 0, then k = 2¢ 4 ¢; if e < 0,
then k = —2l¢l + ¢; and if e = 0, then k = ¢. Note that ¢ can take negative values. We discourage
the use of this procedure to customize the length of streams and substreams. It is better to use
the default spacing, which has been carefully selected for each RNG type.

clrngStatus clrngDeviceRandomUOlArray(size_t streamCount, cl_mem streams,
size_t numberCount, cl_mem outBuffer, cl_uint numQueuesAndEvents,
cl_command_queue* commQueues, cl_uint numWaitEvents,
const cl_event* waitEvents, cl_event* outEvents);

Fill the buffer pointed to by outBuffer with numberCount uniform random numbers of type
cl double (or cl float in case CLRNG_SINGLE PRECISION is defined), using streamCount work
items. In the current implementation, numberCount must be a multiple of streamCount. See
clEnqueueNDRangeKernel () from the OpenCL API documentation for a description of the
numWaitEvents and waitEvents arguments. This function requires access to the c1RNG device
header files (like mrg31k3p.clh) and assumes that the environment variable CLRNG_ROOT points to
the installation path of the c1RNG package, where lies the c1/include subdirectory that contains
these files. Means of setting an environment variable depend on the operating system used.

clrngStatus clrngWriteStreamInfo(const clrngStream* stream, FILE xfile);

Format and output information about a stream object to a file. The file can be set to stdout
for standard output and to stderr for the error file.
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4.2 Device interface

The functions that can be called on the device are the following.

4.2.1 Functions that are always available

clrngStatus clrngCopyOverStreams(size_t count, clrngStream* destStreams,
const clrngStream* srcStreams);

clrngStatus clrngCopyOverStreamsFromGlobal(size_t count,
clrngStream* destStreams, __global const clrngHostStream* srcStreams);

Copy the host stream objects srcStreams from global memory as device stream objects into the
buffer destStreams in private memory.

clrngStatus clrngCopyOverStreamsToGlobal(size_t count,
__global clrngHostStream* destStreams, const clrngStream* srcStreams);

Copy the device stream objects srcStreams from private memory as host stream objects into the
buffer destStreams in global memory.

cl_double clrngRandomUO1(clrngStream* stream);

By default, the returned value is of type c1_double. But if the option CLRNG_SINGLE_PRECISION
is defined on the device, the returned value will be of type cl_float, for all RNGs.

cl_int clrngRandomInteger(clrngStream* stream, cl_int i, cl_int j);

clrngStatus clrngRandomUOlArray(clrngStream* stream, size_t count,
cl_doublex buffer);

clrngStatus clrngRandomIntegerArray(clrngStream* stream, cl_int i, cl_int j,
size_t count, cl_int* buffer);

clrngStatus clrngRewindStreams(size_t count, clrngStream* streams);

This function can be slow on the device, because it reads the initial state from global memory.

4.2.2 Functions that are available only if CLRNG_ENABLE SUBSTREAMS has been set

clrngStatus clrngRewindSubstreams(size_t count, clrngStream* streams);
clrngStatus clrngForwardToNextSubstreams(size_t count, clrngStream* streams);

clrngStatus clrngMakeOverSubstreams(clrngStream* stream,
size_t count, clrngStream* substreams);
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5 Implementation for the MRG31k3p generator

The MRG31k3p generator is defined in [10]. In its specific implementation, the function and
type names start with clrngMrg31k3p. For this RNG, a state is a vector of six 31-bit integers,
represented internally as cl_uint. The entire period length of approximately 2'® is divided
into approximately 2°! non-overlapping streams of length Z = 2'34. Each stream is further
partitioned into substreams of length W = 272, The state (and seed) of each stream is a
vector of six 31-bit integers. This size of state is appropriate for having streams running in
work items on GPU cards, for example, while providing a sufficient period length for most
applications.

6 Implementation for the MRG32k3a generator

MRG32k3a is a combined multiple recursive generator (MRG) proposed by L’Ecuyer [2],
implemented here in 64-bit integer arithmetic. This RNG has a period length of approximately
2191 "and is divided into approximately 2* non-overlapping streams of length Z = 2'?7, and
each stream is subdivided in 2°! substreams of length W = 276, These are the same numbers
as in [9]. The state of a stream at any given step is a six-dimensional vector of 32-bit integers,
but those integers are stored as cl_ulong (64-bit integers) in the present implementation (so
they use twice the space). The generator has 32 bits of resolution. Note that in the original
version proposed in |2, 0], the recurrences are implemented in double instead, and the state is
stored in six 32-bit integers. The change in implementation is to avoid using double’s, which
are not available on many GPU devices, and also because the 64-bit implementation is much
faster than that in double when 64-bit integer arithmetic is available on the hardware.

7 Implementation for the LFSR113 generator

The LFSR113 generator is defined in [3]. In its implementation, the function and type names
start with clrngLfsr113. For this RNG, a state is a vector of four 31-bit integers, represented
internally as cl_uint. The period length of approximately 213 is divided into approximately
223 non-overlapping streams of length Z = 2. Each stream is further partitioned into 23°
substreams of length W = 25°. Note that the functions clrngLfsr113ChangeStreamsSpacing
and clrngLfsr113AdvancedStreams are not implemented in the current version.

8 Implementation for the Philox-4x32-10 generator

The counter-based Philox-4x32-10 generator is defined in [I1]. Unlike the previous three
generators, its design is not supported by a theoretical analysis of equidistribution. It has only

27



been subjected to empirical testing with the TestU01 software [8] (the other three generators
also have). In its implementation, the function and type names start with clrngPhilox432.
For this RNG, a state is a 128-bit counter with a 64-bit key, and a 2-bit index used to iterate
over the four 32-bit outputs generated for each counter value. The counter is represented
internally as a vector of four 32-bit c1_uint values and the index, as a single c1l_uint value.
In the current clRNG version, the key is the same for all streams, with all bits set to zero as
in the Engine module of [I1], so it is not stored in each stream object but rather hardcoded
in the implementation. The period length of 2!%° is divided into 2% non-overlapping streams
of length Z = 292, Each stream is further partitioned into 23° substreams of length W = 256,
The key (zero), initial counter value and order in which the four outputs per counter value
are returned are chosen to generate the same values, in the same order, as Random123’s
Engine module [I1], designed for use with the standard C++11 random library. Note that the
function clrngPhilox432ChangeStreamsSpacing supports only values of ¢ that are multiples
of 4, with either e =0 or e > 2.

9 Conclusion and future plans

In the future, we plan to provide implementations of this API with other types of base gener-
ators, provide types of streams that can create children streams independently of each other,
provide special types of streams that produce the successive coordinates of quasi-random
points, build a generic interface that can be used for all those different types of streams, and
provide facilities to transform uniform random numbers to non-uniform ones from various
distributions.
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