
On the Lattice Structure of a Special Class of
Multiple Recursive Random Number Generators

Pierre L’Ecuyer and Richard Simard
DIRO, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal (Québec), H3C 3J7, CANADA,

{lecuyer@iro.umontreal.ca, simardr@iro.umontreal.ca}

We examine some properties of the points produced by certain classes of long-period linear

multiple recursive random number generators proposed by Deng and his co-authors in sev-

eral papers. These generators have their parameters selected in special ways to make the

implementation faster. We show that as a result, the points produced by these generators

have a poor lattice structure, and a poor initialization of the state can have a long-lasting

impact, because of the limited diffusion capacity of the recurrence.

Key words: Random number generators, multiple recursive generators, lattice structure,

simulation

This version: August 2, 2013

1. Introduction

A widely-used type of uniform random number generator for simulation, known as multiple

recursive generators (MRG), is based on a linear recurrence of the form

xi = (a1xi−1 + · · ·+ akxi−k) mod m, (1)

ui = xi/m, (2)

where m (the modulus) and k (the order) are positive integers, the aj’s (the coefficients) are

in {0, 1, . . . ,m − 1}, and ui ∈ [0, 1) is the output (or random number generated) at step i.

Typically, m is a prime number and the coefficients aj’s are selected so that the characteristic

polynomial of the recurrence (1) is a primitive polynomial, in which case the output sequence

is periodic with (maximal) period ρ = mk − 1 (Knuth, 1998). In practice, the output ui is

often modified slightly (e.g., by adding 0.5/m) to avoid returning zero, but this has little

impact on the analysis and we ignore it here for simplicity. More details on the MRG and

its properties can be found in L’Ecuyer (1999a, 2006) and Niederreiter (1992), for example.

1

In a series of papers, L.-Y. Deng and his co-authors have proposed various special cases

of MRGs of large order k, where the coefficients aj satisfy certain conditions that can make

the implementation faster (Deng and Lin, 2000; Deng and Xu, 2003; Deng, 2004, 2005; Deng

et al., 2008, 2009, 2012). The main idea is to have only a small number of nonzero values for

the coefficients aj. They specialize the recurrence (1) to the form

xi =
∑
a∈A

a
∑
j∈S(a)

xi−j mod m, (3)

where A ⊂ {1, . . . ,m − 1} is a small set, usually of cardinality no more than 2 or 3, and

S(a) ⊂ {1, . . . , k} for each a ∈ A. The rationale is to reduce the number of multiplications

modulo m required to compute the recurrence.

Their earliest proposal in this family was the FMRG-k generator of Deng and Lin (2000),

where A = {m− 1, b}, S(m− 1) = 1, and S(b) = k, which gives

xi = ((m− 1)xi−1 + bxi−k) mod m = (−xi−1 + bxi−k) mod m. (4)

Deng and Xu (2003) and Deng (2005) then proposed a class named DX-k-σ-t (originally

with t = 1), where A = {b}, S(b) = {t, k} for σ = 2, S(b) = {t, dk/2e, k} for σ = 3, and

S(b) = {t, dk/3e, d2k/3e, k} for σ = 4. For σ ≥ 2, this gives

xi = b
∑
j∈S(b)

xi−j mod m. (5)

Computing the corresponding recurrence requires a single modular multiplication, by b. For

σ = 1, they take A = {1, b} with S(1) = {t} and S(b) = {k}, which gives xi = (xi−t +

bxi−k) mod m.

Deng et al. (2008) then proposed the DL-k-t class, where A = {b} and S(b) = {t, t +

1, . . . , k}, which gives

xi = b

k∑
j=t

xi−j mod m = xi−1 + b(xi−t − xi−k−1) mod m (6)

and the DS-k-t class, where A = {b} and S(b) = {1, . . . , t− 1, t+ 1, . . . , k}, which gives

xi = b
k∑

j=1, j 6=t

xi−j mod m = xi−1 + b(xi−1 − xi−t + xi−t−1 − xi−k−1) mod m. (7)

In (6) and (7), the last expression provides an efficient way of implementing the recurrence,

with a single multiplication and a small number of additions.

2

Deng et al. (2012) introduced a modified version of the DX-k-σ-t recurrences, in which

t = 1 and the term xi−g is added to the right side for some integer g ∈ {1, . . . , k}. That is,

they take A = {1, b}, S(1) = {g} for σ ≥ 2 and S(1) = {1, g} for σ = 1, and S(b) as for the

DX-k-σ-t. They call them DX∗-k-σ-g. For example, for σ = 1, this gives

xi = xi−g + xi−1 + bxi−k mod m (8)

and for σ = 2, we have

xi = xi−g + b(xi−1 + xi−k) mod m. (9)

These authors provide specific parameter choices that give a maximal period mk − 1 for

k ranging from 101 to 25013, for m = 231− c for small values of c (Deng and Lin, 2000; Deng

and Xu, 2003; Deng, 2004, 2005, 2008; Deng et al., 2012).

Besides a long period, a key requirement for a good RNG is that the set of all vectors of

successive output values (ui, . . . , ui+s−1), from all possible initial states, should cover the unit

hypercube [0, 1)s very evenly (L’Ecuyer, 2006). This requirement captures both uniformity

and independence. Indeed, an (ideal) RNG would produce independent uniform random

variables over [0, 1) if and only if (ui, . . . , ui+s−1) has the uniform distribution over the unit

hypercube for any i and s. More generally, for any finite set of integers I = {i1, . . . , is}
where 0 ≤ i1 < · · · < is, consider the multiset Ψs(I) of all s-dimensional output vectors

(ui1 , . . . , uis) obtained when the initial state s0 = (x0, . . . , xk−1) of the MRG runs over all its

mk possibilities:

Ψs(I) = {(ui1 , . . . , uis) ∈ [0, 1)s | s0 ∈ Zkm},

with Zm = {0, . . . ,m − 1}. We shall denote by Ψ̃s(I) the ordinary set that corresponds

to the multiset Ψs(I) (it contains a single copy of each point). If s0 is selected at random

uniformly from Zkm, (ui1 , . . . , uis) has the uniform distribution over Ψs(I). For this to be

a good approximation of the uniform distribution over [0, 1)s, Ψs(I) must cover [0, 1)s very

evenly. Note that if the MRG has maximal period mk − 1 (which we shall assume from now

on), then all points of Ψs(I) are visited exactly once (or according to their multiplicity if

they appear more than once in the multiset Ψs(I)) when the MRG runs over its full period,

except for the zero vector (0, . . . , 0) which appears one time less.

Whenever is − i1 < k, Ψs(I) contains every vector of (Zsm)/m, i.e., every s-dimensional

vector whose coordinates are in {0, 1/m, . . . , (m−1)/m} exactlymk−s times each. This is the

best uniformity we can hope for, given that the output coordinates are all multiples of 1/m.

3

For s > k, this ideal uniformity is of course impossible, because |Ψs(I)| = mk < ms. More

interestingly, when is− i1 ≥ k, this uniformity is no longer guaranteed even if s is small. For

this situation, it is known that Ψ̃s(I) is the intersection of a lattice in Rs with the hypercube

[0, 1)s (Knuth, 1998; L’Ecuyer, 1999a). This implies in particular that there are families of

equidistant parallel hyperplanes in Rs such that each family covers Ψs(I). A standard way of

measuring the uniformity of Ψs(I) then is via the so-called spectral test (Knuth, 1998): one

computes the distance ds(I) between the hyperplanes of the family for which this distance is

largest. We want this distance ds(I) to be as small as possible, to avoid large empty gaps. It

is common practice to standardize this measure into a real number between 0 and 1 defined as

Ss(I) = d∗s(n)/ds(I), where d∗s(n) is a lower bound on the smallest possible distance between

hyperplanes that can be achieved by a general s-dimensional lattice having n points per unit

of volume (Conway and Sloane, 1999), and n = min(mk,ms) is the largest possible number

of distinct points in Ψs(I). Very small values of Ss(I) must be avoided. Good MRGs having

reasonably large values of Ss(I) (Ss(I) > 0.6, for example) for all I in a large collection of

index sets I, including sets with s = |I| � k, have been constructed (L’Ecuyer, 1999a).

A primary purpose of this paper is to study the structure of Ψs(I) for the special types

of MRGs mentioned earlier, and exhibit index sets I for which Ss(I) is always very small,

when is − i1 ≥ k. This is a sequel to a first analysis made by L’Ecuyer and Touzin (2004)

for the RNGs of Deng and Lin (2000) and Deng and Xu (2003).

We also exhibit and explain potential problems that may occur in the initialization of these

special types of MRGs. If one is not sufficiently careful about the initialization, the structure

of the initial state can easily interact with that of the MRG and be apparent in the output

for a large number of steps. We explain why and we show that this may have a disastrous

impact on the statistical behavior of the RNG. The reason for this is that the recurrence of

those special types of MRGs does not make a sufficiently complicated modification of the

state at each step. This type of problem does not occur for MRGs having a smaller state and

a more complicated recurrence, such as those proposed in L’Ecuyer (1999a) and L’Ecuyer

and Touzin (2000), for example.

The rest of the article is organized as follows. In Section 2, we give some background

on the lattice structure analysis of MRGs, and provide bounds on a figure of merit that

measures the quality of the lattice structure of the set Ψs(I) for certain classes of DX, DX∗,

DL, and DS generators. These bounds show in particular that the lattice structure cannot

be good when b, or its inverse modulo m, is small, or when a small multiple of b is close to

4

a small multiple of m, or if b is a sum of two powers of 2 of a certain form. We also manage

to bound those bounds uniformly in b; this yields upper bounds which show that some of

these generators cannot have a good lattice structure regardless of the value of b (even for

large b). In Section 3, we compare these bounds with the exact value of the figure of merit

for a representative selection of those special types of MRGs. In Section 4, we illustrate the

effect of this lattice structure on the results of a simple empirical statistical test. Section 5

is devoted to problems that can occur with the initialization of these MRGs. It shows that

if the initial state has too much structure, then this structure may persist for a very large

number of steps. Section 6 offers some conclusions.

2. Lattice Structure

2.1 Vectors of the dual lattice

Let ei(s) denote the ith unit vector in s dimensions and let xi,0, xi,1, . . . be the sequence

obtained from the recurrence (1) when (x0, . . . , xk−1) = (xi,0, . . . , xi,k−1) = ei(k), for i =

1, . . . , k. It is known (L’Ecuyer and Couture, 1997) that Ψ̃s(I) = Ls(I)∩ [0, 1)s where Ls(I)

is the lattice generated by the vectors (xi,i1/m, . . . , xi,is/m) for i = 1, . . . , k, together with the

unit vectors e1(s), . . . , es(s). From this set of k+ s vectors, one can obtain a basis of s linearly

independent vectors that generate the same lattice (L’Ecuyer and Couture, 1997). The dual

lattice L∗s(I) to Ls(I) is the set of vectors w such that wtv mod 1 = 0 for all v ∈ Ls(I). If

`s(I) is the Euclidean length of the shortest nonzero vector in L∗s(I), then ds(I) = 1/`s(I).

Thus, a small value of `s(I) means a small value of Ss(I) and poor uniformity of Ψs(I). For

s ≤ 8, the smallest possible distance between hyperplanes that can be achieved by a general

s-dimensional lattice of density n is known exactly (Conway and Sloane, 1999; Knuth, 1998);

we denote it by d∗s(n) (the dimension s considered in this paper never exceeds 6).

By putting a0 = −1, we can rewrite (1) as
k∑
j=0

ajxi−j mod m = 0. (10)

Let I∗ = {j : 0 ≤ j ≤ k and ak−j 6= 0}. For the special case where 0 = i1 < i2 < · · · < is = k

and I∗ ⊆ I, it is easily seen from (10) (L’Ecuyer, 1997) that the vectors wi = mei(s) for

i = 1, . . . , s−1 and ws = (ak−i1 , ak−i2 , . . . , ak−is−1 ,−1) form a basis of L∗s(I), and that mes(s)

also belongs to L∗s(I). The fact that ws ∈ L∗s(I) implies that

`2s(I) ≤ ‖ws‖2 = 1 + a21 + · · ·+ a2k, (11)

5

where ‖ · ‖ is the Euclidean norm. Any integer multiple of ws modulo m also belongs to

L∗s(I), as well as any linear combination of the form w =
∑s

i=1 ziwi with integer coefficients

zi. Moreover, if I∗ ⊆ I ⊂ I ′, s′ = |I ′| > s, w ∈ L∗s(I), and w′ is constructed from w by

adding zero coordinates for the s′ − s indexes in I ′ \ I, then w′ ∈ L∗s′(I ′). This implies that

`s′(I
′) ≤ `s(I) and that the bound (11) holds for I ′ as well.

For any integer w, we denote

[w]m = w − z′m (12)

where z′ is the unique integer for which −m/2 < w − z′m ≤ m/2. This integer minimizes

|w − z′m|. For a vector w = (w1, . . . , ws) with integer coordinates, we denote [w]m =

([w1]m, . . . , [ws]m). Wheneverw ∈ L∗s(I), [w]m ∈ L∗s(I) as well, because [w]m can be obtained

from w by adding an integer linear combination of me1(s), . . . ,mes(s), which all belong to

L∗s(I). It is also obvious that ‖[w]m‖ ≤ ‖w‖.
Observe that a vector w belongs L∗s(I) if and only if can be written as w = zws +∑s
j=1 zjmej(s) for some integers z, z1, . . . , zs. For z fixed, the shortest of those vectors w is

precisely [zws]m ∈ L∗s(I). Thus, the shortest vector in the dual lattice must have the form

[zws]m for some nonzero integer z, which can be taken from {1, . . . ,m − 1} because z can

be reduced modulo m. We have just proved the following result:

Proposition 1 One has

`2s(I) = min
z∈{1,...,m−1}

‖[zws]m‖2 = min
z∈{1,...,m−1}

([zak−i1]
2
m + · · ·+ [zak−is−1]

2
m + [z]2m).

For the case where k = 1, s = 2, I = {0, 1}, and a1 = b, this gives `2s(I) = minz∈{1,...,m−1}([zb]
2
m+

[z]2m). But it is known (Knuth, 1998) that for this special case, for any choices of m > b > 0,

`22(I) ≤ (4/3)1/2m. This gives the general inequality:

Proposition 2 For any integers m > b > 0, there is an integer z ∈ {1, . . . ,m−1} such that

[zb]2m + [z]2m ≤ (4/3)1/2m.

In what follows, we will exploit these two propositions to develop refined bounds on `s(I)

for special types of MRGs proposed by Deng and his co-authors. We denote S̄(b) = {k − j |
j ∈ S(b), j < k} ∪ {k}.

6

Lecuyer
Highlight
to

Lecuyer
Inserted Text

2.2 Short dual lattice vectors for the DX-k-σ-t generator

For the DX-k-σ-t with σ ≥ 2, for I = {0}∪ S̄(b), we have ws = (b, . . . , b,−1) where s = σ+1,

and therefore `2s(I) ≤ σb2+1. If b∗ is the inverse of bmodulom, i.e., b∗b mod m = 1 (assuming

that such a b∗ exists; it always does when m is prime, which is typical in our setting), then

w∗s
def
= b∗ws mod m = (1, . . . , 1,−b∗) also belongs to L∗s(I), so `2s(I) ≤ (b∗)2 + σ. More

generally, for any integer z, [zws]m = ([zb]m, . . . , [zb]m, [−z]m) ∈ L∗s(I), which gives the

upper bound

`2s(I) ≤ σ[zb]2m + [z]2m. (13)

If zb is close to a multiple of m for some small integer z, then this bound is particularly

small. Likewise, if z∗b∗ is close to a multiple of m for a small integer z∗, taking z = z∗b∗ in

(13) yields `2s(I) ≤ σ[z∗]2m + [z∗b∗]2m, which is small. In other words, if either b or b∗ is near

m/2, or m/3, or 2m/3, . . . , or zm/i for small integers z ≥ 1 and i ≥ 2, then we know a

priori that `2s(I) must be small, and that the lattice structure of L∗s(I) cannot be good.

For the DX-k-1-t, a similar argument with I = {0, k − t, k} shows that ws = (b, 1,−1) ∈
L∗s(I), and this gives the upper bound

`2s(I) ≤ [zb]2m + 2[z]2m (14)

for all integers z. Taking z = z∗b∗, this gives `2s(I) ≤ [z∗]2m + 2[z∗b∗]2m. This shows again that

if either b or b∗ is near zm/i for small integers z ≥ 1 and i ≥ 2, then `2s(I) must be small and

the lattice structure cannot be good.

Example 1 One example of DX-k-σ-1 proposed by Deng et al. (2012) has σ = 3,m = 231−1,

k = 7499, and b = 1073741559. Here, 2b = 2147483118 = m − 529 is very close to m. By

taking z = 2 in (13), the bound evaluates to (2b −m)2σ + 22 = 839527. Taking the square

root gives `s(I) ≤ 916.257, and the corresponding bound on the standardized figure of merit

becomes Ss(I) ≤ 3.587 × 10−7, which is very small. This bound is actually the exact value

in this case.

If we combine Proposition 2 with the bound in (13), we find that for σ ≥ 2, there is a

z > 0 such that

`2s(I) ≤ σ(4/3)1/2m− (σ − 1)[z]2m ≤ σ(4/3)1/2m− (σ − 1), (15)

7

where the last expression is a bound that does not depend on b. For σ = 1, a similar argument

with (14) gives

`2s(I) ≤ 2(4/3)1/2m− 1. (16)

We call L2
2 the bound in (15) or (16), depending on the value of σ.

We now examine a different way of showing the existence of a small integer z for which zb

is close to a multiple of m, i.e., for which zb/m mod 1 is close to 0 or 1. It will give a slightly

different bound. The arithmetic sequence {zα mod 1, z = 1, 2, 3, . . . }, for an arbitrary real

number α > 0, is well known and has been studied at length in the literature. When α is

irrational, it is known as a Weyl sequence. Here we will use a property of this sequence called

the Three Gap Theorem, first proved by Sós (1958) and revisited by several other authors;

see, e.g., van Ravenstein (1988):

Theorem 1 Let α > 0 be a real number and r ≥ 1 an integer, u(1) < · · · < u(r) be the

values {zα mod 1, z = 1, . . . , r} sorted by increasing order, and define the gaps δ0 = u(1),

δi = u(i+1) − u(i) for i = 1, . . . , r − 1, and δr = 1− u(r). Then these r + 1 gaps take at most

three distinct values, which are δ0, δr, and (perhaps) δ0 + δr.

Clearly, the smallest gap here is min(δ0, δr) = min{|[zα]1| : 1 ≤ z ≤ r}, and this smallest

gap cannot be larger than 1/(r + 1), because the sum of the r + 1 gaps must add up to 1.

Applying this result to our setting for α = b/m, we find that there is an integer z ≤ r for

which |[zb/m]1| = |[zb]m|/m ≤ 1/(r + 1), and noticing that [zb]m must be an integer, we

obtain:

Corollary 1 For any integer r ≥ 1, there is an integer z ∈ {1, . . . , r} for which

[zb]2m ≤ bm/(r + 1)c2. (17)

By plugging this into (13), it follows that for σ ≥ 2, for any r ≥ 1,

`2s(I) ≤ σbm/(r + 1)c2 + r2
def
= ϕ(r). (18)

Now we can try to minimize this bound with respect to r; that is, compute

L2
3

def
= ϕ(r∗) = min

r≥1
ϕ(r).

To obtain a crude (initial) estimate of r∗, we will neglect the fact that r must be an integer,

ignore the floor function, and replace r + 1 by r in (18). This gives the approximate bound

8

σm2/r2 + r2. Taking the derivative of this expression with respect to r and equaling it to

zero, we obtain the equation −2m2σr−3 + 2r = 0, for which r = m1/2σ1/4 is a root where the

expression has a minimum, because the second derivative is positive for r > 0. We shall take

x0 = m1/2σ1/4 as a crude real-valued approximation of r∗, and then search on both sides of

x0 to find the exact integer r∗ that minimizes ϕ(r). Another possibility is to just round x0
to the nearest integer instead of searching for r∗; in our experiments this made no significant

difference. When m is large and σ is small (which is typical), we have L2
3 ≈ 2mσ1/2. When

comparing L2
3 with L2

2, for σ = 2, we have L2
2 = 2m

√
4/3 − 1 < L2

3 ≈ 2m
√

2. For σ = 3,

L2
2 = 2m

√
3− 2 ≈ L2

3 ≈ 2m
√

3. For σ ≥ 4, L2
2 = mσ

√
4/3− (σ − 1) > L2

3 ≈ 2m
√
σ. Either

of those bounds can be used to show that Ss(I) cannot be close to 1 regardless of b, for given

values of m and k. In the following, we will take the minimum of the two and will denote

L0 = min(L2, L3).

Example 2 Consider the DX-k-σ-t generator with m = 231−1 = 2147483647 and k = 7499,

also examined in Table 3. For σ = 2, we have x0 = m1/2σ1/4 ≈ 55109, r∗ = 55115,

and the bound ϕ(r∗) evaluates to `2s(I) ≤ minr≥1 ϕ(r) = ϕ(r∗) = 6073738113, or `s(I) ≤
L3 =

√
ϕ(r∗) = 77934.2 (accurate to the given digits). The corresponding bound on the

standardized figure of merit becomes Ss(I) ≤ 3.23316 × 10−5 � 1. We also have L2
2 =

2m
√

4/3 − 1, which gives L2 = 70423.0 < L3 and Ss(I) ≤ 2.92155 × 10−5. These bounds

hold for all b. If we take b = 1038757, for instance, the exact values are `s(I) = 48147.1 ≈
0.684L2 ≈ 0.618L3 and Ss(I) = 1.99741× 10−5.

For σ = 1, the corresponding numbers are x0 = m1/2/21/4 ≈ 38968, r∗ = 38962, ϕ(r∗) =

6073738113, L3 = 77934.2, and this gives Ss(I) ≤ 3.23316 × 10−5 � 1. We also have

L2 = 70423.0 < L3. If we take b = 967501, the exact values are `s(I) = 52479.3 and

Ss(I) = 2.17714× 10−5 ≈ 0.745L2 ≈ 0.673L3.

For σ = 4, we obtain L3 = 92679.8 < L2 = 99593.2.

2.3 Short dual lattice vectors for the DX∗-k-σ-g generator

For the DX∗-k-σ-g with σ ≥ 2, for I = {0, g} ∪ S̄(b), we obtain ws = (b, . . . , 1, . . . , b,−1)

with s = σ + 2, where the position of the 1 depends on the position of g in the ordered set

I. We also have that w∗s
def
= b∗ws mod m = (1, . . . , b∗, . . . , 1,−b∗) ∈ L∗s(I). In this case, the

bound given by Proposition 1 becomes `2s(I) ≤ ‖[zws]m‖2 = [zb]2mσ+ 2[z]2m for all z. For the

case where z = z∗b∗, this gives `2s(I) ≤ σ[z∗]2m + 2[z∗b∗]2m. Again, if b or b∗ is close to zm/i

for some small integers z ≥ 1 and i ≥ 2, then `2s(I) is necessarily small.

9

Lecuyer
Comment on Text
?????

Lecuyer
Line

For the DX∗-k-1-g, if we take I = {0, k − g, k − 1, k}, we obtain ws = (b, 1, 1,−1) and

w∗s = (1, b∗, b∗,−b∗), and this leads to `2s(I) ≤ [zb]2m + 3[z]2m and `2s(I) ≤ [z∗]2m + 3[z∗b∗]2m for

all integers z and z∗.

2.4 Short dual lattice vectors for the DL-k-t and DS-k-t generators

For the DL-k-t and DS-k-t, we find from the representations (6) and (7) that they can

be seen as MRGs of order k′ = k + 1. We will use these representations for our lattice

structure analysis (the fact that they do not have period mk+1 − 1 has no impact on this

analysis). For the DL-k-t with t > 1, for I = {0, k − t + 1, k, k + 1}, we obtain that both

w = (−b, b, 1,−1) and w∗ = (−1, 1, b∗,−b∗) are in L∗s(I). This leads to `2s(I) ≤ 2[zb]2m+2[z]2m

and `2s(I) ≤ 2[z∗b∗]2m + 2[z∗]2m for all z and z∗.

For the the DL-k-1, for I = {0, k, k + 1}, we obtain that both w = (−b, b + 1,−1) and

w∗ = (−1, 1 + b∗,−b∗) are in L∗s(I). This gives `2s(I) ≤ [zb]2m + [z(b + 1)]2m + [z]2m and

`2s(I) ≤ [z∗b∗]2m + [z∗(b∗ + 1)]2m + [z∗]2m for all z and z∗.

Likewise, for the the DS-k-t, for I = {0, k − t, k − t + 1, k, k + 1}, we find that both

w = (−b, b,−b, b + 1,−1) and w∗ = (−1, 1,−1, b∗ + 1,−b∗) are in L∗s(I), and from this we

obtain `2s(I) ≤ 3[zb]2m + [z(b+ 1)]2m + [z]2m and `2s(I) ≤ [z∗b∗]2m + [z∗(b∗ + 1)]2m + 3[z∗]2m for all

z and z∗.

2.5 Summary of upper bounds on `2s(I)

Table 1 summarizes the bounds on `2s(I) derived so far in this section. Each bound depends

on the choice of a small integer z ≥ 1 or z = z∗b∗ (in which case zb = z∗) for a small z∗ ≥ 1.

In the remainder of the paper, we use L2
1(z) to denote the upper bound on `2s(I) given in

the table, for each considered type of MRG. The bounds L2
1(z) in this table are small (and

typically tight) for some small z or z∗ when a small multiple of either b or b∗ is close to a

small multiple of m. As a special case, the bounds are small when b or b∗ is small.

In general, we can apply Proposition 2 and Corollary 1 to these bounds, as we did in

(15) and (18), to obtain a set of bounds L2
2 and L2

3 that hold uniformly in b. Corollary 1

gives a bound that depends on r, of the general form `2s(I) ≤ ϕ(r) for all r ≥ 1, where

the function ϕ depends on the type of generator and is given in Table 2. The table also

gives a crude real-valued estimate x0 of r∗ = arg minr≥1 ϕ(r). The corresponding bound

ϕ(r∗) on `2s(I) is named L2
3. Note that for the DL and DS generators, we use the fact that

[z(b+ 1)]2m ≤ [zb]2m + 2|[zb]m|z + [z]2m ≤ bm/(r + 1)c2 + 2bm/(r + 1)cr + r2 to obtain our ϕ.

10

Table 1: Bounds L2
1(z) and L2

2 on `2s(I) for special types of MRGs.
L2
1(z) L2

2

DX-k-σ-t for σ ≥ 2 σ[zb]2m + [z]2m σ(4/3)1/2m− (σ − 1)

DX-k-1-t [zb]2m + 2[z]2m 2(4/3)1/2m− 1

DX∗-k-σ-g for σ ≥ 2 σ[zb]2m + 2[z]2m σ(4/3)1/2m− (σ − 2)

DX∗-k-1-g [zb]2m + 3[z]2m 3(4/3)1/2m− 2

DL-k-t with t > 1 2[zb]2m + 2[z]2m 2(4/3)1/2m

DL-k-1 [zb]2m + [z(b+ 1)]2m + [z]2m 2(4/3)1/2m− 1

DS-k-t 3[zb]2m + [z(b+ 1)]2m + [z]2m 4(4/3)1/2m− 3

Table 2: Expressions for x0 and ϕ(r) for the bounds L2
3, for special types of MRGs.

x0 ϕ(r)

DX-k-σ-t for σ ≥ 2 m1/2σ1/4 bm/(r + 1)c2σ + r2

DX-k-1-t m1/22−1/4 bm/(r + 1)c2 + 2r2

DX∗-k-σ-g for σ ≥ 2 m1/2(σ/2)1/4 bm/(r + 1)c2σ + 2r2

DX∗-k-1-g m1/23−1/4 bm/(r + 1)c2 + 3r2

DL-k-t with t > 1 m1/2 2(bm/(r + 1)c2 + r2)
DL-k-1 m1/2 2(bm/(r + 1)c2 + bm/(r + 1)cr + r2)
DS-k-t m1/221/4 2(2bm/(r + 1)c2 + bm/(r + 1)cr + r2)

In Section 3, we compute and compare these bounds with the exact values of `s(I) and

Ss(I), for several specific MRGs proposed by Deng and his co-authors. In our examples, the

bound L0 = min(L2, L3) will never be reached exactly, but will often be within a factor of 2

or 3 from the exact value.

2.6 Bounds on `2s(I) when b = 2w + 2r and m = 231 − 1

Deng et al. (2012) proposes several generators with coefficients of the special form b = 2r±2w

where 31 > r > w > 0, for m = 231− 1. In our experiments, we found that for those types of

generators, in most cases L1(z) was minimized and equal to `s(I) for z equal to a power of

2 (see Tables 4 to 7). To explain this, observe that by taking z = 2e for some integer e > 0,

we have in this case

[zb]2m = [2e(2r ± 2w)]2m = [2e+r ± 2e+w]2m and

[z(b+ 1)]2m = [2e(2r ± 2w + 1)]2m = [2e+r ± 2e+w + 2e]2m.

Knowing that [231]m = 1 and w < r, it is easily seen that [zb]2m is minimized by taking

11

e = 31− w if r − w ≤ 15 and e = 31− r when r − w ≥ 16. However, the bound L1(z) itself

can be minimized by another value of e, because it contains other terms, namely [z]2m and in

some cases [z(b+ 1)]2m. With e = 31− w, we have

[zb]2m = [2r−w ± 1]2m and

[z(b+ 1)]2m = [2r−w ± 1 + 231−w]2m,

which are small when w is not too far from 31 (in which case both 31 − w and r − w must

be small), whereas taking e = 31− r gives

[zb]2m = [1± 231−(r−w)]2m and

[z(b+ 1)]2m = [1± 231−(r−w) + 231−r]2m,

which are small when both r and r − w are not too far from 31 (that is, r is large and w

is small). By plugging these values of [zb]2m and [z(b + 1)]2m in the bounds L2
1(z) of Table 1,

for any e > 0, we obtain special instances of the bounds which are often equal to the exact

values, according to our numerical experiments in Section 3.

Example 3 Consider the DX-k-2-64 generator with m = 231−1, k = 7499 and b = 229+217,

taken from Table 2 of Deng et al. (2012). Here w = 17, so 31 − w = 14. We compute

L2
1(2

14) = 302006274, which gives `s(I) ≤ L1(2
14) = 17378.3, and then Ss(I) ≤ 7.210× 10−6,

which is very small. This bound is actually the exact value in this case.

3. Bounds and Exact Spectral Test Figures for Some Pro-
posed Generators

Here we consider a representative selection of parameters proposed by Deng et al. (2012) for

DX, DX∗, DL, and DS generators, we compute the exact spectral test values `s(I) and Ss(I)

defined in Section 2, and compare these values with the bounds L1(z) in Table 1, computed

for a few small values of z, and the bound L0 = min(L2, L3) defined earlier. We computed

the bound L1(z) for z = 1, . . . , 25 and z = b∗, . . . , 25 b∗, and also for z = 2e for e = 0, . . . , 30

in the situations where b = 2w±2r. The number 25 was selected arbitrarily. We report in the

tables the maximum of `s(I)/L1(z) over these values of z, the value of z where the maximum

was reached (with a single exception, it was always reached for z = 1 or z equal to a power

of 2), and the value of `s(I)/L0. We actually made these computations for all the generators

12

Table 3: Spectral test values and bounds for the DX-k-σ-1 with m = 231 − 1 and k = 7499
σ b `s(I) Ss(I) z `s(I)/L1(z) `s(I)/L0

1 13620 13620.0 5.650e-6 1 1 0.1934
1 967501 52479.3 2.177e-5 25b∗ 0.7961 0.7452
1 1073735056 13535.0 5.615e-6 2 1 0.1922
2 18178 25707.6 1.066e-5 1 1 0.3650
2 1038757 48147.1 1.997e-5 1 0.0328 0.6837
2 1073706686 46773.4 1.940e-5 2 0.4706 0.6642
3 2307 3995.8 1.564e-6 1 1 0.0463
3 517486 39856.1 1.561e-5 1 0.0445 0.4621
3 1073741559 916.3 3.588e-7 2 1 0.0106
4 25972 51944.0 1.965e-5 1 1 0.5605
4 519708 54539.0 2.063e-5 1 0.0525 0.5885
4 1073723713 63674.5 2.408e-5 2 0.8790 0.6870

proposed in the above-named papers and the results reported here are representative of what

we have observed.

Table 3 gives the values for some DX-k-σ-1 generators taken from Table 1 of Deng et al.

(2012). The row with (σ, b) = (3, 1073735056) corresponds to Example 1, and those with

other values of σ corespond to Example 2. A key observation is that the normalized spectral

test value Ss(I) is much smaller than 1 in all cases, and it is not significantly larger on average

for larger values of b. Looking at the ratio `s(I)/L0, we also find that there is no hope to

find a value of b for which Ss(I) will be significantly larger (as we saw in Example 2). This

means the lattice structure of the set Ψs(I
′) is always bad, for any I ′ that contains the set I

considered here.

Looking at the bounds more closely, we find as expected that when b < m1/2, then

L1(1) < L0 and the bound L1(1) is also equal to the exact value in this case. For larger b,

we find four situations where b is close to m/2 = 1073741823.5. In fact, m − 2b takes the

values 13535, 70275, 529, 36221 for σ = 1, 2, 3, 4, respectively, in those situations. For the two

smallest values of m − 2b, for σ = 1 and 3, the bound L1(2) is equal to the exact value of

`s(I) (we saw this in Example 1 for σ = 3). For the two other cases, for σ = 2 and 4, the

bound is close to the exact `s(I), and closer when m− 2b is smaller. There is also one lucky

situation where z = 25b∗ gave a pretty tight bound L1(z). For the three cases with a medium

value of b and σ ≥ 2, the bound L0 is much tighter than L1(z) for the values of z that we

have examined, and roughly within a factor of two of the exact value. The bound L0 is very

loose in cases where `s(I) is unusually small; this is not surprising because this bound is the

13

same for all b.

Table 4: Spectral test values and bounds for the DX-k-σ-t with m = 231 − 1 and k = 7499
σ t b `s(I) Ss(I) z `s(I)/L1(z) `s(I)/L0

1 29 1048832 = 220 + 28 5796.8 2.405e-6 211 0.0111 0.0823
2 64 537001984 = 229 + 217 17378.3 7.210e-6 214 1 0.2468
3 70 134479872 = 227 + 218 8240.0 3.227e-6 213 1 0.0955
4 11 1048578 = 220 + 21 8446.1 3.195e-6 211 1 0.0911

Table 4 gives the results for a few representative DX-k-σ-t generators with t > 1, taken

from Table 2 of Deng et al. (2012). They all have b of the form b = 2r + 2w. Again, Ss(I) is

very small (bad) in all cases. Here we see that the bound L1(z) is exact for z = 231−w when

w is large (17 and 18) and for z = 231−r when w is much smaller than r (the case where

w = 1). The case with σ = 2 is Example 3. For z ≤ 25 or z∗ ≤ 25, the bound L1(z) (not

shown) turns out to be very loose in all cases here. In most cases, it is smaller than L0,

which is already not very tight.

Table 5: Spectral test values and bounds for the DX∗-k-σ-g with m = 231 − 1 and k = 7499
σ g b `s(I) Ss(I) z `s(I)/L1(z) `s(I)/L0

1 45 134217984 = 227 + 28 4097.1 1.604e-6 16 1 0.0475
1 193 8388612 = 223 + 22 1116.8 4.373e-7 28 1 0.0129
1 360 528384 = 219 + 212 28454.9 1.114e-5 1 0.0539 0.3299
1 383 1074003968 = 230 + 218 14768.6 5.783e-6 213 1 0.1712
2 17 134217792 = 227 + 26 1449.7 5.677e-7 16 1 0.0206
2 222 536870944 = 229 + 25 182.5 7.147e-8 4 1 0.0026
2 257 536871040 = 229 + 27 725.5 2.841e-7 4 1 0.0103
3 197 541065216 = 229 + 222 757.8 2.866e-7 29 1 0.0088
3 257 4198400 = 222 + 212 7237.1 2.737e-6 219 0.0098 0.0839
3 496 268500992 = 228 + 216 46881.1 1.773e-5 215 1 0.5435
4 69 67633152 = 226 + 219 5798.4 2.092e-6 212 1 0.0582
4 131 536871040 = 229 + 27 1026.0 3.702e-7 4 1 0.0103
4 345 1074790400 = 230 + 220 3548.4 1.280e-6 211 1 0.0356

Table 5 reports some results with DX∗-k-σ-g generators taken from Table 3 of Deng et al.

(2012), all with b = 2r + 2w. Again, Ss(I) is very small in all cases, and the ratio `s(I)/L0

shows that it cannot get much larger. Here we find situations where zb is close to m for z = 4

and for z = 16. Note that for b = 134217984 and 134217792, we have m − 16b = −4097

and −1025, respectively, while for b = 536870944 and 536871040, we have m − 4b = −129

and −513, respectively. In those situations, L1(z) = `s(I) for z = 4 or 16, and Ss(I) is very

14

small. This is also true for z = 231−w in all cases where w ≥ 16 and for z = 231−r in all cases

where r − w ≥ 16. Note that for the cases mentioned above where the bound is exact for

z = 4 or z = 16, this z also happens to equal 231−r and w is small in all those cases, so this

choice of z is justified in two different ways.

Table 6: Spectral test values and bounds for the DL-k-t with m = 231 − 1, k = 7499
t b `s(I) Ss(I) z `s(I)/L1(z) `s(I)/L0

1 38999 55153.6 2.288e-5 1 1 0.7832
1 1035347 15569.0 6.459e-6 1 0.0106 0.2211
1 1073716921 53868.4 2.235e-5 2 0.7648 0.7649

13 2097280 = 221 + 27 23169.6 9.073e-6 210 0.1250 0.3290
125 2097156 = 221 + 22 5972.3 2.339e-6 210 1 0.0848

Table 7: Spectral test values and bounds for the DS-k-t with m = 231 − 1, k = 7499
t b `s(I) Ss(I) z `s(I)/L1(z) `s(I)/L0

3750 26908 53816.5 2.036e-5 1 1 0.5404
3750 451111 45360.0 1.716e-5 1 0.0503 0.4555
3750 1073731005 43273.0 1.637e-5 2 1 0.4345
3754 1048832 = 220 + 28 5631.7 2.130e-6 211 0.0054 0.0565
3915 1050624 = 220 + 211 15596.2 5.899e-6 220 0.0105 0.1566

Tables 6 and 7 report some results for DL and DS generators taken from Tables 1 and

2 of Deng et al. (2012), with s = k + 1. Again, Ss(I) is very small in all cases. In the two

situations where b is small, L1(1) is the exact value, while when 2b is close to m, namely

m− 2b = 21637 for b = 1073731005, and m− 2b = 49805 for b = 1073716921, L1(2) is close

or equal to the exact value. Another case where L1(z) is the exact value has b = 221 + 22,

with r − w = 19 and z = 210.

4. Some Empirical Statistical Tests

We now show the potential impact of the small spectral test value Ss(I) on the empirical

behavior of these generators, via a standard statistical test called the birthday spacings

test (Marsaglia, 1985; Knuth, 1998), in the form studied by L’Ecuyer and Simard (2001)

and implemented in TestU01 (L’Ecuyer and Simard, 2007). For this test, we select two

positive integers n and d, and we generate n points u0, . . . ,un−1 “independently” in the d-

dimensional unit hypercube [0, 1)d, by calling the RNG d times (once for each coordinate)

15

Table 8: Right p-values for the birthday spacings tests with n points in d dimensions and c
boxes.

RNG b I d n c p+

DX-k-1-29 1048832 (0, 7470, 7499) 3 219 254 5.8× 10−64

DX-k-2-64 537001984 (0, 7435, 7499) 3 220 254 1.2× 10−97

DX-k-3-70 134479872 (0, 3749, 7429, 7499) 4 223 264 1.5× 10−19

DL-k-125 2097156 (0, 7375, 7499, 7500) 4 223 264 1.5× 10−19

DX∗-k-2-257 536871040 (0, 7242, 7498, 7499) 4 220 256 8.3× 10−37

for each point. We partition [0, 1)d into c = 2rd cubic boxes of equal size by dividing the

interval [0, 1) into 2r equal parts for some integer r. These boxes are numbered from 0

to c − 1, in lexicographic order of the coordinates. Let K(1) ≤ K(2) ≤ · · · ≤ K(n) be the

box numbers, sorted by increasing order, where the n points fall and define the spacings

Sj = K(j+1) − K(j), for j = 1, . . . , n − 1. The test statistic is the number Y of collisions

between the spacings, defined as the number of values of j ∈ {1, . . . , n − 2} such that

S(j+1) = S(j), where S(1), . . . , S(n−1) are the spacings sorted by increasing order. Under the

null hypothesis H0 that the generator’s output is perfectly random, Y is approximately a

Poisson random variable with mean λ = n3/4c if c is large while λ is not too large (L’Ecuyer

and Simard, 2001). If y denotes the observed value of Y , then the right p-value of the test is

p+
def
= P [Y ≥ y | Y ∼ Poisson(λ)].

Table 8 gives the right p-values of the birthday spacings test for selected generators with

m = 231 − 1 and k = 7499, examined earlier. They were initialized with the combined

Tausworthe generator LFSR113 L’Ecuyer (1999b) (cf. the next section for initialization

issues). The points are constructed as ui = (uijd+j1 , . . . , u(i+1)jd), for i = 0, . . . , n − 1, with

I = {j1, . . . , jd} as given in the table. The p-values indicate spectacular failures of the tests.

The explanation is that for the given choice of I, the points have a poor lattice structure, as

we saw earlier, and the test detects this structure. For sets I comprised of successive output

values instead of the I in the table, the test results depend on the initialization, as we will

see in the next section.

16

5. Initialization Problems

5.1 Initializing an MRG with an LCG

MRGs with a large k have a large state, which must be initialized before use. When k exceeds

a few dozens, it is common practice to initialize the state using another RNG, whose state

is much smaller and easier to initialize. For example, a simple linear congruential generator

(LCG) is often used. Taking the same modulus m for the LCG and for the MRG simplifies

things even further, because then k successive integers xi produced by the LCG can be

used directly for the initial state of the MRG. But this type of initialization leads to serious

problems, as noted by Matsumoto et al. (2007): the successive values xi in the initial state

have an affine dependence dictated by the LCG and this dependence (or structure) tends to

remain for a large number of steps after the initialization. An MRG initialized in this way

may fail many simple statistical tests, just like the LCG that was used for initialization. To

avoid this type of problem, Matsumoto et al. (2007) recommend that MRGs with a large k

be initialized using either a generator with a modulus m different from the modulus of the

MRG, or with a generator of a different type than an MRG.

For a concrete illustration of this problem, consider the DX-k-1-382 generator with m =

231 − 1, k = 20897 and b = 134217736, from Deng et al. (2012). We initialize this MRG

using the LCG based on the recurrence yi+1 = 16807yi mod 231 − 1. We submit the MRG

to the following three empirical tests described in the user’s guide of TestU01 (L’Ecuyer and

Simard, 2007), after reinitializing the generator each time with the given LCG: the birthday-

spacing test with sample size n = 214 and c = 240 cells in d = 2 dimensions, the collision

test with sample size n = 217 and c = 236 cells in d = 2 dimensions, and the maximum-of-t

test with sample size n = 218, taking the maximum of each group of 5 successive values and

using 214 categories for the chi-square test. The DX-k-1-382 had spectacular failures in all

three tests, with a p-value smaller than 10−300 in each case, regardless of the choice of initial

state of the LCG. When we initialize the same generator with the LFSR113 from L’Ecuyer

(1999b), it passes all three tests.

As another example, we applied a birthday spacings test with n = 222 and c = 260 cells

in d = 2 dimensions to a set of DX-k-σ-t generators with k = 20897, m = 231 − 1, and

t ≥ 23, taken from Table 2 of Deng et al. (2012), also initialized with the LCG based on

yi+1 = 16807yi mod 231 − 1. We observed spectacular failures, with several p-values smaller

than 10−300. In all cases, the number of collisions was much larger than expected. Because

17

of the large first lag t in these generators, any update of a xi will have no influence on the

next updated xi+j’s for j < t. As a consequence, if there is a simple dependence between the

xi at any time, blocks of t (or less) successive xi’s will carry a similar dependence for many

steps, and this can explain our empirical results. When the first lag is set to t = 1 in these

generators, they pass the test.

5.2 Simple initialization for the DX, DX*, DL generators

Another easy way to initialize an MRG when k is large is to set all xi’s in the initial state to

the same nonzero integer value, say xi−k = c for i = 1, . . . , k, or perhaps to use xi−k = i− 1

for i = 1, . . . , k. These types of states appear in the period of the MRG, so taking one of

them as initial state should not be a problem for robust MRGs. In fact, the default initial

state in the widely-used RNG software of L’Ecuyer et al. (2002) has this form, with all initial

values set to c = 12345, and this causes no problem. We now show that for the class of

generators examined in this paper, these types of initializations are very bad.

For a concrete illustration, we take a DX-k-1-t generator with m = 231 − 1, k = 20897,

b = 134217736, and t = 382, from Deng et al. (2012). We initialize it with xi−k = 12345

for i = 1, . . . , k, then we generate and plot the (overlapping) output pairs (ui, ui+1), for

i = 1, . . . , 1000; see the left panel of Figure 1. Interestingly, two of the three points lying

on the main diagonal are repeated exactly t− 1 = 381 times, and the third one is repeated

236 times. The other two points appear only once. In the right panel, we see the points

(uν+i, uν+i+1), for i = 1, . . . , 1000, for ν = 106, i.e., after discarding the first one million values.

There are still 874 points lying exactly on the diagonal, and some of them are repeated several

times: 59 are repeated 10 times, 56 are repeated 4 times, and 12 are repeated 5 times.

To understand what happens here, recall that the recurrence for the DX-k-1-t generator

is xi = (xi−t + bxi−k) mod m. If we initialize x−k+1, . . . , x0 to the same constant c > 0

and use this recurrence to compute x1, x2, . . . , we find that x1, . . . , xt are all equal to (b +

1)c mod m, then xt+1, . . . , x2t are all equal to (2b + 1)c mod m, then x2t+1, . . . , x3t are all

equal to (3b + 1)c mod m, and so on, up to xk. Starting from xk+1, we still observe blocks

of equal successive values, but these blocks have lengths smaller than t. When k is very

large and t is large, as in our example, it takes a very long time before these blocks of equal

successive values disappear completely. This property holds regardless of the value of c.

If we do the same initialization (x−k+1 = · · · = x0 = c > 0) for the DX-k-σ-t in (5) with

σ ∈ {2, 3, 4}, we find a similar behavior. We have xi = σbc mod m for i = 1, . . . , t, then

18

0 1

1

ui+1

ui
0 1

1

ui+1

ui

Figure 1: The 1000 pairs (uν+i, uν+i+1) produced by the DX-k-1-t generator withm = 231−1,
k = 20897, b = 134217736 and t = 382, with initial state x−k+1 = · · · = x0 = 12345, for
ν = 0 (left) and ν = 106 (right).

xi = (σb+σ− 1)bc mod m for i = t+ 1, . . . , 2t, then xi = [b(σb+σ− 1) +σ− 1]bc mod m for

i = 2t+ 1, . . . , 3t, then xi = [b(b(σb+ σ− 1) + σ− 1) + σ− 1]bc mod m for i = 3t+ 1, . . . , 4t,

and so on, as long as i ≤ dk/(σ − 1)e. For larger indexes i, successive xi’s will be equal

by smaller groups, depending on the values of k, t and σ, and the average group sizes will

generally decrease with i. Plots for the DX-k-4-t generator with m = 231 − 1, k = 20897,

b = 268435968, and t = 148, taken from Deng et al. (2012), give a similar pattern as in

Figure 1.

These generators have a very poor diffusion capacity, in the sense that a strong de-

pendence between values in the initial state needs a very large number of steps before it

disappears.

We now initialize the DX-k-1-t generator mentioned earlier with xi−k = i − 1 for i =

1, 2, . . . , k, and repeat the same experiment as above, except that we now discard the first

105 generated values for the right panel. The plots are in Figure 2. Again, these points are

far from looking like uniform random points. On the left, several points are repeated and

lie on just a few lines of slope 1. On the right, they still lie on a limited number of lines of

slope 1.

To explain this behavior, note that for the recurrence xi = (xi−t + bxi−k) mod m where

x−k+1, . . . , x0 are initialized to xi−k = i− 1 for i = 1, 2, . . . , k, we have that xi = ((b+ 1)i−
t+ k) mod m for i = 1, . . . , t, then xi = ((2b+ 1)i− (b+ 2)t+ k) mod m for i = t+ 1, . . . , 2t,

then xi = ((3b + 1)i − 3(b + 1)t + k) mod m for i = 2t + 1, . . . , 3t, etc. This implies that

19

0 1

1

ui+1

ui
0 1

1

ui+1

ui

Figure 2: The 1000 pairs (uν+i, uν+i+1) produced by the DX-k-1-t generator with m =
231 − 1, k = 20897, b = 134217736 and t = 382, with initial state given by xi−k = i − 1 for
i = 1, 2, . . . , k, for ν = 0 (left) and ν = 105 (right).

groups of t− 1 pairs (ui, ui+1) will lie on the same line with slope 1, with each of those lines

intersecting the vertical and horizontal axes at different points. The first line (that contains

the first t−1 pairs) intersects the vertical axis at (b+1)/m, the second line (that contains the

pairs (ui, ui+1) for i = t+ 1, . . . , 2t− 1) intersects the vertical axis at (2b+ 1)/m, and so on.

The slope of the line that connects two successive points is equal to (ui+1 − ui)/(ui − ui−1).
We made similar plots with the DX-k-4-t generator with m = 231 − 1, k = 20897,

b = 268435968, and t = 148, taken from Deng et al. (2012), and observed as similar behavior

as in Figure 2.

For the DX*-k-1-g generator (8) initialized with x−k+1, . . . , x0 all equal to c > 0, one easily

find that xi = c(ib+ i+ 1) mod m for i = 1, . . . , g and therefore (xi+1−xi) = (b+ 1)c mod m

for i = 1, . . . , g − 1. That is, the first g − 1 points (ui, ui+1) are all (modulo 1) on a line of

slope 1 that intersects the vertical axis at (b + 1)c/m mod 1. Although the structure of the

following points is a bit more complicated, the second difference (xi+2 − 2xi+1 + xi) mod m

between the successive values is the same for all i = g+1, . . . , 2g−2, then the third difference

is the same for i = 2g+1, . . . , 3g−3, and so on. The equality of the second differences would

show up more clearly in three-dimensional plots of the triples (ui, ui+1, ui+2), that of the third

differences would show up in four-dimensional plots, and so on.

The left panel of Figure 3 plots the first 1000 points generated by the DX*-k-1-g generator

with m = 231 − 1, k = 20897, b = 537001984, and g = 499, taken from Deng et al. (2012),

initialized with xi = c = 12345 for i = −k + 1, . . . , 0. The visible diagonal line contains the

20

first 498 points and intersects the vertical axis at (b + 1)c/m mod 1 = 0.0034. In the right

panel, we initialized the generator with xi−k = i− 1 for i = 1, 2, . . . , k. The generated points

also exhibit a lot of structure.

0 1

1

ui+1

ui
0 1

1

ui+1

ui

Figure 3: The 1000 pairs (ui, ui+1) produced by the DX*-k-1-g generator with m = 231 − 1,
k = 20897, b = 537001984, and g = 499, with initial state x−k+1 = · · · = x0 = 12345 (left),
and xi−k = i− 1 for i = 1, 2, . . . , k (right).

For the DL-k-t generator (6) defined by the recurrence xi = b(xi−t + · · · + xi−k) mod m,

initialized with x−k+1, . . . , x0 all equal to c > 0, we find that xi = bc(k − t + 1) mod m for

i = 1, . . . , t, so the points (ui, ui+1) are all on the main diagonal for i = 1, . . . , t − 1. Then,

xt+i = bc(k− t+ i− 1 + i(k− t+ 1)) for i = 1, . . . , t, which implies that (ui+1− ui) mod 1 =

bc(k − t)/m for i = t + 1, . . . , 2t − 1, and therefore the points (ui, ui+1) are all on a line of

slope 1 (modulo 1). Then, the second difference (ui+2− 2ui+1 + ui) mod 1 is the same for all

i = 2t+ 1, . . . , 3t− 2, and so on. This generator also exhibits a poor diffusion capacity.

It is interesting to observe that if we use the equivalent recurrence xi = xi−1 + b(xi−t −
xi−k−1) mod m to implement this generator, as recommended by Deng et al. (2008), and

initialize it with xi−k = c for i = −k, . . . , 0, then we obtain xi = c for all i ≥ 1 as well.

That is, the generator always outputs the same value. To avoid this type of problem, it is

important to start this recurrence from an initial state that obeys the original recurrence;

that is, for which x0 = b(x−t + · · · + x−k) mod m. Otherwise, the modified recurrence may

end up in a cycle of length much smaller than mk − 1.

21

5.3 Initialization problems for other similar generators

Several other widely-available generators have the same lack of diffusion capacity that we just

illustrated and are plagued by the same initialization problems. They include for example

the additive lagged Fibonacci, the add-with-carry (AWC) and subtract-with-borrow (SWB),

and the generalized feedback shift register (GFSR) generators. These generators may have a

huge period, but if they happen to hit a region where the state has a lot of structure between

the different xi, it will take them a long time to get out of that bad region.

As an illustration, consider the additive lagged-Fibonacci generator based on the recur-

rence xi = (xi−21034 + xi−44497) mod 232, available in the The Boost C++ library (Maurer

and Watanabe, 2010), and which behaves just like the DX-k-1-t generator with b = 1 and

k = 44497. If we initialize this generator with xi = c for i = −k + 1, . . . , 0, the first 21034

output values are all equal to 2c mod m, then the next 21034 output values are all equal

to 3c mod m, and it takes a huge number of steps before this structure dissipates. We used

this initialization with c = 123456789; we generated and discarded 229 (nearly one billion)

random numbers from the generator, and then applied a birthday spacings test with sample

size n = 211, with 228 cells in 2 dimensions. The generator failed the test with a p-value

smaller than 10−300.

As another example, consider the SWB proposed in Marsaglia (1999), based on the

recurrence xi = (xi−222 − xi−237 − bi−1) mod 232 with borrow bi = I[xi−222 < xi−237 + bi−1],

where I is the indicator function. If we initialize this generator with xi = 123456789 for

i = −236, . . . , 0 and b0 = 0, then amongst the first 1000 values x1, . . . , x1000, 466 are 0 and

384 are 1. If we then generate and discard 213 values and then apply a birthday spacings

test with sample size n = 211, with 228 cells in d = 2 dimensions, the generator fails the test

with a p-value smaller than 10−300 (the number of observed collisions is 693 compared with

an expected number of 8).

6. Conclusion

We have examined structural properties of special classes of MRGs designed to have a very

long period and a fast implementation. We found that the points produced by these gener-

ators have a lot of structure. In particular, low-dimensional points constructed from output

values at certain specific lags have a poor lattice structure, regardless of the choice of param-

eters within certain classes of MRGs. A naive initialization of the state can also produce a

22

very bad and long-lasting behavior in the output, because of the limited diffusion capacity

of the recurrence. This behavior happens when the recurrence has large order k, and there

are too few nonzero coefficients aj or all (or most) of these coefficients are equal to the same

value b. It is particularly bad when the smallest lag in the recurrence (e.g., the value of t for

a DX-k-σ-t generator) is large.

This type of behavior tilts the balance against MRGs with very large order k. Other argu-

ments are that MRGs with large order k have a very large state, which means more overhead

for the initialization and even more overhead to maintain multiple streams and substreams

of random numbers for parallel processing and for comparing systems with well-synchronized

common random numbers (L’Ecuyer et al., 2002). Jumping ahead in the sequence to produce

disjoint streams and substreams becomes too slow when k is large. Recurrences of smaller

order k having both a fast implementation and a high diffusion capacity are easy to construct

(L’Ecuyer, 1999a) and provide random numbers with sufficiently good quality for practically

all current simulation applications.

Acknowledgments

This work has been supported by an NSERC-Canada Discovery Grant and a Canada Re-

search Chair to Pierre L’Ecuyer. We thank the three reviewers and the Associate Editor

Marvin Nakayama, whose comments and suggestions led to a better paper. Alexandru Ionut

had contributed to an earlier version of this paper, but then refused to be a co-author, so we

removed his contribution. We nevertheless thank him for his earlier help.

References

Conway, J. H., N. J. A. Sloane. 1999. Sphere Packings, Lattices and Groups . 3rd ed.

Grundlehren der Mathematischen Wissenschaften 290, Springer-Verlag, New York.

Deng, L.-Y. 2004. Generalized Mersenne prime number and its application to random number

generation. H. Niederreiter, ed., Monte Carlo and Quasi-Monte Carlo Methods 2002 .

Springer-Verlag, Berlin, 167–180.

Deng, L.-Y. 2005. Efficient and portable multiple recursive generators of large order. ACM

Transactions on Modeling and Computer Simulation 15 1–13.

23

Deng, L.-Y. 2008. Issues on computer search for large-order multiple recursive generators.

A. Keller, S. Heinrich, H. Niederreiter, eds., Monte Carlo and Quasi-Monte Carlo Methods

2006 . Springer-Verlag, Berlin, 251–261.

Deng, L.-Y., H. Li, J.-J. H. Shiau. 2009. Scalable parallel multiple recursive generators of

large order. Parallel Computing 35 29–37.

Deng, L.-Y., H. Li, J.-J. H. Shiau, G. H. Tsai. 2008. Design and implementation of efficient

and portable multiple recursive generators with few zero coefficients. A. Keller, S. Heinrich,

H. Niederreiter, eds., Monte Carlo and Quasi-Monte Carlo Methods 2006 . Springer-Verlag,

Berlin, 263–273.

Deng, L.-Y., D. K. J. Lin. 2000. Random number generation for the new century. The

American Statistician 54 145–150.

Deng, L.-Y., J.-J. H. Shiau, H. H.-S. Lu. 2012. Large-order multiple recursive generators

with modulus 231 − 1. INFORMS Journal on Computing 24 636–647.

Deng, L.-Y., H. Xu. 2003. A system of high-dimensional, efficient, long-cycle and portable

uniform random number generators. ACM Transactions on Modeling and Computer Sim-

ulation 13 299–309.

Knuth, D. E. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algo-

rithms . 3rd ed. Addison-Wesley, Reading, MA.

L’Ecuyer, P. 1997. Bad lattice structures for vectors of non-successive values produced by

some linear recurrences. INFORMS Journal on Computing 9 57–60.

L’Ecuyer, P. 1999a. Good parameters and implementations for combined multiple recursive

random number generators. Operations Research 47 159–164.

L’Ecuyer, P. 1999b. Tables of maximally equidistributed combined LFSR generators. Math-

ematics of Computation 68 261–269.

L’Ecuyer, P. 2006. Uniform random number generation. S. G. Henderson, B. L. Nelson,

eds., Simulation. Handbooks in Operations Research and Management Science, Elsevier,

Amsterdam, The Netherlands, 55–81. Chapter 3.

24

L’Ecuyer, P., R. Couture. 1997. An implementation of the lattice and spectral tests for

multiple recursive linear random number generators. INFORMS Journal on Computing 9

206–217.

L’Ecuyer, P., R. Simard. 2001. On the performance of birthday spacings tests for certain

families of random number generators. Mathematics and Computers in Simulation 55

131–137.

L’Ecuyer, P., R. Simard. 2007. TestU01: A C library for empirical testing of random number

generators. ACM Transactions on Mathematical Software 33 Article 22.

L’Ecuyer, P., R. Simard, E. J. Chen, W. D. Kelton. 2002. An object-oriented random-number

package with many long streams and substreams. Operations Research 50 1073–1075.

L’Ecuyer, P., R. Touzin. 2000. Fast combined multiple recursive generators with multipliers

of the form a = ±2q ± 2r. J. A. Joines, R. R. Barton, K. Kang, P. A. Fishwick, eds.,

Proceedings of the 2000 Winter Simulation Conference. IEEE Press, Piscataway, NJ, 683–

689.

L’Ecuyer, P., R. Touzin. 2004. On the Deng-Lin random number generators and related

methods. Statistics and Computing 14 5–9.

Marsaglia, G. 1985. A current view of random number generators. Computer Science

and Statistics, Sixteenth Symposium on the Interface. Elsevier Science Publishers, North-

Holland, Amsterdam, 3–10.

Marsaglia, G. 1999. Random numbers for C: The END? Posted to the electronic billboard

sci.crypt.random-numbers.

Matsumoto, M., I. Wada, A. Kuramoto, H. Ashihara. 2007. Common defects in initializa-

tion of pseudorandom number generators. ACM Transactions on Modeling and Computer

Simulation 17 Article 15.

Maurer, J., S. Watanabe. 2010. Boost random number library. http://www.boost.org/

libs/random/index.html.

Niederreiter, H. 1992. Random Number Generation and Quasi-Monte Carlo Methods , SIAM

CBMS-NSF Regional Conference Series in Applied Mathematics , vol. 63. SIAM, Philadel-

phia, PA.

25

Sós, V. T. 1958. On the distribution mod 1 of the sequence nα. Ann. Univ. Sci. Budap.

Rolando Eötvös, Sect. Math. 1 127–134.

van Ravenstein, T. 1988. The three gap theorem (Steinhaus conjecture). Journal of the

Australian Mathematical Society, Series A 45 360–370.

26

