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Estimating the unknown density from which a given independent sample originates is more difficult than

estimating the mean, in the sense that for the best popular density estimators, the mean integrated square

error converges more slowly than at the canonical rate of O(1/n). When the sample is generated from a

simulation model and we have control over how this is done, we can do better. We examine an approach

in which conditional Monte Carlo permits one to obtain a smooth estimator of the cumulative distribution

function, whose sample derivative is an unbiased estimator of the density at any point, and therefore converges

at a faster rate than the usual density estimators, under mild conditions. By combining this with randomized

quasi-Monte Carlo to generate the sample, we can achieve an even faster rate.
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1. Introduction

Simulation is commonly used to generate independent realizations of a random variable X that

may represent a payoff, a cost, or a performance of some kind, and then to estimate from this

sample the unknown expectation of X together with a confidence interval (Asmussen and Glynn

2007, Law 2014). However, one can extract from the sample much more information than just a

confidence interval on the mean. When n is reasonably large, one may in fact estimate the entire

distribution of X. Simple ways of showing this information is to plot the empirical cumulative

distribution function (cdf) or (more commonly) a histogram of the observations. The histogram

provides a better visual insight on the distribution. When X is a continuous random variable, it

can be interpreted as a rough sketch (or estimate) of the density of X.

There are more refined and efficient density estimation methods, the leading one being the kernel

density estimator (KDE). Given n independent realizations of X, the mean integrated square error

(MISE) of the KDE converges as O(n−4/5) in the best case, while a histogram can only achieve
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O(n−2/3). Both rates are slower than the canonical O(n−1) rate for the variance of the sample

average as an unbiased estimator of the mean. The slower rate for the KDE, histogram, and other

similar density estimators stems from the presence of bias. For a histogram, taking wider rectangles

reduces the variance but increases the bias by flattening out the short-range density variations,

and a compromise must be made to minimize the MISE. The same happens with the KDE, with

the rectangle width replaced by the bandwidth of the kernel.

Density estimation has several applications (Van der Vaart 2000, Scott 2015). A common setting

is when a set of observations is given and one wishes to estimate the density from which they

come. A different one is when we have a simulation (or generative) model from which observations

can be generated and we want to estimate the density of the model output. This is the focus

of our paper. Density estimates are also important in various other settings. For instance when

computing a confidence interval for a quantile using the central-limit theorem (CLT), one needs a

density estimator at the quantile to estimate the variance (Serfling 1980, Asmussen and Glynn 2007,

Nakayama 2014a,b, Peng et al. 2017). Another application is for maximum likelihood estimation

when the likelihood does not have a closed-form expression, so to maximize it with respect to some

parameter θ, the likelihood function (which in the continuous case is a density at any value of θ)

must be estimated (Van der Vaart 2000, Peng et al. 2020). A related application is the estimation

of the posterior density of θ given some data, in a Bayesian model (Efron and Hastie 2016).

The most common density estimators are biased and their MISE converges slower than O(n−1).

Can we construct density estimators that avoid bias and whose MISE converges as O(n−1) or

faster? When the n observations of X are given and nothing else is known, as traditionally assumed

in classical non-parametric statistics, no known practical estimator does better than the KDE

(Scott 2015). But if the observations of X are generated by simulation and we have control of how

this is done, there are opportunities to improve the density estimators. This is the subject of the

present paper. We study two main ideas and their combination.

The first general idea is to build a smooth estimator of the cdf via conditional Monte Carlo

(CMC), and take the sample derivative of this estimator to estimate the density. We call it a

conditional density estimator (CDE). Under appropriate conditions, the CDE is unbiased and its

variance is bounded uniformly by a constant divided by n, so its MISE is O(n−1). This idea of

using CMC was mentioned by Asmussen and Glynn (2007), page 146, Example 4.3, and further

studied in Asmussen (2018), both for the special case where the goal is to estimate the density

of a sum of continuous random variables having a known distribution from which we can sample

exactly. Asmussen (2018) simply “hides” the last term of the sum, meaning that this term is not

generated or its actual value is erased, and he takes the conditional distribution of the sum given

the other terms, to estimate the cdf, the density, the value at risk (VaR), and the conditional value
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at risk (CVaR) of the sum. Smoothing by CMC has also been studied for estimating the derivative

of an expectation (L’Ecuyer and Perron 1994, Fu and Hu 1997) and the derivative of a quantile

(Fu et al. 2009) with respect to a model parameter.

In this paper, we study the CDE method to estimate the cdf and density in a much more general

setting than Asmussen (2018). We provide several examples in which X is not defined as a sum

of random variables and where we hide (or erase) more than just one random variable to do the

conditioning. We give conditions under which we can prove that the density estimator is unbiased.

A key condition is that the conditional cdf must be a continuous function of the point x at which

we estimate the density. Sometimes, this can be achieved only by hiding several variables and not

only one. The variance of the density estimator may depend strongly on which variables we hide,

i.e., on what we are conditioning. We illustrate this with several examples.

Once we have a smooth density estimator, the second strategy to further improve the convergence

rate is to replace the independent uniform random numbers that drive the simulation by randomized

quasi-Monte Carlo (RQMC) points. We show in this paper that by combining these two strategies,

under some conditions, we can obtain a density estimator whose MISE converges at a faster rate

than O(n−1), for instance O(n−2+ε) for any ε > 0 in some situations. We also observe this fast rate

empirically on numerical examples.

In related work, Ben Abdellah et al. (2019) studied a different approach which combines RQMC

with an ordinary KDE. They were able to prove a faster rate than O(n−4/5) for the MISE when the

RQMC points have a small number of dimensions, and they observed this faster rate empirically on

examples. They also observed that the MISE reduction provided by RQMC degrades rapidly when

the bandwidth is reduced (to reduce the bias) and that this degradation effect gets stronger when

the dimension increases, to the point that the gain is usually quite limited in more than 5 dimensions

or so. The CDE+RQMC approach proposed in the present paper avoids this problem (there is no

bias and no bandwidth) and is generally more effective than the KDE+RQMC combination. We

provide some numerical comparisons in our examples.

Other Monte Carlo density estimators were proposed recently, based on the idea of estimating

the derivative of the cdf using a likelihood ratio (LR) method. This general approach permits one

to estimate the derivative of the expectation of a random variable with respect to some parameter

of the underlying distribution when this random variable is discontinuous (Glynn 1987, L’Ecuyer

1990). Laub et al. (2019) proposed an approach that combines a clever change of variable with

the LR method to estimate the density of a sum of random variables as in Asmussen (2018), but

in a setting where the random variables are dependent. Peng et al. (2018) proposed a generalized

version of the LR gradient estimator (GLR) to estimate the derivative of an expectation with

respect to a more general model parameter. Lei et al. (2018) then sketched out how GLR could
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be used to estimate a density. Formulas for these GLR density estimators are given in Theorem 1

of Peng et al. (2020). A referee pointed out these last two papers to us. We compare our method

with these GLR-based estimators in our numerical illustrations.

The remainder is organized as follows. In Section 2, we define our general setting, recall some key

facts about density estimators, introduce the general CMC method to build the CDEs considered

in this paper, prove some of their properties, and give small examples to provide insight on the key

ideas. In Section 3, we explain how to combine the CDE with RQMC and discuss the convergence

properties for this combination. Section 4 reports experimental results with various examples. Some

of the examples feature creative ways of conditioning to boost the effectiveness of the method. A

conclusion is given in Section 5.

2. Model and conditional density estimator

2.1. Density estimation

We have a real-valued random variable X that can be simulated from its exact distribution, but

we do not know the cdf F and density f of X. Typically, X will be an easily computable function

of several other random variables with known densities. Our goal is to estimate f over a finite

interval [a, b]. Let f̂n denote an estimator of f based on a sample of size n. We measure the quality

of f̂n by the mean integrated square error (MISE), defined as

MISE = MISE(f̂n) =

∫ b

a

E[f̂n(x)− f(x)]2dx. (1)

The MISE is the sum of the integrated variance (IV) and the integrated square bias (ISB):

MISE = IV + ISB =

∫ b

a

E(f̂n(x)−E[f̂n(x)])2dx+

∫ b

a

(E[f̂n(x)]− f(x))2dx.

A standard way of constructing f̂n when X1, . . . ,Xn are n independent realizations of X is via a

KDE, defined as follows (Parzen 1962, Scott 2015):

f̂n(x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
,

where the kernel k is a probability density over R, usually symmetric about 0 and non-increasing

over [0,∞), and the constant h > 0 is the bandwidth, whose role is to stretch [or compress] the

kernel horizontally to smooth out [or unsmooth] the estimator f̂n. The KDE was developed initially

for the setting in which X1, . . . ,Xn are given a priori, and it is still the most popular one for this

situation. It can be used in exactly the same way when X1, . . . ,Xn are independent observations

produced by simulation from a generative model, but in that case there is an opportunity to do

better, as we now explain.
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2.2. Conditioning and the stochastic derivative as an unbiased density estimator

Since the density of X is the derivative of its cdf, f(x) = F ′(x), a natural idea would be to take

the derivative of an estimator of the cdf as a density estimator. The simplest candidate for a cdf

estimator is the empirical cdf

F̂n(x) =
1

n

n∑
i=1

I[Xi ≤ x],

but dF̂n(x)/dx = 0 almost everywhere, so this one cannot be a useful density estimator. Here,

F̂n(x) is an unbiased estimator of F (x) at each x, but its derivative is a biased estimator of F ′(x).

That is, because of the discontinuity of F̂n, we cannot exchange the derivative and expectation:

0 = E

[
dF̂n(x)

dx

]
6= dE[F̂n(x)]

dx
= F ′(x).

A continuous estimator of F can be constructed by CMC, as follows. Replace the indicator

I[X ≤ x] by its conditional cdf given filtered (reduced) information G: F (x | G)
def
= P[X ≤ x | G],

where G is a sigma-field that contains not enough information to reveal X but enough to compute

F (x | G). Here, knowing the realization of G means knowing the realizations of all G-measurable

random variables. Under the following assumption, we prove that F ′(x | G) = dF (x | G)/dx is an

unbiased estimator of f(x) whose variance is bounded uniformly in x. Note that since F (· | G)

cannot decrease, F ′(· | G) is never negative.

Assumption 1. For all realizations of G, F (x | G) is a continuous function of x over the interval

[a, b], and is differentiable except perhaps at a countable set of points D(G)⊂ [a, b]. There is also

a random variable Γ defined over the same probability space as F (x | G), such that E[Γ2]≤Kγ for

some constant Kγ <∞, and for which supx∈[a,b]\D(G)F
′(x | G)≤ Γ.

Theorem 1. Under Assumption 1, for all x ∈ [a, b] \ D(G), we have E[F ′(x | G)] = f(x) and

Var[F ′(x | G)]≤Kγ.

Proof. We adapt the proof of Theorem 1 of L’Ecuyer (1990). By the mean value inequality

theorem of Dieudonné (1969), Theorem 8.5.3, which is a form of mean value theorem for non-

differentiable functions, for every x∈ [a, b] and δ > 0, with probability 1, we have

0 ≤ ∆(x, δ,G)

δ
def
=

F (x+ δ | G)−F (x | G)

δ
≤ sup

y∈[x,x+δ]\D(G)

F ′(y | G) ≤ Γ.

Then, by the dominated convergence theorem,

E
[
lim
δ→0

∆(x, δ,G)

δ

]
= lim

δ→0
E
[

∆(x, δ,G)

δ

]
,

which shows the unbiasedness. Moreover, Var[F ′(x | G)]≤E[Γ2]≤Kγ . �
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Suppose now that G(1), . . . ,G(n) are n independent realizations of G, so F (x | G(1)), . . . ,F (x | G(n))

are independent realizations of F (x | G), and consider the CDE

f̂cde,n(x) =
1

n

n∑
i=1

F ′(x | G(i)). (2)

It follows from Theorem 1 that ISB(f̂cde,n) = 0 and MISE(f̂cde,n) = IV(f̂cde,n) ≤ (b− a)Kγ/n. An

unbiased estimator of this IV is given by

ÎV = ÎV(f̂cde,n) =
1

n

∫ b

a

n∑
i=1

[
F ′(x | G(i))− f̂cde,n(x)

]2

dx. (3)

In practice, this integral can be approximated by evaluating the integrand at a finite number of

points over [a, b] and taking the average, multiplied by (b− a).

It is well known that in general, when estimating E[X], a CMC estimator never has a larger

variance than X itself, and the more information we hide, the smaller the variance. That is, if

G ⊂ G̃ are two sigma-fields such that G contains only a subset of the information of G̃, then

Var[E[X | G]]≤Var[E[X | G̃]]≤Var[X]. (4)

Noting that F (x | G) =E[I[X ≤ x] | G], we also have

Var[F (x | G)]≤Var[F (x | G̃)]≤Var[I[X ≤ x]] = F (x)(1−F (x)).

Thus, (4) applies as well to the (conditional) cdf estimator.

However, applying it to the CDE, which is the derivative of the conditional cdf, is less straight-

forward. It is obviously not true that Var[F ′(x | G)]≤Var[dI[X ≤ x]/dx] because the latter is zero

almost everywhere. Nevertheless, we can prove the following.

Theorem 2. If G ⊂ G̃ both satisfy Assumption 1, then for all x ∈ [a, b], we have Var[F ′(x | G)]≤

Var[F ′(x | G̃)].

Proof. The result does not follow directly from (4) because F ′ is not an expectation; this is

why our proof does a little detour. For an arbitrary x∈ [a, b] and a small δ > 0, define the random

variable I = I(x, δ) = I[x<X ≤ x+ δ]. We have E[I | G] = F (x+ δ | G)−F (x | G), as in the proof of

Theorem 1, and similarly for G̃. Using (4) with I in place of X gives

Var[E[I | G]]≤Var[E[I | G̃]]. (5)

We have

F ′(x | G) = lim
δ→0

F (x+ δ | G)−F (x | G)

δ
= lim

δ→0
E[I(x, δ)/δ | G]
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and similarly for G̃. Combining this with (5), we obtain

Var[F ′(x | G)] = Var[lim
δ→0

E[I(x, δ)/δ | G]] = lim
δ→0

Var[E[I(x, δ)/δ | G]]

≤ lim
δ→0

Var[E[I(x, δ)/δ | G̃]] = Var[lim
δ→0

E[I(x, δ)/δ | G̃]] = Var[F ′(x | G̃)],

in which the exchange of “Var” with the limit (at two places) can be justified by a similar argu-

ment as in Theorem 1. More specifically, we need to apply the dominated convergence theorem to

E[I(x, δ)/δ | G], which is just the same as in Theorem 1, and also to its square, which is also valid

because the square is bounded uniformly by Γ2. This completes the proof. �

When none of G or G̃ is a subset of the other, Theorem 2 does not help, but the variances of the

corresponding conditional density estimators may differ significantly. Generally speaking, we want

to choose G so that the density of X conditional on G is spread out rather than being concentrated

in a narrow peak. We give examples of this in the following.

2.3. Small examples to provide insight

This subsection provides simple examples to illustrate the key ideas. For these examples, we take

X = h(Y1, . . . , Yd) where Y1, . . . , Yd are independent continuous random variables, each Yj has cdf

Fj and density fj, and we condition on G = G−k defined as the information that remains after

erasing the value taken by Yk. We can write G−k = (Y1, . . . , Yk−1, Yk+1, . . . , Yd). The CDE F ′(x | G−k)

will be related to the density fk and will depend on the form of h. In Section 4, we consider more

elaborate forms of conditioning.

Example 1. A very simple situation is when X = h(Y1, . . . , Yd) = Y1 + · · ·+ Yd, a sum of d inde-

pendent continuous random variables. By hiding Yk for an arbitrary k, we get

F (x | G−k) = P[X ≤ x | S−k] = P[Yk ≤ x−S−k] = Fk(x−S−k),

where S−k
def
=
∑d

j=1, j 6=k Yj, and the density estimator becomes F ′(x | G−k) = fk(x−S−k). This form

also works if the Yj are not independent, provided that we are able to compute the density of

Yk conditional on G−k. It suffices to replace fk by this conditional density. The model studied by

Asmussen (2018) was a special case of this example, with independent variables and k= d.

Example 2. To show how we can verify Assumption 1, let X be the sum of two independent

normal random variables, X = Y1 + Y2, where Y1 ∼ N (0, σ2
1), Y2 ∼ N (0, σ2

2), and σ2
1 + σ2

2 = 1, so

X ∼N (0,1). With G = G−2, we have F (x | G−2) = P[Y2 ≤ x−Y1] = Φ((x−Y1)/σ2) and the CDE is



L’Ecuyer, Puchhammer, Ben Abdellah: MC and QMC Density Estimation by Conditioning
8 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

F ′(x | G−2) = φ((x−Y1)/σ2)/σ2. Assumption 1 is easily verified with Γ = φ(0)/σ2 and Kγ = Γ2, so

this estimator is unbiased for f(x) = φ(x). Its variance is

Var[φ((x−Y1)/σ2)/σ2] =E[exp[−(x−Y1)2/σ2
2]/(2πσ2

2)]−φ2(x)

=
1

σ2
2

√
2π

E[φ(
√

2(x−Y1)/σ2)]−φ2(x)

=
1

σ2

√
2π(1 +σ2

1)
φ
(√

2x/
√

1 +σ2
1

)
−φ2(x). (6)

Example 3. Let X = (Y1 +Y 2
2 )/Y3 where Y3 is always positive. If k= 3, then F (x | G−3) = P(X ≤

x | Y1, Y2) = P(Y3 ≥ (Y1 +Y 2
2 )/x) = 1−F3((Y1 +Y 2

2 )/x) and the density estimator at x is

F ′(x | G−3) = f3((Y1 +Y 2
2 )/x)(Y1 +Y 2

2 )/x2.

If k = 2 instead, then F (x | G−2) = P(X ≤ x | Y1, Y3) = P(|Y2| ≤ (Y3x − Y1)1/2) = F2(Z(x)) −

F2(−Z(x)) where Z(x) = (Y3x−Y1)1/2, and the density estimator at x is

F ′(x | G−2) = (f2(Z(x)) + f2(−Z(x)))dZ(x)/dx= (f2(Z(x))− f2(−Z(x)))Y3/(2Z(x)).

Example 4. The following tiny example provides further insight into the choice of G. Suppose

X is the sum of two independent uniform random variables: X = Y1 + Y2 where Y1 ∼ U(0,1) and

Y2 ∼U(0, ε) where 0< ε < 1. The exact density of X here is f(x) = x/ε for 0≤ x≤ ε, f(x) = 1 for

ε≤ x≤ 1, and f(x) = (1 + ε−x)/ε for 1≤ x≤ 1 + ε. Figure 1 illustrates this density.

0 0.5 1 1.5
0

0.5

1

x

f
(x

)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

Figure 1 Exact density of X for the model in Example 4 with ε= 3/4 (left) and ε= 1/16 (right).

Using the notation of Example 1, with G = G−1, we have F (x | G−1) = P[X ≤ x | Y2] = P[Y1 ≤

x−Y2 | Y2] = x−Y2 and the density estimator is F ′(x | G−1) = 1 for Y2 ≤ x≤ 1+Y2, and 0 elsewhere.

If G = G−2 instead, then F (x | G−2) = P[Y2 ≤ x− Y1 | Y1] = (x− Y1)/ε and the density estimator

is F ′(x | G−2) = 1/ε for Y1 ≤ x ≤ ε + Y1, and 0 elsewhere. In both cases, the density estimator

with one sample is a uniform density, but the second one is over a narrow interval if ε is small.

Assumption 1 holds in both cases, since F (· | G−j) is continuous and differentiable for j = 1 and

2. For G−1 we can take Γ = Kγ = 1, and for G−2 we can take Γ = ε−1 and Kγ = ε−2. When ε is

small, G = G−2 gives a density estimator f̂cde,n which is a sum of high narrow peaks and has much
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larger variance. The constants Kγ give upper bounds on the variance at any given x. For this

simple example, we can also derive exact formulas for the IV of the CDE under MC. For G = G−1,

F ′(x | G−1) = I[Y2 ≤ x≤ 1 +Y2] is a Bernoulli random variable with mean P[x− 1≤ Y2 ≤ x] = f(x),

so its variance is f(x)(1− f(x)). Integrating this over [0, 1 + ε] gives IV = ε/3 for one sample. For

a sample of size n, this gives IV = ε/(3n). For G = G−2, F ′(x | G−2) = I[Y1 ≤ x≤ ε+ Y1]/ε has also

mean f(x), but its variance is ε−1f(x)(1− εf(x)). Integrating over [0, 1+ ε] gives IV = 1/ε−1+ ε/3

for one sample, which is much larger than ε/3 when ε is small.

Example 5. If X is the min or max of two or more continuous random variables, then in general

F (· | G−k) is not continuous, so Assumption 1 does not hold. To illustrate this, let X = max(Y1, Y2)

where Y1 and Y2 are independent. With G = G−2 (we hide Y2), we have

P[X ≤ x | Y1 = y] =

{
P[Y2 ≤ x | Y1 = y] = F2(x) if x≥ y;

0 if x< y.

If F2(y)> 0, this function is discontinuous at x= y.

Likewise, if X = min(Y1, Y2) instead, with G = G−1, we have

P[X ≤ x | Y1 = y] =

{
F2(x) if x< y;

1 if x≥ y,

If F2(y)< 1, this function is discontinuous at x= y, so Assumption 1 is not satisfied.

Of course, there is no need to estimate f for this simple example, because it can be computed

exactly. For X = max(Y1, Y2), we have F (x) = P[max(Y1, Y2) ≤ x] = F1(x)F2(x) and then f(x) =

F1(x)f2(x) +F2(x)f1(x). See Section 4.5 for a generalization.

2.4. Convex combination of conditional density estimators

When there are many possible choices of G for a given problem, one may try to pick the best one,

but sometimes a better approach is to select more than one and take a convex linear combination

of the corresponding CDEs as the final density estimator. This idea is well known for general mean

estimators (Bratley et al. 1987). More specifically, suppose f̂0,n, . . . , f̂q,n are q+ 1 distinct unbiased

density estimators. Typically, these estimators will be dependent and will be based on the same

simulations. They could be all CDEs based on different choices of G (so they will not hide the same

information), but there could be non-CDEs as well. A convex combination can take the form

f̂n(x) = β0f̂0,n(x) + · · ·+βqf̂q,n(x) = f̂0,n(x)−
q∑
`=1

β`(f̂0,n(x)− f̂`,n(x)) (7)

for all x ∈ R, where β0 + · · ·+ βq = 1. This combination is equivalent to choosing f̂0,n(x) as the

main estimator, and taking the q differences f̂0,n(x)− f̂`,n(x) as control variables (Bratley et al.
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1987). With this interpretation, the optimal coefficients β` can be estimated via standard control

variate theory (Asmussen and Glynn 2007) by trying to minimize the IV of f̂n(x) w.r.t. the β`’s.

More precisely, if we denote IV` = IV(f̂`,n(x)) and

IC`,k =

∫ b

a

Cov[f̂`,n(x), f̂k,n(x)]dx,

we obtain

IV = IV
(
f̂n(x)

)
=

q∑
`=0

β2
` IV` + 2

∑
0≤`<k≤q

β`βkIC`,k.

Given the IV`’s and IC`,k’s (or good estimates of them), this IV is a quadratic function of the β`’s,

which can be minimized exactly as in standard least-squares linear regression, to obtain estimates

of the optimal coefficients βj. Estimating the density and coefficients from the same data yields

biased but consistent density estimators, and the bias is rarely a problem. We did this for some of

the examples in Section 4.

A more refined approach is to allow the coefficients βj to depend on x:

f̂n(x) = β0(x)f̂0,n(x) + · · ·+βq(x)f̂q,n(x) = f̂0,n(x)−
q∑
`=1

β`(x)(f̂0,n(x)− f̂`,n(x)), (8)

where β0(x) + · · ·+ βq(x) = 1 for all x ∈ R. We can estimate the optimal coefficients by standard

control variate theory at selected values of x, then for each ` ≥ 1, we can fit a smoothing spline

to these estimated values, by least squares. This provides estimated optimal coefficients that are

smooth functions of x, which can be used to obtain a final CDE. This type of strategy was used

in L’Ecuyer and Buist (2008) to estimate varying control variate coefficients in a different setting.

The additional flexibility can provide much more variance reduction in some situations.

2.5. A GLR density estimator

The generalized likelihood ratio (GLR) method, originally developed by Peng et al. (2018) to

estimate the derivative of an expectation with respect to some model parameter, can be adapted

to density estimation, as shown in Peng et al. (2020). We explain how this density estimator works

to estimate f(x), the density at x, in our setting. The assumptions stated below differ slightly from

those in Peng et al. (2020). In particular, here we do not have a parameter θ, the conditions on

the estimator are required only in the area where X ≤ x, and we add a condition to ensure finite

variance. As in Section 2.3, we assume here that X = h(Y) = h(Y1, . . . , Yd) where Y1, . . . , Yd are

independent continuous random variables, and Yj has cdf Fj and density fj. Let P (x) = {y ∈Rd :

h(y)≤ x}. For j = 1, . . . , d, let hj(y) := ∂h(y)/∂yj, hjj(y) := ∂2h(y)/∂y2
j , and

Ψj(y) =
∂ log fj(yj)/∂yj −hjj(y)/hj(y)

hj(y)
. (9)
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Assumption 2. The Lebesgue measure of h−1((x − ε, x + ε)) in Rd goes to 0 when ε→ 0 (this

means essentially that the density is bounded around x).

Assumption 3. The set P (x) is measurable, the functions hj, hjj, and Ψj are well defined over

it, and E[I[X ≤ x] ·Ψ2
j(Y)]<∞.

Proposition 1. Under Assumptions 2 and 3, I[X ≤ x] ·Ψj(Y) is an unbiased and finite-variance

estimator of the density f(x) at x.

Proof. See Peng et al. (2020). �

3. Combining RQMC with the CMC density estimator

We now discuss how RQMC can be used with the CDE, and under what conditions it can provide

a convergence rate faster than O(n−1) for the IV of the resulting unbiased estimator. For this,

we first recall some basic facts about QMC and RQMC. More detailed coverages can be found in

Niederreiter (1992), Dick and Pillichshammer (2010), and L’Ecuyer (2009, 2018), for example.

For a function g : [0,1)s → R, the integration error by the average over a point set Pn =

{u1, . . . ,un} ⊂ [0,1]s is defined by

En =
1

n

n∑
i=1

g(ui)−
∫

[0,1]s
g(u)du. (10)

Classical QMC theory bounds this error as follows. Let v ⊆ S := {1, . . . , s} denote an arbitrary

subset of coordinates. For any point u = (u1, . . . , us) ∈ [0,1]s, uv denotes the projection of u on

the coordinates in v and (uv,1) is the point u in which uj is replaced by 1 for each j 6∈ v. Let

gv := ∂|v|g/∂uv denote the partial derivative of g with respect to all the coordinates in v. When gv

exists and is continuous for v = S (i.e., for all v⊆ S), the Hardy-Krause (HK) variation of g can

be written as

VHK(g) =
∑
∅6=v⊆S

∫
[0,1]|v|

|gv(uv,1)|duv. (11)

On the other hand, the star-discrepancy of Pn is

D∗(Pn) = sup
u∈[0,1]s

∣∣∣∣ |Pn ∩ [0,u)|
n

− vol[0,u)

∣∣∣∣
where vol[0,u) is the volume of the box [0,u). The classical Koksma-Hlawka (KH) inequality

bounds the absolute error by the product of these two quantities, one that involves only the function

g and the other that involves only the point set Pn:

|En| ≤ VHK(g) ·D∗(Pn). (12)
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There are explicit construction methods (e.g., digital nets, lattice rules, and polynomial lattice

rules) of deterministic point sets Pn for which D∗(Pn) =O((logn)s−1/n) =O(n−1+ε) for all ε > 0.

This means that functions g for which VHK(g)<∞ can be integrated by QMC with a worst-case

error that satisfies |En|=O(n−1+ε). There are also known methods to randomize these point sets

Pn in a way that each randomized point ui has the uniform distribution over [0,1)s, so E[En] = 0,

and the O(n−1+ε) discrepancy bound is preserved, which gives

Var[En] =E[E2
n] =O(n−2+ε). (13)

The classical definitions of variation and discrepancy given above are in fact only one pair among

an infinite collection of possibilities. There are other versions of (12), with different definitions of

the discrepancy and the variation, such that there are known point set constructions for which the

discrepancy converges as O(n−α+ε) for α > 1, but the conditions on g to have finite variation are

more restrictive (more smoothness is required) Dick and Pillichshammer (2010).

From a practical viewpoint, getting a good estimate or an upper bound on the variation of

g that can be useful to bound the RQMC variance is a notoriously difficult problem. Even just

showing that the variation is finite is not always easy. However, finite variation is not a necessary

condition. In many realistic applications in which variation is known to be infinite, RQMC can

nevertheless reduce the variance by a large factor (L’Ecuyer 2009, L’Ecuyer and Munger 2012,

He and Wang 2015). The appropriate explanation for this depends on the application. In many

cases, part of the explanation is that the integrand g can be written as a sum of orthogonal

functions (as in an ANOVA decomposition) and a set of terms in that sum have a large variance

contribution and are smooth low-dimensional functions for which RQMC is very effective (L’Ecuyer

and Lemieux 2000, L’Ecuyer 2009, Lemieux 2009). Making such a decomposition and finding the

important terms is usually difficult for realistic problems, but to apply RQMC in practice, this

is not needed. The usual approach in applications is to try it and compare the RQMC variance

with the MC variance empirically. We will do that in Section 4. To estimate the RQMC variance,

we usually replicate the RQMC scheme nr times independently, using the same point set but

with nr independent randomizations, then we compute the empirical mean and variance of the nr

independent realizations of the RQMC density estimator (1/n)
∑n

i=1 g(Ui).

To combine the CDE with RQMC, we must be able to write F (x | G) = g̃(x,u) and F ′(x | G) =

g̃′(x,u) = dg̃(x,u)/dx for some function g̃ : [a, b]× [0,1)s. The function g̃′(x, ·) will act as g in (10).

The combined CDE+RQMC estimator f̂cde-rqmc,n(x) will be defined by

f̂cde-rqmc,n(x) =
1

n

n∑
i=1

g̃′(x,Ui), (14)
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which is the RQMC version of (2). To estimate the RQMC variance, we can perform nr independent

randomizations to obtain nr independent realizations of f̂cde,n in (2) with MC and nr independent

realizations of f̂cde-rqmc,n in (14) with RQMC, and compute the empirical IV. We will do this to

estimate the IV in our experiments.

Even though it is rarely done in practice, we think it is instructive to examine how the HK

variation of g ≡ g̃′(x, ·) can be bounded in our CDE setting, at least for small examples. This will

prove that the variance bound (13) holds for the CDE for these examples. To prove the bounded

HK variation, we need to take the partial derivative of g̃′(x,u) with respect to each subset of

coordinates of u and show that the integral of each such partial derivative is finite. We show how

this can be done for some of our earlier examples.

Example 6. Consider a sum of random variables as in Example 1, with G = G−k summarized by

the single real number S−k. We have F (x | G) = Fk(x−S−k) and F ′(x | G) = fk(x−S−k). Without

loss of generality, let k = d. Suppose that each Yj is generated by inversion from Uj ∼ U(0,1), so

Yj = F−1
j (Uj) and S−d = F−1

1 (U1)+ · · ·+F−1
s (Us) with s= d−1. This gives g̃(x,U) = Fd(x−S−d) =

Fd(x−F−1
1 (U1)−· · ·−F−1

s (Us)) and g̃′(x,U) = fd(x−S−d) = fd(x−F−1
1 (U1)−· · ·−F−1

s (Us)). The

partial derivatives of this last function are

g̃′v(x,Uv,1) = f
(|v|)
d (x−S−d)

∏
j∈v

∂(F−1
j (Uj))

∂Uj
.

So the functions F−1
j must be differentiable over (0,1) for j = 1, . . . , d−1, the density fd must be s

times differentiable, and the integral of |g̃′v(x,uv,1)| with respect to uv must be finite. Under these

conditions, the HK variation is finite.

For Example 2, if G = G−2, we have Y1 = σ1Φ−1(U1) where U1 ∼ U(0,1). Then, F (x | G−2) =

F2(x− Y1) = Φ((x− Y1)/σ2) and F ′(x | G−2) = φ((x− σ1Φ−1(U1))/σ2)/σ2 = g̃′(x,U1). Taking the

derivative with respect to u and noting that dΦ−1(u)/du= 1/(φ(Φ−1(u))) yields

g̃′v(x,u) =
φ′((x−σ1Φ−1(u))/σ2)σ1

σ2
2φ(Φ−1(u))

for v = {1} = S (the only subset in this case). Integrating this with respect to u by making the

change of variable z = Φ−1(u) gives∫ 1

0

g̃′v(x,u)du=
σ1

σ2
2

∫ ∞
−∞
|φ′((x−σ1z)/σ2)|dz <∞,

because |φ′(·)| is bounded by φ(·) multiplied by the absolute value of a polynomial of degree 1. So

we have finite HK variation.

For Example 4, with G = G−2 and Y1 = U1, we have g̃′(x,u) = g̃′(x,U1) = I[U1 ≤ x≤ ε+U1]/ε=

I[x− ε ≤ U1 ≤ x]/ε. This function is not continuous, but its HK variation (not given by (11) in
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this case) is 2/ε <∞, because it is piecewise constant with only two jumps, each one of size 1/ε.

Thus, the HK variation is unbounded when ε→ 0, but it is finite for any fixed ε. The behavior with

G = G−1 is similar and the HK variation is 2 in that case, which is much better.

For all these examples in which the HK variation is finite, we have a proof that the MISE of the

CDE+RQMC density estimator converges as O(n−2+ε) for any ε > 0.

On the other hand, the GLR estimator in Proposition 1 is typically discontinuous because of the

indicator function, and therefore its HK variation is usually infinite.

4. Examples and numerical experiments

We now examine larger examples, summarize the results of our numerical experiments with the

CDE and CDE+RQMC, and make comparisons with KDE+RQMC and with GLR.

4.1. Experimental setting

Since the CDE is unbiased, we measure its performance by the IV, which equals the MISE in this

case. To approximate the IV estimator (3) for a given n, we first take a stratified sample e1, . . . , ene

of ne evaluation points at which the empirical variance will be computed. We sample ej uniformly

in [a+ (j− 1)(b− a)/ne, a+ j(b− a)/ne) for j = 1, . . . , ne. Then we use the unbiased IV estimator

ÎV =
(b− a)

ne

ne∑
j=1

V̂ar[f̂n(ej)],

where V̂ar[f̂n(ej)] is the empirical variance of the CDE at ej, obtained as follows. We repeat the

following nr times, independently: Generate n observations of X from the density f with the

given method (MC or RQMC), and compute the CDE at each evaluation point ej. Then, compute

V̂ar[f̂n(ej)] as the empirical variance of the nr density estimates at ej, for each j.

To estimate the convergence rate of the IV as a function of n with the different methods, we fit a

model of the form IV≈Kn−ν . For the CDE with independent points (no RQMC), this model holds

exactly with ν = 1. We hope to observe ν > 1 with RQMC. The parameters K and ν are estimated

by linear regression in log-log scale, i.e., by fitting the model log IV≈ logK−ν logn to data. Since

n is always taken as a power of 2, we report the logarithms in base 2. We estimated the IV for

n = 214, . . . ,219 (6 values) to fit the regression model. We also report the observed − log2 IV for

n= 219 and use e19 as a shorthand for this value in the tables. We use exactly the same procedure

for the GLR. For the KDE, these values are for the MISE instead of the IV. We report results with

the following types of point sets:

(1) independent points (MC);

(2) a randomly-shifted lattice rule (Lat+s);

(3) a randomly-shifted lattice rule with a baker’s transformation (Lat+s+b);

(4) Sobol’ points with a left random matrix scramble and random digital shift (Sobol’+LMS).
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The short names in parentheses are used in the plots and tables. For the definitions and properties

of these RQMC point sets, see L’Ecuyer and Lemieux (2000), Owen (2003), L’Ecuyer (2009, 2018).

They are implemented in SSJ (L’Ecuyer 2016), which we used for our experiments. The parameters

of the lattice rules were found with the Lattice Builder software of L’Ecuyer and Munger (2016),

using a fast-CBC construction method with the P2 criterion and order dependent weights γv = ρ|v|,

with ρ ranging from 0.05 to 0.8, depending on the example (a larger ρ was used when the dimension

s was smaller). The baker’s transformation sometimes improves the convergence rate by making

the integrand periodic (Hickernell 2002), but it usually also increases the variation of the integrand,

so its impact on the variance can go either way.

For some examples, we tried CDEs based on different choices of G and a convex combination

as in Section 2.4. For comparison, we provide results for the GLR and for a KDE with a normal

kernel and a bandwidth h selected by the methodology described in Ben Abdellah et al. (2019).

4.2. A sum of normals

We start with a very simple example in which the density f is known beforehand, so there is no

real need to estimate it, but this type of example is very convenient for testing the performance

of our density estimators. Let Z1, . . . ,Zd be independent standard normal random variables, i.e.,

with mean 0 and variance 1, and define

X = (a1Z1 + · · ·+ adZd)/σ, where σ2 = a2
1 + · · ·+ a2

d.

Then X is also standard normal, with density f(x) = φ(x)
def
= exp(−x2/2)/

√
2π and cdf P[X ≤ x] =

Φ(x) for x ∈R. The term ajZj in the sum has variance a2
j . We pretend we do not know this and

we estimate f(x) over the interval [−2,2], which contains slightly more than 95% of the density.

We also tried larger intervals, such as [−5,5], and IVs for the CDE were almost the same.

To construct the CDE, we define G−k as in Example 1, for any k= 1, . . . , d. That is, we hide Zk

and estimate the cdf by

F (x | G−k) = P

[
akZk ≤ xσ−

d∑
j=1, j 6=k

ajZj

∣∣∣∣∣G−k
]

= Φ

(
xσ

ak
− 1

ak

d∑
j=1, j 6=k

ajZj

)
.

The CDE becomes

F ′(x | G−k) = φ

(
xσ

ak
− 1

ak

d∑
j=1, j 6=k

ajZj

)
σ

ak
= φ

(
xσ

ak
− 1

ak

d∑
j=1, j 6=k

ajΦ
−1(Uj)

)
σ

ak

def
= g̃′(x,U)

for x∈R, where U= (U1, . . . ,Uk−1,Uk+1, . . . ,Ud), Zj = Φ−1(Uj), and the Uj are independent U(0,1)

random variables. Assumption 1 is easily verified, so this CDE is unbiased.
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For CMC+MC (independent sampling), we get an exact formula for the variance of the CDE

directly from Example 2, by taking in that example Y2 = akZk/σ and Y1 =X−Y2, whose variances

are σ2
2 = (ak/σ)2 and σ2

1 = 1−σ2
2, and plugging these values into (6). To prove that RQMC gives a

better convergence rate for the variance than MC, it suffices to show that VHK(g̃′(x, ·))<∞ for any

x. This can be done by the same argument as in the second part of Example 6. Then we expect to

observe a convergence rate near O(n−2), at least when d is small.

For the GLR method, with Yj =Zjaj/σ∼N (0, a2
j/σ

2), we obtain ∂(log fj(yj))/∂yj =−yjσ2/a2
j ,

hj(yj) = 1, hjj(yj) = 0, and then Ψj = −Yjσ2/a2
j = −Zjσ/aj. Note that we could also replace Yj

by Zj and fj by φj (the standard normal density), which would give ∂(logφj(zj))/∂zj = −zj,

hj(zj) = aj/σ, hjj(yj) = 0, and again Ψj =−Zjσ/aj.

In our first experiment, we take aj = 1 for all j, and k= d. By symmetry, the true IV is the same

for any other k. Table 1 reports the estimated rate ν̂ and the estimated value of e19 =− log2(IV) for

n= 219, for various values of d and sampling methods. The rows marked CDE-1 give the results for

k= d, while those labeled CDE-Avg are for a convex combination (7) with equal weights β` = 1/d

for all `= k− 1, after computing the CDE for each k from the same simulations.

For MC, the rates ν̂ agree with the (known) exact asymptotic rates of ν = 1 for the CDE and

GLR, and ν = 0.8 for the KDE. By looking at e19, we see that the MISE with MC is much smaller

for the CDE than for the GLR and KDE, for example for d= 2 by a factor of about 32 for CDE-1

and about 70 for CDE-avg. For d= 20, the gains are more modest. RQMC methods provide huge

improvements for small d with the CDE. We observe rates ν̂ larger than 2 for d= 2 and 3, and by

looking at the exponents e19, we see that for d= 3, for example, the MISE goes from 2−17 for the

GLR and KDE to about 2−42 for CDE-1 with Sobol’ points with LMS. This is a reduction factor of

about 225 ≈ 33 millions for n= 219. The large values of ν̂ imply of course that this factor is smaller

for smaller n. When d is large, such as d= 20, RQMC brings only a small gain. The values of ν̂

are sometimes noisy. For GLR with Lat+s and d= 5, for example, the large ν̂ = 1.45 comes from

the fact that the IV for n= 214 (not shown) is unusually large (an outlier). Looking at e19 gives

a more robust assessment of the performance. GLR performs better than the KDE under RQMC

for small d, but not comparable to the CDE. Under MC, GLR is slightly worse than the KDE.

In our second experiment, we take a2
j = 21−j for j = 1, . . . , d. Now, the choice of k for the CDE

makes a difference, and the best choice will obviously be k = 1, i.e., hide the term that has the

largest variance. Note that with MC, Var[X] = 2− 2−d, and when we apply CMC by hiding akZk

from the sum, we hide a term of variance a2
k = 21−k and generate a partial sum S−k of variance

2−21−k−2−d. Both terms have a normal distribution with mean 0. The results of Example 2 hold

with these variances. Table 2 reports the numerical results for d= 11 and k= 1,2,5,11.
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Table 1 Values of ν̂ and e19 for a CDE, and a convex combination of CDEs, and a KDE, for a sum of d= k

normals with aj = 1, over [−2,2].

ν̂ e19
d= 2 d= 3 d= 5 d= 10 d= 20 d= 2 d= 3 d= 5 d= 10 d= 20

CDE-1

MC 0.99 0.98 1.02 1.00 1.02 22.1 21.4 20.8 19.8 19.2
Lat+s 2.83 2.00 1.85 1.40 1.04 52.3 39.8 32.1 23.6 19.7
Lat+s+b 2.69 2.11 1.69 1.14 1.05 50.5 41.5 31.1 21.8 20.0
Sob+LMS 2.62 2.10 1.81 1.04 1.04 49.3 40.7 31.1 21.3 19.7

CDE-avg

MC 1.06 0.92 1.03 1.01 1.01 23.4 22.1 21.6 20.6 19.8
Lat+s 2.79 1.84 1.33 1.19 1.05 53.3 39.8 32.2 23.0 20.6
Lat+s+b 2.65 1.90 1.71 1.05 1.08 51.6 41.4 32.3 23.4 21.3
Sob+LMS 2.60 2.10 1.92 1.02 1.03 49.8 42.0 33.0 22.7 20.5

GLR

MC 0.98 0.95 1.03 1.05 1.00 17.0 16.1 15.9 14.9 14.1
Lat+s 1.51 1.56 1.45 0.94 1.06 28.2 24.9 22.1 17.8 17.2
Lat+s+b 1.49 1.41 1.05 1.06 1.04 27.3 23.9 20.4 18.8 17.6
Sob+LMS 1.49 1.33 1.15 0.99 1.16 27.5 24.0 21.0 18.3 17.4

KDE

MC 0.79 0.80 0.76 0.75 0.77 17.0 17.0 16.9 16.9 17.0
Lat+s 1.08 1.39 0.92 0.97 0.76 25.1 22.4 19.4 18.2 17.4
Lat+s+b 1.23 0.94 0.72 0.73 0.74 24.1 20.1 18.1 17.3 17.2
Sob+LMS 1.18 0.98 0.83 0.74 0.77 24.4 20.8 17.9 17.2 17.1

Table 2 Values of ν̂ and e19 with a CDE for selected choices of G−k, for a linear combination of d= 11 normals

with a2j = 21−j .

ν̂ e19
k= 1 k= 2 k= 5 k= 11 k= 1 k= 2 k= 5 k= 11

MC 1.00 1.02 1.01 1.00 22.2 21.0 18.8 15.5
Lat+s 1.43 1.48 1.34 1.04 30.3 28.5 22.8 15.6
Lat+s+b 1.57 1.65 1.28 1.02 33.5 30.8 22.1 15.6
Sob+LMS 1.78 1.56 1.21 1.02 34.1 30.4 21.7 15.7

The MC rates ν̂ agree again with the theory, but here the IV depends very much on the choice

of k, and this effect is more significant when k is smaller. For example, for Sobol’ points, the IV

with k = 1 is about 300,000 times smaller than with k = 11. The reason is that with k = 11, we

hide only a variable having a very small variance, so the CDE for one sample is a high narrow

peak, and the HK variation of g̃′(x,u) is very large. For k = 1 or 2, we have the opposite and the

integrand is much more RQMC-friendly.

4.3. Displacement of a cantilever beam

We consider the following model for the displacement X of a cantilever beam with horizontal and

vertical loads, taken from Bingham (2017):

X = h(Y1, Y2, Y3) =
4`3

Y1wt

√
Y 2

2

w4
+
Y 2

3

t4
(15)

in which ` = 100, w = 4 and t = 2 are constants (in inches), while Y1 (Young’s modulus), Y2

(the horizontal load), and Y3 (the vertical load), are independent normal random variables, Yj ∼
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N (µj, σ
2
j ), i.e., normal with mean µj and variance σ2

j . The parameter values are µ1 = 2.9× 107,

σ1 = 1.45× 106, µ2 = 500, σ2 = 100, µ3 = 1000, σ3 = 100. We will denote κ = 4`3/(wt) = 5× 105.

The goal is to estimate the density of X over the interval [3.1707, 5.6675], which covers about 99%

of the density (it clips 0.5% on each side). It is possible to have X < 0 in this model, but the

probability is P[Y1 < 0] = Φ(−20) = 2.8×10−89, which is negligible. This example fits the framework

of Section 2.3, with d= 3. We can hide any of the three random variables for the conditioning, and

we will examine each case.

Conditioning on G−1 means hiding Y1. We have

X =
κ

Y1

√
Y 2

2

w4
+
Y 2

3

t4
≤ x if and only if Y1 ≥

κ

x

√
Y 2

2

w4
+
Y 2

3

t4
def
= W1(x).

Note that W1(x)> 0 if and only if x> 0. For x> 0,

F (x | G−1) = P[Y1 ≥W1(x) |W1(x)] = 1−Φ((W1(x)−µ1)/σ1)

which is continuous and differentiable in x, and

F ′(x | G−1) =−φ((W1(x)−µ1)/σ1)W ′
1(x)/σ1 = φ((W1(x)−µ1)/σ1)W1(x)/(xσ1).

If we condition on G−2 instead, i.e., we hide Y2, we have X ≤ x if and only if

Y 2
2 ≤w4

(
(xY1/κ)2−Y 2

3 /t
4
) def

= W2(x).

If W2(x)≤ 0, then F ′(x | G−2) = F (x | G−2) = P[X ≤ x |W2(x)] = 0. For W2(x)> 0, we have

F (x | G−2) = P[X ≤ x |W2(x)] = P
[
−
√
W2(x)≤ Y2 ≤

√
W2(x) |W2(x)

]
= Φ((

√
W2(x)−µ2)/σ2)−Φ(−(

√
W2(x) +µ2)/σ2),

which is again continuous and differentiable in x, and

F ′(x | G−2) =
φ((
√
W2(x)−µ2)/σ2) +φ(−(

√
W2(x) +µ2)/σ2)

(σ2

√
W2(x))/(w4x(Y1/κ)2)

> 0.

If we condition on G−3, the analysis is the same as for G−2, by symmetry, and we get

F ′(x | G−3) =
φ((
√
W3(x)−µ3)/σ3) +φ(−(

√
W3(x) +µ3)/σ3)

(σ3

√
W3(x))/(t4x(Y1/κ)2)

> 0

for W3(x)> 0, where W3(x) is defined in a similar way as W2(x). In addition to testing these three

ways of conditioning, we also tested a convex combination of the three, as explained in Section 2.4,

with coefficients β` that do not depend on x.
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Table 3 Values of ν̂ and e19 with a CDE for each choice of G−k, for the best convex combination, for the GLR,

and for the KDE, for the cantilever beam model.

ν̂ e19
G−1 G−2 G−3 comb. GLR KDE G−1 G−2 G−3 comb. GLR KDE

MC 0.97 0.98 0.99 0.98 1.02 0.76 19.3 14.5 22.8 22.5 14.1 15.8
Lat+s 1.99 1.95 2.06 2.04 1.38 1.03 39.8 25.2 41.6 41.9 23.4 21.9
Lat+s+b 2.24 2.08 2.27 2.25 1.37 0.93 44.5 23.7 46.8 47.0 23.3 21.0
Sob+LMS 2.21 2.03 2.21 2.21 1.32 0.97 44.0 23.6 45.7 46.1 23.4 21.5

For GLR using Y1, let C = C(Y2, Y3) = (4`3/wt)
√
Y 2

2 /w
4 +Y 2

3 /t
4. Then, we have X = h(Y) =

C/Y1, h1(Y) =−CY −2
1 , h11(Y) = 2CY −3

1 , ∂ log f1(Y1)/∂Y1 = (Y1−µ1)/σ2
1, and

Ψ1 =
Y1

C

(
Y1(Y1−µ1)/σ2

1 − 2
)
.

Table 3 summarizes the results. The MISE is about 2−47 for the best CDE+RQMC compared

with 2−15.8 for usual KDE+MC, a gain by a factor of over 231 ≈ 2 billions. With RQMC, the

convergence rate ν̂ is around 2 in all cases with the CDE methods, and much less for GLR and

KDE. GLR benefits significantly from RQMC, more than the KDE, but cannot compete with the

CDE. For the lattice rules, the baker’s transformation helps significantly for the CDE.

We also see that conditioning on G−2 does not give as much reduction than for the other choices.

The reason is that the conditional density in this case is a high narrow peak, similar to what we

saw for k = 11 at the end of Example 4.2. To provide visual insight, Figure 2 shows plots of five

realizations of the conditional density for G−1, G−2, and G−3. The realizations of F ′(· | G−2) have

high narrow peaks. The average of the five realizations is shown in red and the true density in black.

In Figure 3, we zoom in on part of the estimated densities to show the difference between MC and

RQMC. In each panel one can see the CDE using MC (in red), using RQMC (in green), and the

“true density” (black, dashed) estimated with RQMC using a very large number of samples. We

have G−1 with n = 210 on the left and G−2 with n = 216 on the right. In both cases, the RQMC

estimate is closer to the true density, and on the right it oscillates less. If we repeat this experiment

several times, the red curve would vary much more than the green one across the realizations.

4.4. Buckling strength of a steel plate

This is a higher-dimensional example, with d= 6, taken from Schields and Zhang (2016). It models

the buckling strength of a steel plate by

X =

(
2.1

Λ
− 0.9

Λ2

)(
1− 0.75Y5

Λ

)(
1− 2Y6Y2

Y1

)
, (16)

where Λ = (Y1/Y2)
√
Y3/Y4, and Y1, . . . , Y6 are independent random variables whose distributions

are given in Table 4. Each distribution is either normal or lognormal, and the table gives the mean
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Figure 2 Five realizations of the density conditional on G−k (blue), their average (red), and the true density

(thick black) for k= 1 (left), k= 2 (middle), and k= 3 (right), for the cantilever example.
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Figure 3 The CDE under MC (red), under RQMC (green) and the true density (black, dashed) for G−1 with

n= 210 (left) and for G−2 with n= 216 (right), for the cantilever example.

and the coefficient of variation (cv), which is the standard deviation divided by the mean. We

estimate the density of X over [a, b] = [0.5169,0.6511], which contains about 99% of the density

(leaving out 0.5% on each side). There is a nonzero probability of having Y4 ≤ 0, in which case X is

undefined, but this probability is extremely small and this has a negligible impact on the density

estimator over [a, b], so we just ignore it (alternatively we could truncate the density of Y4). There

are also negligible probabilities that the density estimates below are negative and we ignore this.

Table 4 Distribution of each parameter for the buckling strength model.

parameter distribution mean cv
Y1 normal 23.808 0.028
Y2 lognormal 0.525 0.044
Y3 lognormal 44.2 0.1235
Y4 normal 28623 0.076
Y5 normal 0.35 0.05
Y6 normal 5.25 0.07

For this example, computing the density of X conditional on G−5 or G−6 (i.e., when hiding Y5 or

Y6) is relatively easy, so we will try and compare these two choices. If we hide one of the variables

that appear in Λ, the CDE would be harder to compute (it would require to solve a polynomial

equation of degree 4 for each sample), and we do not do it. Let us define

V1 =
2.1

Λ
− 0.9

Λ2
, V2 = 1− 2Y6Y2

Y1

, and V3 = 1− 3Y5

4Λ
.
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Then we have

X ≤ x ⇔ Y5 ≥
(

1− x

V1V2

)
4Λ

3

and

F ′(x | G−5) = f5

((
1− x

V1V2

)
4Λ

3

)
4Λ

3V1V2

= φ

(
(1−x/(V1V2)) 4Λ/3− 0.35

0.0175

)
4Λ

0.0525 ·V1V2

.

Similarly,

F ′(x | G−6) = f6

((
1− x

V1V3

)
Y1

2Y2

)
Y1

2Y2V1V3

= φ

(
(1−x/(V1V3))Y1/(2Y2)− 5.25

0.3675

)
Y1

0.735 ·Y2V1V3

.

For GLR using Y6, let C = (2.1/Λ− 0.9/Λ2) (1− 0.75Y5/Λ). We have X = h(Y) = C(1 −
2Y6Y2/Y1), h6(Y) = 2CY2/Y1, h66(Y) = 0, ∂ log f6(Y6)/∂Y6 = −(Y6 − µ6)/σ2

6, and Ψ6 = Y1(Y6 −
µ6)/(2CY2σ

2
6).

Table 5 Values of ν̂ and e19 with a CDE for G−5, G−6, and their combination, for the buckling strength model.

ν̂ e19
G−5 G−6 comb. GLR KDE G−5 G−6 comb. GLR KDE

MC 1.00 1.00 1.00 0.98 0.76 13.5 15.4 15.4 10.2 11.7
Lat+s 1.89 1.56 1.56 1.29 0.81 20.0 24.9 24.9 16.6 13.7
Lat+s+b 1.46 1.65 1.60 1.19 0.85 17.5 25.1 25.1 15.9 12.7
Sob+LMS 1.40 1.75 1.75 1.16 0.81 17.7 25.5 25.5 15.9 12.4
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Figure 4 MISE vs n in log-log scale for the G = G−5 (left) and G = G−6 (right) for the buckling strength model.

Table 5 summarizes the results. We see again that the CDE with RQMC performs very well and

much better than the GLR and KDE, that it is much better to condition on G−6 than on G−5, and

that combining the two provides no significant improvement. The GLR is also better than the KDE

under RQMC, but not under MC. Figure 4 displays the IV as a function of n in a log-log-scale

for the CDE with G−5 and G−6. It unveils a slightly more erratic behavior of the MISE for the

shifted lattice rule (Lat+s) than for the other methods; the performance depends on the choice of

parameters of the lattice rule and their interaction with the particular integrand.
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4.5. A stochastic activity network

In this example, the conditioning must hide more than one random variable. The example is taken

from Avramidis and Wilson (1998) and was also used in L’Ecuyer and Lemieux (2000) and L’Ecuyer

and Munger (2012). We consider the stochastic activity network of Fig. 5, where arc j has random

length Yj for j = 1, . . . ,13. The Yj are independent with continuous cdf’s Fj as given in L’Ecuyer

and Munger (2012), and are generated by inversion: Yj = F−1
j (Uj) where Uj ∼U(0,1). The goal is

to estimate the density of X which represents the length of the longest path from the source to

the sink, over [a, b] = [22, 106.24], which covers about 95% of the density.

0
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1
Y1
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Y3

3
Y4

4

Y8

5
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8
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Y13

Y11

Figure 5 A stochastic activity network

Here, X is defined by a maximum (over all paths from 0 to 8), and if we hide only a single random

variable Yj, we run into the same problem as in Example 5: Assumption 1 does not hold, because

F (· | G) has a jump. We must hide more (condition on less). We apply the conditioning proposed by

Avramidis and Wilson (1998) by hiding {Yj, j ∈L
def
= {5,6,7,9,10}}, and let G represent {Yj, j 6∈ L}.

The corresponding conditional cdf is

F (x | G) = P [X <x | {Yj : j 6∈ L}] =
∏
j∈L

P[Yj ≤ x−Pj] =
∏
j∈L

Fj(x−Pj) (17)

where Pj is the length of the longest path that goes through arc j when we exclude Yj from that

length. The conditional density is

F ′(x | G) =
d

dx
F (x | G) =

∑
j∈L

fj(x−Pj)
∏

l∈L, l 6=j

Fl(x−Pj).

Under this conditioning, since the Yj’s are continuous variables with bounded variance, Assump-

tion 1 holds, so F ′(x | G) is an unbiased density estimator with uniformly bounded variance.

The GLR method described in Section 2.5 does not work for this example. Indeed, with X = h(Y)

defined as the length of the longest path, for any j, the derivative hj(Y) is zero whenever arc j is
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not on the longest path, so we would need to select an arc j that is guaranteed to be always on the

longest path. But there is no such arc. We could apply a modified GLR that selects a cut instead

of a single coordinate Yj, but this is beyond the scope of this paper.

Table 6 Values of ν̂ and e19 for the SAN example.

ν̂ e19

CDE

MC 0.96 25.6
Lat+s 1.31 30.9
Lat+s+b 1.17 29.6
Sob+LMS 1.27 29.9

KDE
MC 0.78 20.9
Lat+s 0.95 22.7
Lat+s+b 0.93 22.0
Sob+LMS 0.74 21.9

Table 6 and Figure 6 summarize our results. We see that for n= 219, the CDE outperforms the

KDE by a factor of about 20 with MC, and by a factor of about 28 ≈ 250 with RQMC. Interestingly,

here the lattice rules work better without the baker’s transformation.
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Figure 6 MISE vs n in log-log scale, for the SAN example.

4.6. Density of the failure time of a system

We consider a d-component system in which each component starts in the operating mode (state

1) and fails (jumps to state 0) at a certain random time, to stay there forever. Let Yj be the failure

time of component j for j = 1, . . . , d. For t≥ 0, let Wj(t) = I[Yj > t] be the state of component j

and W(t) = (W1(t), . . . ,Wd(t))
t the system state, at time t. The system is in the failed mode at

time t if and only if Φ(W(t)) = 0, where Φ : {0,1}d→ {0,1} is called the structure function. Let

X = inf{t≥ 0 : Φ(W(t)) = 0} be the random time when the system fails. We want to estimate the

density of X. A straightforward way of simulating a realization of X is to generate the component

lifetimes Yj = inf{t≥ 0 :Wj(t) = 0} for j = 1, . . . , d, and then compute X from that.
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As in Section 4.5, the GLR method of Section 2.5 does not work for this example, because

hj(Y) 6= 0 only when X = Yj, and there is no j for which this is sure to happen.

If the Yj are independent and exponential, one can construct a CMC estimator of the cdf F (x) =

P[X ≤ x] as follows (Gertsbakh and Shpungin 2010, Botev et al. 2013, 2016). Generate all the Yj’s

and sort them in increasing order. Then, erase their values and retain only their order, which is

a permutation π of {1, . . . , d}. Compute the critical number C = C(π), defined as the number of

component failures required for the system to fail (that is, the system fails at the Cth component

failure, for the given π). Note that C can also be computed by starting with all components

failed and resurrecting them one by one in reverse order of their failure, until the system becomes

operational. Computing C using this reverse order is often more efficient (Botev et al. 2016). Then

compute the conditional cdf P[X ≤ x | π], where X is the time of the Cth component failure. This

is an unbiased estimator of F (x) with smaller variance than the indicator I[X ≤ x]. It can also be

shown that in an asymptotic regime in which the component failure rates converge to 0 so that

1−F (x)→ 0, the relative variance of this CMC estimator of 1−F (x) remains bounded whereas

it goes to infinity with the conventional estimator I[X >x]; i.e., the CMC estimator has bounded

relative error (Botev et al. 2013, 2016).

When the lifetimes are independent and exponential, X is a sum of C independent exponentials,

so it has a hypoexponential distribution, whose cdf has an explicit formula that can be written in

terms of a matrix exponential, and developed explicitly as a sum of products in terms of the rates

of the exponential lifetimes, as explained in Botev et al. (2016). By taking the derivative of the

conditional cdf formula with respect to x, one obtains the conditional density.

More specifically, let component j have an exponential lifetime with rate λj > 0, for j = 1, . . . , d.

For a given realization, let π(j) be the jth component that fails and let C(π) = c for the given

π, let A1 be the time until the first failure, and let Aj be the time between the (j − 1)th and jth

failures, for j > 1. Conditional on π, we have X = A1 + · · ·+Ac where the Aj’s are independent

and Aj is exponential with rate Λj for all j ≥ 1, with Λ1 = λ1 + · · ·+λd, and Λj = Λj−1−λπ(j) for

all j ≥ 2. The conditional distribution of X is then hypoexponential with cdf

P[X ≤ x | π] = P[A1 + · · ·+Ac ≤ x | π] = 1−
c∑
j=1

pje
−Λjx,

where

pj =
c∏

k=1,k 6=j

Λk

Λk−Λj

.

See Gertsbakh and Shpungin (2010), Appendix A, and Botev et al. (2016), for example. Taking

the derivative with respect to x gives the CDE

f(x | π) =
c∑
j=1

Λjpje
−Λjx,
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in which c, the Λj and the pj depend on π. This conditional density is well defined and computable

everywhere in [0,∞). There are instability issues for computing pj when Λk −Λj is close to 0 for

some k 6= j, but this can be addressed by a stable numerical algorithm of Higham (2009). All of

this can be generalized easily to a model in which the lifetimes are dependent, with the dependence

modeled by a Marshall-Olkin copula (Botev et al. 2016). In that model, the Yj represent the

occurrence times of shocks that can take down one or more components simultaneously.

It is interesting to note that although f(x | π) is an unbiased estimator of the density f(x) at any

x, this estimator is a function of the permutation π only, so it takes its values in a finite set, which

means that the corresponding g̃(u) is a piecewise constant function, which is not RQMC-friendly.

Therefore, we do not expect RQMC to bring a very large gain.

Table 7 Values of ν̂ and e19 with the CDE, for the network reliability example.

ν̂ e19
MC 1.00 19.9
Lat+s 1.22 23.9
Lat+s+b 1.19 23.8
Sob+LMS 1.33 23.9
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Figure 7 Density (left) and log IV as a function of logn (right) for the network failure time.

For a numerical illustration, we take the same graph as in Section 4.5. For j = 1, . . . ,13, Yj is

exponential with rate λj and the Yj are independent. The system fails as soon as there is no path

going from 0 to 8. For simplicity, here we take λj = 1 for all j, although taking different λj’s brings

no significant additional difficulty. We estimate the density over the interval (a, b] = (0,1.829], which

cuts off roughly 1% of the probability on the right side. Table 7 and Figure 7 give the results. The

density of X estimated with n= 220 random samples is shown on the left and the IV plots are on

the right. Despite the discontinuity of g̃, RQMC outperforms MC in terms of the IV by a factor

of about 24 = 16 for n= 219, and also by improving the empirical rate ν̂ to about −1.2 for lattices

and even better with Sobol’ points. The Sobol’ points used here were constructed using LatNet



L’Ecuyer, Puchhammer, Ben Abdellah: MC and QMC Density Estimation by Conditioning
26 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Builder (Marion et al. 2020) with a CBC search based on the t-value of all projections up to order

6, with order-dependent weights γk = 0.8k for projections of order k.

4.7. Density of waiting times in a single queue

4.7.1. Model with independent days. We consider a single-server FIFO queue in which

customers arrive from an arbitrary arrival process (not necessarily stationary Poisson) and the

service times are independent, with continuous cdf G and density g. If W denotes the waiting time

of a “random” customer, we want to estimate p0 = P[W = 0] and the density f of W over (0,∞).

We first consider a system that starts empty and evolves over a fixed time horizon τ , which we call

a day. Let Tj be the arrival time of the jth customer, T0 = 0, Aj = Tj−Tj−1 the jth interarrival time,

Sj the service time of customer j, and Wj the waiting time of customer j. Since the system starts

empty, we have W1 = 0, and the Lindley recurrence gives us that Wj = max(0, Wj−1 +Sj−1−Aj) for

j ≥ 2. At time τ , the arrival process stops, but service continues until all customers already arrived

are served. The number of customers handled in a day is the random variable N = max{j ≥ 1 :

Tj < τ}. The cdf of W can be written as F (0) = p0 and for x> 0, F (x) = P[W ≤ x] =E[I(W ≤ x)].

Note that the sequence of waiting times of all customers over an infinite number of independent

successive days is a regenerative process that regenerates at the beginning of each day. We can

then apply the renewal reward theorem, which gives

F (x) =E[I(W ≤ x)] =
E [I[W1 ≤ x] + · · ·+ I[WN ≤ x]]

E[N ]
. (18)

Since E[N ] does not depend on x, we see that for x > 0, the density f(x) is the derivative of the

numerator with respect to x, divided by E[N ].

To obtain a differentiable cdf estimator, we want to replace each indicator in the numerator by

a conditional expectation. One simple way of doing this is to hide the service time Sj−1 of the

previous customer; that is, replace I[Wj ≤ x] by

Pj(x) = P[Wj ≤ x |Wj−1−Aj] = P[Sj−1 ≤ x+Aj −Wj−1] =G(x+Aj −Wj−1) for x≥ 0.

This gives Pj(0) = G(Aj −Wj−1) (there is a probability mass at 0), whereas for x > 0, we have

P ′j(x) = dPj(x)/dx= g(x+Aj −Wj−1) and then, since N does not change when we change x,

f(x) =
E[D(x)]

E[N ]
where D(x) =

N∑
j=1

g(x+Aj −Wj−1). (19)

Note that we are not conditioning on the same information for all terms of the sum, so what we do

is not exactly CMC, but extended CMC. It nevertheless provides the required smoothing and an

unbiased density estimator for the numerator of (18). The denominator E[N ] can be estimated in
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the usual way. We are then in the standard setting of estimating a ratio of expectations (Asmussen

and Glynn 2007), for which we have unbiased estimators for the numerator and the denominator.

We simulate n days, independently (with MC) or with n RQMC points, to obtain n realizations

of (N,D(x)), say (N1,D1(x)), . . . , (Nn,Dn(x)). The ratio estimator (CDE) of f(x) is

f̂(x) =

∑n

i=1Di(x)∑n

i=1Ni

. (20)

It can be computed at any x∈ [0,∞). For independent realizations (with MC), the variance of f̂(x)

can be estimated using the delta method for ratio estimators (Asmussen and Glynn 2007):

nVar[f̂(x)]→ Var[Di(x)] + Var[Ni]f
2(x)− 2Cov[Di(x),Ni]f(x)

E2[Ni]

asymptotically, when n→∞. This variance can be estimated by replacing the unknown quantities

in this expression by their empirical values. This is consistent because the n pairs (Di(x),Ni),

i = 1, . . . , n, are independent. Alternatively, a confidence interval on f(x) can also be computed

with a bootstrap approach (Choquet et al. 1999).

In the RQMC case, the pairs (Di(x),Ni) are no longer independent. Then, to obtain an estimator

of f(x) for which we can estimate the variance, we make nr independent replicates of the RQMC

estimator of the pair (E[D(x)],E[N ]), say (D̄1(x), N̄1), . . . , (D̄nr(x), N̄nr), where each (D̄j(x), N̄j) is

the average of n pairs (Di(x),Ni) sampled by RQMC. We estimate the density f(x) by the ratio

of the two grand sums

f̂rqmc,nr(x) =

∑nr
j=1 D̄j(x)∑nr
j=1 N̄j

.

To estimate the variance, we use that

Var[f̂rqmc,nr(x)]≈ Var[D̄j(x)] + Var[N̄j]f
2(x)− 2Cov[D̄j(x), N̄j]f(x)

nr(E[N ])2

and we replace all the unknown quantities in this expression by their empirical values.

Here, the required dimension of the RQMC points is the (random) total number of inter-arrival

times Aj and service times Sj that we need to generate during the day. It is approximately twice

the number of customers that arrive during the day. This number is unbounded, so the RQMC

points must have unbounded (or infinite) dimension. Recurrence-based RQMC point sets have

this property; they can be provided for instance by ordinary or polynomial Korobov lattice rules

(L’Ecuyer and Lemieux 1999, 2000, 2002, Lemieux and L’Ecuyer 2003), which are available in the

hups package of SSJ (L’Ecuyer 2016).



L’Ecuyer, Puchhammer, Ben Abdellah: MC and QMC Density Estimation by Conditioning
28 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

4.7.2. Steady-state model. In a slightly different setting, we can assume that the single

queue evolves in steady-state over an infinite time horizon, under the additional assumptions that

the Aj’s are i.i.d. and the Sj’s are also i.i.d. Again, we want to estimate the density of the waiting

time W of a random customer. In this case, the system regenerates whenever a new customer

arrives in an empty system. The regenerative cycles can be much shorter on average than for the

previous case, unless the day is very short or the utilization factor of the system is close to 1. The

CDE has exactly the same form, apart from the different definition of regenerative cycle. In this

case n represents the number of regenerative cycles, Ni is the number of customers in the ith cycle

and Di(x) is the realization of D(x) over the ith cycle.

In both settings, one could also hide Aj instead of Sj−1. The density estimator is similar and

easy to derive. Intuition says that this should be a better choice if Aj has more variance than Sj−1.

4.7.3. The GLR estimator Peng et al. (2020), Section 4.2.2., show how to construct a GLR

estimator for the density of the sojourn time of customer j in this single-queue model. If the service

times Sj are lognormal with parameters (µ,σ2), we can write

X =Wj = max(0, Wj−1 +Sj−1−Aj) = max(0, Wj−1 + exp[σZj−1 +µ]−Aj) =: h(Y)

where Zj−1 has the standard normal density φ, and Y = (Y1, Y2, Y3) = (Zj−1,Aj,Wj−1). When

Wj > 0, taking the derivative of h with respect to Y1 =Zj−1 gives h1(Y) = exp[σZj−1 +µ]σ= Sj−1σ,

h11(Y) = Sj−1σ
2, and these derivatives are 0 when Wj = 0. We also have ∂ logφ(x)/∂x=−x, and

therefore for x > 0, f(x) = E[L(x)]/E[N ] where L(x) =
∑N

j=1 I[Wj ≤ x] · Ψj and Ψj = −(Zj−1 +

σ)/(Sj−1σ). We can do n runs to estimate each of the two expectations in the ratio. This provides

a very similar density estimator as with the CDE in (19), but here L(x) is discontinuous in x,

whereas D(x) in (19) is continuous.

4.7.4. Numerical results. For a numerical illustration, let the arrival process be Poisson

with constant rate λ= 1, and the service times Sj lognormal with parameters (µ,σ2) = (−0.7,0.4).

This gives E[Sj] = e−0.5 ≈ 0.6065 and Var[Sj] = e−1(e0.4−1)≈ 0.18093. For RQMC, we use infinite-

dimensional RQMC points defined by Korobov lattice rules (L’Ecuyer and Lemieux 2000) selected

with Lattice Builder (L’Ecuyer and Munger 2016) using order-dependent weights γk = 0.005k

for projections of order k. We do not use Sobol’ points because they are finite-dimensional.

Finite-horizon case. For the finite-horizon case, take τ = 60. If the time is in minutes, this means

that the “day” is one hour. The results for (a, b] = (0,2.2] are in Table 8 and Figure 8. An

important observation is that CDE+MC provides an unbiased density estimator all over [0,∞).

Due to the large and random dimensionality of the required RQMC points, and more importantly

the discontinuity of the derivative of the estimator with respect to the underlying uniforms (because
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of the max, the HK variation is infinite), it was unclear if RQMC could bring any significant gain

for this example. We see that although RQMC does not improve ν̃ significantly, it improves the IV

itself by a factor of about 28.5 ≈ 180 for n= 219, which is quite significant. We also see that CDE

beats GLR by a factor of about 500 with MC and about 200 with RQMC.

Table 8 Values of ν̂ and e19 for the single queue example, finite-horizon case.

ν̂ e19

CDE
MC 1.00 24.8
Lat+s 0.99 32.3
Lat+s+b 1.02 32.3

GLR
MC 1.00 15.8
Lat+s 1.03 24.6
Lat+s+b 1.08 25.0
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Figure 8 Estimated density (left) and log IV as a function of logn (right) for the single queue over a finite-horizon.

Steady-state case. We performed a similar experiment using regenerative simulation for the

steady-state model. The density is similar but not exactly the same as in the finite-horizon case.

The results are in Table 9 and Figure 9. They are very similar to those of the finite-horizon case,

with similar empirical convergence rates, and the IV for n= 219 is again about 180 times smaller

with CDE+RQMC compared to CDE+MC. The IV for GLR with n= 219 is roughly 1000 times

larger than with CDE with MC and 250 times larger than with CDE with RQMC. The only impor-

tant difference is that here, the IV is about 30 times larger than in the finite-horizon case, for all the

methods. The explanation is that in the finite-horizon, we simulate n runs with about 60 customers

per run, whereas in the steady-state case, we have about 2.5 customers per regenerative cycle on

average, so we simulate about 25 times fewer customers. Interestingly, the fact that we use much

more coordinates of the RQMC points in the finite-horizon case (on average) makes no significant

difference. A similar observation was made by L’Ecuyer and Lemieux (2000), Section 10.3, who

compared finite-horizon runs of 5000 customers each on average, with regenerative simulation, in

the context of estimating the probability of a large waiting time using RQMC. The reason why
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RQMC performs well even for a very large time horizon is that the integrand has low effective

dimension in the successive-dimensions sense (L’Ecuyer and Lemieux 2000).

Table 9 Values of ν̂ and e19 for the single queue example, steady-state case.

ν̂ e19

CDE
MC 0.99 19.9
Lat+s 1.04 27.6
Lat+s+b 1.08 27.8

GLR
MC 0.99 11.5
Lat+s 1.20 20.1
Lat+s+b 1.21 20.4
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Figure 9 Estimated density (left) and log IV as a function of logn (right) for the single queue in steady-state.

4.8. A function of a multivariate normal vector

Suppose we want to estimate the density of X = h(Y) over some interval (a, b), where h is a

continuously differentiable function h : Rs → R, and Y = (Y1, . . . , Ys)
t has a multivariate normal

distribution with mean vector µ and covariance matrix C. To generate realizations of Y, we can

first decompose C as C = AAt (once for all), then for each realization we generate a vector Z of

s independent standard normals (e.g., by inversion), and put Y = µ+AZ. There are many ways

of decomposing C = AAt. The choice of decomposition does not matter for ordinary MC, but for

the CDE and/or RQMC, it does matter (Glasserman 2004, L’Ecuyer 2009).

Denoting F (x) = P[X ≤ x] = P[h(Y)≤ x], the density can be written as

f(x) = F ′(x) = lim
δ→0

F (x+ δ)−F (x)

δ
= lim

δ→0

P[x< h(Y)≤ x+ δ]

δ
.

For the CDE, we will hide one component of the vector Z= (Z1, . . . ,Zs)
t, say Zj, and condition on

the other ones. Let Z−j denote the vector Z with coordinate j removed, and let Ỹ(z) = Ỹ(z;Z−j)
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and γ(z) = γ(z;Z−j) = h(Ỹ(z)) denote the values of Y and of h(Y) as functions of Zj = z when

Z−j is fixed. We will assume from here that for any realization of Z−j, γ(z;Z−j) is a monotone

non-decreasing function of z, so that γ−1(x) = inf{z ∈ R : γ(z) ≥ x} is well defined for any x.

Conditional on Z−j, we then have

P[x< h(Y)≤ x+ δ |Z−j] = P[x< γ(Zj)≤ x+ δ |Z−j] = P[z <Zj ≤ z+ ∆ |Z−j]≈ φ(z)∆

where z = γ−1(x), z+ ∆ = γ−1(x+ δ), and φ is the standard normal density. Taking the limit gives

f(x |Z−j) = lim
δ→0

P[z <Zj ≤ z+ ∆ |Z−j]
δ

= lim
δ→0

φ(z)∆

δ
=
φ(z)

γ′(z)
=
φ(γ−1(x))

γ′(γ−1(x))
.

Note that the function γ and its inverse γ−1 depend on Z−j. This means that in general, computing

z = γ−1(x) for any given x means inverting a different function for each sample realization.

Arithmetic average for a GBM. One class of applications (among others) leading to this

multivariate normal model is the following. Consider a geometric Brownian motion (GBM) observed

at times 0 = t0 < t1 < · · ·< ts. The GBM is defined as {S(t) = exp(Y (t)), t≥ 0} where {Y (t), t≥ 0}

is a Brownian motion with drift and variance parameters µ and σ2, so we have Y (t0) = 0 and

Y (tj) = Y (tj−1) + (tj − tj−1)µ+
√
tj − tj−1σZj, (21)

where Z1, . . . ,Zs are i.i.d. N(0,1). The vector Y = (Y1, . . . , Ys)
t = (Y (t1), . . . , Y (Ts))

t has a mul-

tivariate normal distribution with mean vector µ = (t1, . . . , ts)µ and covariance matrix C with

elements ci,j = tiσ
2 for i < j.

One example of payoff function in this setting is X = h(Y) = max(0, S̄ −K) where S̄ = (S1 +

· · ·+Ss)/s, Sj = S(tj) = eYj for all j, and K > 0 is a constant. This X can represent the payoff of

an Asian option (we ignore the discount factor). The density of X over the interval (0, b) for b > 0

is the same as the density of S̄ over the interval (K,K + b), so we will focus on estimating the

density of S̄. Thus, in our numerical examples, we will simply take X = h(Y) = S̄.

Hiding the last observation. One simple way to apply the CDE is to simulate the process Y

sequentially as in (21) but hide Zs and take the conditional expectation instead. This is equivalent

to using the Cholesky decomposition for C. We have

P[S̄ ≤ x |Z−s] = P[Ss ≤ sx− (S1 + · · ·+Ss−1) |Z−s] = P[Ys ≤ ln[sx− (S1 + · · ·+Ss−1)] |Z−s]

= P[Zs ≤W (x)] = Ψ(W (x)),

where

W (x) =
ln[sx− (S1 + · · ·+Ss−1)]−Ys−1− (ts− ts−1)µ√

ts− ts−1σ
.
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Taking the derivative with respect to x gives the unbiased density estimator

∂

∂x
P[S̄ ≤ x |Z−s] = ψ(W (x))W ′(x) =

ψ(W (x))s

[sx− (S1 + · · ·+Ss−1)]
√
ts− ts−1σ

. (22)

Unfortunately, this sequential CDE is ineffective, because hiding only the last value does not remove

much information, so the conditional density turns out to have a large variance.

Brownian bridge construction. A more effective approach uses a Brownian bridge construc-

tion to sample the process, as follows (Glasserman 2004). The goal is to be able to hide one standard

normal Zs that has much more impact on the payoff X than in the previous sequential setting. To

simplify the notation, we assume here that s is a power of 2, say s= 2k. First sample Ys = Y (ts)

directly from its unconditional normal distribution, using Zs. This gives Ys = tsµ+
√
tsσZs. Then,

given Ys = ys, we sample Ys/2 = Y (ts/2) from its normal distribution conditional on Ys = ys, which is

normal with mean ys/2 and variance (ts− ts/2)(ts/2− t0)σ2/(ts− t0), then sample Ys/4 conditionally

on Ys/2, then Y3s/4 conditionally on (Ys/2, Ys), and so on. For the CDE, we can hide again Zs, but

this time it means that we hide the impact of Zs (or equivalently of Ys) on the entire trajectory.

To do that, we can sample the intermediate values Y1, . . . , Ys−1 conditional on Zs = zs = 0, which

gives say Y 0
1 , . . . , Y

0
s−1, and then write X as a function of zs conditional on these values, that is,

conditional on Z−s = (Z1, . . . ,Zs−1). This gives the function X = γ(zs). By putting Y 0
s = tsµ, we

have Ys = Y 0
s +σZs

√
ts and Yj = Y 0

j + (tj/ts)σZs
√
ts = Y 0

j +σZstjt
−1/2
s . Then,

X = S̄ =
1

s

s∑
j=1

eYj =
1

s

s∑
j=1

eY
0
j +Zsσtjt

−1/2
s .

This gives

γ(z) =
1

s

s∑
j=1

eY
0
j +zσtjt

−1/2
s .

and

γ′(z) =
1

s

s∑
j=1

eY
0
j +zσtjt

−1/2
s σtjt

−1/2
s .

The CDE at x= γ(z) is then f(x |Z−j) = φ(z)/γ′(z). We call it the bridge CDE.

To compute this density at a specified x, we need to compute z = γ−1(x). Unfortunately, we

have no explicit formula for γ−1 in this case, so it seems we have to compute a root of γ(z)−x= 0

numerically. To evaluate the density at the ne evaluation points e1, . . . , ene in (a, b), we can proceed

as follows. We first compute x∗ = γ(0) and let j∗ be the smallest j for which ej ≥ x∗. We compute

z = wj∗ such that γ(wj∗) = ej∗ . This can be done via Newton iteration, zk = zk−1 − (γ(zk−1) −

ej∗)/γ
′(zk−1), starting with z0 = 0. Then, for j = j∗ + 1, . . . , ne, we use again Newton iteration to

find z = wj such that γ(wj) = ej, starting at z0 = wj−1. We do the same to find z = wj such that

γ(wj) = ej for j = j∗−1, . . . ,1, starting at z0 =wj+1. This provides the point wj required to evaluate
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Figure 10 Estimated density (left) and log IV as a function of logn (left) for the Asian option.

the conditional density at ej, for each j. We have to repeat this procedure for each realization of

Z−j, because the function γ depends on Z−j. This implies additional computations. However, the

gain in accuracy can be quite significant.

Table 10 Values of ν̂ and e19 for the Asian option, with sequential and bridge CDE constructions.

ν̂ e19

sequential KDE
MC -0.78 -20.4
Sob+LMS -0.76 -20.6

sequential CDE

MC -1.00 -19.9
Lat+s -1.07 -20.3
Lat+s+b -1.01 -20.1
Sob+LMS -1.00 -20.0

bridge CDE

MC -1.04 -27.9
Lat+s -1.60 -40.0
Lat+s+b -1.74 -45.0
Sob+LMS -2.01 -46.9

For a numerical illustration, we take S0 = 100, r= 0.1, σ = 0.12136, µ= r− σ2/2, K = 101, and

X = max(0, S̄ −K). We estimate the density over [a, b] = [101, 128.13]. To approximate the root

of γ(z)− x= 0 for the bridge CDE, we used five Newton iterations. Doing more iterations made

no significant difference. The results are in Table 10 and Figure 10. We find that RQMC with

the bridge CDE performs extremely well. For example, for Sob+LMS, the MISE with n= 219 is

approximately 2−46.9, which is about 219 (half a million) times smaller than for the same CDE with

MC, and it decreases as n−2. To illustrate the differences in performance between the two different

strategies of conditioning, we include in Figure 11 a plot of 5 single realizations of the sequential

CDE (left) and of the bridge CDE (right), similar to what we did for the cantilever example. The

blue lines depict these individual realizations, whereas the red line shows their average and the

black line the true density. We see that, for the sequential CDE, what we hide does not have much
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variance, which results in narrow high peaks of the estimator. In contrast, the realizations for the

bridge CDE are much wider, smoother curves, which explains why RQMC works better for this

strategy. With a KDE, the MISE with n= 219 is about 221 ≈ 2 million times larger with the same

Sobol’ points and 226 ≈ 67 million times larger with MC. With the sequential CDE, RQMC is

ineffective and the IV of the MC estimator is also quite large, as expected.
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Figure 11 Five realizations of the density estimator (blue), their average (red), and the true density (thick black)

for the sequential CDE (left) and the bridge CDE (right), for the Asian option example.

4.9. Estimating a quantile with a confidence interval

For 0< q < 1, the q-quantile of the distribution of X is defined as ξq = F−1(q) = inf{x : F (x)≥ q}.

Given n i.i.d. observations of X, a standard (consistent) estimator of ξq is the q-quantile of the

empirical distribution, defined as ξ̂q,n =X(dnqe), where X(1), . . . ,X(n) are the n observations sorted in

increasing order (the order statistics). We assume that the density f(x) is positive and continuously

differentiable in a neighborhood of ξq. Then we have the central limit theorem (CLT):

√
n(ξ̂q,n− ξq)/σξ⇒N (0,1) for n→∞,

where σ2
ξ = q(1−q)/f2(ξq) (Serfling 1980). This provides a way to compute a confidence interval on

ξq, but requires the estimation of f(ξq), which is generally difficult. Some approaches for doing this

include finite differences with the empirical cdf, batching, and sectioning (Asmussen and Glynn

2007, Nakayama 2014a,b).

In our setting, one can do better by taking the q-quantile ξ̂cmc,q,n of the conditional cdf

F̂cmc,n(x) =
1

n

n∑
i=1

F (x | G(i)).

That is, ξ̂cmc,q,n = inf{x : F̂cmc,n(x) ≥ q}. This idea was already suggested by Nakayama (2014b),

who pointed out that this estimator obeys a CLT just like ξ̂q,n, but with the variance constant σ2
ξ
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replaced by σ2
cmc,ξ = Var[F (ξq | G)]/f2(ξq)≤ σ2

ξ . This is an improvement on the quantile estimator

itself. Our CDE approach also provides an improved estimator of the density f(ξq) which appears

in the variance expression. We estimate f(ξq) by f̂cde,n(ξ̂cmc,q,n). This provides a more accurate

confidence interval of ξq.

Further improvements on the variances of both the quantile and density estimators can be

obtained by using RQMC to generate the realizations G(i). In particular, if g̃(ξq,u) = F (ξq | G) is

a sufficiently smooth function of u, Var[ξ̂cmc,q,n] can converge at a faster rate than O(n−1). When

using RQMC with nr randomizations to estimate a quantile, the quantile estimator will be the

empirical quantile of all the nr×n observations.

A related quantity is the expected shortfall, defined as cq = E[X |X > ξq] = ξq −E[(ξq −X)+]/q

which is often estimated by its empirical version (Hong et al. 2014)

ĉq,n = ξ̂q,n−
1

nq

n∑
i=1

(ξ̂q,n−Xi)
+.

This estimator obeys the CLT
√
n(ĉq,n−cq)/σc⇒N (0,1) for n→∞, where σ2

c = Var[(ξq−X)+]/q2,

if this variance is finite (Hong et al. 2014). By improving the quantile estimator, CDE+RQMC can

also improve the expected shortfall estimator a well as the estimator of the variance constant σ2
c

and the quality of confidence intervals on cq. We leave this as a topic for future work.

5. Conclusion

We have examined a novel approach for estimating the density of a random variable generated by

simulation from a stochastic model, by conditioning. The resulting CDE is unbiased and its MISE

converges at a faster rate than for other popular density estimators such as the KDE. We have also

shown how to further reduce the IV, and even improve its convergence rate, by combining the CDE

with RQMC sampling. Our numerical examples show that this combination can be very efficient.

It sometimes reduces the MISE by factors over a million (cf. the cantilever example). Our CDE

approach also outperforms the recently proposed GLR method, and CDE+RQMC outperforms

both GLR+RQMC and KDE+RQMC, in all our examples.

Suggested future work includes experimenting this methodology on larger and more complicated

stochastic models, designing and exploring different types of conditioning, and perhaps adapting

the Monte Carlo sampling strategies to make the method more effective (e.g., by changing the way

X is defined in terms the basic input random variates). Its application to quantile and expected

shortfall estimation also deserves further study.
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