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Abstract. We consider the problem of estimating the density of a random variable X that can be sampled
exactly by Monte Carlo (MC). We investigate the effectiveness of replacing MC by randomized
quasi Monte Carlo (RQMC) or by stratified sampling over the unit cube, to reduce the integrated
variance (IV) and the mean integrated square error (MISE) for kernel density estimators. We
show theoretically and empirically that the RQMC and stratified estimators can achieve substantial
reductions of the IV and the MISE, and even faster convergence rates than MC in some situations,
while leaving the bias unchanged. We also show that the variance bounds obtained via a traditional
Koksma-Hlawka-type inequality for RQMC are much too loose to be useful when the dimension
of the problem exceeds a few units. We describe an alternative way to estimate the IV, a good
bandwidth, and the MISE, under RQMC or stratification, and we show empirically that in some
situations, the MISE can be reduced significantly even in high-dimensional settings.
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1. Introduction. We are interested in estimating by simulation the density of a random
variable X = g(U) where U = (U1, . . . , Us) ∼ U [0, 1]s (uniform over the unit hypercube) and
g : [0, 1]s → R. We assume that g(u) can be computed easily for any u ∈ [0, 1]s, that X has
density f (with respect to the Lebesgue measure) over R and we want to estimate f over some
bounded interval [a, b]. A flurry of stochastic simulation applications fit this framework; see
[1, 9], for example. The vector U represents the independent uniform random numbers that
drive the simulation.

We denote by f̂n a density estimator based on a sample of size n, and we measure the
quality of the estimator over [a, b] by the mean integrated square error (MISE), defined as

MISE =

∫ b

a
E[f̂n(x)− f(x)]2dx,

which we want to minimize. The MISE can be decomposed as the sum of the integrated
variance (IV) and the integrated square bias (ISB):

MISE = IV + ISB =

∫ b

a
E(f̂n(x)− E[f̂n(x)])2dx+

∫ b

a
(E[f̂n(x)]− f(x))2dx.
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Minimizing the MISE generally involves a bias-variance tradeoff.
The density is often estimated by a histogram for visualization, but one can do better

with more refined techniques, such as a kernel density estimator (KDE), defined as follows.
One selects a kernel k : R → R, and a constant h > 0 called the bandwidth, which acts as a
horizontal stretching factor for the kernel. The kernels considered here are smooth probability
densities that are symmetric about 0. In our experiments, we will use the Gaussian kernel,
which is the standard normal density. Given a sample X1, . . . , Xn, the KDE at x ∈ R is

(1.1) f̂n(x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
.

Density estimation methods such as KDEs were developed for the context where an in-
dependent sample X1, . . . , Xn from the unknown density f is given. Here we assume that we
can generate a sample of arbitrary size by choosing where to sample. With crude Monte Carlo
(MC), we would estimate the density from a sample X1, . . . , Xn of n independent realizations
of X, obtained by simulation. Then the analysis is the same as if the data was collected from
the real world, and the standard KDE methodology would apply [23]. In that context, the IV
is O(1/nh) and the ISB is O(h4), so the MISE is O(n−4/5) if h is chosen optimally. This is
slower than the O(n−1) canonical rate for the variance when estimating the mean.

Our aim in this paper is to study if, when, and how using randomized quasi-Monte Carlo
(RQMC) or stratification can provide a KDE with a smaller MISE than with crude MC. It is
well known that when we estimate the mean E[X] by the average X̄n = (X1 + · · · + Xn)/n,
under appropriate conditions, using RQMC provides an unbiased estimator whose variance
converges at a faster rate (in n) than the MC variance [5, 12, 14, 17, 18]. This variance bound
is easily proved by squaring a worst-case deterministic error bound obtained via a version
of the Koksma-Hlawka (KH) inequality, which is a Hölder-type inequality that bounds the
worst-case integration error by a product of the variation of g and the discrepancy of the set of
points U at which g is evaluated. Hundreds of papers have studied this. Of course, the faster
rate is an asymptotic property and the KH bound may hide a large constant factor, so it could
happen that this bound is larger than the MC variance for a given n. But in applications,
the true RQMC variance is often much smaller than both the bound and the MC variance,
even for moderate sample sizes. The bottom line is that RQMC is practically useful in many
applications, when estimating the mean by an average. Stratification of the unit hypercube
also provably reduces the variance of X̄n, although its applicability degrades quickly with the
dimension, and it is typically dominated by RQMC when the dimension exceeds 1 or 2 [12].

Since the KDE (1.1) at any given point is an average just like the estimator of an expec-
tation, it seems natural to use RQMC to estimate a density as well, and to derive variance
bounds via the same methods as for the mean estimator. This was the starting point of this
paper. At first, we thought that the KH inequality would provide bounds on the IV of the
KDE that converge faster for RQMC than for MC, and that a faster convergence rate of the
MISE would follow. But things are not so simple. The best upper bound on the IV that KH
gave us is O(n−2+εh−2s) for any ε > 0, while the ISB remains O(h4) as with MC. This gives a
bound of O(n−4/(2+s)+ε) on the MISE if we select h to minimize this bound. The unwelcome
h−2s factor in the IV bound comes from the increase of the Hardy-Krause variation of each
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summand in (1.1) as a function of the underlying uniforms when h decreases. This effect
grows exponentially in s. To exploit the smaller power of n in the IV bound to reduce the
MISE bound, one must simultaneously decrease the ISB. One can achieve this by taking a
smaller h, which in turn drastically increases the IV bound. This limits seriously the rate at
which the MISE bound can converge. The resulting rate for the bound beats the MC rate only
for s < 3. For a special type of RQMC method, namely a digital net with a nested uniform
scramble, we also prove that the IV and MISE rates are never worse than for MC.

For the KDE combined with a stratification of the unit hypercube into subcubes, which
could be seen as a weak form of RQMC, we obtain bounds that converge as O(n−(s+1)/sh−2)
for the IV and O(n−(2/3)(s+1)/s) for the MISE. The latter beats the MC rate for all s < 5.
These bounds are proved using arguments that do not involve KH and they are tight. We
show examples where the IV and the MISE with stratification behave just like the bounds.

These results do not imply that stratification works better than RQMC, or that RQMC
does not beat MC in more than two dimensions. The KH bounds are only upper bounds and
nothing precludes that the true IV and MISE can be significantly smaller with RQMC than
with MC or stratification, even if the RQMC variance bound is larger and converges more
slowly. At a minimum, we should test empirically how the KDE really behaves in terms of IV
and MISE under RQMC and under stratification. We also need a procedure to choose a good
bandwidth h for the KDE with these sampling methods, since it will generally differ from a
good h with MC. We do that in the second half of the paper. Our aim is to assess empirically
the improvements achieved for reasonable sample sizes n in actual simulations. We use a
regression model in log scale to estimate the IV and the MISE as functions of h and n, and
the optimal h as a function of n. We find that RQMC often reduces the IV and the MISE
significantly, even in more than 3 dimensions, and that it performs better than stratification.
Sometimes, the convergence rate of the MISE is not improved but there is a significant gain in
the constant and in the actual MISE. In all our experiments, the MISE was never larger with
RQMC or stratification than with MC. We prove that this always holds for stratification. But
for RQMC, we think that proving the observed gains in theorems would be very hard, hence
the importance of testing with diverse numerical examples.

The remainder is organized as follows. In Section 2, we recall the definitions and basic
properties of KDEs, including a strategy to find a good h under MC. In Section 3, we recall
classical error and variance bounds for RQMC integration. In Section 4, we use classical
QMC theory to derive KH bounds on the IV and the MISE for a KDE under RQMC, under
reasonable assumptions. In Section 5 we derive IV and MISE bounds for a KDE combined
with stratification. We have bounds that converge at a faster rate than for MC when the
dimension is small. We also show that stratification never increases the IV or MISE compared
with MC. In Section 6, we report on numerical experiments in which we estimate and compare
the true IV and MISE of the KDE with MC, RQMC, and stratification, for various examples.
We also provide a method to find a good bandwidth h, which is necessary for their effective
implementation, and we use a regression model to capture how the IV and the MISE really
behave in the examples. We give our conclusions in Section 7.

We adopt the usual Θ(·) notation for the exact order : h(n) = Θ(ϕ(n)) means that there
is some n0 and constants c2 > c1 > 0 such that for all n ≥ n0, c1 ≤ h(n)/ϕ(n) ≤ c2. This is
less restrictive than h(n) ∝ ϕ(n). Also, c(n, h) = O(ϕ(n, h)) means that there is a constant
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K > 0 such that for all integers n ≥ 1 and all h ∈ (0, 1], c(n, h) ≤ Kϕ(n, h).

2. Kernel density estimators with MC. We recall asymptotic properties of the KDE
with MC when nh → ∞ and h → 0 together. The details can be found in [8, 23, 26],
for example. The asymptotic MISE, IV, and ISB in this regime are denoted AMISE, AIV,
and AISB, respectively. If IV(n, h) denotes the IV for a given (n, h), writing AIV = g̃(n, h)
for some function g̃ means that limn→∞, g̃(n,h)→0 IV(n, h)/g̃(n, h) = 1 and similarly for the
AMISE and AISB. For measurable functions ψ : R → R, we define the roughness functional
R(ψ) =

∫ b
a (ψ(x))2dx and the “moments” µr(ψ) =

∫∞
−∞ x

rψ(x)dx, for integers r ≥ 0. We
make the following assumptions in the rest of the paper.

Assumption 1. The kernel k is a probability density function which is symmetric about 0,
nondecreasing on (−∞, 0] and nonincreasing on [0,∞), has a finite mode k(0) < ∞ and its
second moment is strictly positive and finite. Thus, µ0(k) = 1, µ1(k) = 0, and 0 < µ2(k) <
∞.

Assumption 2. The density f is at least four times differentiable over [a, b] (including at
the boundaries) and R(f (r)) <∞ for r ≤ 4, where f (r) is the rth derivative of f .

With MC, we have AIV = n−1h−1µ0(k2) and AISB = (µ2(k))2R(f ′′)h4/4. The AMISE is
minimized by taking h5 = Q/n where Q := µ0(k2)/[(µ2(k))2R(f ′′)], if Q is well-defined and
finite. This gives

AMISE = (5/4)Q−1/5µ0(k2)n−4/5.

Thus, finding a good h amounts to finding a good approximation of R(f ′′). But since f is
precisely the unknown function that we want to estimate, this seems to be a circular problem.
However, perhaps surprisingly, a viable approach is to estimate R(f ′′) by estimating f ′′ also
via a KDE, integrating its square over [a, b], and plugging this estimate into the formula for
the optimal h [2, 8, 22, 23]. To do that, one needs to select a good h to estimate f ′′ by a KDE.
The asymptotically optimal h depends in turn on R(f (4)) where f (4) is the fourth derivative
of f . Then R(f (4)) can be estimated by integrating the KDE of f (4) and this goes on ad
infinitum. In practice, one can select an integer r0 ≥ 1, get a rough estimate of R(f (r0+2)),
and start from there. One simple way of doing this is to pretend that f is a normal density
with a mean and variance equal to the sample mean µ̂ and variance σ̂2 of the data, and then
compute R(f (r0+2)) for this normal density. To estimate the rth derivative f (r), one can take
the sample derivative of the KDE with a smooth kernel k, yielding

(2.1) f̂ (r)
n (x) ≈ 1

nhr+1

n−1∑
i=0

k(r)

(
x−Xi

h

)
.

The asymptotically optimal h to use in this KDE is

(2.2) h
(r)
∗ =

(
(2r + 1)µ0((k(r))2)

µ2
2(k)2R(f (r+2))n

)1/(2r+5)

.

We will use this strategy to estimate a good h in our experiments with MC and RQMC, with
a Gaussian kernel, with r0 = 2.
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In this paper we always take h to be the same for all x ∈ [a, b]. It is possible to improve
the kernel density estimation by using a locally varying bandwidth h(x) > 0. For instance,
it is advantageous to have a larger h = h(x) where f(x) is smaller. The interested reader is
referred to [23, 25].

3. Error and variance bounds for RQMC integration. We recall classical error and vari-
ance bounds for RQMC integration. They can be found in [5], [10], [15], and [17], for example.
We will use them to obtain bounds on the AIV for the KDE.

The integration error of g : [0, 1]s → R with the point set Pn = {u1, . . . ,un} ⊂ [0, 1]s is

En =
1

n

n∑
i=1

g(ui)−
∫

[0,1]s
g(u)du.

Let v denote a subset of coordinates, v ⊆ S := {1, . . . , s}. For any u = (u1, . . . , us) ∈ [0, 1]s

we denote by uv the projection of u on the coordinates in v and by (uv,1) the point u in
which uj has been replaced by 1 for each j 6∈ v. We write gv := ∂|v|g/∂uv for the partial
derivative of g with respect to each of the coordinates in v. When gv exists and is continuous
for v = S, the Hardy-Krause variation of g is

(3.1) VHK(g) =
∑
∅6=v⊆S

∫
[0,1]|v|

|gv(uv,1)| duv.

The star-discrepancy of Pn is

D∗(Pn) = sup
u∈[0,1]s

∣∣∣∣vol[0,u)− |Pn ∩ [0,u)|
n

∣∣∣∣ ,
where vol[0,u) is the volume of the box [0,u). The Koksma-Hlawka inequality states that

(3.2) |En| ≤ VHK(g) ·D∗(Pn).

Several known construction methods give Pn with D∗(Pn) = O((log n)s−1/n) = O(n−1+ε) for
all ε > 0. They include lattice rules and digital nets. Therefore, if VHK(g) <∞, it is possible
to achieve |En| = O(n−1+ε) for the worst-case error. It is also known how to randomize the
points of these constructions so that for the randomized points, E[En] = 0 and

(3.3) Var[En] = E[E2
n] = O(n−2+ε).

4. Bounding the convergence rate of the AIV for a KDE with RQMC. Replacing MC
by RQMC does not affect the bias, because f̂n(x) has the same expectation for both, but it
can change the variance. Before trying to bound the variance under RQMC, it is instructive
to recall how it is bounded under MC. To compute (or bound) the IV over an interval [a, b],
we compute (or bound) Var[f̂n(x)] at an arbitrary point x ∈ [a, b] and integrate this bound
over x. Since f̂n(x) is an average of n independent realizations of Y (x) = k((x − X)/h)/h,
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it suffices to compute Var[Y (x)] and we have Var[f̂n(x)] = Var[Y (x)]/n. With the change of
variable w = (x− v)/h, we obtain [23, page 143]:

Var[Y (x)] =
1

h2

∫ ∞
−∞

k2

(
x− v
h

)
f(v)dv − E2[Y (x)]

=
1

h

∫ ∞
−∞

k2(w)f(x− hw)dw − E2[Y (x)] =
f(x)

h

∫ ∞
−∞

k2(w)dw − f2(x) +O(h).

Integrating over x ∈ [a, b], gives IV = p0 µ0(k2)/(nh) − R(f)/n + O(h/n) where p0 =∫ b
a f(x)dx ≤ 1.

With RQMC, this also holds for a single RQMC point Ui and X = Xi = g(Ui), but to
obtain Var[f̂n(x)], we can no longer just divide Var[Y (x)] by n, because the n realizations of
Y (x) are not independent. RQMC is effective if and only if these realizations are negatively
correlated, in the sense that if Yi = h−1k((x−Xi)/h), then

∑
i 6=j Cov(Yi, Yj) ≤ 0. This would

imply that RQMC can never be worse than MC, but this seems hard to prove.
We now take a different path, in which we examine how the KH inequality (3.2) can be

used to bound Var[f̂n(x)]. With X = g(U), we can write

(4.1) f̂n(x) =
1

n

n∑
i=1

g̃(x,Ui) where g̃(x,Ui) := Yi =
1

h
k

(
x− g(Ui)

h

)
.

Thus, f̂n(x) can be interpreted as an RQMC estimator of E[g̃(x,U)] =
∫

[0,1]s g̃(x,u)du. To

apply the bound in (3.3) to this estimator, we need to bound the variation of g̃(x, ·), by
bounding each term of the sum in (3.1).

To provide insight, we first examine the special case where s = 1 and g is nondecreasing
over [0, 1], under Assumption 1. Then g̃(x, u) = k((x − g(u))/h)/h is nonincreasing over the
u with g(u) ≤ x and nondecreasing over u with g(u) ≥ x. In that case VHK(g̃(x, ·)) is the
ordinary one-dimensional total variation, and then

(4.2) VHK(g̃(x, ·)) ≤
∣∣∣∣1hk(0)− 1

h
k

(
x− g(0)

h

)∣∣∣∣+

∣∣∣∣1hk(0)− 1

h
k

(
x− g(1)

h

)∣∣∣∣ ≤ 2k(0)

h
.

The same bound holds for nonincreasing functions g. More generally, if g is monotone within
each of M intervals that partition the domain [0, 1] then VHK(g̃(x, ·)) ≤ 2Mk(0)/h. The
factor of 2 is necessary because k is potentially increasing and then decreasing within each
of those intervals. Note that there are one-dimensional point sets Pn with D∗(Pn) ≤ 1/n.
With such point sets, we obtain Var[f̂n(x)] ≤ (2Mk(0))2/(nh)2, so AIV = O((nh)−2). With
h = Θ(n−1/3), this gives AMISE = O(n−4/3).

We now consider the general case s ≥ 1. To bound VHK(g̃(x, ·)) we will make a similar
change of variables as for the IV under MC. We need additional assumptions on k and g.

Assumption 3. The kernel function k : R → R is s times continuously differentiable and
its derivatives up to order s are integrable and uniformly bounded over R.

Assumption 4. Let g : [0, 1]s → R be piecewise monotone in each coordinate uj when the
other coordinates are fixed, with a number of monotone pieces (which is 1 plus the number of
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times that the function switches from strictly decreasing to strictly increasing or vice-versa,
in uj) that is bounded uniformly in u by an integer Mj. We also assume that the first-order
partial derivatives of g are continuous and that ‖gv‖∞ < ∞ for all v ⊆ S. This implies that
any product of partial derivatives of g of order at most one in each variable is integrable.

Because the Hardy–Krause variation (3.1) involves mixed partial derivatives of g̃(x, ·) of
order up to s, things unfortunately become considerably more complicated than for MC.
Roughly speaking, every derivative causes an additional factor h−1, while we may dispose of
only one such factor through a change of variables. This is reflected in Proposition 4.1 below.
Similar to the one-dimensional case, we need to take into account how often g changes its
monotonicity direction, and this is captured by the Mj ’s. For each j ∈ S, let

Gj =

∥∥∥∥∥∥
∏

`∈S\{j}

g{`}

∥∥∥∥∥∥
∞

,

cj = Mj ·
(
‖k(s)‖1 ·Gj + I(s = 2) · ‖k(s)‖∞ · ‖g{1,2}‖1

)
<∞,

where I(·) is the indicator function, so the expression for cj contains an extra term when s = 2.
The source of this extra term is that for s = 2, the only partition of {1, 2} which contains no
singletons is {1, 2} itself, and it gives a term in h−2 = h−s, whereas for s > 2, all the extra
terms are O(h−s+1). Our main result of this section is:

Proposition 4.1. Let k and g satisfy Assumptions 1, 3 and 4, and c = minj∈S cj. Then the
Hardy-Krause variation of g̃(x,u) = h−1k((x− g(u))h−1) (as a function of u) satisfies

(4.3) VHK(g̃(x, ·)) ≤ ch−s +O(h−s+1).

Note that the constants cj depend on g via Mj and Gj (plus an extra term when s = 2). A
large Mj means that g changes the sign of its slope many times in the direction of coordinate j.
A large Gj means that the product of the slopes in the directions of the other coordinates can
attain large values. When we have both, then cj is large. Observe that the bound (4.3) uses
the smallest cj . In case g is constant with respect to one coordinate ` 6= j, then Gj = 0, cj = 0,
and c = 0. That is, the term in h−s disappears from (4.3) and the bound becomes O(h−s+1).
This agrees with the fact that g is then effectively a (s− 1)-dimensional function. Likewise, if
g is almost constant (has very little variation) with respect to one or more coordinate(s) ` 6= j,
then Gj and therefore cj will be small, unless the other terms in the product are very large.
Before proving this proposition, we state a corollary that bounds the AIV and the AMISE
rates under RQMC.

Corollary 4.2. Let k and g satisfy Assumptions 1 to 4. For a KDE with kernel k, with
the underlying observations obtained via sets Pn of n RQMC points for which D∗(Pn) =
O(n−1+ε) for all ε > 0 when n → ∞, by combining (4.3) with (3.2) and squaring, we find
that AIV = O(n−2+εh−2s) for all ε > 0. Then, by taking h = Θ(n−1/(2+s)), we obtain that
AMISE = O(n−4/(2+s)+ε) for all ε > 0. The exponent of n in this AMISE bound beats the
MC rate for s < 3 and is almost equal to the MC rate for s = 3.
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Let Π(v) denote the set of all partitions of a set of coordinate indices v ⊆ S, and let Π1(v)
denote the subset of all partitions that contain at least one singleton. For each partition
P ∈ Π1(v), we select a particular singleton and denote it by {j(P )}. Removing that singleton
from P yields a partition of v∗ = v \ {j(P )} which we denote by P ∗.

The proof of the proposition will use the following lemma, which describes when the
aforementioned change of variable works and how it removes a factor 1/h from the bound.

Lemma 4.3. Let Assumptions 1, 3 and 4 hold, let h > 0, v ⊆ S, and P ∈ Π1(v). Then∫
[0,1]|v|

∣∣∣∣∣k(|P |)
(
x− g(uv,1)

h

)
·
∏
w∈P

gw(uv,1)

∣∣∣∣∣ duv ≤ h ·Mj(P ) ·

∥∥∥∥∥ ∏
w∈P ∗

gw

∥∥∥∥∥
∞

· ‖k(|P |)‖1.

Proof. We assume without loss of generality that 1 ∈ v and j(P ) = 1. We make the
change of variables

(4.4) u1 7→ w = (x− g(uv,1))/h.

For any uv ∈ [0, 1]|v| with fixed uv∗ ∈ [0, 1]|v|−1, we partition [0, 1] into a part N (uv∗) where
g(uv,1) is constant in u1 and into sets Dl(uv∗), 1 ≤ l ≤ L(uv∗) ≤ M1, on which it is either
strictly decreasing or strictly increasing in u1. Since g{1} is continuous by assumption, each
of these sets is measurable. The restriction of g{1} to N (uv∗) equals 0 identically. In all the
other sets Dl(uv∗) we apply the change of variables (4.4). Considering this in the left-hand
side of the claim leads to∫

[0,1]|v|

∣∣∣∣∣k(|P |)
(
x− g(uv,1)

h

) ∏
w∈P

gw(uv,1)

∣∣∣∣∣ duv

=

∫
[0,1]|v|−1

L(uv∗ )∑
l=1

∫
Dl(uv∗ )

∣∣∣∣∣k(|P |)
(
x− g(uv,1)

h

) ∏
w∈P

gw(uv,1)

∣∣∣∣∣du1duv∗

≤ h

∫
[0,1]|v|−1

L(uv∗)

∫ ∞
−∞

∣∣∣∣∣k(|P |)(w)
∏

w∈P ∗
gw(uv,1)

∣∣∣∣∣ dwduv∗

≤ h ·M1 · ‖k(|P |)‖1 ·

∥∥∥∥∥ ∏
w∈P ∗

gw

∥∥∥∥∥
∞

,

where we used Hölder’s inequality in the last step.

Proof of Proposition 4.1. We rewrite each summand w.r.t. v ⊆ S in (3.1) with the help
of Faà di Bruno’s formula (see [7, Proposition 1]) as follows∫

[0,1]|v|
|g̃v(x,uv,1)|duv =

1

h

∫
[0,1]|v|

∣∣∣∣∣ ∑
P∈Π(v)

k(|P |)
(
x− g(uv,1)

h

) ∏
w∈P

∂|w|

∂uw

(
x− g(uv,1)

h

) ∣∣∣∣∣duv

≤
∑

P∈Π(v)

1

h|P |+1

∫
[0,1]|v|

∣∣∣∣∣k(|P |)
(
x− g(uv,1)

h

) ∏
w∈P

gw(uv,1)

∣∣∣∣∣duv.(4.5)
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If P ∈ Π1(v), we bound the corresponding summand in (4.5) via Lemma 4.3. If P 6∈ Π1(v),
we apply Hölder’s inequality to obtain the upper bound

1

h|P |+1
· ‖k(|P |)‖∞ ·

∥∥∥ ∏
w∈P

gw

∥∥∥
1
.

Furthermore, we observe that each element of P ∈ Π(v) \ Π1(v) has a cardinality of at least
2. Therefore, P can contain at most b|v|/2c elements. This gives the following bound on
VHK(g̃(x, ·)), which holds for any j ∈ S:

VHK(g̃(x, ·)) ≤
∑
∅6=v⊆S

 ∑
P∈Π1(v)

Mj(P )

h|P |
‖k(|P |)‖1 ·

∥∥∥ ∏
w∈P∗

gw

∥∥∥
∞

+
∑

P∈Π(v)\Π1(v)

1

h|P |+1
‖k(|P |)‖∞ ·

∥∥∥ ∏
w∈P

gw

∥∥∥
1


≤ h−sMjGj ‖k(s)‖∞ +O(h−s+1) +

∑
∅6=v⊆S

h−b|v|/2c−1
∑

P∈Π(v)\Π1(v)

‖k(|P |)‖∞ ·
∥∥∥ ∏

w∈P
gw

∥∥∥
1
.

For s = 1 this already proves the claim. For s = 2, the only partition of S that contains no
singleton is S itself and the result follows. For s ≥ 3 we have bs/2c+ 1 ≤ s− 1, and then∑

∅6=v⊆S

h−b|v|/2c−1
∑

P∈Π(v)\Π1(v)

‖k(|P |)‖∞ ·
∥∥∥ ∏
w∈P

gw

∥∥∥
1

= O(h−s+1).

The bound of Proposition 4.1 suggests that the IV could converge at a much worse rate
with RQMC than with MC when s is large. However, the next proposition, based on a result of
[19], provides a different bound that does not grow as h−2s when h decreases, for a particular
type of RQMC point set, namely a (t,m, s)-net in base 2 randomized by a nested uniform
scramble (NUS). This type of point set contains 2m points in s dimensions, the t parameter
measures the uniformity in some sense (the smaller the better) [5, 15], and the NUS shuffles
the points in some particular way [16, 17]. We state the following result for base b = 2, but
it can be extended to a general prime base b ≥ 2.

Proposition 4.4. Let Pn be a (t,m, s)-net in base 2 randomized by NUS, and let Assump-
tion 1 hold. Then the IV of f̂n satisfies

IV ≤ 2t3sµ0(k2)/(nh) +O(h/n).

Moreover for any fixed s ≥ 1, there is a fixed t ≥ 0 for which we know how to construct a
(t,m, s)-net Pn in base 2 for any integer m ≥ 1. By using such a sequence of nets with NUS,
we get IV = O(1/(nh)), and then by taking h = Θ(n−1/5), we obtain MISE = O(n−4/5). That
is, the MISE never converges at a worse rate than with plain MC.

Proof. Let VarMC and VarNUS denote the variance under MC and under NUS, respectively.
Likewise, for any given pair (n, h), let IVMC(n, h) and IVNUS(n, h) denote the IV under MC
and under NUS, respectively, and similarly for the MISE. Under Assumption 1, g̃(x, ·) is
square-integrable over [0, 1]s for any x ∈ [a, b], so we can apply Theorem 1 of [19], which tells
us that

VarNUS[g̃(x,U)] ≤ 2t3sVarMC[g̃(x,U)].
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By integrating, we obtain IVNUS(n, h) ≤ 2t3sIVMC(n, h). We saw earlier that IVMC(n, h) ≤
µ0(k2)/(nh)−R(f)/n+O(h/n), and this proves the displayed inequality.

For the second part, for any s ≥ 1, there is a fixed t ≥ 0 for which we know how to construct
a (t, s)-sequence in base 2; see [24] and [15, Section 4.5], for example. For any integer m, the
first 2m points of such a sequence form a (t,m, s)-net in base 2. Thus, t can be assumed
to be bounded uniformly in m, and therefore IVNUS(n, h) = O(IVMC(n, h)) = O(1/(nh)).
Since MC and NUS give the same ISB, we also have MISENUS(n, h) ≤ 2t3sMISEMC(n, h) =
O(1/(nh) + h4) = O(h−4/5) if we take h = Θ(n−1/5).

5. Stratified sampling of [0, 1)s. In this section, we examine how plain stratified sampling
of the unit hypercube can reduce the IV of the KDE compared with MC. We consider point
sets Pn constructed as in Assumption 5 below. This type of stratified sampling can never
increase the IV compared with MC. We prove this via a standard variance decomposition
argument. Then, under the additional condition that g(u) is monotone with respect to each
coordinate of u, we prove an IV bound that converges at a faster rate than the IV under
MC when s < 5. The KH inequality and the variation of g are not involved in the IV bound
developed here; we work directly with the variance. For this reason, the bound will not contain
the annoying factor h−2s as in Proposition 4.1. On the other hand, the exponent of n will not
be as good. Our main results are Propositions 5.1 and 5.2, and Corollary 5.3.

Assumption 5. The hypercube [0, 1)s is partitioned into n = qs congruent cubic cells Si :=∏s
j=1 [ij/q, (ij + 1)/q), i ∈ I = {i = (i1, i2, . . . , is) : 0 ≤ ij < q for each j}, for some integer

q ≥ 2. We construct Pn = {U1, . . . ,Un} by sampling one point uniformly in each subcube Si,
independently across the subcubes, and put Xi = g(Ui) for i = 1, . . . , n.

Proposition 5.1. Under Assumptions 1 and 5, the IV of a KDE f̂n with kernel k never
exceeds the IV of the same estimator under standard MC, which satisfies IV ≤ µ0(k2)/(nh)−
R(f)/n+O(h/n).

Proof. We can decompose the variance under MC as

Var[g̃(x,U)] = E[Var[g̃(x,U) | U ∈ Si] + Var[E[g̃(x,U) | U ∈ Si]

=
1

n

∑
i∈I

Var[g̃(x,U) | U ∈ Si] +
1

n

∑
i∈I

(µi − µ)2,

where µ = E[g̃(x,U)] and µi = E[g̃(x,U) | U ∈ Si]. By sampling exactly one point in each
cell Si, the stratified sampling removes the second term, and the first term remains the same.
Therefore, stratification never increases Var[f̂n(x)]. The second term also indicates how the
amount of variance reduction depends on how the µi vary between boxes.

Now we know that stratification can do no harm. To show that it can also improve the
convergence rate of the MISE, we need additional conditions.

Assumption 6. For each j ∈ S, the function g : [0, 1)s → R is monotone in uj when the
other s − 1 coordinates are fixed, and the direction of monotonicity in uj (nondecreasing or
nonincreasing) is the same for all values of the other coordinates. Without loss of generality,
we will assume in the rest of the paper that it is nondecreasing in each coordinate. (If it is



DENSITY ESTIMATION BY RANDOMIZED QUASI-MONTE CARLO 11

nonincreasing in uj, one can simply replace uj by 1 − uj in the definition of g and this does
not change the distribution of X = g(U).)

Proposition 5.2. Let Assumptions 1, 5 and 6 hold and let f̂n be a KDE with kernel k
obtained from X1, X2, . . . , Xn. Then the IV of f̂n satisfies

IV ≤ (b− a)s · k2(0) · h−2n−(s+1)/s.

Corollary 5.3. Under Assumptions 1, 2, 5 and 6, the AMISE bound is minimized by taking
h = κn−(s+1)/(6s) with κ6 = [(b− a)s · k2(0)]/[(µ2(k))2R(f ′′)/2], and this gives AMISE =
Kn−ν with ν = (2/3)(s+1)/s and K = (b− a)s·k2(0)κ−2+(µ2(k))2R(f ′′)κ4/4. The exponent
of n in this bound beats the MC rate for all s < 5 and is equal to the MC rate for s = 5.

The corollary is straightforward to prove. It suffices to minimize with respect to h the
sum of the AISB (given in Section 2) and the IV bound.

Our proof of Proposition 5.2 is inspired by [13, Proposition 6]. It combines three lemmas
that we state and prove before proving the proposition. These lemmas could be useful in
other contexts as well. The first lemma bounds the variance of the KDE in terms of a uniform
bound Kn on the variance of the empirical cdf estimator. The other lemmas bound Kn.

Let F be the cdf of the random variable X. For any x ∈ R, the empirical cdf of a sample
X1, X2 . . . , Xn evaluated at x is F̂n(x) := n−1

∑n
i=1 I[Xi ≤ x]. We denote the difference by

∆n(x) = F̂n(x)− F (x). Let Kn := supx∈R Var[∆n(x)] = supx∈R Var[F̂n(x)].

Lemma 5.4. Under Assumption 1, for all x ∈ R, we have

Var[f̂n(x)] ≤ 2h−2k(0)Kn.

Proof. We will prove the inequality

(5.1) Var[f̂n(x)] ≤ Knh
−4

(∫
R
k′
(
x− z
h

)
dz

)2

.

The result follows from this inequality by making the change of variable w = (x− z)/h in the
integral. To prove (5.1), we rewrite the variance of f̂n(x) using integration by parts as follows:

E
[∣∣∣f̂n(x)− E[f̂n(x)]

∣∣∣2] =h−2 E

[∣∣∣∣∫
R
k

(
x− z
h

)
dF̂n(z)−

∫
R
k

(
x− z
h

)
dF (z)

∣∣∣∣2
]

=h−4 E

[∣∣∣∣∫
R

(
F̂n(z)− F (z)

)
k′
(
x− z
h

)
dz

∣∣∣∣2
]

=h−4 E
[∫

R

∫
R

∆n(y)∆n(z)k′
(
x− y
h

)
k′
(
x− z
h

)
dydz

]
.(5.2)

Observe that E[∆n(z)] = 0 since E[F̂n(z)] = F (z). Consequently,

E[∆n(y)∆n(z)] = Cov[∆n(y), ∆n(z)] ≤ Kn.

Finally, (5.1) follows by interchanging the expectation and the integrals in (5.2).
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For all x ∈ R, define H(x) = {u ∈ [0, 1)s : g(u) ≤ x} and its complement H(x) =
[0, 1)s \H(x). Under Assumption 5, let B(x) be the set of subcubes Si that have a nonempty
intersection with both H(x) and H(x). The next lemma bounds the cardinality of B(x) when
g is nondecreasing.

Lemma 5.5. Under Assumptions 5 and 6, for all x ∈ R, |B(x)| ≤ sn(s−1)/s.

Proof. Let I0 = {i = (i1, i2, . . . , is) ∈ I such that minj ij = 0}, which is the set of indices
i ∈ I for which at least one face of Si lies on a face of [0, 1)s that contains the origin. Each of the
s faces of [0, 1)s touches at most bs−1 elements of I0 and therefore |I0| ≤ sqs−1 = sn(s−1)/s.
Now, for any i = (i1, i2, . . . , is) ∈ I0, consider the diagonal string of subcubes Si′(k) with
i′(k) = (i1 + k, i2 + k, . . . , is + k) for 0 ≤ k < q − maxj ij . We argue that for any x ∈ R,
at most one subcube in this diagonal string can belong to B(x). Indeed, suppose that two
distinct subcubes in the string belong to B(x), say Si′(k1) and Si′(k2) for k1 < k2. Since both

subcubes contain points from H(x) and H(x), there must be two points u1 ∈ Si′(k1)∩H(x) and
u2 ∈ Si′(k2)∩H(x). This implies that g(u2) ≤ x < g(u1) while u1 < u2 coordinatewise, which

contradicts the assumption that g is nondecreasing. Since there are no more than sn(s−1)/s

diagonal strings and each contains at most one element of B(x), the result follows.

Lemma 5.6. Under Assumptions 5 and 6, Kn ≤ (s/4)h−2n−(s+1)/s.

Proof. For each i ∈ I, consider the random variables

δi(x) = |Pn ∩H(x) ∩ Si| − n vol(H(x) ∩ Si).

We make three observations. Firstly, Si contains exactly one point of Pn by Assumption 5.
Consequently, each δi(x) is a Bernoulli random variable (with parameter p = n vol(H(x)∩Si))
minus its mean p and, therefore, Var[δi(x)] = p(1 − p) ≤ 1/4. Secondly, for each i for which
Si 6∈ B(x), δi(x) = 0, so Var[δi(x)] = 0. Thirdly, for any two distinct subcubes, the positions
of the points of Pn in these subcubes are independent. As a consequence of these three
observations we see that

Var[∆n(x)] =Var

[
1

n

∑
i∈I

δi(x)

]
=

1

n2

∑
i:Si∈B(x)

Var[δi(x)] ≤ 1

4n2
sn−(s+1)/s.

By applying Lemmas 5.4 and 5.5 we then obtain

Var[f̂n(x)] ≤ 2h−2k(0)Kn ≤
k(0)

2(hn)2
|B(x)| ≤ sk(0)

2
h−2n−(s+1)/s.

Proof of Proposition 5.2. Combining Lemmas 5.4 and 5.6 and integrating the variance
bound with respect to x over [a, b] yields the result.

In the above arguments, we assumed that the strata were cubic, but this is not necessary.
We could instead partition [0, 1)s into n =

∏s
j=1 qj cells congruent to

∏d
j=1[0, 1/qj), subject

to the condition maxj qj ≤ λminj qj for some λ < ∞. Then one can bound the cardinality
of B(x) and Var[F̂n(x)] in a similar way. Non-cubic strata make sense if g varies more in
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some directions than in others. Finally, our bounds are proved under the assumption that
g is monotone, but this assumption is not necessary for stratification to improve the MISE
and/or its convergence rate.

6. Empirical Study. Our analysis in the previous sections was in terms of (asymptotic)
bounds. Here, we study the IV and MISE behavior from a different viewpoint: our goal is
to estimate empirically how they really behave in a range of values of n and h that one is
likely to use. For this, we use a simple regression model to approximate the true IV and
MISE in the region of interest. For some examples, we estimate the model parameters from
simulated data, test the goodness of fit of the regression models in-sample and out-of-sample,
and show how the model permits one to estimate the optimal h as a function of n, as well as
the resulting MISE and its convergence rate, under RQMC.

6.1. Experimental setting and regression models for the local behavior of the IV, ISB,
and MISE. We will use the following models to approximate the true IV and ISB in a limited
range of values of n and h of interest:

(6.1) IV ≈ Cn−βh−δ and ISB ≈ Bhα,

for positive constants C, β, δ, and B, that can be estimated as explained below, and with
α = 4. This gives MISE ≈ Cn−βh−δ + Bhα. The bounds derived in the previous sections
have this form, and this motivates our model, but here we want to estimate the true values,
which generally differ from the bounds. Once the parameters are estimated, we can estimate
the optimal h by minimizing the MISE estimate for any given n in the selected range. In our
setting, this estimated MISE is a convex function of h. Taking the derivative with respect to h
and setting it to zero yields hα+δ = [Cδ/(Bα)]n−β. Thus, if we take h = κn−γ , the constants
κ and γ that minimize the MISE (based on our model) are κ = κ∗ := (Cδ/Bα)1/(α+δ) and
γ = γ∗ := β/(α+ δ). Plugging them into the MISE expression gives

(6.2) MISE ≈ Kn−ν

with K = K∗ := Cκ−δ∗ + Bκα∗ and ν = ν∗ := αβ/(α + δ). If h is taken too small (e.g., by
taking κ < κ∗ or γ > γ∗ in the formula for h), the IV will be too large and will dominate the
MISE, so we will observe a MISE that decreases just like the IV. The opposite happens if h
is too large: the ISB dominates the MISE.

To estimate the model parameters for IV, we take the log to obtain the linear model

(6.3) log(IV) ≈ logC − β log n− δ log h,

and we estimate the parameters C, β, and δ by linear regression. Since n is always a power of
2 for our RQMC points, we take all the logarithms in base 2. In our experiments, we selected
a set of 36 pairs (n, h) with n = 214, . . . , 219 and h = h0, . . . , h5 where hj = h02j/2 = 2−`0+j/2

and 2`0 is an integer selected from pilot runs. This selection of `0 is the only step that requires
human intervention.

For each n and each point set (MC, Stratification or RQMC), we generate a sample of
size n, sort the sample, and then compute the density estimator for each h, for this sample.
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That is, we use the same sample for all estimation methods and all h. We make nr = 100
independent replications of this procedure, which gives us independent replicates of the density
estimator for the selected pairs (n, h). To obtain an unbiased estimator of the integral that
defines the IV, we take a stratified sample of ne = 1024 evaluation points over the interval
[a, b], compute the empirical variance of the KDE at each point, based on the nr replications,
and take the average multiplied by (b−a). Larger values of ne gave about the same estimates.

We approximate the ISB in (6.1) by the AISB, for which α = 4 and B = (µ2(k))2R(f ′′)/4.
For the Gaussian kernel, used in all our experiments, Assumptions 1 and 3 are satisfied, and
µ2(k) = 1. We estimate the integral R(f ′′) as explained in Section 2, using RQMC instead of
MC to improve the accuracy.

Once we have the estimates κ̂∗ and γ̂∗ of κ∗ and γ∗, we test the models out-of-sample
by making an independent set of simulation experiments with pairs (n, h) that satisfy h =
ĥ∗(n) := κ̂∗n

−γ̂∗ (the estimated optimal h) for a series of values of n. At each of these pairs
(n, h), we sample nr fresh independent replicates of the RQMC density estimator and compute
the IV estimate, as well as the MISE estimate in the simple examples where the density is
known. In the latter case, we fit again the linear regression model for log(MISE) vs log n to
re-estimate the parameters K and ν in (6.2) and assess the goodness-of-fit. In our results, we
denote these new estimates by K̃ and ν̃. Of course, these model testing steps are not needed
if one wishes to only estimate the density f and not to study the convergence properties.

In the end, we also compare the efficiencies of different methods for the same example
by comparing their estimated MISE for n = 219 with the h recommended by the model. We
denote by e19 the value of − log2(MISE) for n = 219; that is, we have MISE = 2−e19. The
efficiency gain of RQMC vs MC can be assessed by comparing their e19 values.

The point sets considered in our experiments were: (1) independent points (MC); (2)
stratification of the unit cube (Stratif); (3) a Sobol’ point set with a left random matrix
scrambling and random digital shift (Sobol’+LMS); and (4) a Sobol’ point set with nested
uniform scrambling (Sobol’+NUS). The last two are well-known RQMC point sets [12, 17, 20]
and we view stratification as a weak form of RQMC. The short names in parentheses are used
in the plots and tables. These point sets and randomizations are implemented in SSJ [11],
which we used for our experiments.

6.2. A normalized sum of standard normals. As in [21], we construct a set of test func-
tions with arbitrary dimension s and for which the density f of X is always the standard
normal, f(x) = exp(−x2/2)/

√
2π for any s. For this, let Z1, . . . , Zs be s independent stan-

dard normal random variables generated by inversion and put X = (a1Z1 + · · · + asZs)/σ,
where σ2 = a2

1 + · · · + a2
s. For this simple example, the density is already known, so there

is no need to estimate it, but this is convenient for testing the methodology, since it permits
us to compute and compare unbiased estimators of the IV, ISB, and MISE for both MC and
RQMC. For MC, these quantities do not depend on s, but for RQMC, the IV and MISE do
depend on s, and we want to see in what way.

We can also compute R(f ′′) exactly in this example, which means we can compute B
for the AISB and the asymptotically optimal h for the AMISE. However, we will first make
experiments as if we did not know this B and have to estimate it, and then compare our
estimates with the exact B. Here, g is a monotone increasing function, so Corollary 5.3 applies
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when we use stratification. Assumption 4 holds only if we truncate the normal distributions
of the Zj , but it makes no significant difference on our empirical results if the truncated range
contains the interval [−8, 8], for example, so from the practical viewpoint, we can ignore it.

Table 1
Parameter estimates for the KDE, for a sum of normals, over [−2, 2].

MC NUS LMS NUS LMS NUS LMS NUS NUS NUS NUS
s 1 2 2 3 3 5 5 10 20 100
`0 4.5 8.5 6.0 6.0 5.0 5.0 4.5 4.5 4.0 4.0 4.0
C 0.265 0.032 0.243 0.212 0.144 0.180 0.140 0.096 0.029 0.078 0.079
β 1.038 2.791 2.112 2.101 1.786 1.798 1.301 1.270 1.011 0.996 1.010
δ 1.134 3.004 3.196 3.196 3.383 3.357 2.295 2.303 1.811 1.421 1.463
R2 0.999 0.999 1.000 1.000 0.995 0.995 0.979 0.978 0.990 0.991 0.996
κ̂∗ 1.121 0.925 1.238 1.215 1.156 1.191 1.109 1.045 0.820 0.925 0.934
γ̂∗ 0.202 0.398 0.293 0.292 0.242 0.244 0.207 0.201 0.174 0.184 0.185
`∗ 3.675 7.682 5.268 5.266 4.386 4.391 3.776 3.765 3.590 3.604 3.612

K̂∗ 0.299 0.071 0.221 0.205 0.163 0.184 0.173 0.137 0.061 0.117 0.119
ν̂∗ 0.808 1.594 1.174 1.168 0.967 0.978 0.826 0.806 0.696 0.735 0.740
ν̃ 0.781 1.595 1.176 1.169 0.976 0.975 0.832 0.806 0.744 0.764 0.774
e19 17.01 34.06 24.39 24.38 20.79 20.80 17.88 17.79 17.28 17.07 17.05
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Figure 1. log2(IV) for the KDE with Sobol’+NUS for s = 1 (left) and s = 20 (right).

We estimate the density over [a, b] = [−b, b] = [−2, 2]. In our first experiment, we take a1 =
· · · = as = 1, so all the coordinates have the same importance (which is disadvantageous for
RQMC). Later, we will consider varying coefficients aj . Table 1 summarizes the results when B
is estimated. For MC, our estimates given in the first column are based on experiments made
with s = 1, but are valid for all s, because the IV and ISB do not depend on s. The estimated
values for MC agree with the theory: the exact asymptotic values are γ = 0.2, ν = 0.8, and
β = δ = 1. The other columns give some results for Sobol’+LMS and Sobol’+NUS, for selected
values of s. For all s > 1 that we have tried, LMS and NUS give almost the same values. The
first rows give the dimension s, the `0 found by pilot runs and used to fit the IV model, the
estimated parameters C, β, and δ of the IV model, the fraction R2 of variance explained by
this model, and the estimated B. The other quantities are defined in Subsection 6.1, except
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Figure 2. Estimated β, δ, and e19 with MC, Stratification, Sobol’+LMS, and Sobol’+NUS.

for `∗ = − log2 ĥ∗(2
19), which gives an idea of the optimal h for n = 219.

Recall that the rates ν̃ and e19 are obtained from a second-stage experiment, by using
the estimated ĥ∗(n) from the model in the first stage. All the R2 coefficients are close to 1,
which means that the log-log linear model is reasonably good in the area considered. The
estimate of B is B ≈ 0.0418 (same first three digits) for all s and all RQMC methods. Thus,
this estimator of B has very little variance. The MISE reduction of RQMC vs MC can be
assessed by comparing their values of e19 given in the last row. For example, with the KDE
for s = 1, the MISE for n = 219 is approximately 2−34 for Sobol’+NUS compared to 2−17 for
MC, i.e., about 217 ≈ 125,000 times smaller. For s = 2, for both LMS and NUS, the MISE is
about 2−24.3, which is about 150 times smaller than for MC.

Figure 1 gives a visual assessment of the fit of the linear model for log2(IV) in the selected
region, for two values of s. We made similar plots for several s > 1 and all point sets, and the
linear approximation looked reasonable in all cases. Figure 2 shows the estimated β, δ, and
e19, for s = 1, . . . , 5, for various point sets. Stratification, shown here and not in the table, is
exactly equivalent to Sobol’+NUS for s = 1, and somewhat less effective for s > 1.

One important observation from the plots and the last row of the table (e19) is that for all
s, the RQMC methods never have a larger MISE than MC. Their MISE is much smaller for
small s, and becomes almost the same as for MC when s gets large. The MISE rate ν̃ behaves
similarly. Another important observation is that the coefficients β and δ in the IV model
(which are both 1 with MC) are both larger than 1 with RQMC. For small s, with RQMC, β
is significantly larger than ν̃, which means that the IV converges much faster as a function of
n when h is fixed than when h varies with n to optimize the MISE. This is explained by the
large values of δ, sometimes even larger than 3, which indicate that reducing h to reduce the
ISB increases the IV rapidly, and this limits the MISE reduction that we can achieve.

Here f is the standard normal density and R(f ′′) = [−b
(
2b2 − 1

)
e−b

2
+ 3

∫ b
0 e
−x2dx]/4π.

For b = 2, this gives R(f ′′) ≈ 0.19018, so the true constant B in the AISB is B = R(f ′′)/4 ≈
0.04754, whereas our estimate was 0.0418 for all s and all point sets. The difference is not
due to noise, but is a bias coming from the fact that we estimated R(f ′′) via KDE with finite
n. We verified empirically that when we estimate these quantities with a larger n, the bias
decreases slowly and appears to converge to 0 when n→∞.
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We repeated the density estimation experiment by using the exact values of B instead of
the estimated ones to choose h, and the results were very close for all s. In particular, the
MISE rates ν̃ and the values of e19 were almost the same.

We now take different coefficients (weights) aj in the linear combination of the Zj that
defines X. Our purpose is to illustrate that there are situations where RQMC can perform
very well with the KDE even when the dimension s is large. This can occur for example if
the effective dimension is not large; i.e., when g(u) depends mostly on just a few coordinates
of u, and does not vary much with respect to the other coordinates [4, 10]. To illustrate this,
we take aj = 2−j for j = 1, . . . , s, and we repeat the same set of experiments as we did for
equal weights, to estimate the density over [−2, 2].

Table 2
Parameter estimates for the KDE under Sobol’+LMS, for a weighted sum of normals with aj = 2−j.

s MC 2 4 10 20 50 100
C 0.171 0.173 0.038 6.7E-3 8.0E-3 7.3E-3 7.9E-3
β 1.000 2.100 1.650 1.420 1.427 1.425 1.429
δ 1.137 3.189 3.745 3.626 3.582 3.604 3.603

K̂∗ 0.213 0.183 0.080 0.032 0.035 0.033 0.035
ν̂∗ 0.779 1.168 0.852 0.745 0.753 0.750 0.752
ν̃ 0.774 1.176 0.892 0.750 0.730 0.758 0.752
e19 16.96 24.76 19.71 18.96 18.98 18.99 19.04

Table 2 summarizes our findings for Sobol’+LMS, for s up to 100. The results with
Sobol’+NUS are very similar. For s = 1, the results are obviously the same as for our
previous setting, but they diverge when we increase s. For example, in the previous setting,
the MISE estimate with n = 219 for s = 2, 10, and 100, was 2−24.38, 2−17.28, and 2−17.05,
respectively, whereas with the new weights, it is 2−24.76, 2−18.96, and 2−19.04, respectively. For
s = 100, in particular, the MISE with RQMC and n = 219 was about the same as for MC
in the previous setting, and it is reduced by a factor of 4 in the present setting. We also
see from the table that in 10 or more dimensions, the convergence rate of the MISE is not
improved, but the constant is improved (empirically). As expected, when s increases beyond
about 10, all the model parameters appear to stabilize as a function of s. In the previous
setting, they were stabilizing around the MC values, but now they stabilize to different values.
For example, in s = 100 dimensions, β was near the MC value of 1, and now it is about 1.4.

6.3. Displacement of a cantilevel beam. Bingham [3] gives the following simple model
of the displacement D of a cantilever beam with horizontal and vertical loads:

(6.4) D =
4L3

Ewt

√
Y 2

t4
+
X2

w4

in which L is the length of the beam, fixed to 100 inches, w and t are the width and thickness
of the cross-section, taken as 4 and 2 inches, while X, Y , and E are assumed independent and
normally distributed with means and standard deviations given as follows (in inches):
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Description Symbol Mean St. dev.

Young’s modulus E 2.9× 107 1.45× 106

Horizontal load X 500 100
Vertical load Y 1000 100

We want to estimate the density of the relative displacement X̃ = D/D0 − 1, where
D0 = 2.2535 inches. Here, the exact density is unknown, so unbiased estimators of the ISB
and the MISE are not available, but we can estimate the AISB as in the previous example,
and use it to estimate the optimal h and the MISE. A plot of the estimated density, obtained
with a KDE with Sobol’+NUS and n = 219 points, is given in Figure 3. For the experiments
reported here, we estimate the density of X̃ over the interval [0.407, 1.515], which covers about
99% of the density (it excludes roughly 0.5 % on each side).
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Figure 3. Estimated density of X̃, the relative displacement of a cantilever beam.
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Figure 4. Estimated MISE (left) and IV (right) as a function of n for h = 2−6, for the cantilever example.

Table 3 gives the parameter estimates from our experiment. RQMC increases the rate
β from 1 to about 2. However, δ increases even more, from 1 to about 4. This means that
although the variance decreases much faster than for MC as a function of n for fixed h, we
cannot afford to decrease h very much to decrease the bias, so the MISE reduction is limited.
RQMC improves both the estimated rate ν̂∗ and the constant K in the MISE model.

Figure 4 shows the estimated MISE as a function of n (with the estimated optimal h),
as well as the estimated IV as a function of n, all in log scale. The results for Sobol’+LMS
and Sobol’+NUS are practically indistinguishable in those plots. We see that although the
MISE rate (slope) is not improved much by RQMC, the MISE is nevertheless reduced by a
significant factor. With n = 219, the MISE is almost 26 = 64 times smaller with Sobol’+LMS
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Table 3
Experimental results for the KDE, for the displacement of a cantilever beam, over the interval [0.407, 1.515].

MC Strat LMS NUS
C 0.109 0.022 1.8E-4 1.5E-4
β 0.991 1.380 1.943 1.932
δ 1.168 2.113 3.922 3.933
R2 0.999 0.999 0.999 0.999
B 107.4 107.2 107.1 107.1
κ̂∗ 0.208 0.225 0.186 0.182
γ̂∗ 0.192 0.226 0.245 0.244
`∗ 5.909 6.443 7.090 7.085

K̂∗ 0.885 0.800 0.256 0.237
ν̂∗ 0.767 0.903 0.981 0.974
e19 14.74 17.48 20.60 20.58

than with MC. For fixed h, the IV converges at a faster rate with RQMC than with MC.
Here, g is strictly decreasing in E and strictly increasing in both X and Y . Therefore,

Corollary 5.3 applies. The asymptotic parameter values are β = 4/3, δ = 2, and ν = 0.889,
which are very close to what we found empirically for stratification (see Table 3).

6.4. A weighted sum of lognormals. In this example, we estimate the density of a
weighted sum of lognormals: X =

∑s
j=1wj exp(Yj) where Y = (Y1, . . . , Ys)

t has a multi-
normal distribution with mean vector µ and covariance matrix C. Let C = AAt be a decom-
position of C. To generate Y, we generate Z a vector of s independent standard normals by
inversion, then put Y = µ + AZ. For MC, the choice of decomposition does not matter, but
for RQMC it does, and here we take the decomposition used in principal component analysis
(PCA) [6, 10]. We also tried sequential sampling (SS) and Brownian bridge sampling (BBS)
but with them, RQMC did not improve the IV significantly as we will see with PCA.

This model has several applications. In one of them, for some positive constants ρ and s0,
by taking wj = s0(s − j + 1)/s, e−ρ max(X −K, 0) is the payoff of a financial option based
on the average value of a stock or commodity price at s observation times, under a geometric
Brownian motion process. Estimating the density of this random payoff in its positive part is
equivalent to estimating the density of X over the interval (K,∞) (for simplicity we ignore
the scaling factor e−ρ). When we compute the KDE here, the realizations of X smaller than
K are not discarded; they contribute to the KDE slightly above K. Discarding them would
introduce a significant bias in the KDE due to a boundary effect at K.

For our numerical experiment, we take this special case with the same parameters as in
[12]: s = 12, s0 = 100, and K = 101. The matrix C is defined indirectly as follows. We have
Yj = Yj−1(µ− σ2)j/s+ σB(j/s) where Y0 = 0, σ = 0.12136, µ = 0.1, and B(·) is a standard
Brownian motion. We estimate the density of X̃ = X −K over the interval [a, b] = [0, 27.13].
Approximately 0.5% of the density lies on the right of this interval and 29.05% lies on the left
(this is when the option brings no payoff). Figure 5 shows a plot of the estimated density of
X̃ = X −K obtained from a KDE with Sobol’+NUS and n = 219 points.

Table 4 summarizes the results of our experiments. Again, the linear model for the IV
fits extremely well in the selected area. RQMC improves β from 1 to about 5/3, which is
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Figure 5. Estimated density of the option payoff X −K.

Table 4
Experimental results for the density estimation of the option payoff over the interval [0, 27.13].

MC LMS NUS
C 0.171 0.110 0.097
β 1.005 1.671 1.663
δ 1.151 4.907 4.930
R2 0.999 0.990 0.990
B 1.1E-6 1.1E-6 1.1E-6
κ̂∗ 7.953 3.717 3.657
γ̂∗ 0.195 0.188 0.186
`∗ 0.715 1.670 1.668

K̂∗ 0.020 3.9E-4 3.6E-4
ν̂∗ 0.780 0.750 0.745
e19 20.45 25.59 25.58
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Figure 6. Estimated MISE as a function of n (left) and estimated IV as a function of n for h = 1/2 (right).

significant, but at the same time δ increases from about 1.1 to nearly 5. This means we
are very limited in how much we can decrease h to reduce the bias. On the other hand, this
empirical δ is not as bad as the one in the AIV bound of Corollary 4.2, which gives δ = 2s = 24.
The estimate of B is again about the same for all point sets. Somewhat surprisingly, in the
region considered, the estimated MISE rate ν̂∗ is not better for RQMC than for MC, due to
the large δ, but the MISE is nevertheless about 32 times smaller for RQMC than for MC in
the range of interest, as shown in Figure 6, for which h was taken as the estimated optimal
h from our model, as a function of n. That is, RQMC is truly beneficial for estimating the
payoff density in this 12-dimensional example. In the lower panel, we see that the estimated
IV for fixed h converges faster with RQMC than with MC.
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7. Conclusion. We explored RQMC combined with KDEs to estimate a density by simu-
lation. RQMC can improve the IV and the MISE, sometimes by large factors, in situations in
which the (effective) dimension is small. The improvement is more limited when the effective
dimension is large. We also found that the IV improvement degrades quickly as a function
of h when h → 0. In our empirical experiments, the IV was never larger with KDE+RQMC
than with KDE+MC, and was often much smaller.
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