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Abstract

Variance reduction techniques (VRTs) are often essential to make simulation quick and

accurate enough to be useful. A case in point is simulation-based optimization of complex

systems. An obvious idea to push the improvement one step further is to combine several

VRTs for a given simulation. But such combinations often give rise to new issues. This

paper studies the combination of stratification with control variates. We detail and compare

several ways of doing the combination. Nontrivial synergies between the two methods are

exhibited. We illustrate this with a telephone call center simulation, where we combine a

control variate with stratification with respect to one of the uniform random variates that drive

the simulation. It turns out that using more information in the control variate degrades the

performance (significantly) in our example. This seemingly paradoxical behavior is not rare

and our theoretical analysis explains why.

Keywords: variance reduction, control variates, stratification, call centers

Introduction

The use of simulation to optimize decision parameters in complex stochastic systems is increas-

ingly frequent. This simulation-based optimization typically requires thousands or millions of

simulation runs for a complex model, where each run takes a significant amount of time. Consider
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for instance a telephone call center for which we want to optimize the number of agents who talk

with customers over the phone, and the working schedules of these agents, under constraints on

the quality of service and on admissible schedules. Large call centers are complex stochastic sys-

tems that can be analyzed realistically only by simulation; tractable queueing models oversimplify

reality and are not very reliable. When simulation is combined with an optimization algorithm,

simulation speed is a key issue because optimization often requires huge numbers of simulation

runs at different parameter settings (Atlason et al., 2004; Cez̧ik and L’Ecuyer, 2006). In that con-

text, straightforward (or naive) Monte Carlo simulation is often too slow to be practical.

Fortunately, proper use of variance reduction techniques (VRTs) such as control variates, strat-

ification, conditional Monte Carlo, common random numbers, importance sampling, etc., can im-

prove simulation efficiency, sometimes by a large factor (Bratley et al., 1987; Fishman, 1996;

Glynn, 1994). For larger improvements, an obvious idea is to use two or more VRTs at the same

time. However, this often complicates things in an unexpected way. Such combinations are studied

in Cheng (1986), Booth and Pederson (1992), Avramidis and Wilson (1996), and Hickernell et al.

(2005), for example, in specific settings.

The aim of this paper is to examine some issues that arise when combining two specific VRTs

and to show how to handle these issues. We do this via an example of a call center simulation, to

make things more concrete for the reader, but our development applies more generally. We study

the combination of control variates with stratification with respect to a continuous input variable.

In this case, the optimal control variate coefficient turns out to be a function of the input variable

on which we stratify. We focus on how to approximate this function in practice.

The next section discusses how stratification with respect to uniform random numbers driving

the simulation can be used to reduce the variance. We then study the combination of a control

variate with stratification, which is non-standard and requires some care. Then, we give an exam-

ple of a simple call center on which perform numerical experiments to compare the various ways

of making the combination. The simulations were made with ContactCenters, a specialized sim-

ulation tool for contact centers (Buist and L’Ecuyer, 2005) developed in Java with the SSJ library

(L’Ecuyer and Buist, 2005). A preliminary version of this paper was presented at the 2006 Winter

Simulation Conference (L’Ecuyer and Buist, 2006).
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Stratification

Stratified sampling consists in partitioning the set of possible outcomes in a finite number of strata,

estimating the quantity of interest separately in each stratum, and computing a weighted average

of these estimators, where the weights are the (known) probabilities of the corresponding strata, to

obtain the overall estimator. This is easy to implement if we can design strata for which we know

the exact probabilities and from which we know how to generate samples uniformly. Bratley et al.

(1987, page 295) give an example with three strata. For large and complex simulations, it may not

be obvious a priori how to achieve this. One way of stratifying a simulation is as follows.

Recall that all the randomness in a simulation typically comes from a sequence of independent

U(0,1) (uniform over the interval (0,1)) random variates. Select d of those uniforms, preferably

some whose values are deemed to have a large impact on the result. Partition the d-dimensional unit

hypercube [0,1)d into k rectangular boxes of the same shape and size; these boxes will correspond

to the k strata. Each one has probability 1/k. To generate a sample uniformly from stratum s, we

generate a point U uniformly in box s and take the d coordinates of U as the values of the d selected

uniforms. All other random variates in the simulation are generated as usual, independently of the

realizations of the d selected uniforms.

Suppose each simulation run provides an estimator X for µ = E[X ]. Suppose also that we

have ns observations in stratum s for each s, where the ns’s are positive integers such that n =

n1 + · · ·+nk. If Xs,1, . . . ,Xs,ns denote the ns i.i.d. copies of X in stratum s, the (unbiased) stratified

estimator of µ is (Cochran, 1977):

X̄s,n =
1
k

k

∑
s=1

µ̂s where µ̂s =
1
ns

ns

∑
i=1

Xs,i (1)

is the sample mean in stratum s. Let σ2
s = Var[X | S = s], the conditional variance of X given that

we are in stratum s. Then,

Var[X̄s,n] =
1
k2

k

∑
s=1

σ
2
s /ns (2)

and an unbiased estimator of this variance is

S2
s,n =

1
k2

k

∑
s=1

σ̂
2
s /ns, (3)
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where σ̂2
s is the sample variance of Xs,1, . . . ,Xs,ns , assuming that ns ≥ 2.

Stratification with proportional allocation takes ns = n/k for all s. Then, (2) simplifies to

Var[X̄sp,n] =
1
nk

k

∑
s=1

σ
2
s (4)

where X̄sp,n denotes the corresponding version of (1). The optimal allocation, which minimizes the

variance (2) with respect to n1, . . . ,nk under the constraints that ns > 0 for each s and n1 + · · ·+nk =

n for a given n, is easily found by using a Lagrange multiplier; we must take ns proportional to σs/k:

n∗s = nσs/σ̄k where σ̄ = ∑
k
s=1 σs/k. (We neglect the rounding of n∗s to an integer and assume that

ns ≥ 2.) If X̄so,n denotes the estimator with optimal allocation, we have Var[X̄so,n] = σ̄2/n. Putting

these pieces together, the variance can be decomposed as follows (Cochran, 1977):

Var[X̄n] = Var[X̄sp,n]+
1
nk

k

∑
s=1

(µs−µ)2 (5)

= Var[X̄so,n]+
1
nk

k

∑
s=1

(σs− σ̄)2 +
1
nk

k

∑
s=1

(µs−µ)2. (6)

The first sum in the last line represents the variability due to the different standard deviations

among strata and the second sum represents the variability due to the differences between stratum

means. Proportional allocation eliminates the last sum while optimal allocation also eliminates

the first. For a given total sample size n, a larger k generally gives more variance reduction,

because the strata are smaller so there is less variability within the strata. When k → ∞, we have

σ̄ →
∫
[0,1)d σ(u)du, where σ2(u) = Var[X | U = u]. Usually, σ̄ > 0, in which case the marginal

variance reduction converges to zero. On the other hand, with a larger value of n/k (a smaller k),

we have a more accurate estimator of the variance of the stratified estimator.

Combining with a Control Variate

Control variates (CVs) for simulation are discussed, e.g., by (Lavenberg and Welch, 1981; Glynn

and Szechtman, 2002). Here we study how to combine a CV with stratification. To keep the

notation simple, we now assume that d = 1 and we consider a single control variable, but all our

development can be generalized easily to d > 1 and to a vector of control variates. The one-
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dimensional uniform random vector U is denoted by U . Any random variable A whose expectation

a = E[A] is known can be used as a CV. Preferably, A should be strongly correlated (positively

or negatively) with X . Without the stratification, the CV is used by subtracting from the original

estimator X the difference A−E[A] multiplied by some constant coefficient β . The (unbiased) CV

estimator is:

Xc = X −β [A−a].

The optimal coefficient β is

β
∗ = Cov[A,X ]/Var[A] (7)

and we have Var[Xc] = (1−ρ2[X ,A])Var[X ] when β = β ∗, where ρ[X ,A] is the linear correlation

between X and A. This β ∗ can be estimated from preliminary (pilot) simulation runs or from the

same runs as X ; in the latter case, this gives a slightly biased estimator, but the bias is negligible

when the number n of runs is large.

Things become somewhat more complicated if we combine the CV with stratification, because

both β ∗ and the expected value of A generally depend on the strata, or on the value taken by the

random variate on which we stratify. We examine and compare various ways of handling this,

assuming that we are stratifying on U as in the previous subsection. We can apply the CV on the

stratified average X̄s,n, or on each stratum average µ̂s, or on the individual observations Xs,i. All

these methods are equivalent to replacing Xs,i by

Xsc,s,i = Xs,i−bs,i(As,i− es,i), (8)

with different choices of bs,i and es,i, where As,i is the value of the control variate for the observation

Xs,i, in stratum s. Let as = E[As,i], the expected value of A given that we are in stratum s, and

a(u) = E[A |U = u], the expected value of A conditional on U = u. In (8), when U = us,i, we can

take es,i as either a, as or a(u). We can also take bs,i as either a common constant β , or a different

constant βs in each stratum s, or a function of u, β (u). We examine and compare these possibilities.

If bs,i does not depend on more information that es,i, then (8) is unbiased; otherwise it can be

biased. So if es,i = as, we cannot take bs,i = β (U), whereas if es,i = a, we must have bs,i = β (a

constant). To show unbiasedness, we take the conditional expectation given the stratum s if es,i = as

and given U if es,i = a(U). For example, if es,i = a(U) and bs,i = βs, then E[βs(As,i − a(U))] =
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E[E[βs(As,i− a(U)) |U ]] = E[βsE[(As,i− a(U)) |U ]] = 0, but this no longer works if we take as

together with β (U).

Table 1 summarizes the different combinations. Each table entry gives the “correction term”

bs,i(As,i − es,i) used in (8) for the given combination. The dashed entries correspond to biased

estimators. On each row, the best estimator is the one on the diagonal. As we shall see later, none

of these three diagonal entries always gives a smaller variance than the other two, even if we use

the optimal CV coefficient in each case. We will examine each of them in more detail.

Table 1: The different possibilities for bs,i(As,i− es,i)
β βs β (U)

a β (As,i−a) — —
as β (As,i−as) βs(As,i−as) —

a(U) β (As,i−a(U)) βs(As,i−a(U)) β (U)(As,i−a(U))

A common coefficient β , with es,i = as. We define Ās,n as the weighted average of the n repli-

cates of A, in the same way as X̄s,n in (1):

Ās,n =
1
k

k

∑
s=1

1
ns

ns

∑
i=1

As,i.

Then, E[Ās,n] = (a1 + · · ·+ak)/k = a. Using Ās,n as a CV with a single coefficient β and es,i = as

gives the estimator

X̄sc,n = X̄s,n−β (Ās,n−E[Ās,n]) = X̄s,n−β (Ās,n−a). (9)

For the choice of β , a first (naive) approach is to use the β ∗ defined earlier, as if there was no

stratification. However, this β ∗ is no longer optimal, as we now show.

The estimator (9) has variance

Var[X̄sc,n] = Var[X̄s,n]+β
2Var[Ās,n]−2βCov[X̄s,n, Ās,n]. (10)

Differentiating with respect to β and equaling the derivative to zero, we find that the variance is
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minimized by taking

β = β
∗
sc =

Cov[X̄s,n, Ās,n]
Var[Ās,n]

=
∑

k
s=1 Cov[Xs,i,As,i]/ns

∑
k
s=1 Var[As,i]/ns

. (11)

Here, Cov[Xs,i,As,i] and Var[As,i] are the conditional covariance and variance given that we are in

stratum s. Our second combined estimator uses (9) with β = β ∗
sc. This β ∗

sc generally differs from β ∗

and it also depends on the allocation used for the stratification. As a result, minimizing Var[X̄sc,n]

requires finding β ∗
sc and the optimal allocation (the ns’s) simultaneously (which is not necessarily

easy). If we restrict ourselves to proportional allocation, the ns’s simplify and we obtain

β
∗
sc = β

∗
scp =

∑
k
s=1 Cov[Xs,i,As,i]

∑
k
s=1 Var[As,i]

.

Taking bs,i = βs with es,i = as. We now consider a different CV coefficient βs in each stratum.

We replace Xs,i by Xsc,s,i = Xs,i−βs(As,i−as) for each s and i, so the average µ̂s is replaced by

µ̂sc,s = µ̂s−βs(Âs−as). (12)

where Âs is the average of the As,i’s in stratum s. We assume that we can compute

as = k
∫ s/k

(s−1)/k
a(u)du (13)

with negligible error (e.g., by numerical integration). The variance in stratum s becomes

σ
2
sc,s = σ

2
s +β

2
s Var[As,i]−2βsCov[Xs,i,As,i]. (14)

and the optimal βs for stratum s is

β
∗
sc,s =

Cov[Xs,i,As,i]
Var[As,i]

. (15)

With βs = β ∗
sc,s, the variance in stratum s is reduced to

Var[Xsc,s,i] =
(
1−ρ

2[Xs,i, (As,i−as)]
)

Var[Xs,i] = Var[Xs,i]−ρ
2[Xs,i, (As,i−as)]Var[Xs,i]. (16)
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The overall variance here with β ∗
sc,s cannot be larger (and is usually smaller) than if we impose

βs = β for all s, because we have the flexibility to optimize the constant βs in each stratum. The

difference can be large if the β ∗
sc,s are far from being equal between strata. After estimating the

variance with β ∗
sc,s within each stratum, we can find the allocation that minimizes the overall con-

trolled variance. Note that the optimal allocation with the CV, obtained using the σsc,s’s, differs

from the optimal allocation without CV, obtained with the σs’s defined earlier.

Taking es,i = a(u). Once we know us,i, the realization of U for the observation Xs,i, we can take

es,i = a(us,i) instead of as. The CV coefficient bs,i can be any of the three possibilities: β , βs, or

β (u). Clearly, the more flexibility we have, the better we can do, so an optimal choice of β (u) (a

function of u) is always at least as good as an optimal choice of βs (a function of s), and the latter

is always at least as good as an optimal β (a single constant). Note that the optimal values of these

coefficients are not the same (in general) with es,i = a(u) than with es,i = as.

Let C(u) = A− a(u). Suppose the CV coefficient can be a function of U , bs,i = β (U). Let

σ2(u) = Var[X |U = u], Xsc(u) = X −β (u)C(u) (the controlled estimator conditional on U = u),

σ
2
sc(u) = Var[Xsc(u)] = σ

2(u)+β
2(u)Var[A |U = u]−2β (u)Cov[X ,A |U = u]

(its conditional variance), µ(u) = E[X |U = u], µs = E[Xs,i], and let Us,i denote a random variable

uniformly distributed over [(s−1)/k, s/k). The variance of the controlled estimator in stratum s is

Var[Xsc(Us,i)] = E[Var[Xsc(Us,i) |Us,i]]+Var[E[Xsc(Us,i) |Us,i]]

= E[σ2
sc(Us,i)]+Var[µ(Us,i)]

= k
∫ s/k

(s−1)/k
σ

2
sc(u)du+ k

∫ s/k

(s−1)/k
(µ(u)−µs)2du. (17)

The choice of β (u) affects only the first term in (17), i.e., the expectation of the conditional vari-

ance. The optimal allocation takes ns proportional to (Var[Xsc(Us,i)])1/2. Regardless of the alloca-

tion, the variance of the CV estimator is minimized by taking β (u) = β ∗
sc(u), where

β
∗
sc(u) =

Cov[C(u),X |U = u]
Var[C(u) |U = u]

=
E[C(u) ·X |U = u]
E[C2(u) |U = u]

. (18)
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With this optimal coefficient, the variance in stratum s is reduced to

Var[Xsc(Us,i)] = E[σ2
sc(Us,i)]+Var[µ(Us,i)]

= E
[(

1−ρ
2[Xs,i, (As,i−a(Us,i)) |Us,i]

)
σ

2(Us,i)
]
+Var[µ(Us,i)]

= Var[Xs,i]−E
[
ρ

2[Xs,i, (As,i−a(Us,i)) |Us,i]σ2(Us,i)
]
. (19)

If we impose the additional constraint that β (u) must be a constant βs within each stratum, we

have σ2
sc(u) = σ2

sc,s(u) = Var[X −βsC(u) |U = u] and the optimal βs for stratum s is

β̃
∗
scu,s =

Cov[C(Us,i),Xs,i]
Var[C(Us,i)]

=
E[C(Us,i) ·Xs,i]

E[C2(Us,i)]
. (20)

Here the CV estimator is unbiased and the last equality holds because E[C(Us,i)] = 0. Obviously,

with this additional constraint, we cannot get a smaller variance than with β ∗
sc(u). And by imposing

βs = β for all s, we can only do worse.

In practice, the function β ∗
sc(u) can be approximated by approximating the two functions

q1(u) = E[C(u) · X | U = u] and q2(u) = E[C2(u) | U = u]. These functions can be estimated

from a sample {(Ui,Ci,Xi), i = 1, . . . ,n} of n realizations of (U,C(U),X), and fitting a curve q̂1 to

the points (Ui,Ci(Ui)Xi) and another curve q̂2 to the points (Ui,C2
i (Ui)). For example, we can fit a

polynomial by interpolation or by least squares, or use a smoothing spline (de Boor, 1978).

To determine the optimal allocation, we need a good approximation of Var[Xsc(Us,i)] for each

s. This requires approximations of the functions σ2
sc(u), µ(u), and µs. Since µ =

∫ 1
0 µ(u)du =

∑
k
s=1 µs/k, this demands more information than estimating µ . A possible shortcut might be to

just use the variance estimates and the optimal allocation for the case where the CV coefficient

is constant in each stratum. In practice, this should rarely introduce a significant error, especially

when k is large.

Is es,i = a(u) always better than es,i = as? For es,i = a(u), we have an ordering between β ∗,

β ∗
s and β ∗(u) in terms of variance reduction; we know that more flexibility in the choice of CV

coefficient can only decrease the variance. But is a(u) with β ∗(u) always better than as with β ∗
s ?

At first sight, one might think yes, because a(u) exploits more information than as (Cs = A− as

is the conditional expectation of C(U) = A− a(U) given that we are in stratum s). But on closer
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examination, we find that using a(u) might sometimes do worse! The following counterexam-

ple, suggested by Roberto Szechtman (private communication), shows that with the optimal CV

coefficients, Var[Xsc(Us,i)] can be either larger or smaller than Var[Xsc,s,i].

Example 1 Suppose X = A. With βs = β ∗
sc,s = 1, we get Xsc,s,i = as, so Var[Xsc,s,i] = 0. On the

other hand, Var[Xsc(Us,i)] = Var[X −β (u)C(u)] and we also have β ∗
sc(u) = 1. With this coefficient,

we have Var[Xsc(Us,i)] = Var[a(Us,i)] > 0 whenever E[X |U ] = E[A |U ] is not a constant inside

stratum s. In this situation, Var[Xsc(Us,i)] > Var[Xsc,s,i]. The larger the variation of E[X |U ] inside

the stratum, the larger the variance of the second CV estimator. So the second estimator has a

larger variance when there are fewer strata. When the number of strata increases to infinity, the

variance of the second estimator converges to zero, which makes sense because the two estimators

are identical in the limit.

For an example where Var[Xsc(Us,i)] < Var[Xsc,s,i], take X = A− a(U). Then, β ∗
sc(u) = 1 and

Xsc(Us,i) = 0, which has zero variance, whereas Var[Xsc,s,i] > 0. �

To compare (14) with (17) in general, with the stratum-dependent CV and coefficient, the

variance in stratum s is

σ
2
sc,s = E[Var[X −βs(A−as) |Us,i]]+Var[E[X −βs(A−as) |Us,i]]

= E[Var[X −βs(A−a(Us,i)) |Us,i]]+Var[µ(Us,i)−βs(a(Us,i)−as)]. (21)

With es,i = a(u) and the optimal coefficient function β ∗
sc(u), the variance in stratum s is

Var[Xsc(Us,i)] = E[σ2
sc(Us,i)]+Var[µ(Us,i)]. (22)

The estimator with a(U) has a smaller variance than the one with as in stratum s if and only if (22)

is smaller than (21). Comparing the corresponding terms of (21) and (22), we always have

E[Var[X −βs(A−a(Us,i)) |Us,i]]≥ E[Var[X −β
∗
sc(Us,i)(A−a(Us,i)) |Us,i]] = E[σ2

sc(Us,i)],

but we may have Var[µ(Us,i)−βs(a(Us,i)−as)]≤ Var[µ(Us,i)]. In our numerical example later in

this paper, it turns out that σ2
sc,s < Var[Xsc(Us,i)] for this reason. In fact, by comparing (16) and (19),
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we see that taking a(U) gives a smaller variance than as in stratum s if and only if As,i−a(Us,i) is

more strongly correlated with Xs,i than As,i−as.

From a practical viewpoint, it is easier to estimate the constants β ∗
sc,s for a few strata than

fitting a continuous function β ∗
sc(u). And sometimes, it even gives a smaller variance. This will

be illustrated in our numerical examples. On the other hand, when the number of strata is large,

fitting the function might be easier than estimating the numerous constants β ∗
sc,s. In the limit when

the number of strata goes to infinity, the two schemes converge to each other.

Practical Issues

We summarize the required steps to implement the combined methods discussed thus far, focusing

on the case where es,i = as and bs,i = β ∗
sc,s. The other schemes are obtained via easy adaptations.

In each case, there are actually many ways of implementing the procedure; some require pilot

runs (e.g., to estimate the optimal allocation in the stratification, and to estimate the optimal CV

coefficient independently of the production runs) and there is also more than one way of doing the

pilot runs. In the preceding analysis, we took a one-dimensional uniform U and a single CV, but

our development extends directly to d-dimensional vectors of uniforms and to vectors of CVs. If

d > 1, s becomes the index of a d-dimensional box, and the integrals in (13) and (17) are over

this box instead of over the interval [(s−1)/k, s/k]. If the CV is a vector, then β is also a vector,

the covariances become matrices and vectors, and the correlation in (16) and (16) is replaced by a

coefficient of determination between Xs,i and the CV vector (Glynn and Szechtman, 2002).

The combined variance reduction method can be applied as follows.

1. Select d and define the d-dimensional boxes on which to stratify. Most often, d would not

exceed 1 or 2. When d > 1, the boxes can be narrower in the dimension(s) deemed more

important.

2. (Optional) Perform pilot runs to estimate the optimal allocation and optimal CV coefficients.

See the discussion below.

3. Perform the ns simulation runs in stratum s, for each s. With proportional allocation, ns = n/k

for each s. Estimate each CV coefficient β ∗
sc,s from these runs if this was not done via pilot

runs.
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4. Compute the combined estimator. The variance within each stratum can be estimated in

the standard way for CV estimators (Glynn and Szechtman, 2002). The overall variance is

simply a weighted average of the variances within strata, given by (2). This variance estimate

can be used to compute a confidence interval for the mean.

If we decide to skip the pilot runs in step 2, we can simply use proportional allocation for the

stratification, and estimate the optimal CV coefficients using data from the production runs of step

3. This would introduce a bias, especially if we do this estimation separately for each stratum

and if the ns’s are small. In the latter case, the estimators of β ∗
sc,s will also be noisy. When there

are many strata, a good idea is to approximate Cov[Xs,i,As,i |Us,i = u] and Var[As,i |Us,i = u] by

smooth functions of u, as discussed earlier with the functions q1(u) and q2(u). and then integrate

these approximations over each box to obtain estimates of the two terms Cov[Xs,i,As,i] and Var[As,i]

in (15). These smooth approximations can be obtained by least-squares fitting, for example.

The advantage of performing pilot runs in step 2 is to give an unbiased estimator. These pilot

runs are simulation runs that are independent from those in step 3. They are used only to estimate

the variances and covariances that determine the optimal allocation and optimal CV coefficients.

This can be achieved via smooth approximating functions of u, as we just discussed. For a given

total computing budget, skipping the pilot runs and using the entire budget for step 3 usually

provides a smaller mean square error, despite the small bias.

How should we choose the uniforms on which we stratify, in practice? The idea is to pick

one or two uniforms that have a large impact on the overall variance. We want to make the last

term in (5) as large as possible. Our case study in the next section will give an illustration. As

another example, suppose that our estimator is a function of the sample path of a Brownian motion

{B(t), t ≥ 0} over a given time interval [0,T ]. Then we may use one uniform to directly generate

B(T ), a second uniform to generate B(T/2) conditionally on (B(0),B(T )), and then generate the

rest of the path conditionally on these three values. L’Ecuyer and Lemieux (2000) explain how to

do that. We can stratify on these two uniforms, perhaps using narrower intervals for the first one.

These two uniforms already provide a rough sketch of the sample path, and they typically account

for a significant fraction of the variance (see L’Ecuyer and Lemieux (2000) for further details on

this).

The choice of A can be guided by the examination of (16) and (19): we want to maximize the
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squared correlations in these expressions. Interestingly, one referee suggested that it might be a

good idea to stratify on the CV itself (or the uniform used to generate it). But this choice always

gives zero variance reduction in (19), because a(Us,i) = As,i in that case! The correlation in (16) is

also likely to be small. What we should look for instead is a CV (scalar or vector) that is highly

correlated with X , conditional on U . Intuitively, this CV should bring information relevant to the

prediction of X in addition to what is already known from U .

A Simple Model of a Call Center

The Model. Telephone call centers, and more generally contact centers where mail, fax, e-mail,

and Internet contacts are handled in addition to telephone calls, are important components of large

organizations (Gans et al., 2003). To illustrate the VRT ideas in this paper, we consider a simple

model of a call center where agents answer incoming calls. Real-life call centers often receive

different call types and have separate groups of agents with different combinations of skills that

enable them to handle only a subset of the call types. To simplify the presentation, we assume a

single agent type and a single call type, but the model is otherwise inspired by real-life centers.

The techniques examined in this paper should behave in a similar way with more complex centers

and other similar types of queueing systems.

Each day, the center operates for m hours. The number of (identical) agents answering calls

and the arrival rate of calls vary during the day; we assume that they are constant within each hour

of operation but depend on the hour. Let n j be the number of agents in the center during hour

j, for j = 0, . . . ,m− 1. If more than n j+1 agents are busy at the end of hour j, calls in progress

are completed but new calls are answered only when there are fewer than n j+1 agents busy. After

the center closes, ongoing calls are completed and calls already in the queue are answered, but no

additional incoming call is taken.

The calls arrive according to a Poisson process with piecewise constant rate, equal to R j = Bλ j

during hour j, where the λ j are constants and B is a random variable with mean 1 that represents the

busyness factor of the day. We suppose that B has the gamma distribution with parameters (α0,α0),

i.e., with mean E[B] = 1 and Var[B] = 1/α0. This type of arrival process model is motivated and

studied by Whitt (1999) and Avramidis et al. (2004).

Incoming calls form a FIFO queue for the agents. A call abandons (and is lost) when its
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waiting time exceeds its patience time. The patience times of calls are assumed to be i.i.d. random

variables with the following distribution: with probability p the patience time is 0 (so the person

hangs up if no agent is available immediately), and with probability 1− p it is exponential with

mean 1/ν . The service times are i.i.d. gamma random variables with parameters (α,γ), i.e., with

mean α/γ and variance α/γ2.

For a given time period (an hour, a day, a month, etc.) and a given threshold s0, the fraction of

calls arriving during that period and whose waiting time is less than s0 seconds (including those

who abandoned before s0 seconds) is called the service level for that period, whereas the fraction

of calls having abandoned is called the abandonment ratio. The service level is widely used as a

measure of quality of service in call centers. For certain types of call centers that provide public

service, it is regulated by law: The call center operators may be charged a large fine if their service

level goes below a given target; for example, 0.80 over each month for s0 = 20 seconds.

Here, we estimate these performance measures over an infinite time-horizon, i.e., on average

over an infinite number of days. Let A be the number of arriving calls during the day, G(s0)

the number of those calls waiting less than s0 seconds (including those who abandoned before s0

seconds) for a given threshold s0, and L the number of calls having abandoned. The expected

number of arrivals during the day is a = E[A] = ∑
m−1
j=0 λ j. Its variance is Var[A] = Var[E[A | B =

b]]+E[Var[A | B = b]] = a+a2/α0. Define g(s0) = E[G(s0)]/a and ` = E[L]/a. These two quanti-

ties represent the steady-state service level, and abandonment ratio, respectively. Since a is known,

here we will estimate only E[G(s0)] and E[L].

We simulate the model for n days. For each day i, let Ai be the number of arrivals, Gi(s0) the

number of calls who waited less than s0 seconds and Li the number of calls having abandoned. In

what follows, we use Xi to represent either Gi(s0) or Li, and µ = E[X ] to represent any of the two

performance measures. A standard (or crude) unbiased Monte Carlo estimator of µ is

X̄n =
1
n

n

∑
i=1

Xi,

with variance Var[X̄n] = Var[Xi]/n. We can estimate Var[Xi] by the empirical variance and a confi-

dence interval can be computed as usual, using the normal approximation.

For our numerical illustrations, we take the following parameter values, where the time is

measured in seconds: α0 = 10, p = 0.1, ν = 0.001, α = 1.0, γ = 0.01 (so the mean service time
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is 100 seconds), and s0 = 20. The center starts empty and operates for 13 one-hour periods. The

number of agents and the arrival rate in each period are given in Table 2.

Table 2: Number of Agents n j and Arrival Rate λ j (per hour) for 13 one-hour Periods in the Call
Center

j 0 1 2 3 4 5 6 7 8 9 10 11 12
n j 4 6 8 8 8 7 8 8 6 6 4 4 4
λ j 100 150 150 180 200 150 150 150 120 100 80 70 60

We stratify on the uniform random variate U used to generate the busyness factor B by in-

version: B = F−1
B (U). As a CV, we use the number A of arrivals during the day. The mean and

variance of A are a = E[A] = 1660 and Var[A] = 1660+16602/10 = 277220. The expected num-

ber of arrivals conditional on U = u is a(u) = aF−1
B (u) and the expected number of arrivals given

that we are in stratum s is

as = E[As,i] = k
∫ s/k

(s−1)/k
a(u)du = ak

∫ s/k

(s−1)/k
F−1

B (u)du = ak
∫ F−1

B (s/k)

F−1
B ((s−1)/k)

b fB(b)db

where fB(b) is the density of B.

Variance Estimates for Different Schemes We perform a numerical experiment whose aim is

to provide accurate estimates of all the terms in the variance decomposition (6) and other rele-

vant constants, for each scheme. Instead of estimating these terms by the empirical variance of

a few pilot runs, as we would normally do in an application, we did the following extensive (and

more accurate) computations. We simulated 104 replications at U = u j = ( j + 0.5)/1000, for

j = 0, . . . ,999. For each value of u j, we computed the busyness factor B j = F−1
B (u j), performed

the runs, and then computed estimates of µ(u j), σ2(u j), and Cov[X ,A |U = u j] based on the 104

runs, for each j. We then fitted a cubic smoothing spline to these pointsto obtain accurate approx-

imations of the functions µ(u), σ2(u), Cov[X ,A |U = u], and β ∗
sc(u). Note that Var[A |U ] can be

computed exactly, since A has a known Poisson distribution conditional on U .

We integrated these functions numerically to approximate µs, σ2
s , Var[As,i], Cov[Xs,i,As,i],

β ∗
sc,s, and β ∗

scp, for each relevant pair (s,k), as well as all other relevant constants such as µ , σ2,

Cov[X ,A], and β ∗. The value of Var[A] = E[Var[A |U ]]+Var[E[A |U ]] is known, but Var[A | S = s],

the conditional variance of A given that we are in stratum s, must be estimated too. Based on these
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Figure 1: The Function β ∗
sc(u) for the Number of Calls Waiting less than s0, Approximated by

Smoothing Cubic Splines on 1000 Points

computations, we were able to compute all the numbers reported in Table 3 for the service level

G(s0) and in Table 5 for L, the number of lost calls. We also have µ ≈ 1418.660 for G(s0), and

µ ≈ 60.504 for L.

Figure 1 shows the behavior of the optimal CV coefficient β ∗
sc(u) for the estimation of E[G(s0)],

as a function of u. This coefficient is decreasing in u and has the same sign as Cov[C,X |U = u].

It is positive for small u and negative for large u. This can be explained as follows: when u is

small, the load on the system is small and the agents are not very busy, so a small increase in the

number of arrivals tends to increase G(s0), which makes the covariance positive. When u is large,

on the other hand, the agents are occupied most of the time, so a few more arrivals increases the

waiting time of several calls and tends to decrease the number of calls answered within s0 seconds,

whence a negative covariance. Therefore, the CV must correct the estimator in a different direction

depending on the value of u. When u ≈ 0.99, the load on the system is so high that new arrivals

do not affect much the number of calls waiting less than s0; in the limit, this number is zero (a

constant) so Cov[X ,C |U = u]→ 0 while Var[C |U = u] = F−1
B (u)→ ∞. Thus, β ∗

sc(u) converges

to 0 when u → 1.
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Figure 2: The Function σ2(u) for the Number of Calls Waiting less than s0, Approximated by
Smoothing Cubic Splines on 1000 Points

Figure 2 displays the function σ2(u)= Var[X |U = u] as a function of u, again for the estimation

of X = G(s0). When u increases (i.e., the arrival rate increases), the conditional variance first

increases until it hits a sharp peak at u≈ 0.99, and then it decreases abruptly to zero. This decrease

to zero is again due to the fact that when the arrival rate is too high (when u is too close to 1),

practically no call is served within the time limit s0. The graph of µ(u) = E[G(s0) |U = u] as a

function of u, in Figure 3, confirms this abrupt convergence of µ(u) to 0 when u→ 1. This function

increases for u up to about 0.86, and then it starts to decrease.

We made a similar experiment for the estimation of E[L], the expected number of lost calls.

Figure 4 shows the behavior of β ∗
sc(u), which is always positive and increasing in this case (the

correlation between L and A, conditional on u, is always positive). The functions σ2(u), µ(u), and

Cov[X ,A |U = u], have a very similar shape as β ∗
sc(u).

Tables 3 and 5 report the values of the different terms in the variance decomposition, as a

function of the number of strata, k. The following five schemes are considered; they all use the

estimator in (8), with some control variate C = As,i− es,i and coefficient bs,i:

(1) no CV, only stratification (bs,i = 0);
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Table 3: Terms of the variance decomposition for G(s0) with k strata, for various estimation
schemes

Scheme k 1 2 3 10 20 50 100 500 1000 ∞

1
k ∑

k
s=1(µs−µ)2 0 44610 55448 68600 71803 73868 74514 74928 74986 75096

nVar[X̄n] 77444 77444 77444 77444 77444 77444 77444 77444 77444 77444
(1) nVar[X̄sp,n] 77444 32834 21995 8844 5641 3575 2930 2515 2457 2347

nVar[X̄so,n] — 30933 20476 5778 3537 2516 2247 2071 2046 2010
1
k ∑

k
s=1(σs− σ̄)2 0 1901 1519 3066 2103 1060 682 444 412 337

nVar[X̄n] 35291 77358 83389 82180 79979 78302 77719 77296 77245 77188
(2) nVar[X̄sp,n] 35291 32748 27941 13580 8177 4433 3205 2368 2259 2092

nVar[X̄so,n] — 30280 19580 5297 3103 2042 1749 1546 1517 1480
1
k ∑

k
s=1(σs− σ̄)2 0 2468 8360 8283 5073 2391 1456 822 742 612

nVar[X̄n] 35291 73348 77097 76783 77004 77401 77435 77281 77241 77188
(3) nVar[X̄sp,n] 35291 28738 21649 8183 5201 3533 2921 2353 2255 2092

nVar[X̄so,n] — 28734 19971 6460 4102 2722 2150 1633 1562 1479
1
k ∑

k
s=1(σs− σ̄)2 0 4 1678 1724 1099 811 771 720 694 614

β ∗
sc 0.390 0.196 0.074 -0.210 -0.243 -0.108 0.057 0.299 0.342 0.392

nVar[X̄n] 35291 53078 59966 70427 73534 75595 76240 76644 76692 76786
(4) nVar[X̄sp,n] 35291 8468 4517 1827 1732 1727 1726 1715 1706 1690

nVar[X̄so,n] — 5470 2606 1180 1124 1098 1090 1074 1069 1060
1
k ∑

k
s=1(σs− σ̄)2 0 2999 1912 647 608 629 636 641 637 630

nVar[X̄n] 76786 76786 76786 76786 76786 76786 76786 76786 76786 76786
(5) nVar[X̄sp,n] 76786 32176 21337 8186 4983 2917 2272 1857 1799 1690

nVar[X̄so,n] — 30293 19762 4873 2599 1565 1293 1114 1090 1060
1
k ∑

k
s=1(σs− σ̄)2 0 1883 1576 3313 2384 1352 979 744 709 630

(2) the CV C = A−as with constant coefficient bs,i = β ∗;

(3) the CV C = A−as with constant coefficient bs,i = β ∗
sc;

(4) the CV C = A−as with coefficient bs,i = β ∗
sc,s in each stratum;

(5) the CV C = A−a(U) with coefficient bs,i = β ∗
sc(U).

The values of k range from 1 to 1000. The extreme case of k = 1 corresponds to no stratification.

We also consider the limit when k → ∞. The (almost) exact means can be computed via E[X ] =∫ 1
0 µ(u)du; they are E[G(s0)] ≈ 1419 and E[L] ≈ 60.5 (recall that the mean number of arrivals is

1660).

Note that Scheme (1) with k = 1 is the classical Monte Carlo estimator. Schemes (2) to (4)

with k = 1 are all equivalent and they correspond to using CV only, without stratification.

When k → ∞, the variance with proportional allocation becomes E[Var[X |U ]], while the vari-

ance with optimal allocation converges to
(∫ 1

0 σ(u)du
)2

, which provides a lower bound on the

best that can be achieved by increasing k and using optimal allocation. The variance of the means
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and the variance of standard deviations across strata converge to Var[µ(U)] and Var[σ2(U)], re-

spectively. The constant β ∗
scp for scheme (3) converges to the ratio E[Cov[X ,A |U ]]/E[Var[A |U ]].

The two CV schemes (4) and (5) are equivalent in the limit, as discussed earlier.

The variation of the means across strata, (1/k)∑
k
s=1(µs − µ)2, depends only on k and not on

the CV scheme; it is given in the second line of the table. It increases with k, first very quickly

and then slowly. This term represents the variance that is eliminated by doing stratification with

proportional allocation, compared with no stratification at all; see Equation (5).

The term (1/k)∑
k
s=1(σs − σ̄)2, which represents the gain of optimal allocation over propor-

tional allocation, usually first increases with k for k up to 2 to 10 (depending on the scheme), and

then decreases with k. One exception to this is Scheme (4). The decrease is important for some

of the schemes (e.g., (1), (2), (5)) and less important for others. This decrease could be explained

intuitively by the fact that the number of strata increases, the variances within the strata (the σs’s)

tend to get smaller and so their variation decreases.

The variance of the stratified estimators decreases with the number of strata for all the schemes

and both types of allocations (proportional and optimal).

With Scheme (1) (no-CV), the stratification with proportional allocation reduces the variance

per run from 77246 to 8616 with k = 10, and to 2354 when k → ∞ (in the limit). With optimal

allocation, it is reduced further to 5701 with k = 10 and to 2013 when k → ∞. Thus, we gain by a

factor of more than 38.

With schemes (2) and (3), the CV brings practically no additional gain to stratification with

proportional allocation. For Scheme (2), it even increases the variance when k is less than about

100. This is explained by the fact that β ∗ (whose value is 0.390 here) is not really optimal for this

scheme. The optimal coefficient β ∗
scp (given in the table) depends on k and it becomes close to β ∗

(but not equal) when k → ∞. With the optimal allocation, the CV gives some gain when k is large.

But it also increases the variance when k is small in Scheme (3); this is because the coefficient β ∗
scp

that we use is optimal only for the proportional allocation. Without stratification (k = 1), these

schemes reduce the variance by a factor of 2.

Scheme (4) gives the best results, with both proportional and optimal allocations. The perfor-

mance is also good even for small values of k, which is quite interesting: there is no need to use

a large number of strata (at least for this particular example). For this scheme, each coefficient

β ∗
sc,s is optimized to reduce σs independently across strata, and the CV works on both components
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Table 4: Terms of the Decomposition (21) and (22) for Each Stratum, for G(s0) with k = 20 Strata
E[Var[Xsc,s,i |Us,i]] Var[E[Xsc,s,i |Us,i]]

s µs Scheme (1) Scheme (5) Scheme (4) Scheme (5) Scheme (4)
1 766 743 21 22 12250 369
2 963 915 31 31 1314 0.021
3 1069 998 54 54 670 0.012
4 1149 1060 85 85 449 0.019
5 1218 1101 133 133 339 0.019
6 1278 1144 183 183 276 0.023
7 1334 1186 251 251 234 0.031
8 1385 1228 335 335 207 0.030
9 1433 1281 434 434 185 0.043
10 1479 1339 565 566 167 0.034
11 1523 1429 721 721 155 0.074
12 1565 1530 921 921 140 0.104
13 1605 1684 1175 1176 125 0.099
14 1643 1889 1496 1497 112 0.168
15 1677 2199 1934 1936 87 0.341
16 1707 2653 2515 2517 57 0.517
17 1728 3367 3330 3334 20 0.834
18 1732 4547 4528 4537 10 1.909
19 1692 6647 6373 6393 555 8.679
20 1427 10009 8706 8750 48508 543

of σ2
s = E[Var[X |Us,i]]+ Var[E[X |Us,i]]. The σs’s tend to be smaller and their variation is also

smaller.

Scheme (5), in which the CV and its coefficient are functions of U , is not doing better than

Scheme (4). When k → ∞ the two schemes become equivalent, so there is not much difference

between them when k is large. But for small k, Scheme (5) gives a much larger variance with both

the proportional and optimal allocations. We found this result rather surprising at first. However, it

can be explained by the fact that second term of (22) is much larger than that of (21) in some strata,

in this example, when k is small. The last two columns of Table 4 compare these two terms, which

represent the values of Var[E[Xsc,s,i |Us,i]] for the two schemes, in each stratum, for k = 20. We see

that the values are much larger for Scheme (5) than for Scheme (4), especially for the strata where

U is close to 0 or 1. The term E[Var[Xsc,s,i |Us,i]] is smaller for Scheme (5) than for Scheme (4),

but only by a very small amount.

The results for L, given in Table 5, are similar. In particular, Scheme (4) (clearly) remains the

best performer, especially for small or moderate k. Some minor changes are that here, Scheme (2)

does not increase the variance compared with Scheme (1), and the variation of the standard devia-

tions across strata is a decreasing function of k for all the schemes.
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Table 5: Terms of the variance decomposition for L with k strata, for various estimation schemes
Scheme k 1 2 3 10 20 50 100 500 1000 ∞

1
k ∑

k
s=1(µs−µ)2 0 2458 3743 6552 7538 8330 8662 8965 8996 9007

nVar[X̄n] 9192 9192 9192 9192 9192 9192 9192 9192 9192 9192
(1) nVar[X̄sp,n] 9192 6735 5449 2640 1654 862.5 530.2 227.5 195.9 185.7

nVar[X̄so,n] — 3880 2337 579.1 307.2 172.2 132.7 103.7 100.7 99.36
1
k ∑

k
s=1(σs− σ̄)2 0 2855 3111 2061 1347 690.4 397.5 123.8 95.2 86.3

nVar[X̄n] 2681 4964 5985 7925 8484 8872 9015 9135 9148 9153
(2) nVar[X̄sp,n] 2681 2506 2242 1373 945.5 542.1 353.3 170.2 151.6 146.5

nVar[X̄so,n] — 2231 1474 421.0 242.2 147.9 118.8 96.8 94.6 93.7
1
k ∑

k
s=1(σs− σ̄)2 0 275.3 767.5 952.1 703.3 394.2 234.4 73.4 57.0 52.8

nVar[X̄n] 2681 4667 5483 7331 8074 8709 8958 9134 9148 9153
(3) nVar[X̄sp,n] 2681 2209 1739 779.1 536.0 379.7 296.3 168.9 151.5 146.5

nVar[X̄so,n] — 2198 1579 586.4 391.9 256.6 181.4 103.5 96.1 93.8
1
k ∑

k
s=1(σs− σ̄)2 0 11.5 160.8 192.7 144.2 123.1 114.9 65.4 55.4 52.7

β ∗
sc 0.153 0.206 0.242 0.352 0.388 0.365 0.303 0.180 0.160 0.154

nVar[X̄n] 2681 3365 4312 6747 7681 8456 8787 9085 9112 9120
(4) nVar[X̄sp,n] 2681 906.9 568.6 195.0 142.6 126.0 125.1 120.6 115.8 113.4

nVar[X̄so,n] — 556.4 285.0 93.7 76.2 70.9 70.2 69.0 68.3 68.0
1
k ∑

k
s=1(σs− σ̄)2 0 350.5 283.6 101.2 66.4 55.1 54.9 51.6 47.4 45.4

nVar[X̄n] 9120 9120 9120 9120 9120 9120 9120 9120 9120 9120
(5) nVar[X̄sp,n] 9120 6662 5377 2568 1582 790.2 457.8 155.1 123.5 113.4

nVar[X̄so,n] — 3832 2293 536.7 268.0 137.1 99.6 72.3 69.4 68.0
1
k ∑

k
s=1(σs− σ̄)2 0 2831 3084 2031 1314 653.1 358.2 82.8 54.1 45.4

Conclusion

We have studied how to combine stratification with respect to a few uniform random numbers that

drive the simulation, with one or more CVs. Our variance analysis and empirical results have ex-

hibited some unexpected behavior in the combination. Among the different combination schemes

that we have discussed, based on our analysis and experimentation, we recommend Scheme (4),

with a moderate value of k. If we prefer a large k, then the optimal CV coefficients should prob-

ably be estimated by approximating the variances and covariances by smooth functions of u, via

least-squares. In our empirical experiments with other examples, this scheme never performed

much worse (and usually better) than the other schemes. Our detailed example provides insight by

showing how the different variance and covariance components vary as functions of design para-

meters such as the number of strata, as functions of the uniform on which we stratify, and with the

combination scheme. It also provides ideas on how to implement the method in practice.
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