Random Number Generation and Quasi-Monte Carlo

PIERRE L’ECUYER

Volume 3, pp. 1363-1369

In

Encyclopedia Of Actuarial Science
(ISBN 0-470-84676-3)

Edited by

Jozef L. Teugels and Bjgrn Sundt

© John Wiley & Sons, Ltd, Chichester, 2004

Random Number
Generation and
Quasi-Monte Carlo

Introduction

Probability theory defines random variables and
stochastic processes in terms of probability spaces, a
purely abstract notion whose concrete and exact real-
ization on a computer is far from obvious. (Pseudo)
random number generators (RNGs) implemented on
computers are actually deterministic programs, which
imitate to some extent, independent random variables
uniformly distributed over the interval [0, 1] (i.i.d.
U[0, 1], for short). RNGs are a key ingredient for
Monte Carlo simulations, probabilistic algorithms,
computer games, cryptography, casino machines, and
so on. In the section ‘Uniform Random Number Gen-
erators’, we discuss the main ideas underlying their
design and testing.

Random variates from nonuniform distributions
and stochastic objects of all sorts are simulated by
applying appropriate transformations to these fake
ii.d. U[O0, 1]. Conceptually, the easiest way of gener-
ating a random variate X with distribution function F
(i.e. such that F(x) = P[X < x] for all x € R) is to
apply the inverse of F to a U[0, 1] random variate U :

L min{x | F) > U} (1)

X = FY(U)
Then, P[X < x] = P[F~'(U) < x] = P[U < F(x)]
= F(x), so X has the desired distribution. This is the
inversion method. If X has a discrete distribution
with P[X = x;] = p;, inversion can be implemented
by storing the values of F(x;) in a table and using
binary search to find the value of X that satisfies (1).
In the cases in which F~! is hard or expensive to
compute, other methods are sometimes more advan-
tageous, as explained in the section ‘Nonuniform
Random Variate Generation’.

One major use of simulation is in estimating
mathematical expectations of functions of several
random variables, that is, multidimensional inte-
grals. To apply simulation, the integrand is expressed
(sometimes implicitly) as a function f of s ii.d.
U0, 1] random variables, where s can be viewed as
the number of calls to the RNG required by the simu-
lation (s is allowed to be infinite or random, but here

we assume it is a constant, for simplicity). In other
words, the goal is to estimate

n= S (u) du, @
[0, 1]&‘

where f is a real-valued function defined over the unit
hypercube [0, 1]° and u = (u;,...,us) € [0, 1]°. A
simple way of approximating p is to select a point
set P, = {uy,...,u,} C [0, 1]° and take the average

.
fin = ;;fm,-) 3)

as an approximation. The Monte Carlo method (MC)
chooses the u;’s as n i.i.d. uniformly distributed
random vectors over [0, 1]°. Then, [, is an unbiased
estimator of w. If f is also square integrable, then [,
obeys a central-limit theorem, which permits one to
compute an asymptotically valid confidence interval
for w, and the error |{i, — | converges to zero as
0,(n='?).

The idea of quasi-Monte Carlo (QMC) is to select
the point set P, more evenly distributed over [0, 1]*
than a typical set of random points, with the aim
of reducing the error compared with MC. Important
issues are: How should we measure the uniformity of
P,? How can we construct such highly uniform point
sets? Under what conditions is the error (or variance)
effectively smaller? and How much smaller? These
questions are discussed in the section ‘Quasi-Monte
Carlo Methods’.

Uniform Random Number Generators

Following [11], a uniform RNG can be defined as
a structure (S, i, f, U, g), where S is a finite set of
states, | is a probability distribution on S used to
select the initial state sq (the seed), f:S — S is the
transition function, U is the output set, and g: S — U
is the output function. In what follows, we assume
that ¢/ = [0, 1]. The state evolves according to the
recurrence s; = f(s;—1), for i > 1, and the output at
step i is u; = g(s;) € U. These u; are the random
numbers produced by the RNG. Because S is finite,
one must have s;4.; =s; for some / > 0 and j > 0.
Then, s;; = s; and u;4; = u; forall i > [; that is, the
output sequence is eventually periodic. The smallest
positive j for which this happens is the period length
p. Of course, p cannot exceed |S|, the cardinality of

2 Random Number Generation and Quasi-Monte Carlo

S. So p < 2% if the state is represented over b bits.
Good RNGs are designed so that their period length
is close to that upper bound.

Attempts have been made to construct ‘truly ran-
dom’ generators based on physical devices such as
noise diodes, gamma ray counters, and so on, but
these remain largely impractical and not always reli-
able. A major advantage of RNGs based on determin-
istic recurrences is the ability to repeat exactly the
same sequence of numbers — this is very handy for
program verification and for implementing variance
reduction methods in simulation (e.g. for comparing
similar systems with common random numbers) [1,
5, 10]. True randomness can nevertheless be used for
selecting the seed sy. Then, the RNG can be viewed
as an extensor of randomness, stretching a short ran-
dom seed into a long sequence of random-looking
numbers.

What quality criteria should we consider in RNG
design? One obvious requirement is an extremely
long period, to make sure that no wraparound over the
cycle can occur in practice. The RNG must also be
efficient (run fast and use little memory), repeatable
(able to reproduce the same sequence), and portable
(work the same way in different software/hardware
environments). The availability of efficient jumping-
ahead methods, that is, to quickly compute s;, given
s;, for any large v, is also an important asset, because
it permits one to partition the sequence into long dis-
joint streams and substreams for constructing virtual
generators from a single backbone RNG [10, 22].

A long period does not suffice for the u;’s to
appear uniform and independent. Ideally, we would
like the vector (ug, ..., us—;) to be uniformly dis-
tributed over [0, 1]* for each s > 0. This cannot be
formally true, because these vectors always take their
values only from the finite set Wy = {(ug, ..., Us—1) :
so € S}, whose cardinality cannot exceed |S]. If sq is
random, W, can be viewed as the sample space from
which vectors of successive output values are taken
randomly. Producing s-dimensional vectors by taking
nonoverlapping blocks of s output values of an RNG
can be viewed in a way as picking points at random
from W, without replacement. It seems quite natural,
then, to require that Wy be very evenly distributed
over the unit cube, so that the uniform distribution
over W is a good approximation to that over [0, 1]°,
at least for moderate values of s. For this, the cardi-
nality of S must be huge, to make sure that W, can
fill up the unit hypercube densely enough. The latter

is in fact a more important reason for having a large
state space than just the fear of wrapping around the
cycle.

The uniformity of W, is usually assessed by
figures of merit measuring the discrepancy between
the empirical distribution of its points and the uni-
form distribution over [0, 1]* [7, 19, 29]. Several
such measures can be defined and they correspond to
goodness-of-fit test statistics for the uniform distribu-
tion over [0, 1]°. An important criterion in choosing
a specific measure is the ability to compute it effi-
ciently without generating the points explicitly, and
this depends on the mathematical structure of W.
This is why different figures of merit are used in
practice for analyzing different classes of RNGs. The
selected figure of merit is usually computed for a
range of dimensions, for example, for s < s; for some
arbitrary integer s;. Examples of such figures of merit
include the (normalized) spectral test in the case of
multiple recursive generators (MRGs) and linear con-
gruential generators (LCGs) [5, 9, 15] and measures
of equidistribution for generators based on linear
recurrences modulo 2 [12, 20, 34]. (These RNGs are
defined below.)

More generally, one can compute a discrepancy
measure for sets of the form W, (1) = {(u;,, ..., u;) |
so € S}, where I ={i,i»,...,is} is a fixed set of
nonnegative integers. Do this for all / in a given
class Z, and take either the worst case or some kind of
average (after appropriate normalization) as a figure
of merit for the RNG [18, 20]. The choice of Z is
arbitrary. Typically, it would contain sets I such that
s and iy — i; are rather small.

After an RNG has been designed, based on sound
mathematical analysis, it is good practice to submit
it to a battery of empirical statistical tests that try
to detect empirical evidence against the hypothesis
‘Ho that the u; are iid. UJ[O,1]. A test can be
defined by any function T of a finite set of u;’s,
and whose distribution under H, is known or can be
closely approximated. There is an unlimited number
of such tests. No finite set of tests can guarantee,
when passed, that a given generator is fully reliable
for all kinds of simulations. Passing many tests may
improve one’s confidence in the RNG, but it never
proves that the RNG is foolproof. In fact, no RNG
can pass all statistical tests. Roughly, bad RNGs are
those that fail simple tests, whereas good ones fail
only complicated tests that are very hard to find and
run. Whenever possible, the statistical tests should be

Random Number Generation and Quasi-Monte Carlo 3

selected in close relation with the target application,
that is, 7 should mimic the random variable of
interest, but this is rarely practical, especially for
general purpose RNGs. Specific tests for RNGs are
proposed and implemented in [9, 21, 27] and other
references given there.

The most widely used RNGs are based on linear
recurrences of the form

x; = (a1xi—1 + -+ + axxi—x) mod m, 4

for positive integers m and k, and coefficients q;
in {0,1,...,m —1}. The state at step i is §; =
(Xi—k+1s---,%;). If m is a prime number, one can
choose the coefficients @;’s so that the period length
reaches p = m* — 1, which is the largest possible
value [9].

A multiple recursive generator uses (4) with a
large value of m and defines the output as u; = x; /m.
For k =1, this is the classical linear congruential
generator. Implementation techniques and concrete
examples are given, for example, in [5, 15, 24] and
the references given there.

A different approach takes m = 2, which allows
fast implementations by exploiting the binary nature
of computers. The output can be defined as u; =
Z]L.:l Xis4+j—1m~J for some positive integers s and
L, yielding a linear feedback shift register (LFSR) or
Tausworthe generator [16, 29, 34]. This can be gen-
eralized to a recurrence of the form x; = Ax;_; mod
2, Y = BX,‘ mod 2, and u; = in0/2 + y,»,l/22 —+ -+
Yi.w—1/2", where k and w are positive integers, X; is a
k-dimensional vector of bits, y; = (yi.0,-- -, yi,w,l)T
is a w-dimensional vector of bits, and A and B are
binary matrices. Then, for each j, the bit sequence
{yi,j, i = 0} obeys the recurrence (4) where the g
are the coefficients of the characteristic polynomial
of A [20]. This setup encompasses several types
of generators, including the Tausworthe, polynomial
LCG, generalized feedback shift register (GFSR),
twisted GFSR, Mersenne twister, and combinations
of these [20, 28].

Some of the best currently available RNGs are
combined generators, constructed by combining the
outputs of two or more RNGs having a simple struc-
ture. The idea is to keep the components simple so
that they run fast, and to select them carefully so that
their combination has a more complicated structure
and highly-uniform sets W;(I) for the values of s
and sets I deemed important. Such combinations are
proposed in [15, 16, 20], for example.

Other types of generators, including nonlinear
ones, are discussed, for example, in [3, 9, 11, 13, 22,
34]. Plenty of very bad and unreliable RNGs abound
in software products, regardless of how much they
cost. Convincing examples can be found in [13, 17,
23], for example. In particular, all LCGs with period
length less than 2!%, say, should be discarded in my
opinion.

On the other hand, the following RNGs have
fairly good theoretical support, have been exten-
sively tested, and are easy to use: the Mersenne
twister of [28], the combined MRGs of [15], and the
combined Tausworthe generators of [16]. A conve-
nient software package with multiple streams and
substreams of random numbers, available in several
programming languages, is described in [22]. Further
discussion and up-to-date developments on RNGs
can be found in [9, 14] and from the web pages:
http://www.iro.umontreal.ca/~lecuyer, http://random.
mat.sbg.ac.at, and http://cgm.cs.mcgill.ca/~luc/.

Nonuniform Random Variate Generation

For most applications, inversion should be the method
of choice for generating nonuniform random variates.
The fact that it transforms U monotonously into X (X
is a nondecreasing function of U) makes it compati-
ble with major variance reductions techniques [1, 10].
For certain types of distributions (the normal, student,
and chi-square, for example), there is no close form
expression for F~! but good numerical approxima-
tions are available [1, 6]. There are also situations
where speed is important and where noninversion
methods are appropriate. In general, compromises
must be made between simplicity of the algorithm,
quality of the approximation, robustness with respect
to the distribution parameters, and efficiency (gener-
ation speed, memory requirements, and setup time).
Simplicity should generally not be sacrificed for small
speed gains. In what follows, we outline some impor-
tant special cases of noninversion methods.

The alias method is a very fast way of generat-
ing a variate X from the discrete distribution over
the finite set {xy, ..., xy}, with p; = P[X = x;] for
each i, when N is large. It is not monotone, but gen-
erates random variates in O(1l) time per call, after
a table setup, which takes O(N) time. Consider a
bar diagram of the distribution, where each index i
has a bar of height p;. The idea is to ‘level’ the

4 Random Number Generation and Quasi-Monte Carlo

bars so that each has a height 1/N, by cutting off bar
pieces and transferring them to different indices. This
is done in a way that in the new diagram, each bar i
contains one piece of size g; (say) from the original
bar i and one piece of size 1/N — g; from another
bar whose index j, denoted by A(i), is called the
alias value of i. The setup procedure initializes two
tables A and R where A(i) is the alias value of i and
R(@) = (G — 1)/N + g;; see [2, 10] for the details. To
generate X, take a U[0, 1] variate U, leti = [N-U1,
and return X = x; if U < R(i); X = x4(;) otherwise.
There is a version of the alias method for continuous
distributions; it is called the acceptance—complement
method [2].

Now suppose we want to generate X from a
complicated density f. Select another density r such

that f(x) < t(x) & ar(x) for all x for some constant
a, and such that generating variates Y from the
density r is easy. Clearly, one must have a > 1. To
generate X, repeat the following: generate Y from
the density r and an independent U[0, 1] variate U,
until Ut(Y) < f(Y). Then, return X =Y. This is
the acceptance—rejection method [2]. The number
R of turns into the ‘repeat’ loop is one plus a
geometric random variable with parameter 1/a, so
E[R] = a. Thus, we want a to be as small (close to
1) as possible, that is, we want to minimize the area
between f and the hat function t. In practice, there
is usually a compromise between bringing a close to
1 and keeping r simple. When f is a bit expensive
to compute, one can also use a squeeze function, q
which is faster to evaluate and such that g(x) < f(x)
for all x. To verify the condition Ut(Y) < f(Y), first
check if Ut(Y) < q(Y), in which case there is no
need to compute f(Y).

The acceptance—rejection method is often applied
after transforming the density f by a smooth increas-
ing function T (e.g. T (x) = logx or T(x) = —x~'/?)
selected so that it is easier to construct good hat
and squeeze functions (often piecewise linear) for
the transformed density. By transforming back to the
original scale, we get hat and squeeze functions for
f. This is the transformed density rejection method,
which has several variants and extensions [2, 26].

A variant of acceptance—rejection, called thinning,
is often used for generating events from a nonhomo-
geneous Poisson process. Suppose the process has
rate A(z) at time ¢, with A(f) < A for all #, where
X is a finite constant. One can generate Poisson

pseudoarrivals at constant rate A by generating inter-
arrival times as i.i.d. exponentials of mean 1/A. Then,
a pseudoarrival at time ¢ is accepted (becomes an
arrival) with probability A(t)/A (i.e. if U < A(t)/A,
where U is an independent U[O0, 1]), and rejected
with probability 1 — A(¢)/A. Nonhomogeneous Pois-
son processes can also be generated by inversion [1].

Besides the general methods, several special-
ized and fancy techniques have been designed for
commonly used distributions like the Poisson, nor-
mal, and so on. Details can be found in [1, 2, 6].
Recently, there has been an effort in developing auto-
matic or black box algorithms for generating variates
from an arbitrary (known) density, based on accep-
tance—rejection with a transformed density [8, 25,
26]. Another important class of general nonpara-
metric methods is those that sample directly from
a smoothened version of the empirical distribution
of a given data set [8, 10]. These methods shortcut
the fitting of a specific type of distribution to the
data. Perhaps the best currently available software
for nonuniform variate generation is [25].

Quasi-Monte Carlo Methods

The primary ingredient for QMC is a highly uniform
(or low-discrepancy) point set P, to be used in (3).
The two main classes of approaches for constructing
such point sets are lattice rules and digital nets [4, 7,
19, 29, 30, 33]. The issue of measuring the uniformity
(or discrepancy) of P, is the same as for the set W, of
a RNG. Moreover, RNG construction methods such
as LCGs and linear recurrences modulo 2 with linear
output transformations can be used as well for QMC:
It suffices to take P, = W, in s dimensions, with
n = |¥;| much smaller than for RNGs. The same
methods can be used for measuring the discrepancy
of P, for QMC and of W¥; for RNGs. Point sets
constructed via an LCG and a Tausworthe generator
are actually special cases of lattice rules and digital
nets, respectively. A low-discrepancy sequence is an
infinite sequence of points P, such that the set
P, comprised of the first n points of the sequence
have low discrepancy (high uniformity) for all n, as
n — oo [7, 29, 30]. With such a sequence, one does
not have to fix n in advance when evaluating (3);
sequential sampling becomes possible. Applications
of QMC in different areas are discussed, for example,
in [4, 18, 30].

Random Number Generation and Quasi-Monte Carlo 5

QMC methods are typically justified by worst-case
error bounds of the form

liin — ul = ILf — mllD(Py) ®)

for all f in some Banach space F with norm |-|.
Here, || f — u|| measures the variability of f, while
D(P,) measures the discrepancy of P, and its defi-
nition depends on how the norm is defined in F. A
popular special case of (5) is the Koksma—Hlawka
inequality, in which the norm is the variation of f
in the sense of Hardy and Krause and D(P,) is the
rectangular star discrepancy. The latter considers all
rectangular boxes aligned with the axes and with a
corner at the origin in [0, 1]°, computes the absolute
difference between the volume of the box, and the
fraction of P, falling in it, and takes the worst case
over all such boxes. This is a multidimensional ver-
sion of the Kolmogorov—Smirnov goodness-of-fit test
statistic. Several other versions of (5) are discussed
in [4, 7, 30] and other references therein. Some of the
corresponding discrepancy measures are much eas-
ier to compute than the rectangular star discrepancy.
Like for RNGs, different discrepancy measures are
often used in practice for different types of point set
constructions, for computational efficiency considera-
tions (e.g. variants of the spectral test for lattice rules
and measures of equidistribution for digital nets).

Specific sequences P, have been constructed with
rectangular star discrepancy D(P,) = O(n~'(Inn)*)
when n — oo for fixed s, yielding a convergence
rate of O(m~'(Inn)*) for the worst-case error if
| f — mll < oo [29, 34]. This is asymptotically better
than MC. But for reasonable values of n, the QMC
bound is smaller only for small s (because of the
(Inn)* factor), so other justifications are needed to
explain why QMC methods really work (they do!)
for some high-dimensional real-life applications. The
bound (5) is only for the worst case — the actual
error can be much smaller for certain functions. In
particular, even if s is large, f can sometimes be
well approximated by a sum of functions defined
over some low-dimensional subspaces of [0, 1]°. It
suffices, then, that the projections of P, over these
subspaces has low discrepancy, which is much easier
to achieve than getting a small D(P,) for large s.
This has motivated the introduction of discrepancy
measures that give more weight to projections of
P, over selected (small) subsets of coordinates [18,
19, 30].

One drawback of QMC with a deterministic point
set P, is that no statistical error estimate is avail-
able (and error bounds of the form (5) are practically
useless). Randomized QMC methods have been intro-
duced for this reason. The idea is to randomize P,
in a way that (a) each point of the randomized set is
uniformly distributed over [0, 1]° and (b) the high
uniformity of P, is preserved (e.g. one can sim-
ply shift the entire point set P, randomly, modulo
1, for each coordinate). Then, (3) becomes an unbi-
ased estimator of p and, by taking a small number
of independent randomizations of P,, one can also
obtain an unbiased estimator of Var[f,] and compute
a confidence interval for u [19, 32]. This turns QMC
into a variance reduction method [18, 19]. Bounds
and expressions for the variance have been devel-
oped (to replace (5)) for certain classes of functions
and randomized point sets [19, 32]. In some cases,
under appropriate assumptions on f, the variance has
been shown to converge faster than for MC, that
is, faster than O(1/n). For example, a scrambling
method introduced by Owen for a class of digital nets
gives Var[{l,] = O(m3(Inn)*) if the mixed partial
derivatives of f are Lipschitz [31]. Simplified (and
less costly) versions of this scrambling have also been
proposed [19].

Acknowledgements

This work has been supported by the Natural Sciences
and Engineering Research Council of Canada Grant
No. ODGPO110050 and NATEQ-Québec grant No.
02ER3218. R. Simard and C. Lemieux helped in
improving the manuscript.

References

[1] Bratley, P., Fox, B.L. & Schrage, L.E. (1987). A Guide
to Simulation, 2nd Edition, Springer-Verlag, New York.

[2] Devroye, L. (1986). Non-Uniform Random Variate Gen-
eration, Springer-Verlag, New York.

[3] Eichenauer-Herrmann, J. (1995). Pseudorandom number
generation by nonlinear methods, International Statisti-
cal Reviews 63, 247-255.

[4] Fang, K.-T., Hickernell, F.J. & Niederreiter, H., eds
(2002). Monte Carlo and Quasi-Monte Carlo Methods
2000, Springer-Verlag, Berlin.

[5] Fishman, G.S. (1996). Monte Carlo: Concepts, Algo-
rithms, and Applications. Springer Series in Operations
Research, Springer-Verlag, New York.

[6] Gentle, J.E. (2003). Random Number Generation and
Monte Carlo Methods, 2nd Edition, Springer, New York.

6

Random Number Generation and Quasi-Monte Carlo

(71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Hellekalek, P. & Larcher, G., eds (1998). Random and
Quasi-Random Point Sets, Volume 138 of Lecture Notes
in Statistics, Springer, New York.

Hoérmann, W. & Leydold, J. (2000). Automatic ran-
dom variate generation for simulation input, in Pro-
ceedings of the 2000 Winter Simulation Conference,
J.A. Joines, R.R. Barton, K. Kang, & P.A. Fishwick,
eds, IEEE Press, Pistacaway, NJ, pp. 675-682.

Knuth, D.E. (1998). The Art of Computer Program-
ming, 3rd Edition, Volume 2: Seminumerical Algorithms,
Addison-Wesley, Reading, MA.

Law, A.M. & Kelton, W.D. (2000). Simulation Modeling
and Analysis, 3rd Edition, McGraw-Hill, New York.
L’Ecuyer, P. (1994). Uniform random number genera-
tion, Annals of Operations Research 53, 77-120.
L’Ecuyer, P. (1996). Maximally equidistributed com-
bined Tausworthe generators, Mathematics of Computa-
tion 65(213), 203-213.

L’Ecuyer, P. (1997). Bad lattice structures for vectors
of non-successive values produced by some linear recur-
rences, INFORMS Journal on Computing 9, 57—60.
L’Ecuyer, P. (1998). Random number generation, in
Handbook of Simulation, J. Banks, ed., Wiley, New
York, pp. 93—-137, Chapter 4.

L’Ecuyer, P. (1999). Good parameters and implementa-
tions for combined multiple recursive random number
generators, Operations Research 47(1), 159—164.
L’Ecuyer, P. (1999). Tables of maximally equidistributed
combined LFSR generators, Mathematics of Computa-
tion 68(225), 261-269.

L’Ecuyer, P. (2001). Software for uniform random
number generation: Distinguishing the good and the bad,
Proceedings of the 2001 Winter Simulation Conference,
IEEE Press, Pistacaway, NJ, pp. 95-105.

L’Ecuyer, P. & Lemieux, C. (2000). Variance reduction
via lattice rules, Management Science 46(9), 1214—1235.
L’Ecuyer, P. & Lemieux, C. (2002). Recent advances
in randomized quasi-Monte Carlo methods, in Mod-
eling Uncertainty: An Examination of Stochastic The-
ory, Methods, and Applications, M. Dror, P. L’Ecuyer,
& F. Szidarovszki, eds, Kluwer Academic Publishers,
Boston, pp. 419-474.

L’Ecuyer, P. & Panneton, F. (2002). Construction of
equidistributed generators based on linear recurrences
modulo 2, in Monte Carlo and Quasi-Monte Carlo Meth-
ods 2000, K.-T. Fang, F.J. Hickernell & H. Niederreiter,
eds, Springer-Verlag, Berlin, pp. 318-330.

L’Ecuyer, P. & Simard, R. (2002). TestUO1: A Software
Library in ANSI C for Empirical Testing of Random
Number Generators, Software User’s Guide.

L’Ecuyer, P., Simard, R., Chen, E.J. & Kelton, W.D.
(2002). An object-oriented random-number package

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

with many long streams and substreams, Operations
Research 50(6), 1073-1075.

L’Ecuyer, P., Simard, R. & Wegenkittl, S. (2002). Sparse
serial tests of uniformity for random number generators,
SIAM Journal on Scientific Computing 24(2), 652—668.
L’Ecuyer, P. & Touzin, R. (2000). Fast combined mul-
tiple recursive generators with multipliers of the form
a = £29 £2", in Proceedings of the 2000 Winter Simu-
lation Conference, J.A. Joines, R.R. Barton, K. Kang,
& P.A. Fishwick, eds, IEEE Press, Pistacaway, NI,
pp. 683—689.

Leydold, J. & Hormann, W. (2002). UNURAN-A
Library for Universal Non-Uniform Random Number
Generators, Available at http://statistik.wu-wien.ac.at/
unuran.

Leydold, J., Janka, E. & Hormann, W. (2002). Variants
of transformed density rejection and correlation induc-
tion, in Monte Carlo and Quasi-Monte Carlo Methods
2000, K.-T. Fang, F.J. Hickernell, & H. Niederreiter,
eds, Springer-Verlag, Berlin, pp. 345-356.

Marsaglia, G. (1996). DIEHARD: a Battery of Tests of
Randomness, See http://stat.fsu.edu/geo/diehard.html.
Matsumoto, M. & Nishimura, T. (1998). Mersenne
twister: A 623-dimensionally equidistributed uniform
pseudo-random number generator, ACM Transactions on
Modeling and Computer Simulation 8(1), 3-30.
Niederreiter, H. (1992). Random Number Generation
and Quasi-Monte Carlo Methods, Volume 63 of SIAM
CBMS-NSF Regional Conference Series in Applied Math-
ematics, SIAM, Philadelphia.

Niederreiter, H. & Spanier, J., eds (2000). Monte Carlo
and Quasi-Monte Carlo Methods 1998, Springer, Berlin.
Owen, A.B. (1997). Scrambled net variance for inte-
grals of smooth functions, Annals of Statistics 25(4),
1541-1562.

Owen, A.B. (1998). Latin supercube sampling for
very high-dimensional simulations, ACM Transactions
of Modeling and Computer Simulation 8(1), 71-102.
Sloan, I.H. & Joe, S. (1994). Lattice Methods for
Multiple Integration, Clarendon Press, Oxford.

Tezuka, S. (1995). Uniform Random Numbers: Theory
and Practice, Kluwer Academic Publishers, Norwell,
MA.

(See also Affine Models of the Term Structure
of Interest Rates; Derivative Pricing, Numerical
Methods; Derivative Securities; Frailty; Gradu-
ation; Risk-based Capital Allocation; Simulation
Methods for Stochastic Differential Equations)

PIERRE L’ECUYER

