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ABSTRACT

The splitting method is one of the primary approaches to
make important rare events happen more frequently in a sim-
ulation and yet recover an unbiased estimator of the target
performance measure, in the context where this performance
measure is highly influenced by the rare event. In many rare-
event situations, simulation is impractical (because the esti-
mators are much too noisy) unless such a method is used.
Randomized quasi-Monte Carlo (RQMC) is another class
of methods for reducing the noise of simulation estimators,
by sampling more evenly than with standard Monte Carlo
(MC). It typically works well for simulations that depend
mostly on very few random numbers. In splitting, on the
other hand, we simulate Markov chains whose sample paths
are usually a function of a long sequence of independent ran-
dom numbers generated during the simulation. In this paper,
we show how a new RQMC technique called array-RQMC
can be used together with splitting to obtain estimators with
smaller variance than what can be obtained by either of the
two methods alone, and discuss the difficulties that have to
be tackled to further increase the efficiency. We do that in a
setting where the goal is to estimate the probability of reach-
ing a given set B before returning to the set A when starting
from state x0 ∈ A, where A and B are two disjoint subsets of
the state space and B is very rarely reached. This problem
has several practical applications.

1 INTRODUCTION

We consider a discrete-time Markov chain {X j, j ≥ 0} with
arbitrary state space X . Let A and B be two disjoint subsets
of X and let x0 ∈ A, the initial state. The chain starts in state
X0 = x0, eventually leaves the set A, and then may eventually
reach B or return to A. Suppose the first exit time from A is
at time 0 (this is when we start counting time). Let τA =
inf{ j > 0 : X j ∈ A}, the first time when the chain returns to
A after leaving it, and τB = inf{ j > 0 : X j ∈ B}, the first time
when the chain reaches the set B. The goal is to estimate µ ,
the probability that the chain reaches B before it returns to

A, i.e. µ = P[τB < τA]. This probability is assumed to be
very small, e.g., 10−10 or even less.

This problem occurs in many practical situations; see,
e.g., Nicola, Nakayama, Heidelberger, and Goyal (1991),
Goyal, Shahabuddin, Heidelberger, Nicola, and Glynn
(1992), Heidelberger (1995). For example, suppose we want
to estimate the expected time until failure for a complex mul-
ticomponent system whose initial state is “new”. Compo-
nents fail once in a while and are replaced by new ones after
some random delay. When the set of working components
satisfies certain conditions, the system is operational, oth-
erwise it is in the failed state. Let A = {x0}, the set that
contains only the “new” state, and let B be the set of failed
states. Suppose we are interested in estimating E[τB], the
expected time until failure for a new system. By a standard
regenerative argument, we have

E[τB] = E[min(τA,τB)]+(1−µ)E[τB]

which gives

E[τB] = E[min(τA,τB)]/µ.

In this expression, E[min(τA,τB)] is easy to estimate by stan-
dard simulation, but µ is often very difficult to estimate be-
cause it is very small. For example, if µ = 10−10 and we
do straightforward simulations to estimate it, by running n
copies of the chain up to the stopping time τ = min[τA,τB],
we must take n = 1012 (a huge number) to be able to ex-
pect that the event {τB < τA} occurs about 100 times. For
n < 1010, we are likely to observe no single occurrence of
this event, in which case the estimator of µ takes the value 0
and is rather useless.

A similar problem occurs in a queueing system when we
want to estimate the expected time until the number of cus-
tomers in the queue exceeds a given number (Parekh and
Walrand 1989, Sadowsky 1991). For example, the cus-
tomers could be packets in a telecommunication network,
the number to exceed could be the size of the buffer used to
store the packets waiting to be transfered at a communica-
tion switch, the set B could be the set of states for which the
buffer overflows, and A would be the states where the buffer
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is empty. Then, E[τB] represents (roughly) the average time
between buffer overflows and µ is the probability that the
buffer overflows before returning to empty.

The two primary techniques for dealing with rare-event
simulation are importance sampling and splitting. Impor-
tance sampling changes the probability laws that drive the
evolution of the system, to increase the probability of the
rare event, and multiplies the estimator by an appropriate
likelihood ratio so that it has the correct expectation (e.g.,
remains unbiased for µ in the above setting). A major diffi-
culty in general is to find a good way of changing the proba-
bility laws. We refer the reader to Glynn and Iglehart (1989),
Glynn (1994), Heidelberger (1995), Bucklew (2004) for the
details.

In the splitting method, the probability laws of the sys-
tem remain unchanged, but an artificial drift toward the rare
event is created by terminating the trajectories that seem to
get away from it and cloning (i.e., splitting) those that are
going in the right direction. Again, an unbiased estimator
is recovered by multiplying the original estimator by an ap-
propriate factor. We give more details in the next section.
The method can be traced back to Kahn and Harris (1951)
and has been studied by several authors, including Bayes
(1972), Villén-Altamirano and Villén-Altamirano (1991),
Villén-Altamirano and Villén-Altamirano (1994), Garvels
and Kroese (1998), Glasserman, Heidelberger, Shahabud-
din, and Zajic (1998), Glasserman, Heidelberger, Shahabud-
din, and Zajic (1999), Garvels (2000).

In this paper, we concentrate on the splitting method
and examine how it can be combined with randomized
quasi-Monte Carlo (RQMC) to further reduce the variance.
L’Ecuyer, Lécot, and Tuffin (2005) recently proposed a
new RQMC approach called array-RQMC, based on earlier
work by Lécot and Tuffin (2004), and designed primarily
for Markov chains having a totally ordered state space and
which evolve for a large number of steps. At first sight, this
method seems to be highly compatible with splitting. The
goal of this paper is to examine the degree of improvement
obtained by their combination, as well as the difficulties en-
countered and which have to be tackled to obtain an addi-
tional gain.

The remainder of the paper is organized as follows. In
the next section, we recall the main principles of splitting in
the setting where we want to estimate µ = P[τB < τA]. In
Section 3, we describe the array-RQMC method and how it
can be implemented in our setting. We additionally discuss
the potential difficulties of the method. Numerical illustra-
tions are given in Section 4 with two examples: firstly an
Ornstein-Uhlenbeck (mean-reverting) process for which B
is the set of states that exceed a given threshold, and sec-
ondly a tandem queue where B is the set of states where the
number of customers waiting at the second queue exceeds a
given value. We finally conclude and provide hints for future
research in Section 5.

2 MULTILEVEL SPLITTING

To define the splitting algorithm, it is convenient to intro-
duce a function h : X → R that assigns a real number to
each state of the chain. This h is called the importance
function (Garvels 2000, Garvels, Kroese, and Van Ommeren
2002). Define the real-valued process {Z j = h(X j), j ≥ 0}.
We assume that A = {x ∈X : h(x)≤ 0} and B = {x ∈X :
h(x) ≥ L} for some constant L > 0. In the multilevel split-
ting method, we partition the interval [0,L) into m subin-
tervals with boundaries 0 = L0 < L1 < · · · < Lm = L. For
k = 1, . . . ,m, define Tk = inf{ j > 0 : Z j ≥ Lk}, let Dk = {Tk <
τA} denote the event that the process Z reaches level Lk be-
fore returning to level 0, and define the conditional proba-
bilities pk = P[Dk | Dk−1] for k > 1, and p1 = P[D1]. Since
Dm ⊂ Dm−1 ⊂ ·· · ⊂ D1, we see immediately that

µ = P[Dm] =
m

∏
k=1

pk.

The basic idea of splitting is to estimate each probability pk
“separately”, by starting a large number of chains in states
that are generated from the distribution of XTk−1 conditional
on the event Dk−1. This conditional distribution is called the
entrance distribution at threshold Lk and we shall denote it
by Gk.

This is done in successive stages, as follows. In the first
stage, we start N0 independent chains from the initial state
x0 and simulate each of them until time min(τA, T1). Let R1
be the number of those chains for which D1 occurs. Then
p̂1 = R1/N0 is an obvious unbiased estimator of p1. The
empirical distribution of these R1 entrance states XT1 can be
viewed as an estimate of the conditional distribution G1.

In the second stage, we start N1 chains from these R1 en-
trance states, by cloning (splitting) some chains if we want
N1 > R1, and continue the simulation of these chains inde-
pendently up to time min(τA, T2). Then p̂2 = R2/N1 is an
unbiased estimator of p2, where R2 is the number of those
chains for which D2 occurs. This procedure is repeated at
each stage. In stage k, we pick Nk−1 states out of the Rk−1
that are available (by cloning if necessary), simulate inde-
pendently from these states up to time min(τA, Tk), and esti-
mate pk by p̂k = Rk/Nk−1 where Rk is the number of chains
for which Dk occurs.

Even tough the p̂k’s are not independent, it turns out that
the product p̂1 · · · p̂m = (R1/N0)(R2/N1) · · ·(Rm/Nm−1) is an
unbiased estimator of µ (Garvels 2000).

There are many ways of doing the splitting (Garvels
2000). For example, one may clone each of the Rk chains
that reached level k in ck copies for a fixed integer ck, in
which case Nk = ckRk is random. This is called fixed split-
ting. In contrast, in the fixed effort method, we fix a priori
each value of Nk and make just the right amount of split-
ting to reach this target value. One way of doing this is by
sampling the Nk starting states at random, with replacement,
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from the Rk available states. This is called random assign-
ment and is equivalent to sampling from the empirical dis-
tribution of the states. In a fixed assignment, on the other
hand, we would split each of the Rk states the same number
of times (or approximately the same number of times, in the
case where Nk is not a multiple of Rk). In practice, the fixed
effort method tends to perform better, because it reduces the
variance of the number of chains that are simulated at any
given stage, and we prefer a fixed assignment strategy to
a random assignment because it amounts to using stratified
sampling over the empirical distribution, and thus typically
reduces the variance.

Under a number of simplifying assumptions (e.g., that
P[Dk | Dk−1,XTk−1 = x] does not depend on x) and for the
fixed splitting setting, it has been shown (Villén-Altamirano,
Martinez-Marrón, Gamo, and Fernández-Cuesta 1994,
Garvels and Kroese 1998) that the efficiency of the split-
ting method is maximized by selecting the thresholds so that
pk ≈ e−2 ≈ 0.135 and E[Nk] = N0 for each k. This gives
m ≈−(ln µ)/2 stages. However, these simplifying assump-
tion typically do not hold, so these results only give guide-
lines, and more importantly the pk’s are unknown in prac-
tice and selecting the appropriate threshold may be difficult.
Moreover, the choice of the importance function h may have
a large impact on the performance of the method and is not
trivial (Garvels, Kroese, and Van Ommeren 2002).

3 ARRAY-RQMC

3.1 Array-RQMC for simulating Markov chains

Array-RQMC is a simulation method recently designed by
L’Ecuyer, Lécot, and Tuffin (2005) to simulate a Markov
chain {X j, j ≥ 0} defined by some distribution ν0 for the
initial state X0 and a stochastic recurrence

X j+1 = ϕ(X j,U j) (1)

where the U j are independent random vectors uniformly dis-
tributed over [0,1)d . The method assumes that the state
space X is totally ordered. It simulates N copies of the
Markov chain in parallel, using at each step of the chain a
so-called highly-uniform point set, which contains N points
that are more evenly distributed in the unit hypercube than
typical random points. This induces a negative correlation
among the copies of the chains, resulting in a better ap-
proximation of the probability distribution of X j than with
standard Monte Carlo (MC), for each j, and consequently a
variance reduction of the performance estimator of interest.

The basic idea is to simulate the N chains in parallel as
follows. The N initial states Xi,0, i = 0, . . . ,N, are gener-
ated from the initial distribution ν0, using an RQMC point
set PN,0 = {u0,0, . . . ,uN−1,0} in [0,1)d0 , where ui,0 is used
to generate Xi,0, assuming that at most d0 uniform random
numbers are required to generate the initial state. The N

chains are then sorted in increasing order of their state, to
get the empirical distribution function of X1. The states at
the next time step are sampled from the previously sorted
ones. We assume that d uniforms are necessary to generate
a transition according to the recurrence (1). An RQMC point
set PN,1 = {u0,1, . . . ,uN−1,1} in [0,1)d , randomized indepen-
dently from the previous one, is used, where ui,1 serves to
generate Xi,1 from Xi,0. The chains are sorted again ac-
cording to their state, and this process is repeated at suc-
cessive steps with independent RQMC point sets until all
chains have reached their stopping times. At each step, only
the chains that have not yet reached their stopping times are
considered and sorted; the other chains are ignored and for
convenience their state is assumed to be ∞ in the algorithm.

For intuitive justifications, additional details, and illus-
trations of the degrees of improvement that are obtained in
practice, the reader is referred to L’Ecuyer, Lécot, and Tuffin
(2005). A confidence interval is easily obtained by consider-
ing independent replications (i.e., randomizations) of groups
of N chains. For a one-dimensional state space and un-
der certain additional conditions, these authors have shown
that the array-RQMC technique converges in O(N−1/2) in
the worst case. In contrast, the MC method converges in
O(N−1/2) in the (probabilistic) sense that the width of a con-
fidence interval converges at this rate. L’Ecuyer, Lécot, and
Tuffin (2005) have also shown that for a special variant of
array-RQMC, under certain assumptions, the variance con-
verges as O(N−3/2).

3.2 Array-RQMC combined with splitting

In order to apply array-RQMC to the splitting approach, an
adaptation is required. The probabilities pk, k = 1, · · · ,m,
are estimated one after the other. Since µ is the product
of the pk’s, the principle is to successively estimate each
pk by the array-RQMC method previously described, and
to use the product of estimators as the overall estimator, as
realized in the standard splitting methodology. Let X (k) de-
note the Markov chain {X j, j ≥ 0} between times Tk−1 and
min(τA,Tk).

We start with N0 chains. We first estimate p1 by using the
array-RQMC algorithm for the Markov chain X (1): the N0
chains are simulated in parallel according to (1) and sorted
after each time step. Each chain evolves until the stopping
time min(T1,τA). If R1 is the number of chains for which D1
occurs, R1/N0 is an unbiased estimator of p1. The states of
these R1 chains are stored and their empirical distribution is
used as an unbiased estimator of the distribution of XT1 .

At the second level, N1 chains are started from those R1
states according to one of the aforementioned splitting poli-
cies, and are simulated in parallel using the same array-
RQMC procedure on X (2), each chain being simulated un-
til its stopping time min(T2,τA). The probability p2 is esti-
mated by R2/N1 where R2 is the number of chains for which
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Initialization.
Select m d-dimensional QMC point sets P̃k,Nk−1 = (ũ0, . . . , ũNk−1−1), 1 ≤ k ≤ m, and a ran-
domization of each P̃k,Nk−1 such that (a) each randomized point is a uniform random vari-
able over [0,1)d and (b) if Pk,Nk−1 = (u0, . . . ,uNk−1−1) denotes the randomized version, then
P′k,Nk−1

= {((i+0.5)/Nk−1, ui), 0 ≤ i < Nk−1} is “highly uniform” in [0,1)d+1.
Select the m thresholds 0 = L0 < L1 < · · ·< Lm = L.

Estimate each pk.
For (k = 1; k <= m; k++)

Simulate in parallel Nk−1 copies of the chain, numbered 0, . . . , Nk−1−1 as follows:
Initialize the chains, according to the initial distribution if k = 1, or according to the
splitting policy and the Rk−1 states if k > 1.
Sort the chains according to their state.
For ( j = 1; X (k)

0, j−1 < ∞; j++)
Randomize P̃k,Nk−1 afresh into Pk,Nk−1 = {u0, . . . ,uNk−1−1};
For (i = 0; i < Nk−1 and X (k)

i, j−1 < ∞; i++)

X (k)
i, j = ϕ(X (k)

i, j−1,ui);

Sort (and renumber) the chains for which X (k)
i, j < ∞ by increasing order

of their states. The empirical distribution of the sorted states X (k)
0, j , . . . ,X

(k)
Nk−1−1, j

provides an estimator of the distribution of X (k)
j .

Output.
Return ∏

m
k=1 Rk/Nk−1 as an estimator of µ.

Figure 1: Combined array-RQMC/splitting algorithm

D2 occurs. These R2 chains are then split again, and so on,
until all the probabilities p3, · · · , pm have been estimated. As
in L’Ecuyer, Lécot, and Tuffin (2005), it can be readily veri-
fied that the estimator of each pk is unbiased.

, and the proofs of convergence and error bounds of
L’Ecuyer, Lécot, and Tuffin (2005) remain valid for each

estimation of pk. 1

The algorithm is described in Figure 1. It basically con-
sists in adding a loop of the algorithm of L’Ecuyer, Lécot,
and Tuffin (2005) for the estimation of the probability pk of
reaching each successive level. For simplicity, we assume
that d0 = d and consider a single replication. This entire
procedure must be repeated using independent randomiza-
tions to get a confidence interval.

This algorithm is not very complicated in principle. How-
ever, several practical issues must be addressed for the com-
bination of splitting and array-RQMC to be really effective.
These difficulties include the following.

1. Recall that the number of time steps before reaching

1 De Pierre: Je ne pense pas que cela soit aussi simple, car la loi initiale
n’est pas choisie de la meme maniere aux differentes etapes. J’enleverais
ces deux lignes pour le moment.

the next level or coming back to A is random and may
have large variability, especially when k is large, be-
cause the chain then starts farther from A and requires
a larger number of steps to come back to A. For the
array-RQMC method, this causes the number of points
used at each step of the chain to decrease with the step
number, within a given splitting level, thus reducing the
RQMC efficiency because only a few points from the
RQMC point set are used in the later steps.

2. The empirical distribution of the entrance states in Dk
tends to deteriorate (as an approximation of the exact
distribution) as k increases, due the fact that it is derived
from the empirical distribution at the previous level,
so the approximation error accumulates from level to
level. As a result, the variance reduction from array-
RQMC is expected to decrease with k.

3. In the case of multidimensional state spaces, both the
choice of the importance function for selecting the
splitting levels and the ordering of the states are (re-
lated) non-trivial issues (Garvels, Kroese, and Van Om-
meren 2002, L’Ecuyer, Lécot, and Tuffin 2005). In gen-
eral, the states could be ordered by the value of the im-
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portance function, in which case its choice has a double
impact.

4. The optimal number of levels to minimize the vari-
ance of the estimator, derived by Villén-Altamirano,
Martinez-Marrón, Gamo, and Fernández-Cuesta
(1994), Garvels and Kroese (1998), is valid only for
the fixed splitting algorithm and under additional con-
ditions. This optimal number may differ significantly
for the fixed effort method, used in our experiments in
the next section. Our empirical investigations indicate
that it tends to be larger. The optimal number of chains
to simulate at each level may also differ from level to
level. Finding these (jointly) optimal numbers is not
necessarily easy. Fortunately, rough approximations
may suffice because the variance is often not very
sensible to small changes in these numbers.

5. RQMC has been proved to be asymptotically more ef-
fective than MC only when the integrand is a smooth
function (Owen 1998, L’Ecuyer and Lemieux 2002).
But here, we estimate the probability pk of reaching
the next level by an average of indicator functions, for
each k. Indicator functions are definitely not smooth,
so it is unclear a priori if array-RQMC can bring any
improvement, even asymptotically.

In the next section, we show that despite these difficulties,
the combination can still bring significant variance reduc-
tions. We also discuss specific ways of tackling them for our
examples. Future research on how to better address these
issues should lead to further efficiency improvements.

4 EXAMPLES

The following examples are toy problems, for which the ex-
act answer is known beforehand. They are used to illustrate
and evaluate the performance of the proposed method.

4.1 The Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is a continuous-time sto-
chastic process {R(t), t ≥ 0} that obeys the stochastic dif-
ferential equation

dR(t) = a(b−R(t))dt +σdW (t)

where a > 0, b, and σ > 0 are constants, and {W (t), t ≥ 0} is
a standard Brownian motion (Taylor and Karlin 1998). This
model is also known as the Vasicek model for the evolution
of short-term interest rates (Vasicek 1977). In that context,
b can be viewed as a long-term interest rate level toward
which the process is attracted with strength a. This process
is mean-reverting, in the sense that it is attracted downward
when it is high and attracted upward when it is low. The
constant σ indicates the strength of the noise.

Suppose the process is observed at times t j = jδ for
j = 0,1, . . . and let X j = R(t j). Let A = (∞,b], B = [L,∞)
for some constant L, and x0 ≥ b. We want to estimate the
probability that the process exceeds level L at one of the ob-
servation times before it returns below b, when started from
x0. In terms of the transition function described earlier, we
have

ϕ(x j,U j) = x je−aδ +
σ

√
1− e−2aδ

√
2a

Φ
−1(U j)

where Φ is the standard normal distribution and U j is uni-
formly distributed over [0,1].

The levels Lk are defined simply as equidistant thresh-
olds on the value of the state X j. If we were considering
the continuous-time process, the entrance distribution Gk at
each level Lk would be degenerate at Lk. But because of
the time discretization, the entrance distribution has pos-
itive support over the entire interval [Lk,∞). In this set-
ting, the simulation starts from a fixed state only at the first
level. The simulation at level Lk determines p̂k and Ĝk+1,
which becomes the initial distribution for the simulation at
level Lk+1. Previous analyzes of splitting algorithms (e.g.,
Garvels 2000) assume that only one level can be crossed
at a time and this condition does not hold for the discrete-
time Ornstein-Uhlenbeck process (an arbitrary number of
thresholds can be crossed in a single jump). We neverthe-
less recover an unbiased estimator by considering explicitly
the possibility that the chain crosses the next threshold in

zero steps. 2

We ran three types of simulations for this Ornstein-
Uhlenbeck model, each one based on a fixed-effort splitting
technique. The first one is the standard MC splitting algo-
rithm, used as a reference. The other two are RQMC tech-
niques, namely classical-RQMC and array-RQMC, applied
on top of the splitting algorithm. For the classical-RQMC
method, the N chains are simulated with the N points of
an infinite-dimensional RQMC point set. The steps of any
given chain use successive coordinates of a fixed point. The
points must be infinite-dimensional because the number of
steps is random and unbounded. The results presented here
were obtained with randomly-shifted Korobov lattice rules
with parameters taken from L’Ecuyer and Lemieux (2000),
complemented with a baker’s transformation (Hickernell
2002). For the array-RQMC algorithm, we used Sobol’ dig-
ital nets with a random digital shift (L’Ecuyer and Lemieux
2002). The variance for the RQMC methods was estimated
by making 30 independent replications of the entire proce-
dure.

The results given here correspond to a time-discretized
Ornstein-Uhlenbeck process with parameters a = 0.1, σ =

2 De Pierre: J’ai reecrit ceci. On semblait dire que le splitting n’etait
pas justifie dans ce cas-ci... Si on souleve la question, il est essentiel de dire
comment on resoud le probleme.
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0.3, x0 = 0.1, and δ = 0.1. We want to estimate the proba-
bility that the discrete-time process {X j = R(t j), j > 0} ex-
ceeds L = 4 before getting below 0. The theoretical value of

this probability is 1.646×10−8. 3 With these parameters,
the formula − ln µ/2 gives m = 9 as the optimal number of
splitting levels, but this formula is valid only for fixed split-
ting and under additional conditions which are not met here.

Table 1: Results for the Ornstein-Uhlenbeck model

method mean variance VRF
N = 210, with 8 equidistant levels

Standard MC 1.8E-8 7.2E-17
Classical-RQMC 1.6E-8 1.9E-17 3.8

Array-RQMC 1.6E-8 6.9E-18 10.5
N = 210, with 16 equidistant levels

Standard MC 1.6E-8 1.0E-17
Classical-RQMC 1.6E-8 2.5E-18 4.0

Array-RQMC 1.6E-8 1.3E-18 7.8
N = 210, with 32 equidistant levels

Standard MC 1.7E-8 7.1E-18
Classical-RQMC 1.6E-8 3.0E-18 2.4

Array-RQMC 1.6E-8 1.1E-18 6.7
N = 212, with 8 equidistant levels

Standard MC 1.6E-8 1.0E-17
Classical-RQMC 1.6E-8 3.3E-18 3.0

Array-RQMC 1.6E-8 1.7E-18 6.0
N = 212, with 16 equidistant levels

Standard MC 1.6E-8 2.6E-18
Classical-RQMC 1.6E-8 8.5E-19 3.0

Array-RQMC 1.6E-8 1.6E-19 16.0
N = 216, with 16 equidistant levels

Standard MC 1.6E-8 2.0E-19
Classical-RQMC 1.6E-8 4.1E-20 4.8

Array-RQMC 1.6E-8 5.6E-21 35.0

Table 1 provides results obtained by using m = 8, 16, and
32 levels, with N = 210, 212, and 216 chains simulated at
each threshold. In the table, “mean” is the empirical mean
(the estimate of µ), “variance” is the empirical variance of
....., and VRF stands for the variance reduction factor with
respect to MC with splitting, i.e., the variance with MC di-

vided by the variance with the given RQMC method. 4

We see that both RQMC methods reduce the variance

3 De Pierre: Exact? Vient d’ou?
4 De Pierre: The variance of what? Variance per run (or chain)? Vari-

ance of the average of the N chain? Or variance of the average of all 30N
chains? I think it should be the variance per run, for a fair comparison and
for an easier comparison of the different values of m with the RQMC meth-
ods. For standard MC, the variance should depend only on m, not on N.
(Voir mon message precedent.)

compared with MC. However, the classical RQMC method
only brings a modest improvement, by a factor of 3 to 5,
which does not seem to increase much when we increase
N. With array-RQMC, on the other hand, the VRF clearly
increases with N and is quite significant for N = 216.

4.2 Buffer Overflow in a Tandem Queue

As in Parekh and Walrand (1989), Glasserman, Heidel-
berger, Shahabuddin, and Zajic (1999), Garvels (2000)
(among others), we consider an open tandem Jackson queue-
ing network with two queues. The arrival rate at the first
queue is λ = 1 while the mean service time is ρi at queue i,
for i = 1,2. The events are the arrivals and service comple-
tions (at any queue) and X j = (X1, j,X2, j) is the number of
customers in each of the two queues immediately after the
jth event. The set A contains only the empty state (0,0) and
B = {(x1,x2) : x2 ≥ `} for some fixed threshold `, i.e., the set
of states for which the length of the second queue is at least
`.

Garvels (2000) and Garvels, Kroese, and Van Ommeren
(2002) study the application of splitting to this model. A
very simple way to define the importance function is by
setting its value to the number of customers in the second
queue. We call this definition the “second queue function.”
One drawback of this definition is that it ignores the state
of the first queue, neglecting its impact on the “distance” to
the set B. This impact can be important, especially when
the bottleneck is at the first queue (Garvels 2000). A better
distance could be the expected number of remaining steps

before the chain reaches the overflow. 5 6

Our second choice of importance function, which we call
“minimal distance function”, is defined by

h(x1,x2) = x2 +min(0,x2 + x1− `), (2)

which equals 2` minus the minimal number of steps required
to reach B from the current state. (To reach B, we need at
least `−min(0,x2 + x1 − `) arrivals at the first queue and
`− x2 transfers to the second queue.)

The two-dimensional state space also means that an or-
dering of the states must be selected for the array-RQMC
algorithm. This order should reflect the “size” of the tan-
dem queue, just like the importance function. (More gener-
ally, the problem of choosing the importance function for the
splitting algorithm is very similar to the problem of choosing
the ordering function for the array-RQMC method.) Here,
we will sort the states based on the value of the function h

5 De Pierre: Comment évaluer cette espérance? Pourquoi est-ce mieux?
A-t-on essayé? J’enlèverais cette phrase, car elle est trop spéculative.

6 De Pierre: On parlait de “choix des seuils”, mais il faut définir tout
cela en termes de la fonction d’importance introduite auparavant. C’est ce
que j’ai fait.
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Table 2: Results for the tandem queue

method mean variance VRF
N = 212, m = 10, second queue function

Standard MC 1.2E-9 4.7E-20
Classical-RQMC 1.2E-9 7.1E-20 0.7

Array-RQMC 1.2E-9 5.3E-20 0.9
N = 212, m = 10, minimal distance function
Standard MC 1.2E-9 3.9E-20

Classical-RQMC 1.3E-9 1.9E-20 2.0
Array-RQMC 1.3E-9 9.6E-21 4.1
N = 212, m = 20, minimal distance function
Standard MC 1.2E-9 2.1E-20

Classical-RQMC 1.2E-9 4.4E-21 4.8
Array-RQMC 1.2E-9 6.8E-21 3.1
N = 214, m = 30, minimal distance function
Standard MC 1.2E-9

Classical-RQMC 1.2E-9 2.1
Array-RQMC 1.2E-9 14.0

defined in (2). 7 8

For our numerical experiments with this example, we use
the parameter values ρ1 = 4, ρ2 = 2, and L = ` = 30. Table 2
gives the empirical mean, variance, and variance reduction
factors of RQMC compared with MC, for the two impor-
tance functions defined above. Results are given for m = 10
and 20 equidistant levels, with N = 212 and 214 chains for

the RQMC methods. 9

No variance reduction is observed with the first choice
of importance function, but a significant reduction is ob-
served for the second choice. This illustrates the impor-
tance of a good selection of this function not only for the
effectiveness of the splitting technique, but also for the ef-
fectiveness of the RQMC methods. In this example, array-
RQMC and classical-RQMC provide comparable variance
reductions for N = 212, but array-RQMC wins for the larger
N.

5 CONCLUSION

10 Splitting is one of the main approaches to efficiently
simulate rare events. RQMC techniques, on the other hand,
are well known to reduce the variance with respect to MC in

7 De Pierre: Et en cas d’égalité de la fonction h pour deux états
différents? Est-ce qu’on trie selon x2 dans ce cas?

8 De Pierre: Pourquoi pas toujours trier selon la fonction d’importance
choisie?

9 De Pierre: Ajouter les valeurs manquantes.
10 De Pierre: Je trouve que la conclusion répète trop ce qu’on a déjà dit.

Mais je laisse comme cela pour le moment.

certain settings. In this paper, we have examined the combi-
nation of the two methods to obtain an increased efficiency,
with a special focus on the array-RQMC method recently de-
signed for the simulation of Markov chains. The degree of
improvement was illustrated on two examples: an Ornstein-
Uhlenbeck model and two queues in tandem. In both cases,
a significant variance reduction was obtained compared with
splitting alone.

The improvement provided by array-RQMC over MC
was not as spectacular as for the single-queue example of
L’Ecuyer, Lécot, and Tuffin (2005), where variance reduc-
tion factors of several thousands were observed in certain
cases. There are several tentative explanations for this, sug-
gesting directions for further improvement of the method. A
first possible reason is that simulation time is highly vari-
able between two thresholds. The average and variance of
the number of step that need to be simulated at a given split-
ting level generally increase as we are getting closer to the
rare event, because it then takes longer to come back to
the absorbing set A. A possible improvement would be to
adopt a variant of the splitting technique as in the RESTART
algorithm (Villén-Altamirano and Villén-Altamirano 1991,
Villén-Altamirano and Villén-Altamirano 1994), where the
simulation of most trajectories is stopped whenever the state
goes below the lower threshold of the current level, instead
of waiting until it reaches A. This would reduce both the
average and the variance of the number of steps at a given
level. Another important issue that deserves attention is the
choice of importance function and of the state ordering for

array-RQMC (both are strongly related). 11 Another point
worth noticing is that we estimate here a probability by the
average of an indicator function, which is generally not the

kind of function that favors RQMC methods. 12 A possible
improvement would be to replace the indicator function by
an estimator based on conditional expectations. A perspec-
tive for future research is thus to combine our array-RQMC
technique with the simulation of multi-level Feynman-Kac

formulae, 13 the splitting technique being a special case of
those ones, for which more information may be needed on
the process between two thresholds. We are currently pur-
suing our investigations in these directions.
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vrai, surtout pour array-RQMC.

13 De Pierre: Pas défini! Le lecteur ne saura probablement pas de quoi
l’on parle. De plus, je ne comprend pas le “thus”. Pour estimer le même µ ,
comment va-t-on faire cela?



Demers, L’Ecuyer, and Tuffin

author, and EuroNGI Network of Excellence and SurePath
ACI Security Project to the third author.

REFERENCES

Bayes, A. J. 1972. A minimum variance technique for sim-
ulation models. Journal of the ACM 19:734–741.

Bucklew, J. A. 2004. Introduction to rare event simulation.
New York: Springer-Verlag.

Garvels, M. J. J. 2000. The splitting method in rare event
simulation. Ph. D. thesis, Faculty of mathematical Sci-
ence, University of Twente, The Netherlands.

Garvels, M. J. J., and D. P. Kroese. 1998. A comparison of
RESTART implementations. In Proceedings of the 1998
Winter Simulation Conference, 601–609: IEEE Press.

Garvels, M. J. J., D. P. Kroese, and J.-K. C. W. Van Om-
meren. 2002. On the importance function in splitting
simulation. European Transactions on Telecommunica-
tions 13 (4): 363–371.

Glasserman, P., P. Heidelberger, P. Shahabuddin, and T. Za-
jic. 1998. A large deviations perspective on the efficiency
of multilevel splitting. IEEE Transactions on Automatic
Control AC-43 (12): 1666–1679.

Glasserman, P., P. Heidelberger, P. Shahabuddin, and T. Za-
jic. 1999. Multilevel splitting for estimating rare event
probabilities. Operations Research 47 (4): 585–600.

Glynn, P. W. 1994. Efficiency improvement techniques. An-
nals of Operations Research 53:175–197.

Glynn, P. W., and D. L. Iglehart. 1989. Importance
sampling for stochastic simulations. Management Sci-
ence 35:1367–1392.

Goyal, A., P. Shahabuddin, P. Heidelberger, V. F. Nicola,
and P. W. Glynn. 1992. A unified framework for simulat-
ing markovian models of highly reliable systems. IEEE
Transactions on Computers C-41:36–51.

Heidelberger, P. 1995. Fast simulation of rare events in
queueing and reliability models. ACM Transactions on
Modeling and Computer Simulation 5 (1): 43–85.

Hickernell, F. J. 2002. Obtaining o(n−2+ε) convergence for
lattice quadrature rules. In Monte Carlo and Quasi-Monte
Carlo Methods 2000, ed. K.-T. Fang, F. J. Hickernell, and
H. Niederreiter, 274–289. Berlin: Springer-Verlag.

Kahn, H., and T. E. Harris. 1951. Estimation of particle
transmission by random sampling. National Bureau of
Standards Applied Mathematical Series 12:27–30.
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de Mathématiques et de Statistique at the Université de
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