
Random Number Generators Based on Linear
Recurrences in F2w

François Panneton and Pierre L’Ecuyer

Département d’informatique et de recherche opérationnelle
Université de Montréal
C.P. 6128, Succ. Centre-Ville,
Montréal (Québec), H3C 3J7, CANADA
panneton@iro.umontreal.ca and lecuyer@iro.umontreal.ca

Summary. This paper explores new ways of constructing and implementing ran-
dom number generators based on linear recurrences in a finite field with 2w elements,
for some integer w. Two types of constructions are examined. Concrete parameter
sets are provided for generators with good equidistribution properties and whose
speed is comparable to that of the fastest generators currently available. The imple-
mentations use precomputed tables to speed up computations in F2w .

1 Generators Based on Linear Recurrences in F2w

Let q = 2w for some integer w > 1 and Fq the finite field with q elements.
Consider a linear recurrence of order r in Fq:

mn =
r∑

i=1

bimn−i, (1)

where r is a positive integer, b1, . . . , br and m0,m1, . . . are in Fq, br 6= 0, and
all arithmetic is performed in Fq. The polynomial P (z) = zr −

∑r
i=1 biz

r−i

is a characteristic polynomial of this recurrence. It is well-known that (1) has
period length qr − 1 = 2rw − 1 (full period) if and only if P (z) is primitive
over Fq. See, e.g., [8, 11] for an account of linear recurrences in finite fields.
Consider also the recurrence

qn(z) = z qn−1(z) mod P (z), (2)

where for each n, qn(z) = qn,1z
r−1 + · · ·+ qn,r−1z + qn,r ∈ Fq[z]/(P (z)), the

ring of polynomials in Fq[z] modulo P (z). Dividing this recurrence by P (z)
yields

qn(z)/P (z) = z qn−1(z)/P (z) mod 1, (3)

from which it is easy to see that one can write

2 François Panneton and Pierre L’Ecuyer

qn(z)/P (z) =
∞∑

j=1

xn+jz
−j (4)

(a formal Laurent series), where {xj , j ≥ 1} is a sequence that follows the
recurrence (1) in Fq. Moreover, by multiplying the infinite sum in (4) by
P (z) and equating the coefficients in qn(z) to the corresponding ones in this
product, one obtains the following one-to-one linear correspondence between
the vectors (qn,1, . . . , qn,r) and (xn+1, . . . , xn+r) in Fq (see [7]):

qn,1

qn,2

...
qn,r

 =


1 0 . . . 0
b1 1 . . . 0
...

.
...

bk−1 . . . b1 1




xn+1

xn+2

...
xn+r

 . (5)

One can see from this that for each j, {qn,j , j ≥ 0} also follows the recurrence
(1). This means that in a sense, (1), (2), and (3) are just different represen-
tations of the same recurrence.

To construct a random number generator (RNG) from such a recurrence,
we must define a mapping from the generator’s state space Fr

q to the real inter-
val [0, 1). This requires an explicit representation of the elements of Fq. In this
paper, we represent these elements in terms of an ordered polynomial basis,
defined as follows. Let M(z) = zw +

∑w
i=1 aiz

w−i ∈ F2[z] be an irreducible
polynomial over F2. Then there exists an algebraic element ζ of Fq whose
minimal polynomial over F2 is M(z) and the ordered set (1, ζ, . . . , ζw−1) is
an ordered polynomial basis of Fq over F2 (see [8], Chapter 1.4). This means
that any element v ∈ Fq can be written uniquely as a linear combination
v = v1 + v2ζ + · · ·+ vwζw−1 where v = (v1, . . . , vw)T ∈ Fw

2 . Here, we identify
F2 with the set {0, 1} in which addition and multiplication are performed mod-
ulo 2. Thus, after M(z) (or the w-bit vector a = (a1, . . . , aw)) and ζ have been
chosen, each element v of Fq can be represented by its corresponding binary
column vector v, called its vector representation. Adding two elements in Fq

corresponds to adding their vector representations componentwise in F2, i.e.,
performing a bitwise exclusive-or. The vector representation of the product
of v ∈ Fq by a fixed element b ∈ Fq can be computed as Abv, where v is the
vector representation of v, whereas Ab is a w×w matrix with elements in F2

and whose ith column is the vector representation of bζi−1, for i = 1, . . . , w.
For any given choice of M(z), the matrix Ab turns out not to depend on the
choice of ζ; it depends only on M(z). Addition and multiplication in Fq can
then be implemented efficiently via vector/matrix operations in F2.

In particular, the recurrence (1) can be implemented by

mn =
r∑

i=1

Abi
mn−i (6)

where mn is the vector representation of mn and Abi
performs the multipli-

cation by bi in the vector representation, for 1 ≤ i ≤ r. Under this representa-

RNGs Based on Linear Recurrences in F2w 3

tion, the state of the generator at step n can be written as the rw-bit column
vector sn = (mT

n ,mT
n−1, . . . ,m

T
n−r+1)

T .
If qn,j denotes the vector representation of qn,j under the chosen polyno-

mial basis, the recurrence (2) can be implemented as

qn =

qn,1

...
qn,r

 =


qn−1,2

...
qn−1,r

0

 +

 Ab1
...

Abr

qn−1,1. (7)

Here the state is represented by the rw-bit vector qn.
Both (6) and (7) are actually special cases of the matrix linear recurrence

xn = Axn−1 (8)

in F2, with k-bit state vector xn = (xn,0, . . . , xn,k−1)T ∈ Fk
2 at step n and

k× k transition matrix A with elements in F2 where k = rw. For (6), one has
xn = sn and

A =


Ab1 Ab2 . . . Abr−1 Abr

Iw

Iw

. . .
Iw

 (9)

where Iw is the w × w-bit identity matrix and the blank areas are blocks of
zeros. For (7), one has xn = qn and A is the transpose of the matrix in (9).

A random number generator can be constructed from a linear recurrence
of the form (8) by defining a linear output function of the form

yn = Bxn , (10)

un =
L∑

i=1

yn,i−12−i (11)

for some positive integer L, where yn = (yn,0, . . . , yn,L−1)T ∈ Fw
2 is the L-

bit output vector at step n, B is an L × k matrix with elements in F2, the
operations in (10) are performed in F2, and un ∈ [0, 1) is the output at step
n. The matrix B is called the output transformation matrix (or tempering
matrix) and we will assume that none of its lines is zero. Several types of
generators fit this framework, including the Tausworthe, GFSR, TGFSR, and
Mersenne twister, for example [3, 5, 10, 13, 14]. Note that each coordinate of
xn and of yn follows a linear recurrence in F2 whose characteristic polynomial

f(z) = zk − α1z
k−1 − · · · − αk−1z − αk = det(A− zI), (12)

is that of the matrix A [11]. The period length of this recurrence is 2k−1 (i.e.,
maximal) if and only if f is primitive over F2. It is easy to jump ahead from

4 François Panneton and Pierre L’Ecuyer

xn to xn+ν for any large value of ν with this type of generator: it suffices to
multiply the state by Aν , which can be precomputed. This is convenient for
partitioning the generator’s sequence into multiple streams, as in [6].

In this paper, we consider two types of output matrices B, which we de-
note by TL and ML. The matrix TL simply defines yn as the first L bits of
xn; it is an L × k matrix with the identity in its first L columns and zeros
elsewhere. We call it the L-bit truncation output. The matrix ML implements
the Matsumoto-Kurita tempering, defined as follows [9]:

yn ← TLxn

yn ← yn ⊕ ((yn � s1) &b)
yn ← yn ⊕ ((yn � s2) & c)

where the operators ⊕, �, and & perform a bitwise XOR, a left-shift, and a
bitwise AND, respectively, b and c are carefully selected L-bit vectors, and
s1 and s2 are integer between 0 and L.

We call an RNG implemented via (6) and (10)–(11) a linear feedback shift
register (LFSR) generator in Fq. The tempered TGFSR generator of [9] is a
special case of an LFSR in Fq, with B = ML, br = ζ, bt = 1 for some t < r, and
all other bi’s equal to zero. The multiple recursive matrix method (MRMM)
introduced by Niederreiter[12] uses a generalization of the recurrence (6) and
a different output mapping than we do. With L = w and B = TL, one obtains
the 2-adic digital method described in [12], Eq. (34).

The implementation (7) and (10)–(11), with xn = qn instead of xn = sn,
yields a related but different generator (because A is transposed). It can be
viewed as an LCG in the polynomial space Fq[z]/(P (z)), with the output
constructed directly from the vector representations qn,j of the polynomial
coefficients. In this paper, the expression polynomial LCG refers to this im-
plementation. Such polynomial LCGs were considered in [4, 5, 13] for the case
where w = 1. (There are other places, e.g., [7] and section 4.1 of [14], where
the expressions “polynomial LCG” or “LCG using polynomial arithmetic”
refer to the case where xn = sn. We apologize for the potential confusion.)

In the special case where L = w and B = (B̃ 0) where B̃ is an arbitrary
w × w matrix, the generators based on xn = sn and xn = qn turn out to be
equivalent, because {qn,j , n ≥ 0} follows the same recurrence as {mn, n ≥ 0}.
This means that in this case, good parameters for LFSR generators in Fq are
also good parameters for polynomial LCGs and vice-versa.

It is customary (e.g., [3, 5]) to assess the quality of a linear generator of
the form (8) and (10)–(11) via measures of equidistribution of the point set

Ψt = {u0,t = (u0, . . . , ut−1) : x0 ∈ Fk
2}, (13)

which contains all vectors of t successive output values produced by the gener-
ator from all 2k possible initial states, for several values of t up to a pre-selected
limit. Certain low-dimensional projections over non-successive coordinates can

RNGs Based on Linear Recurrences in F2w 5

also be examined [7]. The quality of the generators proposed in this paper is
assessed by such equidistribution criteria detailed in section 3.

In the rest of the paper, we examine two ways of constructing efficient
implementations of LFSR generators and polynomial LCGs in Fq, using pre-
computed tables, with and without tempering. We then present the results of
a search for parameters of generators having good equidistribution properties
and a fast implementation. The search was made using the software library
REGPOLY [5]. Finally, we compare the equidistribution and speed of the gen-
erators found with that of other generators proposed elsewhere. The goal is
to see if we can improve on the equidistribution without paying a significant
speed penalty.

2 Multiplication in F2w Using Precomputed Tables

This section discusses two efficient methods of implementing the multiplica-
tions in F2w needed in the recurrences (6) and (7). The idea of both methods
is to sacrifice some memory in the interest of speed, by using precomputed
tables of multiplication in F2w . Suppose we need to multiply arbitrary w-bit
vectors by the matrix Ab.

In the first method, we decompose Ab = [A(1)
b , . . . , A

(c)
b], where A

(j)
b is

w × wj for 1 ≤ j ≤ c, with w1 + · · · + wc = w. Let v(1), . . . ,v(c) be the
corresponding decomposition of an arbitrary w-bit vector v. The product
Abv can be written as A

(1)
b v(1) + · · ·+ A

(c)
b v(c). For each j, one can tabulate

the values of A
(j)
b v(j) for all 2wj possibilities for v(j). These tables require

(2w1 + · · · + 2wc)w bits of storage. Then, c table lookups and c − 1 bitwise
exclusive-ors are needed to compute Abv for an arbitrary v. A smaller c means
faster multiplications but more memory usage, so a compromise must be made.
For example, if w = 32, c = 3, w1 = w2 = 11, and w3 = 10, we need 20
kilobytes for the tables, a reasonable number. We also need a single copy of
these tables, regardless of how many streams (copies of the generator, with
different states) are running in parallel, in contrast with the space required
to store the state, which must be multiplied by the number of streams. A
nice feature of this technique is that if B = (B̃, 0) where B̃ is w × w, we
can incorporate the tempering in the tables at no extra cost. This is achieved
by replacing each Abi

by B̃−1Abi
B̃ in the transition matrix, and B by TL,

and storing the tables of multiplication by the B̃−1Abi
B̃’s rather than by the

Abi ’s.
For the second method, we write

b =
sb∑

γ=0

cγζγ (14)

where sb < w. Let Φb = {γ : cγ 6= 0 in (14)} and db the cardinality of Φb (i.e.,
the number of nonzero coefficients cγ). This method is appropriate when db

6 François Panneton and Pierre L’Ecuyer

and sb are small. Observe that multiplying some v ∈ Fq by ζγ corresponds to
multiplying the vector representation of v by the matrix Aγ

ζ , where Aζ is the
companion matrix

Aζ =


aw

1 aw−1

. . .
...

1 a1

 .

For 0 < γ < w, we have

Aγ
ζ =



0 0 . . . 0 p11 . . . p1γ

0 0 . . . 0 p21 . . . p2γ

...
...

...
...

1 0 . . . 0 pγ1 . . . pγγ

0 1 . . . 0 pγ+1,1 . . . pγ+1,γ

. . .
0 0 . . . 1 pw1 . . . pwγ


= Rγ + Tγ

where Rγ performs a right shift by γ positions to the right and Tγ is the matrix
with zeros in the first γ columns and whose last w − γ columns are the same
as those of Aγ

ζ . The matrix Ab can then be written as Ab = Tb +
∑

γ∈Φb
Rγ

where Tb =
∑

γ∈Φb
Tγ is nonzero only in its last w − sb columns. The multi-

plication table by those w − sb nonzero columns of Tb can be stored in 2sbw
bits. Multiplication by b is then implemented via one table lookup, db right
shifts, and db bitwise exclusive-ors. The idea here is to choose characteristic
polynomials P (z) whose coefficients bi have small values of dbi (for speed) and
sbi

(for economy of storage).

3 Search for Good Generators

Using the REGPOLY software [5], we searched for good generators with re-
spect to equidistribution criteria, within the class of generators that can be
implemented efficiently as described in the previous sections. Before giving
the search results, we recall some basic definitions regarding equidistribution
(see, e.g., [1, 14]), and define the selection criteria we used.

For a given integer ` ≥ 0, partitioning each axis of the unit hypercube
[0, 1)t into 2` equal parts determines a partition of this hypercube into 2`t

small cubes of equal volume. The RNG is called (t, `)-equidistributed, or t-
distributed with ` bits of accuracy , if each of these small cubes contains exactly
2k−`t points from Ψt. This property can be verified by expressing the t` bits of
interest as linear combinations of the bits of x0 and checking if the matrix of
the corresponding transformation has full rank, as explained in [1]. For a given
`, the largest t for which Ψt is (t, `)-equidistributed is called the dimension in

RNGs Based on Linear Recurrences in F2w 7

resolution ` and is denoted by t`. This value has the upper-bound t` ≤ t∗` =
bk/`c. The dimension gap in resolution `, defined as

∆` = t∗` − t`, (15)

gives the difference between the best possible dimension in resolution ` and
the one that is achieved. If ∆` = 0 for 1 ≤ ` ≤ L, the RNG is called maximally
equidistributed (ME) for the word size L [1].

All search results in the paper are for L = w = 32. To guide our search,
we looked for generators having a small value of

∑32
`=1 ∆`. For maximally

equidistributed generators, this value is 0. We also tried to obtain generators
for which ∆` = 0 for the most significant bits.

We considered full period generators for the following values of r: 3, 8,
13, 25. The corresponding period lengths are 296 − 1, 2256 − 1, 2416 − 1, and
2800 − 1, respectively. For each r, we looked for generators having primitive
characteristic polynomials of the form P (z) = zr +br−tz

t +br−qz
q +br, some-

times with br−q = 0 (i.e., polynomials with only 3 or 4 nonzero coefficients).
We found generators with general coefficients bi with B = TL and genera-
tors whose coefficients bi can be written as in (14) with small sbi

and with
B = ML. The generators using the latter special form with B = TL appear to
be limited in the quality of their equidistribution. Denoting bi =

∑s
γ=0 ci,γζγ

for i = 1, . . . , r and γ∗ = max{γ : 1 ≤ γ ≤ s and ci,γ 6= 0 for some i}, we
have been able to find generators with t` = t∗` for ` ≤ γ∗, but we have ob-
served empirically that t` ≤ r for ` > γ∗. A similar limitation holds for the
equidistribution of TGFSR generators without tempering [9]. To get around
this limitation, we used B = ML, as in [9]. In the definition of ML, we took
s1 = 7, s2 = 15, and used the same algorithm as in [9] to find good vectors b
and c.

In Table 1, we list the best generators we found with general coefficients.
The coefficients are given using the polynomial basis (1, ζ, . . . , ζw−1) where
ζ is a root of the irreducible polynomial M(z) = zw +

∑w
i=1 aiz

w−i. In the
Table, we express M(z) by the bit vector a = (a1, . . . , aw). All vectors are
represented in hexadecimal notation. The period length of each generator is
% = 232r − 1. We also give the values of E = max{` ≥ 0 : ∆1 = · · · = ∆` = 0}
and S =

∑32
`=1 ∆`, which are good indicators of the quality of equidistribution.

Ideally, we want a large E and a small S.
In Table 2, we list the best generators found with coefficients of the special

form (14) with dbi ≤ 2 and sbi ≤ s, for s = 3 and s = 7. The columns b and
c give the vectors used for the tempering.

Some of the generators have been given explicit names in the tables,
on the line that precedes their parameters. These names have the form
F2wLFSRm s k for LFSR generators and F2wPolyLCGm s k for polynomial
LCGs, where m = 2 if br−q = 0 and m = 3 otherwise, sbi

≤ s in (14) for the
bi’s that define the recurrence and k = rw.

In addition to E and S, we also looked at the equidisdistribution of point
sets of the form

8 François Panneton and Pierre L’Ecuyer

log2 ρ r t q br−t br−q br a E S

96 3 1 – 30a72fa7 – 537a531f ccb06f34 21 3
96 3 1 – 04a87b98 – 4dd5e06e ccb06f34 21 3
96 3 2 1 bbf58bb6 bd0c7735 b7c5019c d53c36b9 ME
96 3 2 1 db3bd1c3 ffbaad94 2f55958b d53c36b9 ME

256 8 6 3 fba454a9 045861d5 c5fb7653 ce023b3b 22 6
256 8 5 2 623a6e23 de6f829f 17600ef0 ce023b3b 22 6

416 13 8 – 2be45a08 – b4816b12 f9820db6 17 29
416 13 5 – 7a64a92e – c0643058 f9820db6 17 29
416 13 10 5 99e34535 f09bf592 9803caf7 9f26eaa3 22 13
416 13 10 5 62a42238 e765704a 2f95dc0e 9f26eaa3 20 14

F2wLFSR2 31 800 or F2wPolyLCG2 31 800

800 25 7 – e6a68d20 – 287ab842 fa4f9b3f 15 74
800 25 18 – 26dc0579 – 88fc8c8a fa4f9b3f 15 77

F2wLFSR3 31 800 or F2wPolyLCG3 31 800

800 25 20 14 0001e6f1 1d5e07e3 3e433359 f70211b8 16 42
800 25 24 16 be1ed999 e21e9910 e09361e8 f70211b8 19 54

Table 1. Generators with general coefficients

Ψ̃t,i2,...,it
= {u0,t = (u0, ui2 , . . . , uit

) : x0 ∈ Fk
2}, (16)

where 0 < i2 < . . . < it are positive integers. For a given dimension t,
define i∗t as the largest value of i such that whenever it ≤ i, Ψ̃t,i2,...,it

is
(t, min(bk/tc, L))-equidistributed (i.e., has optimal equidistribution in t di-
mensions). This is closely related to the criterion ∆t1,...,td

defined [7], which
quantifies the quality of pre-selected point sets (or “projections”) Ψ̃t,i2,...,it

.
Empirically, with L = w = 32, B = (B̃ 0) where B̃ is w×w and non-singular,
and t = 2, . . . , r − 2, i∗t was larger than any value of it that we tried, for
any generator. For example, with t = 2 and r = 25, we looked at all projec-
tions with i2 < 5000 and they were all (2, 32)-equidistributed (i.e., had the
best equidistribution in 2 dimensions). For some generators, we verified the
equidistribution of all the point sets Ψ̃t,i2,...,it for it = 16 and t = 2, . . . , 16,
and found that they were all optimally equidistributed. These examples lead
us to believe that the low-dimensional projections of these generators behave
very well with respect to the equidistribution criterion.

4 Comparisons and Timings

In Table 3, we compare the equidistribution of two of our generators with that
of tempered TGFSR generators of comparable period lengths, taken from [9].
For each generator, we give the value of t` for ` = 1, . . . , 32 and S =

∑32
`=1 ∆`.

The values of t` given in boldface attain the upperbound t∗` . Our generators
have better equidistribution. In particular, the last two generators in Table 2,

RNGs Based on Linear Recurrences in F2w 9

s r t q br−t br−q br M(z) b c E S

3 3 2 – 30000000 – a0000000 f6b5876b 5ccce080 71d7800c 21 3
3 3 2 – 30000000 – a0000000 f6b5876b 792b3701 9fe700b6 21 3

7 3 2 – 0c000000 – 41000000 958357a6 8c5f6000 f00e8066 21 3
7 3 2 – a0000000 – 12000000 958357a6 1d768200 d1e701c2 21 3

3 3 2 1 90000000 a0000000 50000000 8a81f5f4 24b97381 f9d98000 ME
3 3 2 1 90000000 30000000 50000000 8a81f5f4 b9b76401 b24b0001 ME

7 3 2 1 03000000 48000000 18000000 fcb5f714 a4d07c01 be2f8001 ME
7 3 2 1 21000000 12000000 0a000000 fcb5f714 77f22481 57eb8001 ME

3 8 5 3 a0000000 c0000000 30000000 d3e9de82 a13a9c81 5e6d801b 21 7
3 8 7 3 c0000000 50000000 60000000 d3e9de82 4c0ad481 ebd30053 21 10
3 8 7 4 60000000 90000000 c0000000 d3e9de82 b39e2581 36f30072 21 10
3 8 7 4 c0000000 90000000 30000000 d3e9de82 98fd4c01 eea3003c 21 10

7 8 5 2 03000000 44000000 28000000 ae397b58 05bf4081 eb67000c 22 6
7 8 6 3 41000000 05000000 60000000 ae397b58 1360c281 f3eb8004 22 6

3 13 5 – 50000000 – 30000000 ae8b80e1 c55b6000 fcbd0015 17 32
3 13 5 – 50000000 – 30000000 ae8b80e1 360d4401 eb31803f 17 32

7 13 8 – 0c000000 – 28000000 c65a6fe2 977e1101 fac78000 17 29
7 13 5 – 21000000 – 44000000 c65a6fe2 df850601 e3758001 17 29

F2wLFSR2 7 416 or F2wPolyLCG2 7 416

7 13 9 6 06000000 41000000 05000000 92bb39c1 5f9bca01 fd9d8006 22 13
7 13 8 5 11000000 0c000000 30000000 92bb39c1 b8404581 22e30003 22 13

F2wLFSR2 3 800 or F2wPolyLCG2 3 800

3 25 11 – 30000000 – 50000000 e307bc0e f7b31a80 af530001 13 72
3 25 11 – 30000000 – 50000000 e307bc0e f0ba1601 ab4b0000 10 75

F2wLFSR2 7 800 or F2wPolyLCG2 7 800

7 25 11 – 05000000 – 12000000 f282ea95 a6ea0881 4de58000 9 67
7 25 9 – 09000000 – 28000000 f282ea95 fa3cc981 6cf88000 9 68

F2wLFSR3 3 800 or F2wPolyLCG3 3 800

3 25 21 6 30000000 c0000000 a0000000 e397e5c4 994aa401 5a9d8001 9 45
3 25 19 7 c0000000 60000000 90000000 e397e5c4 b3965001 2b6c8001 13 49

F2wLFSR3 7 800 or F2wPolyLCG3 7 800

7 25 18 13 42000000 21000000 50000000 9f1f0184 c19ee400 7e778000 21 36
7 25 13 5 12000000 28000000 06000000 9f1f0184 9e60e080 736b0000 21 37

Table 2. Generators with the form (14) with Matsumoto-Kurita tempering

one of which is the first generator in Table 3, are maximally equidistributed
for up to 21 bits of resolution.

We have implemented eight of our generators in C and tested their speed
by generating and adding 108 numbers. The test was performed on a AMD
Athlon 750Mhz processor running Linux, using the gcc compiler with the
optimisation flag -O3. The timings are given in Table 4. The code is available at
http://www.iro.umontreal.ca/~panneton/GenF2w.html. For comparison,
we also provide timings for three well-known generators: TT800 [9], MT19937
[10], and MRG32k3a [2]. For these generators, we used the codes given in the
original papers. MRG32k3a uses integer arithmetic implemented in floating

10 François Panneton and Pierre L’Ecuyer

Generator t1 t2 t3 t4 t5 t6 t7 t8
t9 t10 t11 t12 t13 t14 t15 t16

∑32
`=1 ∆`

t17 t18 t19 t20 t21 t22 t23 t24
t25 t26 t27 t28 t29 t30 t31 t32

F2wLFSR3 7 800 800 400 266 200 160 133 114 100
F2wPolyLCG3 7 800 88 80 72 66 61 57 53 50 36

47 44 42 40 38 34 30 25
25 25 25 25 25 25 25 25

TT800 800 400 250 200 150 125 100 100
75 75 50 50 50 50 50 50 261
25 25 25 25 25 25 25 25
25 25 25 25 25 25 25 25

F2wLFSR3 7 416 416 208 138 104 83 69 59 52
F2wPolyLCG3 7 416 46 41 37 34 32 29 27 26 13

24 23 21 20 19 18 16 16
13 13 13 13 13 13 13 13

TT403 403 195 130 91 78 65 52 39
39 39 26 26 26 26 26 13 140
13 13 13 13 13 13 13 13
13 13 13 13 13 13 13 *

Table 3. Comparison of equidistribution

Generator time (seconds)

F2wLFSR3 7 800 8.2
F2wPolyLCG3 7 800 8.9
F2wLFSR2 7 800 7.4
F2wPolyLCG2 7 800 8.0
F2wLFSR3 3 800 8.1
F2wPolyLCG3 3 800 8.8
F2wLFSR2 31 800 8.0
F2wPolyLCG2 31 800 7.6
F2wLFSR3 31 800 9.9
F2wPolyLCG3 31 800 9.7
TT800 7.1
MT19937 6.6
MRG32k3a 29.7

Table 4. Time to generate and add 108 numbers on a AMD Athlon 750Mhz

point. All other generators use operations on bit vectors and are generally
faster. Our generators are slightly slower than MT19937 and TT800, but
they have better equidistribution than TT800 and a much smaller state than
MT19937. The latter can become an issue when multiple streams of random
numbers are maintained in parallel. Jumping ahead in the sequence is also
easier for our generators than for MT19937, because the corresponding matrix
A in (8) is much smaller.

RNGs Based on Linear Recurrences in F2w 11

5 Acknowledgments

This work has been supported by NSERC-Canada and FCAR-Québec schol-
arships to the first author and by NSERC-Canada grant No. ODGP0110050,
NATEQ-Québec grant No. 02ER3218, and a Killam Research Fellowship to
the second author.

References

1. P. L’Ecuyer. Maximally equidistributed combined Tausworthe generators.
Mathematics of Computation, 65(213):203–213, 1996.

2. P. L’Ecuyer. Good parameters and implementations for combined multiple re-
cursive random number generators. Operations Research, 47(1):159–164, 1999.

3. P. L’Ecuyer. Tables of maximally equidistributed combined LFSR generators.
Mathematics of Computation, 68(225):261–269, 1999.

4. P. L’Ecuyer and F. Panneton. A new class of linear feedback shift register
generators. In J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, ed-
itors, Proceedings of the 2000 Winter Simulation Conference, pages 690–696,
Pistacaway, NJ, 2000. IEEE Press.

5. P. L’Ecuyer and F. Panneton. Construction of equidistributed generators based
on linear recurrences modulo 2. In K.-T. Fang, F. J. Hickernell, and H. Niederre-
iter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 318–330,
Berlin, 2002. Springer-Verlag.

6. P. L’Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton. An object-oriented
random-number package with many long streams and substreams. Operations
Research, 50(6):1073–1075, 2002.

7. C. Lemieux and P. L’Ecuyer. Randomized polynomial lattice rules for mul-
tivariate integration and simulation. SIAM Journal on Scientific Computing,
24(5):1768–1789, 2003.

8. R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applica-
tions. Cambridge University Press, Cambridge, revised edition, 1994.

9. M. Matsumoto and Y. Kurita. Twisted GFSR generators II. ACM Transactions
on Modeling and Computer Simulation, 4(3):254–266, 1994.

10. M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions
on Modeling and Computer Simulation, 8(1):3–30, 1998.

11. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods,
volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathe-
matics. SIAM, Philadelphia, 1992.

12. H. Niederreiter. Factorization of polynomials and some linear-algebra problems
over finite fields. Linear Algebra and its Applications, 192:301–328, 1993.

13. F. Panneton. Générateurs de nombres aléatoires utilisant des récurrences
linéaires modulo 2. Master’s thesis, Département d’informatique et de recherche
opérationnelle, Université de Montréal, 2000.

14. S. Tezuka. Uniform Random Numbers: Theory and Practice. Kluwer Academic
Publishers, Norwell, Mass., 1995.

