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Abstract. LatMRG is a software toolkit for examining theoretical properties of linear congruential
or multiple recursive random number generators. It is implemented as a library of modules written
in Modula-2. It offers tools to check whether a generator has maximal period or not, to apply
the lattice and spectral tests (in large dimensions), and to perform computer searchs for good
(or bad) generators according to different criteria. One can analyse the lattice structure of points
formed by successive values in the generator’s sequence, or formed by “leapfrog” values. Generators
with large moduli and multipliers (e.g. numbers of many hundreds of bits), as well as combined
generators, can also be analyzed. Multiply-with-carry generators can also be studied by analyzing
their corresponding linear congruential generators.

Keywords: Random number generation; linear congruential generators; multiple recursive gen-
erators; multiply-with-carry; lattice structure; spectral test; maximal period



CONTENTS i

Contents

1 Background and overview 1

1.1 Lattices in the real space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Multiple recursive generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Lattice structure and spectral test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Lacunary indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Figures of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Minkowski-reduced basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.2 The Pα criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Matrix multiple recursive generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Multiply-with-carry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.8 Combined generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.9 Computing a shortest nonzero vector or a reduced basis . . . . . . . . . . . . . . . . 11

1.10 Representation of large numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.11 Current implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Using the programs in executable form 12

2.1 An example with the program latl . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Examples with the programs seekl and seeks . . . . . . . . . . . . . . . . . . . . . 14

3 Making your own programs 19

3.1 Using the modules of LatMRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Lower-level modules and Changing the representation . . . . . . . . . . . . . . . . . 19

3.3 Modifying the package, recompiling, and relinking . . . . . . . . . . . . . . . . . . . 19



ii CONTENTS

APPENDICES 20

A. Programs in Executable Form 20

maxper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

findmk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

latl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

seekl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

lats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

latsr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

seeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

seeksr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

menumrg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

B. Intermediate-Level Modules 36

LATMRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

palpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

LATIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

MRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

TESTLAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

REDBAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

REDBAS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

REDBAS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

LATBASIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

PRIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



CONTENTS iii

C. Lower-Level Modules 63

NORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

MULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

BASIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

CONVERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

MULTLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

MULTSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

BASISLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

BASISSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

LILR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

LISI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

SILR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

SISI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



1

1 Background and overview

LatMRG is a software system implemented as a library of modules written in the Modula-2 language.
It provides different tools for studying the structure of lattices in the real space and for examining
the theoretical properties of random number generators based on linear recurrences in modular
arithmetic. It offers facilities for checking if a generator has maximal period or not, for examining its
lattice structure (e.g., applying lattice and spectral tests), and for performing computer searches for
“good” generators according to different quality criteria. The software can also be used for related
applications, such as searching and evaluating lattice rules for quasi-Monte Carlo integration.

In this section, we give a quick recall of some definitions and notation, as well as a short outline
of what the package does. For more details on the underlying theory and algorithms, see [29] and
other references given there. We classify the modules of LatMRG in three groups: (a) low-level, (b)
intermediate-level, and (c) high-level. Higher-level modules import facilities from the lower-level
ones.

The high-level modules (c) are programs in executable form which read their data in files or work
interactively with the user. They can either analyze a given generator or seek “good” generators
according to different criteria. Examples of data files and results are given in Section 2. Appendix
A gives specifications of the data file formats and of what the programs do.

The intermediate-level modules (b) provide data types and procedures to construct lattice bases
for different classes of generators (simple or combined MRGs, lacunary indices, etc.), manipulate
such bases, find a shortest vector in a lattice, reduce a basis in the sense of Minkowski, and so
on. These tools are used by the upper-level modules (c), but can also be used directly to make
programs different than those already provided at level (c), offering thus more flexibility. The
lower-level modules (a) implement basic operations on scalars, vectors, matrices, polynomials, and
so on. They allow different possible representations for these objects, depending, for example, on
the size of the modulus m and the precision we want, as explained in Section 1.6. These lower-level
tools are used by the modules of levels (b) and (c). The intermediate and low-level modules are
discussed a little further in Section 3, and their specifications are given in appendices B and C.

1.1 Lattices in the real space

The lattices considered here are discrete subspaces of the real space IRt, which can be expressed as

Lt =

v =
t∑

j=1

zjvj | each zj ∈ ZZ

 , (1)

where t is a positive integer, and v1, . . . ,vt are linearly independent vectors in IRt which form a
basis of the lattice. A comprehensive treatment of such lattices can be found in [3]. The matrix V,
whose ith line is vi, is the corresponding generator matrix of Lt. A lattice Lt shifted by a constant
vector v0 ̸∈ Lt, i.e., a point set of the form L′

t = {v + v0 : v ∈ Lt}, is called a grid , or a shifted
lattice. The lattices considered in this guide always contain, or are contained in, the integer lattice
ZZt, i.e., ZZt ⊆ Lt or Lt ⊆ ZZt.

The dual lattice of Lt is defined as L∗
t = {h ∈ IRt : h ·v ∈ ZZ for all v ∈ Lt}. The dual of a given

basis v1, . . . ,vt is the set of vectors w1, . . . ,wt in IRt such that vi ·wj = δij , where δij = 1 if i = j,
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and δij = 0 otherwise. It is a basis of the dual lattice. These wj ’s are the columns of the matrix
V−1, the inverse of the matrix V. If m is any positive real number, a basis {w1, . . . ,wt} satisfying
v′
iwj = δijm for all i, j is called the m-dual of the basis {v1, . . . ,vt}. The lattice generated by

this m-dual basis is the m-dual to L. This extension of the usual notion of dual basis and dual
lattice will allow us, by a suitable choice of m (in our context it will be the modulus in (2)), to deal
uniquely with integer coordinate vectors, which can be represented exactly on a computer.

The determinant of the matrix V is equal to the volume of the fundamental parallelepiped
Λ = {v = λ1v1+ · · ·+λtvt : 0 ≤ λi ≤ 1 for 1 ≤ i ≤ t}, and is also the inverse of the average number
of points per unit of volume, independently of the choice of basis. It is called the determinant of
Lt. The quantity 1/ det(Lt) = 1/ det(V) = det(V−1) is called the density of Lt. When Lt contains
ZZt, the density is an integer equal to the cardinality of the point set Lt ∩ [0, 1)t.

For a given lattice Lt and a subset of coordinates I = {i1, . . . , id} ⊆ {1, . . . , t}, denote by Lt(I)
the projection of Lt over the d-dimensional subspace determined by the coordinates in I. This
projection is also a lattice, whose density divides that of Lt. There are exactly det(Lt(I))/det(Lt)
points of Lt that are projected onto each point of Lt(I). In group theory language, Lt(I) corresponds
to a coset of Lt.

1.2 Multiple recursive generators

Consider the linear recurrence

xn = (a1xn−1 + · · · + akxn−k) mod m. (2)

where m and k are positive integers and each ai belongs to the set (or ring) ZZm = {0, 1, . . . ,m−1}.
For n ≥ 0, sn = (xn, . . . , xn+k−1) ∈ ZZk

m is the state at step n. The initial state s0 is called the seed.
One can take un = xn/m ∈ [0, 1) as the output at step n. This kind of generator is called multiple
recursive (MRG). When k = 1, it gives the well-known multiplicative linear congruential generator
(MLCG). MLCGs in matrix form can also be expressed as many copies of the same MRG running
in parallel. For more details, see [14, 23, 24, 35].

The maximal possible period for the sn’s is the cardinality of ZZt
m minus 1, i.e. ρ = mk − 1. It

is attained if and only if m is prime and the characteristic polynomial of (2),

P (z) =

(
zk −

k∑
i=1

aiz
k−i

)
mod m, (3)

is a primitive polynomial modulo m. Knuth [21] gives necessary and sufficient conditions for that,
which are implemented in our package. If k = 1 and m = pe, with e > 1, then the maximal possible
period is 2e−2 for p = 2 and (p− 1)pe−1 for p > 2 [21, 23].

Instead of taking un = xn/m for the output, one can take a more general linear combination of
the components of the state vector, say

yn = (b1xn + · · · + bkxn+k−1) mod m, (4)

un = yn/m. (5)
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For any integer t ≥ 1, one has


yn
yn+1

...
yn+t−1

 =


b′

b′A
...

b′At−1




xn
xn+1

...
xn+k−1

 mod m
def
= Bt


xn
xn+1

...
xn+k−1

 mod m, (6)

where b′ = (b1, . . . , bk) and

A =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
ak ak−1 . . . a1


is the companion matrix of the characteristic polynomial P (z). In particular, by taking t = k, one
sees that the vector (yn, . . . , yn+k−1) takes all possible values in ZZk

m, when (xn, . . . , xn+k−1) does
so, if and only if the matrix Bk has full rank. The matrix Bt can be constructed easily as follows.
Put (xn, . . . , xn+k−1)

′ = ej , the jth vector of the canonical basis, with xn+i−1 = δij , and compute
the corresponding column vector (yn, . . . , yn+t−1)

′ via (2) and (4). This vector is the jth column
of the matrix Bt.

1.3 Lattice structure and spectral test

Let Ψt be the multiset of all the t-dimensional vectors of successive output values of an MRG, from
all possible seeds in ZZk

m, i.e.,

Ψt = {u0,t = (x0/m, . . . , xt−1/m) : (x0, . . . , xk−1) ∈ ZZk
m}.

For t ≤ k, this set is just ZZt
m with each element repeated mk−t times. For t > k, the first

k components of a vector u0,t ∈ Ψt are arbitrary elements of ZZm/m, but once they are fixed,
the remaining t − k components are determined uniquely by the linear recurrence (2). The last
t − k components are thus linear combinations modulo 1, with integer coefficients, of the first k
components.

For 1 ≤ i ≤ k, let vi = (vi,1, . . . , vi,t) be the t-dimensional vector with components vi,j = δij/m
for i ≤ k, and vi,j = (a1vi,j−1+ · · ·+akvi,j−k) mod 1 for j > k. For k+1 ≤ i ≤ t, let vi = ei, the ith
unit vector in t dimensions. These vectors are a basis of a lattice Lt that contains ZZt, with unit cell
volume of max(m−t,m−k), such that Lt ∩ [0, 1)t = Ψt. In fact,  Lt = Ψt +ZZt = {v = ṽ+ z : ṽ ∈ Ψt

and z ∈ ZZt}. The vectors wi = (wi,1, . . . , wi,t), 1 ≤ i ≤ t, where

wi,j =


m for j = i ≤ k;
0 for j ̸= i ≤ k;
vj,i for i > k ≥ j;
1 for j = i > k;
0 for k < j ̸= i > k,
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are linearly independent and satisfy vi ·wj = δij . They form the dual basis to {v1, . . . ,vt}. The
vectors vi and wj are the lines of the matrices:

Vt = (v1v2 · · ·vt)
′ =



1/m 0 . . . 0 v1,k+1 . . . v1,t
0 1/m . . . 0 v2,k+1 . . . v2,t
...

...
. . .

...
...

...
0 0 . . . 1/m vk,k+1 . . . vk,t
0 0 . . . 0 1 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 1


and

Wt = (w1w2 · · ·wt)
′ =



m 0 . . . 0 0 . . . 0
0 m . . . 0 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . m 0 . . . 0

−v1,k+1 −v2,k+1 . . . −vk,k+1 1 . . . 0
...

...
. . .

...
...

. . .
...

−v1,t −v2,t . . . −vk,t 0 . . . 1


,

and one has W′
tVt = I. In the package LatMRG, we store the vectors mvi instead of vi in the

computer, for the components of the former vectors are integer-valued and can thus be represented
exactly in the computer.

For the more general case of (4) and (5), replace the first k lines of Vt by B′
t. If Bk is invertible,

then Bt has rank k and the lines k + 1 to t of V complete the lattice basis as before. Otherwise,
remove the lines in B′

t which are linearly dependent of others, to obtain a matrix of full rank k′ < k,
and replace them by k−k′ vectors of the canonical basis of IRt, divided by m, chosen in a way that
the first k lines and k columns of Vt form an invertible matrix. In both cases, the dual basis is
obtained by inverting the matrix V′

t. The module MRG does that. For LCGs in matrix form, bases
for Lt and its dual can be constructed as explained in [14, 29].

If one adds a constant b on the right-hand-side of (2), before applying the modulo operation,
then the vectors of successive values will all belong to L′

t, where L′
t = Lt + v0,t is a shift of Lt

by some constant v0,t ∈ ZZt
m, i.e., a grid . Since L′

t and Lt have the same structural properties,
we simply ignore the presence of such a constant b in LatMRG, and consider only homogeneous
recurrences.

When m is prime and the MRG has full period mk−1, then Ψt is the set of all t-tuples produced
by the generator over its main cycle, plus the zero vector. Otherwise, the set of t-dimensional vectors
produced over any given (sub)cycle (plus the zero vector and plus mZZt) is a strict subset of Lt

which in general does not form a lattice. Then, LatMRG can analyze the set of all t-tuples produced
over the union of all subcycles. In some cases, however, the vectors of successive values over one
subcycle generate a strict sublattice of Lt, whose intersection with [0, 1)t contains only a fraction
of the points of Ψt. This is what happens in particular when k = 1, m is a power of a prime p,
and x0 is prime to p. The package can take care of the latter case by constructing a basis for the
appropriate sublattice.
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1.4 Lacunary indices

Instead of forming vectors with successive values like in the above definition of Ψt, one can form
vectors with values that are some distance apart in the sequence (so-called “leapfrog” values). Let
I = {i1, i2, · · · , it} be a set of fixed integers. Define

ψt(I) = {(ui1 , . . . , uit) | (x0, . . . , xn+k−1) ∈ ZZk
m} (7)

and let Lt(I) = ψt(I) + ZZt. If we assume that 0 ≤ i1 < i2 < · · · < it, this Lt(I) is the projection
of the lattice Lit+1 over the t-dimensional subspace determined by the coordinates that belong
to I. Using the module MRG, one can build a basis for Lt and its dual in this more general case,
and then perform lattice analysis as usual. Further details and examples are given in [29]. For
(i1, . . . , it) = (0, . . . , t− 1), one has Lt(I) = Lt.

To construct the basis in this case, one must compute the vector (ui1 , . . . , uit) obtained when
the seed (x0, . . . , xk−1) = ei, for each vector ei of the canonical basis. The linear transformation
from the state (x0, . . . , xk−1) to the vector (ui1 , . . . , uit) is one-to-one for each t ≥ k if and only
if the transformation applied to the k vectors of the canonical basis gives k linearly independent
vectors for t = k. For t < k, the transformation is onto (surjective) if and only if the transformation
gives t linearly independent vectors; that is, the corresponding matrix has full rank t.

1.5 Figures of Merit

Figures of merit measure the quality of lattices. Here, good quality means that the points cover
the space very evenly, i.e., are very uniformly distributed. There are many ways of measuring this
uniformity, which give rise to several different figures of merit.

The lattice structure also means that all points of Lt lie in a family of equidistant parallel
hyperplanes. Among all such families of hyperplanes that cover all the points, choose the one
for which the successive hyperplanes are farthest apart. The distance between these successive
hyperplanes is in fact equal to 1/ℓt where ℓt is the Euclidean length of the shortest nonzero vector
in the dual lattice L∗

t . So for a given density of points, we want ℓt to be as large as possible.
Computing this ℓt for an MRG and comparing with the best possible value, given t, m, and k, is
known as the spectral test in the literature on RNGs [21, 12].

We can view the lattice as a way of packing the space by spheres of radius ℓt/2, with one sphere
centered at each lattice point. In the dual lattice, this gives 1/n = m−k spheres per unit of volume.
If we rescale so that the radius of each sphere is 1, we obtain δt = (ℓt/2)t/n spheres per unit of
volume. This number δt is called the center density of the lattice. For a given value of n, an
upper bound on ℓt can be obtained in terms of an upper bound on δt (one has ℓt = 2(nδt)

1/t),
and vice-versa. Let δ∗t be the largest possible value of δt for a lattice (i.e., the densest packing by
non-overlapping spheres arranged in a lattice). The quantity γt = 2(δ∗t )2/t is called the Hermite
constant for dimension t [3, 15]. It gives the upper bound ℓ2t ≤ (ℓ∗t (n))2 = 2(nδ∗t )2/t = γtn

2/t

for a lattice of density 1/n. Knowing the Hermite constants, or good approximations of them, is
useful because it allows us to normalize ℓt to a value between 0 and 1 by taking ℓt/ℓ

∗
t (m

k). This
is convenient for comparing values for different values of t and mk. Good values are close to 1 and
bad values are close to 0.
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The Hermite constants are known exactly only for t ≤ 8, in which case the densest lattice
packings are attained by the laminated lattices [3]. Conway and Sloane [3, Table 1.2] give the
values of δ∗t for t ≤ 8, and provide lower and upper bounds on δ∗t for other values of t. The largest
value of ℓ2t /n

2t obtained so far for concrete lattice constructions is a lower bound on γt, which we
denote by γBt . Such values are given in Table 1.2 of [3], page 15, in terms of δ∗. The laminated

lattices, which give the lower bound ℓ2t /n
2t ≥ γLt = 4λ

−1/t
t , where the constants λt are given in

[3, Table 6.1, page 158] for t ≤ 48, are the best constructions in dimensions 1 to 29, except for
dimensions 10 to 13. (One has γLt = γt for t ≤ 8.)

Minkowski proved that there exists lattices with density satisfying δt ≥ ζ(t)/(2t−1Vt) where
ζ(t) =

∑∞
k=1 is the Riemann zeta function and Vt = πn/2/(n/2)! is the volume of a t-dimensional

sphere of radius 1. This bound provides a lower bound γZt on γt.

An upper bound on γt is obtained via the bound of Rogers on the density of sphere packings
[3]. This upper bound can be written as

γRt = 4e2R(t)/t

where R(t) can be found in Table 1.2 of [3] for t ≤ 24, and can be approximated with O(1/t) error
and approximately 4 decimal digits of precision, for t ≥ 25, by

R(t) =
1

2
n log2

(
n

4πe

)
+

3

2
log2(n) − lg(e/

√
π) +

5.25

n+ 2.5
. (8)

Table 1 in [28] gives the ratio (γLt /γ
R
t )1/2, of the lower bound over the upper bound on ℓt, for

1 ≤ t ≤ 48. This ratio tends to decrease with t, but not monotonously.

Computing the shortest vector in terms of the Euclidean norm is convenient, e.g., for com-
putational reasons, but one can also use another norm instead. For example, one can take the
Lp-norm, defined by ∥v∥p = (|v1|p + · · · + |vt|p)1/p for 1 ≤ p < ∞ and ∥v∥∞ = max(|v1|, . . . , |vt|)
for p = ∞. The inverse of the length of the shortest vector is then the Lp-distance between the
successive hyperplanes for the family of hyperplanes that are farthest apart among those that cover
Lt. For p = 1, the length ℓt = ∥v∥1 of the shortest vector v (or ∥h∥1 − 1 in some cases, see [21]) is
the minimal number of hyperplanes that cover all the points of Ψt. The following upper bound on
ℓt in this case was established by Marsaglia [33] by applying the general convex body theorem of
Minkowski:

ℓt ≤ ℓ∗t (m
k) = (t!mk)1/t

def
= γMt m

k/t.

This upper bound can be used to normalize ℓt in this case.

As a figure of merit, we take the worst-case value of ℓt/ℓ
∗
t (m

k) over certain values of t and for
selected projections on lower-dimensional subspaces. More specifically, let ℓI denote the length of
the shortest nonzero vector v in L∗

t (I), and ℓt = ℓ{1,...,t} as before. For arbitrary positive integers
t1 ≥ · · · ≥ td ≥ d, consider the worst-case figure of merit

Mt1,...,td = min

[
min

k+1≤t≤t1
ℓt/ℓ

∗
t (m

k), min
2≤s≤k

min
I∈S(s,ts)

ℓI/m, min
k+1≤s≤d

min
I∈S(s,ts)

ℓI/ℓ
∗
s(m

k)

]
, (9)

where S(s, ts) = {I = {i1, . . . , is} : 1 = i1 < · · · < is ≤ ts}. This figure of merit makes sure that
the lattice is good in projections over t successive dimensions for all t ≤ t1, and over non-successive
dimensions that are not too far apart. Note that when s ≤ k, the smallest distance between
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hyperplanes that can be achieved in s dimensions for the MRG is 1/m, so ℓs/m cannot exceed 1,
and it is equal to 1 if and only if the linear transformation from the state (x0, . . . , xk−1) to the
output vector (ui1 , . . . , uis) is surjective (i.e., the corresponding matrix has full rank). For s < k,
m is typically much smaller than ℓ∗s(m

k), and this is the reason for separating the last two terms
in (9).

The figure of merit Mt1 = min2≤s≤t1 ℓs/ℓ
∗
s(n) (with d = 1) has been widely used for ranking

and selecting LCGs and MRGs [12, 27, 28]. The quantity Mt1,...,td is a worst case over (t1 − d) +∑d
s=2

(ts−1
s−1

)
projections, and this number increases quickly with d unless the ts are very small. For

example, if d = 4 and ts = t for each s, there are 5019 projections for t = 32. When too many
projections are considered, there are inevitably some that are bad, so the worst-case figure of merit
is (practically) always small, and can no longer distinguish between good and mediocre behavior in
the most important projections. Moreover, the time to compute Mt1,...,td increases with the number
of projections. We should therefore consider only the projections deemed important. We suggest
using the criterion (9) with d equal to 4 or 5, and ts decreasing with s.

Instead of considering the shortest nonzero vector in the dual lattice, one can consider the
shortest nonzero vector in the primal lattice Lt. Its length represents the distance to the nearest
other lattice point from any point of the lattice. A small value means that many points are placed
on the same line, at some fixed distance apart.

1.5.1 Minkowski-reduced basis

Another way of measuring the quality of a lattice is in terms of the relative lengths of the smallest
and largest vectors in a reduced basis. A basis can be reduced in different senses. One type of
reduced basis considered by this package is a Minkowski-reduced lattice basis (MRLB) (see [1, 2,
14] for more details). Roughly, a MRLB is a basis for which the vectors are in some sense the
most orthogonal. The ratio of the sizes of the shortest and longest vectors of a MRLB is called
its Beyer-quotient . In general, a given lattice may have several MRLBs, all with the same length
of the shortest vector, but perhaps with different lengths of the longest vector, and thus different
Beyer quotients. We define qt(I) as the maximum of the Beyer quotients of all MRLBs of Lt(I),
and denote qt({1, . . . , t}) by qt. We prefer values of qt(I) close to 1. Similar to (9), we define

Qt1,...,td = min

[
min

k+1≤t≤t1
qt, min

2≤s≤d
min

I∈S(s,ts)
qt(I)

]
. (10)

1.5.2 The Pα criterion

The quantity Pα is a measure of non-uniformity (i.e., discrepancy from the uniform distribution,
the smaller the better), which has been widely used in the context of quasi-Monte Carlo integration
(see, e.g., [38]). In the case where Ψt = Lt ∩ [0, 1)t where Lt is a lattice with dual L∗

t , one has

Pα(Ψt) =
∑

0̸=w∈L∗
t

∥w∥−α
π , (11)
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where ∥w∥π =
∏t

j=1 max(1, |wj |) for w = (w1, . . . , wt). For any positive integer α, P2α(Ψ) can be
written equivalently as

P2α(Ψt) = −1 +
1

n

∑
u∈Ψt

t∏
j=1

[
1 − (−4π2)α

(2α)!
B2α(uj)

]
(12)

where the Bα are the Bernoulli polynomials:

B0(x) = 1,

B1(x) = x− 1/2,

B2(x) = x3 − x2 + 1/6,

B3(x) = x3 − 3x2/2 + x/2,

B4(x) = x4 − 2x2 + x− 1/30,

and the other polynomials can be found via the identity

text

et − 1
=

∞∑
i=0

Bi(x)ti/i!.

Hickernell [16] introduced generalizations of Pα, incorporating weights and replacing the simple
sum in (11) by a more general norm. One version of this weighted Pα, where the weight associated
to the projection over the coordinates in a set I has the product-form βI = β0

∏
j∈I βj , can be

defined by

P2α(Ψt) = −β0 +
β0
n

∑
u∈Ψt

t∏
j=1

[
1 −

(−4π2β2j )α

(2α)!
B2α(uj)

]
when α is an integer. The identity (12) or (1.5.2) gives an algorithm for computing P2α(Ψt) in
time O(nt) when α is an integer and Ψt is the intersection of a lattice with [0, 1)t. Note that the
DF ,α,p(P ) of [17] corresponds to (P2α(Ψt))

1/2 for Ψt = P , p = 2, and βj = 1 for all j. LatMRG
provides tools for computing Pα with or without weights.

It is has been proved (e.g., [38], Theorem 4.4, page 83) that for any t ≥ 2, α > 1, and prime
number m > eαt/(α−1), there exists at least one LCG with modulus m such that

Pα(Ψt) ≤
[(e/t)(2 lnm+ t)]αt

mα
. (13)

The latter quantity can then be used to normalize Pα.

Alternatively, Hickernell et al. [18], section 4.1, suggest using the figure of merit gt, where

g2t =
n2

(3/2)t − 1

(
t− 1

t− 1 + log n

)t−1

P2(Ψt)

=
n

(3/2)t − 1

(
t− 1

t− 1 + log n

)t−1
−n+

∑
u∈Ψt

t∏
j=1

(1 + 3B2α(uj))

 (14)

is a normalized version of the inverse of (1.5.2) with α = 1, β0 = 1, and βj = π
√

3/2 for j ≥ 1.
This g2t can be rewritten as

g2t = γPt (n)

−n+
∑
u∈Ψt

t∏
j=1

(1 + 3B2α(uj))

 (15)
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where

γPt (n) =
n

(3/2)t − 1

(
t− 1

t− 1 + log n

)t−1

(16)

is a constant that depends on t and n. As a figure of merit based on P2, similar to (9), we define

Gt1,...,td = min

[
min

k+1≤t≤t1
1/gt(Ψt), min

k+1≤s≤d
min

I∈S(s,ts)
1/gt(Ψt(I))

]
. (17)

1.6 Matrix multiple recursive generators

MRGs in matrix form, which we denote MMRGs, have been introduced and studied by Niederreiter
[36, 37]. The general recurrence has the form

xn = (A1xn−1 + · · · +Akxn−k) mod m (18)

where k and m are the order and the modulus as for the MRG, xn = (xn,1, . . . , xn,w)′ is a w-
dimensional vector, and each Aj is a w × w square matrix, for some positive integer w. The case
w = 1 corresponds to the usual MRG. The recurrence (18) has full period mkw − 1 if and only if m
is prime and the characteristic polynomial

f(x) = det
(
xkI − xk−1A1 − xk−2A2 − · · · −Ak

)
is a primitive polynomial modulo m [36].

There are different ways of producing the output. We consider the following 3 cases:

unw+i = xn,i/m for 0 ≤ i < w and n ≥ 0, (19)

un =
1

m

(
w∑
i=1

bixn,i mod m

)
=

w∑
i=1

bixn,i/m mod 1 for n ≥ 0, (20)

un =
w∑
i=1

xn,im
−i for n ≥ 0, (21)

where b1, . . . , bw are positive integers. Case 3 is that used in [36] and does not give rise to a lattice
structure for Ψt in the usual sense. For both cases 1 and 2, the set Ψt is the intersection of a lattice
Lt with the unit hypercube. Case 1 is used in [37], where pseudorandom numbers are generated
in vector form, w at a time. It is also explained in [37] how to construct a basis for the lattice Lt

when t is a multiple of w. (The generalization to other values of t is trivial.)

1.7 Multiply-with-carry

A Multiply-with-Carry (MWC) generator [5, 8, 22, 34] is based on the recurrence

xn = (a1xn−1 + · · · + akxn−k + cn−1) mod b, (22)

cn = (a1xn−1 + · · · + akxn−k + cn−1) div b, (23)

un = xn/b.
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where “div” denotes the integer division. The recurrence looks like that of an MRG, except that a
carry cn is propagated between the steps.

Assume that b is a power of 2, define a0 = −1,

m =
k∑

ℓ=0

aℓb
ℓ,

and let a be the inverse of b in arithmetic modulo m. For simplicity, assume m > 0. Then, up to
precision 1/b, the MWC generator is equivalent to the LCG:

zn = azn−1 mod m; wn = zn/m. (24)

In other words, if

wn =
∞∑
i=1

xn+i−1b
−i (25)

holds for n = 0, then it holds for all n, and consequently |un−wn| ≤ 1/b for all n. The (approximate)
lattice structure of the MWC can therefore be analyzed by analyzing that of the corresponding LCG
(24). This is what the LatMRG package does.

If aℓ ≥ 0 for ℓ ≥ 1, then all the recurrent states of the MWC satisfy 0 ≤ cn < a1 + · · · + ak.
In view of this inequality, we want the aℓ to be small, so that their sum fits into a computer word
(e.g., a1 + · · · + ak ≤ b). But the coefficients should not be too small either, because in dimension
t = k + 1, one has (see [8]):

ℓt = (1 + a21 + · · · + a2k)1/2. (26)

Since b is a power of 2, a is a quadratic residue and so cannot be primitive mod m. Therefore
the period length cannot reach m− 1 even if m is prime. But if (m− 1)/2 is odd and 2 is primitive
mod m (e.g., if (m− 1)/2 is prime), then (24) has period length ρ = (m− 1)/2.

1.8 Combined generators

Combining LCGs or MRGs with relatively prime moduli provides a efficient way of implementing
linear recurrences based on larger (non-prime) moduli. The combination method that we consider
adds, modulo 1, the outputs of the components. The package LatMRG permits one to specify a
product MRG in terms of component MRGs with relatively prime moduli. Its modulus is the
product of the component moduli and its order is the maximum of the orders of the components.
The recurrence governing this product MRG, when taken modulo any one of the component moduli,
reduces to the component recurrence. The combined generator can then be studied via this product
generator, since one can view the former as embedded in the latter, and since both have the same
set of recurrent states (see [7]). Facilities are provided to analyze, for any given MRG, either the
lattice Lt generated by all possible initial states, or that generated by the set of recurrent states
(see LatticeType in MRG and in seekl).

Other types of combinations that have been proposed in the literature are (often, depending on
the parameters) closely approximated by combinations of the above types [32, 25]. They can thus
be analyzed with the present software.
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1.9 Computing a shortest nonzero vector or a reduced basis

The module REDBAS computes a shortest nonzero vector in a lattice via the branch-and-bound
(BB) algorithm proposed by [10], with some additional refinements. For large dimensions t, this
algorithm is much faster than the algorithm given in [9, 20]. The module also computes a MRLB
via the algorithm of [1], which works by successive applications of the BB procedure for finding a
shortest vector. The bounds in the BB procedure are computed through a Choleski decomposition
performed in (double precision) floating-point arithmetic. Numerical roundoff errors occur during
these computations and could (eventually) affect the results: Because of slightly wrong bounds in
the BB, one may miss a shorter vector and, as a result, (conceivably) not obtain a true MRLB
at the end of the reduction algorithm. The module REDBAS2 perform basis reductions by taking
into account all sources of numerical error during the computations and computing error bounds,
thereby yielding “guaranteed error-free” results. Of course, this implies a lot of overhead, which
means that the procedures of REDBAS2 are much slower than those of REDBAS. Another approach is
used in module REDBAS3 bypassing all floating point calculations. Again this is slower than REDBAS.

1.10 Representation of large numbers

LatMRG can deal with very large moduli and multipliers. There is no limit on size other than the
size of the computer memory (and the CPU time). For example, a generator with a modulus of
a few hundred bits can be analyzed easily. Operations on large integers are performed using the
package SENTIERS [30], also written in Modula-2. Of course, these operations are performed in
software and are significantly slower than the standard operations supported by hardware. For this
reason, most of the basic (low-level) operations required by our higher-level modules have been
implemented in two versions.

When building a basis or checking maximal period conditions, the modulus and multipliers can
be represented either as LONGINT (32-bit integers) or SuperInteger (arbitrary large integers, from
SENTIERS). The modules MULTLI and MULTSI support these two representations, and provide
basic facilities to the other modules for manipulating the multipliers. These are two versions of the
generic module MULT.

After a lattice basis and its dual have been constructed, when working on the basis (finding
a shortest vector, Minkowski reduction, etc.), the vector elements can be represented either as
LONGREAL (64-bit floating-point numbers) or SuperInteger. The modules BASISLR and BASISSI

implement basic facilities for these two cases. They are two versions of the generic module BASIS.

In summary, MULT is for working on the construction of a lattice basis and its dual from the
specifications of the generator, lacunary indices, etc., whereas BASIS is for working on the basis
(reduction, etc.) after it has been constructed.

For the computations that are performed in floating-point arithmetic, one can compute error
bounds on everything (using REDBAS2), or no error bounds (using REDBAS). When performing a
search for good generators, for instance, one can first perform all the “screening” computations
(involving many generators) without computing the error bounds, and then recompute (verify)
with the error bounds only for the retained generator(s).
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1.11 Current implementations

The software is currently working under the XDS Modula-2 environment, on SUN computers under
Solaris and on PC-type computers under Linux. It can be ported to other machines for which a
Modula-2 compiler is available. Its implementation is built upon two other Modula-2 libraries called
mylib [31] and SENTIERS [30], which must also be ported for LatMRG to work on other platforms.

2 Using the programs in executable form

At the high-level end, LatMRG provides programs in executable form. These programs read their
data in files or work interactively with the user. Appendix A describes their use in more detail.
In this section, we give examples. The user can also tailor his own programs using the lower-level
tools offered by the different modules of LatMRG. This is discussed in the next section.

The program maxper checks whether a given generator has maximal period. The program
findmk can find values of m and k such that r = (mk−1)/(m−1) is prime. The programs latl and
lats perform standard lattice and/or spectral tests for that generator. The only difference between
the latter two programs is that in latl, the multipliers and basis components are implemented in
LONGINT and LONGREAL, respectively, while in lats, they are implemented as SuperInteger’s. More
comprehensive (and larger) programs perform computer searchs to seek the “best” generators of a
given type, according to maximal period and lattice structure criteria. These programs also come
in two versions. In seekl, the multipliers and basis components are implemented in LONGINT and
LONGREAL, respectively, while in seeks, both are implemented as SuperInteger’s.

The program menumrg is an interactive program which allows the user to build a lattice basis
for a given generator, and then manipulate, compare, or reduce lattice bases.

We now give a few concrete examples of data files and results. The timings given are from runs
on a SUN SparcStation 20, under SunOS 5.4, using version 4.5.1 of the MCS Modula-2 compiler
[19]. These results were obtained with the ‘February 1996’ version of LatMRG.

FALSE ReadGenFile
1 J (Nb. of components)
MRG Gener. type
2147483647 1 0 m (modulus)
1 k (order)
742938285 a (multiplier)
2 30 MinDim MaxDim
BeyerSpectral Hermite LatticeInfo
Full LatticeType
1 1 LaGroupSizes Spacings
NoVerify VerifyBB
1000000 MaxNodesBB
TEX ResultForm

Figure 1: Example of a data file for the program latl, in file fish31.dat.
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Table 1: Results of latl in file fish31.tex.

cumulative
t dt qt St cpu (sec)

2 2.31556E-5 0.84858 0.86725 0.02
3 8.02308E-4 0.90348 0.86068 0.03
4 4.52795E-3 0.88522 0.86270 0.04
5 0.01328 0.79661 0.83195 0.05
6 0.02586 0.85416 0.83415 0.06
7 0.05530 0.59317 0.62392 0.07
8 0.06820 0.64472 0.70666 0.09
9 0.10600 0.67859 0.10

10 0.10847 0.73126 0.13
11 0.16903 0.63121 0.15
12 0.24254 0.58925 0.19
13 0.24254 0.58080 0.22
14 0.24254 0.63681 0.26
15 0.24254 0.67276 0.31
16 0.24254 0.76358 0.39
17 0.24254 0.78289 0.48
18 0.25000 0.74582 0.64
19 0.26726 0.75484 1.14
20 0.26726 0.81215 1.71
21 0.26726 0.78067 3.15
22 0.28868 0.88552 5.77
23 0.28868 0.86355 8.37
24 0.30151 0.91232 13.46
25 0.30151 0.86634 26.85
26 0.30151 0.84667 48.06
27 0.30151 0.87238 80.57
28 0.30151 0.88873 126.43
29 0.31623 0.88771 200.71
30 0.31623 0.88201 307.96

2.1 An example with the program latl

Figure 1 gives an example data file for the program latl. The corresponding results appear in
Table 1. To call the program and produce these results, type “latl fish31”, assuming that the
data are in file “fish31.dat”. The results will be in file “fish31.tex”, which produces Table 1
after going through LATEX. If TEX was replaced by Terminal in the data file, the results would
rather be displayed on the screen. See the description of the program latl for more details on
how to set up the data files. Note that the first column in the data file gives the data values
themselves, while the second column contains comments describing the meaning of these values. In
that example, the Beyer and spectral tests are applied to the LCG of order 1 with m = 231 − 1 =
2147483647 and a = 742938285, suggested by Fishman and Moore [13]. The last column indicates
the (cumulative) cpu time. The total cpu time to compute all the Beyer quotients qt and distances
dt between hyperplanes in dimensions 2 to 30 was approximately 308 seconds, i.e., approximately
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5 minutes. Computing the Beyer quotients for this example turns out to be much more expensive
than computing only the distances between the hyperplanes. For example, to compute only the
dt’s (and not the qt’s) in dimensions 2 to 30, it takes less than 3 seconds on the same machine! We
also computed dt and qt in dimensions 2 to 30 with formal verification using error bounds for all
floating point numbers (see the module REDBAS2). This took approximately 15 minutes and the
results were the same (except for the CPU times) as in Table 1. These times are representative of
what happens in general for examples of that size. The program lats can also be applied to the
same data file and the results will be the same, except for the cpu times. It takes more time to
run, but it can accept much larger moduli and multipliers.

FALSE Read generators from file
1 J
MRG Gener. type
32749 1 0 Modulo m
2 Order k
TRUE Maximal period
FALSE Implem. condition
Decomp Factors of m-1
DecompWrite seek15r.fac Factors of r
1 b1
180 c1
-180 b2
-1 c2
Exhaust Search method: exhaustive search

1 3 8 NbCat Dim(0) Dim(1)
0.0 1.0 Min and max merit values
2 Nb of retained generators
Spectral Hermite Merit criterion
Spectral Information to print
Full Lattice type (analyzed)
1 1 Lacunary ind. group sizes, spacing
NoVerify Verify basis reduction with error bounds.
1000000 Max nb of nodes in each BB
0.1 Time limit: 0.1 hour
12345 98765 S1 S2 : seeds for random number generator
RES Results File

Figure 2: Example of a data file for the program seekl, in file seek15.dat.

2.2 Examples with the programs seekl and seeks

Figure 2 gives an example of a data file for seekl. It will perform an exhaustive search among the
32400 generators of order k = 2 with modulus m = 32749, 1 ≤ a1 ≤ 180, and −180 ≤ a2 ≤ −1.
The criterion is M8. The two best generators will be retained, provided their values of M8 are at
least 0.2. The values of m− 1 and r will be decomposed by the program. The factors of r will be
written in file “f2seek1.fac”, while those of m− 1 will not be kept. The results of that program
appear in Figure 3 (this is an actual printout, for illustration).

Figure 4 gives another data file example, this time for seeks. It asks for a random search for
good generators of order k = 5 with modulus m = 263− 711, 1 ≤ a1 ≤ 263− 712, a2 = a3 = a4 = 0,
−263 + 712 ≤ a5 ≤ −1, for which ai(m mod ai) < m for i = 1, 5, and which have maximal period.
The criterion is S8. Only the best generator will be retained. The factorization of m − 1 will be
read in file “seek63.fac” and r is prime. For the random search, we will examine 1000 subregions
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of dimensions (4 × 1 × 1 × 1 × 4), that is, a total of 16000 generators (4000 values of a5), if time
permits. We give the program a cpu time-limit of 3 hours. A partial view of the results file is given
in Figure 5. The program reached the time-limit of 3 hours before examining all the generators it
was asked for. It then stopped and reported the best generator it had found so far.

Note that we are not recommending any of these particular generators. These examples are
only to illustrate the capabilities of LatMRG.
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SEARCH FOR GOOD MRGs OF ORDER 2
-----------------------------------------

DATA
----
Modulus m = 32749
Order k = 2
n_j = 1
rho_j = (m_j)^k_j-1 = 1072497000
Factors of m-1 : Decomp
Factors of r : DecompWrite seek15r.fac
Bounds : a1 from : 1

to : 180
a2 from : -180

to : -1
Search method : EXHAUST
Implem. cond. a_i (m mod a_i) < m : NO
Maximum period required : YES

Merit criterion : M_8
Seeds for RNG : 12345, 98765
Verify Branch-and-bound : NoVerify
Maximum nodes in branch-and-bound : 1000000
Lattice Type : Full

RESULTS
-------
Values of a2 tried : 180
Values of a2 primitive element : 66
Polynomials with a2 primitive element : 11880
Primitive polynomials : 4638
Nb. of polynomials to examine : 32400
Nb. Generators conserved : 2
Total CPU time (after setup) : 0:00:13.06

-----------------------------------------------------
1.

a_1 = 180
a_2 = -176

t d_t q_t S_t
-----------------------------------------------------

3 3.97223E-3 0.21911
4 7.13449E-3 0.65130
5 0.03511 0.36151
6 0.03558 0.68076
7 0.09285 0.41035
8 0.09285 0.56613

Merit = 0.21911 = S_3

2.
a_1 = 180
a_2 = -175

t d_t q_t S_t
-----------------------------------------------------

3 3.98327E-3 0.21850
4 7.39990E-3 0.62794
5 0.02824 0.44953
6 0.03716 0.65170
7 0.05717 0.66649
8 0.07715 0.68130

Merit = 0.21850 = S_3

Figure 3: Results of program seekl in file seek15.res.
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FALSE ReadGenFromFile
1 J
MRG TypeGen
2 63 -711 m
5 k
TRUE PerMax
TRUE ImplemCond
Read seek63.fac Factors of m-1
Prime Factors of r
1 b_1
2 63 -712 c_1
0 b_2
0 c_2
0 b_3
0 c_3
0 b_4
0 c_4
-2 63 -712 b_5
-1 c_5
Random 1000 4 4 Search: random, 1000 regions, H=4, Hk=4

1 6 12 C Dim(0) Dim(1)
0.0 1.0 Minimal and maximal merit values
1 Nb of retained generators
Spectral Hermite Criterion
BeyerSpectral Hermite Information to print
Full Lattice type (analyzed)
1 1 Lacunary ind. group sizes, spacing
NoVerify Verify BB with error bounds
1000000 Max nb nodes in each BB
3.0 cpu time-limit (hours)
12345 98765 S1 S2 : seeds for random number generator
RES Results File

Figure 4: Example data file for program seeks, in file seek63.dat.
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SEARCH FOR GOOD MRGs OF ORDER 5
----------------------------------------

...

RESULTS
-------
**** Program aborted: reached time limit. ****

There will be no verification of results.
time limit : 3.00 hour(s)

Values of a5 tried : 277
Values of a5 primitive element : 134
Polynomials with a5 primitive element : 536
Primitive polynomials : 103
Nb. Generators conserved : 1

Total cpu time (after setup) : 3:00:01.76
-----------------------------------------------------

1.
a1 = 53663276718
a2 = 0
a3 = 0
a4 = 0
a5 = -5144244197

t d_t q_t S_t
-----------------------------------------------------

6 1.855E-11 6.5589E-6
7 1.855E-11 1.1384E-3
8 1.855E-11 0.05347
9 2.991E-11
10 3.360E-10
11 2.6017E-9
12 1.2892E-8

Merit = 6.55894E-6 = S_6

Figure 5: Results of program seeks in file seek63.res.
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3 Making your own programs

LatMRG offers more flexibility than just providing a set of executable programs. One can also use the
modules provided to write one own’s programs. For that, a Modula-2 compiler and some knowledge
about the Modula-2 language are required. Instead of providing the parameters according to the
format of Appendix A, one sets those parameters (or data) by setting the appropriate variables
or calling the appropriate procedures from the intermediate or low-level modules. In this section,
we introduce briefly the intermediate and low-level modules, which are described in Appendix B
and C, respectively. It is important to recall that the multiplier’s and basis components can be
implemented with different representations and that one must make sure to select the appropriate
representation for the target application. See Section 3.2 for more details on this.

3.1 Using the modules of LatMRG

The modules of LatMRG (excluding the executable programs) have been classified in two sets: lower-
level and intermediate-level. The lower-level modules offer basic facilities for arithmetic operations
and conversions, with different representations, for basis vectors and multipliers. They are described
in Appendix C.

The intermediate-level module MRG constructs lattice bases for different classes of generators
and perform tests on such generators. The modules LATBASIS, REDBAS, REDBAS2, and REDBAS3

offer tools for manipulating lattice bases, finding the shortest vector in a lattice, and for reducing
a basis in the sense of Minkowski. Those modules are described in Appendix B. The programs
of Appendix A use those intermediate and lower-level modules in their implementation, and so,
provide examples of how to use them.

3.2 Lower-level modules and Changing the representation

As discussed in Section 1.6, the multiplier’s components can be implemented in the LONGINT or
SuperInteger representation, while the basis components can be in the LONGREAL or SuperInteger
representation. To select the appropriate representation (in modules MULT and BASIS, respectively),
one should use the command select (see Appendix C), set the environment variable LILR, and
recompile all the modules.

Generally speaking, the proper choice of representation depends on the size of the modulus
m. For example, if the modulus is less than 231, one can type select LI LR (although it could
sometimes happen that vector components get larger than the modulus). For large moduli, type
select SI SI. See the description of the command select for more details on its use. After
changing the representation, one must recompile the modules. Calling one of the command lilr,

silr, sisi in a shell will set the environment variable LILR corresponding to the particular case
of select. (See also the file Makedoc.tex.) This is necessary in order to link with the appropriate
libraries.

3.3 Modifying the package, recompiling, and relinking

After calling select, or after modifying the code of a module, one must recompile and relink.
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APPENDIX A

Programs in Executable Form
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maxper

This program verifies whether a given generator has maximal period or not. Integers are
represented using the SuperInteger type. The modulus m must be prime. To verify the maximal
period conditions, the factorizations of m− 1 and r = (mk − 1)/(m− 1) are required. They can be
found by the program or provided by the user in a file. We warn that factoring r can take a huge
amount of time.

The data for maxper must be placed in a file with extension “.dat”, according to the format
displayed in Figure 6. The data fields have the same meaning as for latl. To run the program,
type “maxper ⟨file⟩”, where ⟨file⟩ is the name of the data file, without extension. Currently, only
LCG and MRG are allowed for TypeGen.

TypeGen
m
k
F1 [⟨file1⟩]
F2 [⟨file2⟩]
a1
...
ak

Figure 6: Data file format for maxper.
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findmk

This program is an interface to the module PRIM. It searches and prints the list of all prime
integers m such that 2e + c1 ≤ m ≤ 2e + c2 and r = (mk − 1)/(m − 1) is prime. We may also
request that (m− 1)/2 be also prime, by setting the boolean variable Safe to TRUE.

The program reads the data and calls the procedure FindPrimesmr in the module PRIM, with
the corresponding parameters. The data for findmk must be placed in a file with extension “.dat”,
in the format of Figure 7. To run the program, type “findmk ⟨file⟩”, where ⟨file⟩ is the name of
the data file, without extension. The results will be written in ⟨file⟩.res.

k
e
c1
c2
Safe

Figure 7: Data file format for findmk.
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latl

This program applies the spectral and/or lattice test(s) to a given generator. It uses the LONGINT
representation for the multipliers and modulus (module MULTLI) and the LONGREAL representation
for the bases (module BASISLR). The generator analyzed can be a combined generator with J
components, and expressed that way in the data file. To run the program, type “latl ⟨file⟩”,
where ⟨file⟩ is the name of the data file, without extension.

The data must be in a file with extension “.dat”, according to the format of Figure 8. The
data fields have the same meaning as for seekl, except that several fields have been removed, ai
replaces bi and ci, there is a single category for the dimensions, and the options for LatticeInfo and
ResultForm are different.

(a1, . . . , ak) : is the vector of (integer) multipliers. They can be given in format (a) or (b) described
in seekl.

LatticeInfo ⟨Norm⟩ : If the value of LatticeInfo is Spectral or BeyerSpectral or SpectralP,
then the field Norm must appear. It indicates which type of normalization is used in the
definition of St. The allowed values are (BestLat, Laminated, Rogers, Minkowski).

ResultForm : Selects in which form the results will be given. The possible values are (Terminal,

RES, TEX). Lowercases are also allowed.

Terminal indicates that the results will be given on the terminal screen.

RES says that the results will be in a file with the same name as the data file, but with
extension “.res”.

TEX asks the program to produce a file intended for LATEX, with extension “.tex”.

ReadGenFile [⟨file0⟩]
J
TypeGen
m
k
a1
...
ak


(Repeat J times)

Dim(0) Dim(1)
LatticeInfo ⟨Norm⟩
LatticeType
LaGroupSizes Spacing
VerifyBB
MaxNodesBB
ResultForm

Figure 8: Data file format for latl.
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seekl

(To be rewritten....)

This program performs a search for the “best” (or “worst”) multiple recursive generators or
multiply-with-carry generators of a given form, based on one of the criteria QT or MT defined
in Section 1.3 It produces a report listing the retained generators, their properties, and various
statistics on the search.

The set of dimensions in which the test is applied can be partitioned into a certain number of
intervals, or categories, and one can use a different selection criterion for the generators within each
category. One can also impose bounds on the figure of merit within each category. See the data
fields for C, MinMerit and MaxMerit below. For example, one can consider only the generators
with M8 ≥ 0.6, and among these, retain the list of generators with the smallest value of M12. As
another example, one can retain the 2 generators with the highest M8, the 2 generators with the
highest M16 and the eight generators with the highest M32.

One can search for combined MRGs with J components, or simple MRGs (J = 1), or multiply-
with-carry (MWC) generators. For a MWC, one simply analyzes the corresponding LCG, which
is a special case of an MRG. Therefore, in what follows, we use the term ‘MRG component’ to
denote either and MRG or a MWC. For a simple MRG (or for each component, in case J > 1),
with given modulus m and order k, the program searches for vectors of multipliers inside the region
bounded by the vectors b = (b1, . . . , bk) and c = (c1, . . . , ck) such that −m < bi ≤ ci < m for each
i. The search can be exhaustive in that region, or random. One can search only among maximal
period generators (for each component), or not consider the period and examine only the lattice
structure. The former (checking maximal period conditions) can be done only if m is prime, or if
k = 1 and m is a power of a prime. The program can also list the retained generators in a file, in a
format more compact than for the result file, and can re-use that file as input to the program, in a
later run. This could be useful, for example, if one wishes to perform first a screening over a large
region, based on a criterion that does not require expensive computations, and then do a second
pass over the retained generators, based on a more stringent criterion, such as looking at the lattice
structure in higher dimensions, and/or verifying the results by performing all computations using
error bounds.

Method of search

For an exhaustive search for MRGs, all vectors of multipliers of the form a = (a1, . . . , ak) such that
bi ≤ ai ≤ ci for i = 1, . . . , k will be examined, for a total of Nv =

∏k
i=1(ci − bi + 1) vectors. This

holds for each component. Therefore, if there are J components and Nv,j vectors are examined for
component j, then a total of

∏J
j=1Nv,j generators are examined.

For a random search for MRGs, we fix a number of subregions (clusters) we want to examine,
and the size hi of each subregion in dimension i, for i = 1, . . . , k. The program will examine a total
of n

∏k
i=1 hi vectors of multipliers (for each MRG component) by repeating n times the following:

For i = 1, . . . , k, generate αi randomly, uniformly over the set {bi, . . . , ci − hi + 1}; then, examine
all the vectors a = (a1, . . . , ak) such that αi ≤ ai ≤ αi + hi − 1 for each i.

When examining a vector a, the program first checks if the maximal period conditions are
satisfied, if this is required. For prime modulus m, the condition (a) (see Section 1.2) is verified
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only once for each distinct value of ak (which corresponds to
∏k−1

i=1 hi different vectors). To verify
the maximal period conditions, the factorizations of m− 1 and r = (mk − 1)/(m− 1) are required.
They can be found by the program, if desired, or provided by the user in a file (see below). We recall
that factoring r can take huge amounts of time. So, avoid redoing the factorization unnecessarily.
For the MRGs, these factorizations are necessary only when m is prime and maximal period is
required.

If a is not rejected by the maximal period test, then we move forward to the next MRG
component and try all the vectors for that next component (by exhaustive or random search) and
examine their combination with the currently examined multipliers for the previous components.
For each combined generator, the values of dt and/or qt are computed for dimensions k+ 1, . . . , T .

The program always keeps lower and upper bounds on the figure of merit (MT or QT ), in each
dimension, for the generator to be worth considering. The initial values of these bounds are given
by the user in the fields MinMerit and MaxMerit. The lower bound can be 0.0 and the upper bound
can be 1.0, which means that there can be no effective bounds for some categories if desired.

As soon as a generator has a figure of merit below the lower bound in a given dimension, or above
the upper bound for its category (after the computations for all the dimensions in this category
have been completed), then this generator is immediately discarded and no further computations
are made for it. This can save enormous amounts of time in the case of very large searches up to
high dimensions, because with good bounds, few generators will reach the large dimensions.

During execution, only the bounds for the last category can be modified. If the figure of merit
for the last category is to be maximized , when we have found enough (i.e., NbGen(C)) generators
with a figure of merit ≥ σ, where σ is larger than the lower bound for the last category, then we
raise this lower bound to σ. Similarly, if we minimize in the last category, we can lower the upper
bound when we have enough generators beating the bound. In the case where the figure of merit
is to be maximized in all the categories, then a generator is also discarded as soon as its figure of
merit in any dimension gets below the lower bound of the last category.

In the case where the selection criterion is Spectral or SpectralH, and if T > 8, the distances
between hyperplanes are computed for dimensions up to T , but the selection of generators is based
only on M8, because the Hermite constants defining d∗t in that case are known only for t ≤ 8.

The execution (cpu) time is checked before testing each new generator. When it exceeds the
cpu time limit given in the data file, the search is aborted and the partial results are printed.

The data file

The data for seekl must be placed in a file with extension “.dat”, according to the format displayed
on Figure 9. The fields in square brackets are optional (depending on the value taken by the first
field on the line). The meaning of all data fields is explained below. To run the program, type
“seekl ⟨file⟩”, where ⟨file⟩ is the name of the data file, without extension. The results will be in
a file with the same name, with extension “.res” or “.gen” (see ResultForm).

Comments may be inserted after data, on the same line, separated from the data by at least
one blank. Moreover, any line starting with “%” or “#” is considered as a comment.

The values of m, bi, and ci in the data file can be given in one of the two following formats:
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ReadGenFile [⟨file0⟩]
J
TypeGen
m
k
w
PerMax
ImplemCond [⟨NbMaxBits HighestBit⟩]
F1 [⟨file1⟩]
F2 [⟨file2⟩]
b1
c1
...
bk
ck
SearchMethod [n H Hk]



(Repeat J times)

C
NbGen(1) MinMerit(1) MaxMerit(1) d1 t11 · · · t1,d1
...
NbGen(C) MinMerit(C) MaxMerit(C) dC tC1 · · · tC,dC

Criterion ⟨Invert⟩ ⟨Norm⟩
LatticeInfo
LatticeType
LaGroupSizes Spacing
VerifyBB
MaxNodesBB
TimeLimit
S1 S2
ResultForm

Figure 9: Data file format for seekl.

a) An integer giving the value directly, in base 10. In this case, there must be some other
non-numeric text (e.g., a comment) on this data line after the integer.

b) Three integers x, y, and z on the same line, separated by at least one blank. The retained
value will be xy + z if x ≥ 0, and −((−x)y + z) if x < 0. The value of y must be positive.
For example, (x y z) = (2 5 − 1) will give 31, while (x y z) = (−2 5 − 1) will give −31 (not
−33).

For the program seekl, all these numbers must fit in a LONGINT. For larger numbers, one must use
the program seeks.

Meaning of the data fields

ReadGenFile and ⟨file0⟩ : BOOLEAN and file name (without extension). When ReadGenFile is
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FALSE, the search is made according to the values of the fields below. When TRUE, the
generators to be looked at are those listed in the file ⟨file0⟩.gen. This must be a file of type
“.gen”, produced by this program with the GEN option for the ResultForm data field. In that
case, only those generators listed in that file are examined and the vectors b and c below are
not used.

J : Number of components in the combined generators. Must be an integer in the range [1..MaxJ].
When J > 1, we look for combined generators.

TypeGen : Can be:

MRG means that this component is an MRG.

MWC means that this component is a multiply-with-carry (MWC) generator. Each MWC
generator is converted by the program to its corresponding LCG (see, e.g., [8, 26]).

MMRG means a matrix MRG.

m, k, ⟨w⟩ : Modulus, order of the recurrence, and size of the matrix-type coefficients. Must be
positive integers, with k < MMaxDim. For mk >= 231, use the program seeks instead of
seekl. The value of w should be specified only for MMRG generators. Otherwise it is
assumed to be 1.

Permax : BOOLEAN variable. TRUE if maximal period is required, FALSE otherwise. When set to
TRUE, m must be expressed in the data file in the form (b): (x y z), otherwise Permax will be
put back to FALSE. The software assumes that m is prime, unless z = 0 and y > 1, in which
case it assumes that x is prime. In the latter case, one must have k = 1, otherwise Permax
will be set back to FALSE.

ImplemCond and ⟨NbPow2 HighestBit⟩ : Can be NoCond, AppFact, or SumPow2. If NoCond, then
no conditions are imposed on the multipliers ai. If AppFact, then the multipliers must satisfy
the “approximate factoring” condition ai(m mod ai) < m for each i. MRGs are usually easier
to implement under this condition [23]. If SumPow2, then the positive integers NbPow2 and
HighestBit must appear and they indicate that for each i, the multiplier ai must be the sum of
at most NbPow2 (positive or negative) powers of 2, with the highest power of 2 not exceeding
2e in absolute value, where e = HighestBit. For example, if SumPow2 = 2 and HighestBit
= 30, there are 30 × 31/2 possibilities for choosing the 2 powers of 2 and 4 possibilities for
choosing their signs, yielding 1860 cases where ai is obtained from exactly 2 powers of 2. If
one adds the 62 cases where ai is ± a power of 2, this gives a total of 1922 possibilities for ai.

F1 and ⟨file1⟩ : This line of data (and also the following one) is used only if maximal period is
required and m is assumed to be prime (see the Permax field). Otherwise, the program just
skips it (but the line must be there). F1 indicates how the factors of m− 1 are to be found
and ⟨file1⟩ is a file name. The values allowed for F1 are (Decomp, DecompWrite, Read).

Decomp means that the program itself will factorize m − 1. In this case, the field ⟨file1⟩ is
not used and can be omitted. To factorize, the program uses the procedure Factorize

in the module SUPFACT of the package SENTIERS [30], with no CPU time limit. It is
the responsibility of the user to make sure that the factorization will take a reasonable
time.
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DecompWrite means the same as Decomp, except that the program will also write the factors
(larger than 1) in the file ⟨file1⟩, one factor per line.

Read indicates that m − 1 is already factorized and that the factors will be read from file
⟨file1⟩, in the same format. The factors need not be sorted, but must be one per line,
and repeated factors must be on successive lines. The factorization must be complete
and the program will check if the product of all the factors is really equal to m− 1.

F2 and ⟨file2⟩ : This data line is similar to the previous one, except that it concerns r = (mkw −
1)/(m − 1) instead of m − 1. In this case, it is possible that r be prime when m is prime
(in contrast to m − 1, which is then even). Therefore, the additional value Prime is allowed
for F2, so that the set of possible values is (Decomp, DecompWrite, Read, Prime). The
module SUPFACT in SENTIERS [30] can be used independently to factorize r or to check its
primality.

Prime indicates that r is prime.

b = (b1, . . . , bk) and c = (c1, . . . , ck) : The bi and ci are integers such that −m < bi ≤ ci < m for
i = 1, . . . , k. They determine the boundary of the (rectangular) area of search. For MMRGs
(w > 1), each bi and ci is replaced by a matrix of size w×w. Each of these matrices is given
line by line, w entries on each line of the data file.

SearchMethod and n, H, Hk : SearchMethod can be Exhaust or Random.

Exhaust means that the search will be exhaustive over all the region determined by b and c.
The other parameters of this line are then useless and can be omitted.

Random asks for a random search, performed as described in the first subsection of the de-
scription of seekl. The integer n gives the number of subregions (clusters) to examine.
If w = 1, H determines the size of these subregions, except for the kth element of the
vector h, where Hk determines the size. The vector h = (h1, . . . , hk) is computed by the
program as follows: hi = min(H, ci−bi+1), i = 1, . . . , k−1, and hk = min(Hk, ck−bk+1).
If w > 1, ?????

C: The program will retain C lists (or categories) of generators, according to the specifications
given below. One must have 1 ≤ C ≤ MaxCat.

NbGen(1) MinMerit(1) MaxMerit(1) d1 t11 · · · t1,d1
...

NbGen(C) MinMerit(C) MaxMerit(C) dC tC1 · · · tC,dC

Integers which must satisfy the constraints:

0 ≤ NbGen(i) ≤ MaxNbGen,

0.0 ≤ MinMerit(c) ≤ MaxMerit(c) ≤ 1.0 for all c,

MinMerit(c) ≤ MaxMerit(c− 1) for c > 1,

d1 ≤ · · · ≤ dC ,

BMaxDim ≥ tc1 ≥ · · · ≥ tcdc ≥ dc for all c,
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where BMaxDim is defined in the module CONFIG.

There will be NbGen(c) generators in the cth list. The real numbers MinMerit(c) and
MaxMerit(c) represent the minimal and maximal values of the figure of merit to keep a
generator in the cth list. That is, only the generators that satisfy

MinMerit(c) ≤ σ ≤ MaxMerit(c) (27)

are considered for category c and for the categories c′ > c. Because of this, MinMerit(c) must
be nondecreasing in c, because the lower bound for category c also apply categories c′ > c.
As soon as a generator does not satisfy the constraint (27) in a given dimension for a given
category c, it is discarded and no more time is spent to test it for c′ > c. When looking for
good generators, one normally sets MaxMerit(c) to 1.0 for each c.

For category c, the test (Beyer, spectral, . . . , depending on the criterion) is performed in
dimensions kw + 1 to tc1 for the vectors of successive values, the pairs (u1, uj) are tested for
1 < j ≤ tc2, the triples (u1, uj , uℓ) are tested for 1 < j < ℓ ≤ tc3, and so on. If lacunary
indices are specified in the field LaGroupSizes, all of this is applied to the vectors obtained
after taking the lacunary indices, and the test for successive values starts in 2 dimensions
instead of kw+ 1. To minimize (instead of maximizing) the criterion within a given category
c, place a negative sign in front of the value of dc in the data file. The program will then
retain the worst instead of the best generators with respect to the category c.

Criterion ⟨Invert⟩ ⟨Norm⟩ : Specifies the merit criterion for ranking the generators for each cat-
egory. The field Invert can be either Invert or left blank. In the former case, the value of
the criterion is replaced by its multiplicative inverse in the results. The admissible values of
Criterion are:

Beyer means that the criterion is QT . The program will retain the generators with the largest
(or smallest) QT in each category.

Spectral means that the criterion is MT . The program will retain the generators with the
largest values (or smallest) MT in each category.

SpectralP is similar to Spectral, except that it is based on the shortest vector in the primal
lattice.

SpectralL1 is similar to Spectral, except that the length of the (dual) vectors are measured
with the L1 norm, minus 1. The length of the shortest dual vector is then an upper
bound on the minimal number of hyperplanes that cover all the points ([9] and [21],
Exercises 3.3.4-15 and 16).

Palpha Alpha means that the criterion is Pα, with the value of α specified just after the
keyword Palpha. Specialized (much faster) implementations have been made for α =
2, 4, 6, 8.

If Criterion is Spectral or SpectralP, then Norm must appear and it indicates which type
of normalization is used in the definition of St. The admissible values are

Hermite means that we use Hermite’s bound. In this case, St is computed only up to dimen-
sion 8 and the criterion is Mmin(T,8). This is because for t > 8, d∗t is unknown, so Mt

cannot be computed.
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Laminated means that we use for d∗t the value of dt that corresponds to the laminated lattice
in dimension t. The criterion is then Mmin(T,48) (the programs knows this d∗t only for
t ≤ 48).

Rogers means that d∗t is obtained from Rogers’ bound. The criterion is then Mmin(T,48).

If Criterion is Palpha, the field Norm must also appear. The admissible values for Palpha

are:

Weights followed on the next line by positive real numbers β0, . . . , βt where t = tC,1. This
means that the criterion will be P̃α defined in (28). In this case, α must be even. The
βj ’s are the weights given to the different dimensions in the weighted version of Pα.

LatticeInfo : Indicates which figures of merit we want to compute and print. The possibilities are
the same as for the criterion, but we can compute and print more than one. It suffices to
write more than one keywords on this line. Note that qt typically requires much more time
to compute than dt.

Beyer : Prints the values of qt up to dimension T .

Spectral : Prints the values of dt up to dimension T and St for t ≤ min(T, T ∗), where T ∗ = 8
if Norm = Hermite and T ∗ = 48 otherwise.

SpectralP is similar to Spectral, except that it is based on the shortest vector in the primal
lattice.

SpectralL1 is similar to Spectral, except that the length of the (dual) vectors are measured
with the L1 norm, minus 1. The normalization is based on Minkowski’s bound ([12], p.
618).

Palpha Alpha : prints Pα with the value of α specified.

LatticeType : Indicates whether to analyze the lattice generated by all possible states, or a sublat-
tice generated by the set of recurrent states or by a subcycle of the generator. The admissible
values are (Full, Recurrent, Orbit, PrimePower).

Full : The complete lattice, generated by all possible initial states, will be analyzed.

Recurrent : If the (combined) generator has transient states, then the lattice analyzed will
be the sublattice generated by the set of recurrent states.

Orbit : The grid generated by the (forward) orbit of a state of the (combined) generator is
analyzed. This state is specified as follows. On the following J lines, the initial state for
each component must be given. This is an integer vector with a number of components
equal to the order of the component.

PrimePower : In the case where some component is an MLCG whose modulus is a power
of a prime p, then the states visited over a single orbit (subcycle) of that component
generate a sublattice (when a ≡ 1 (mod p)) or belong to the union of p− 1 sublattices
(otherwise). If LatticeType takes this value, if a component is an MLCG (k = 1), and if
the modulus of that MLCG is given in the data file in the form (b): (x y z) with z = 0
and x prime, then what is analyzed is one of those sublattices. This is done by dividing
the modulus by the appropriate power of p, as described in [29]. For example, if p = 2
and a mod 8 = 5, then the modulus is divided by 4 as in [11, 20].
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LaGroupSizes, Spacing : These data fields are positive integers, used to introduce lacunary indices.
If the respective values are s and d, then we will analyze the lattice structure of vectors of
the form (ui+1, . . . , ui+s, ui+d+1, . . . , ui+d+s, ui+2d+1, . . . , ui+2d+s, . . .), formed by groups of s
successive values, taken d values apart. To analyze vectors of successive values (as usual),
take s = d = 1 or s larger or equal to MaxDim. To analyze lacunary indices that are not
evenly spaced, put s = −t where t =MaxDim and then, on the t lines that follow, give the t
lacunary indices i1, . . . , it, which are to be interpreted as in Section 1.4.

VerifyBB : Indicates whether or not the results of the branch-and-bound procedures will be verified
with formal error bounds on the numerical computational errors. The verification (if any) is
performed using either REDBAS2 or REDBAS3. When such a verification is not performed, the
results are not formally guaranteed, but computations are performed an order of magnitude
faster. The possible values are:

VerifyAll2 : Performs the verification for all the generators examined, using REDBAS2.

VerifyRetained2 : Performs the verification only for the NbGen “best” generators retained,
using REDBAS2.

VerifyAll3 : Performs the verification for all the generators examined, using REDBAS3.

VerifyRetained3 : Performs the verification only for the NbGen “best” generators retained,
using REDBAS3.

NoVerify : Performs no verification at all.

MaxNodesBB : An integer giving the maximum number of nodes to be examined in any given
branch-and-bound procedure when computing dt or qt. When that value is exceeded, the
branch-and-bound is stopped and the generator is rejected. The number of generators rejected
for that reason is given in the results. A small value of MaxNodesBB will make the program
run faster (sometimes much faster), permitting to examine more generators, but will increase
the chances of rejecting good generators.

TimeLimit : A real number giving the maximal CPU time, in hours, given to the program for
performing its search. When this time-limit expires, the partial results are printed, with a
message. For a random search, the number of subregions printed includes the last region
searched (whose search may not be finished).

S1, S2 : Those integers are the seeds of the generator used during the search, if necessary; e.g.,
to generate the αi’s. Before starting the search, the program calls SetSeed(S1, S2) form
the module SUPRAND of SENTIERS and the module RAND of SIMOD. To perform a different
random search in a region already studied, just change these seeds. One must have 1 ≤ S1 ≤
2147483562 and 1 ≤ S2 ≤ 2147483398.

ResultForm : Selects in which form the results will be given. The possible values are (Terminal,

RES, GEN, RESGEN). Lowercases are also allowed.

Terminal indicates that the results will appear only on the terminal screen.

RES says that the results will be in a file with the same name as the data file, but with
extension “.res”.
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GEN says that the retained generators will be listed in a file with the same name as the data
file, with extension “.gen”. This file can then be taken as input to the same program,
for example to perform a second pass with a more stringent criterion or to compute
higher dimensional lattice “measures” for the retained generators.

RESGEN means that the results will be in a “.res” file and the retained generators will be
listed in a “.gen” file, as with RES and GEN above.
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lats

This is the same program as latl, except that multipliers and bases are represented using the
type SuperInteger. (Modules MULTSI and BASISSI are used.) Therefore, it can deal with larger
values of m and ai’s.

latsr

Same as latl, except that the multipliers are represented as SuperInteger’s. (Modules MULTSI
and BASISLR are used.)

seeks

Same as seekl, except that the multipliers and bases and represented as SuperInteger’s.
(Modules MULTSI and BASISSI are used.)

seeksr

Same program as seekl, except that multipliers are represented as SuperInteger’s. (Modules
MULTSI and BASISLR are used.) It can deal with larger values of m and ai’s than seekl, but the
computations are less precise than with seeks.

streams

This program takes as input a data file in the same format as lats, with an additional
line at the end that contains 3 positive integers wmin, wmax, and smax. The program ig-
nores the values of LaGroupSizes and Spacings in the data file. It partitions the period length
of the given generator in streams of length 2w, for w = wmin, . . . , wmax. For each w and
for s = 1, . . . , smax, the program analyzes the lattice structure of the vectors of the form
(ui+1, . . . , ui+s, ui+w+1, . . . , ui+w+s, ui+2w+1, . . . , ui+2w+s, . . .), formed by groups of s successive val-
ues, taken w values apart. The analysis is performed in the same way as in lats. For each w,
the program also prints the worst value of the figure of merit over all values of s. These results
can be used to select a specific value of w for splitting the generator’s cycle into streams. All the
computations are done using the SI SI representation.
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menumrg

This is an interactive program to build, manipulate, compare, and reduce lattice bases associ-
ated with LCGs or MRGs. It uses the “SI SI” representation. The main purpose is to examine
interactively what happens to a basis when different operations are performed on its vectors. This
could be useful for “debugging” or to deal with special classes of bases for which the standardized
procedures may not work very well. A variant of this module has been used, for instance, to obtain
the numerical results given in [4, 39]. In those cases, the shortest vectors and reduced bases were
computed in (partly) “manual” mode.

Two bases B1 and B2 and one vector Ve are created initially (automatically) and available to
the user. All along, B1 and B2 will be bases of the same lattice. The program performs different
operations, classified according to which of those three objects they involve: (a) the operations
which affect only B1; (b) those affecting B1 and B2; (c) and those involving B1 and Ve. All those
operations are available from a menu (and some submenus), as shown in Figure 10. We now briefly
explain the different menu options.

Operations on B1 :
1. Building MRG basis
2. Reading/Writing
3. Duality verification
4. Dualizing
5. Square lengths
6. Sorting
7. Pre-reduction
8. Shortest vector/Minkowski reduction
9. Shortest/Minkowski verification

Operations involving B1 and B2 :
10. Copy B1 in B2
11. Permute B1 and B2
12. Equivalence of B1 and B2
13. Relative coordinates
14. Lexicographic order

Operations involving B1 and Ve :
15. Vector construction
16. Relative coordinates
17. Insertion of Ve in B1

Figure 10: Main menu for the program menumrg.

Operations on B1 :

1. Building MRG basis : Asks the user for a modulus, order, multiplier(s), and dimensions, then
constructs the appropriate lattice basis in B1.

2. Reading/Writing : Read/write the basis B1 from/to a file or the terminal.
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3. Duality verification : Verifies whether the dual basis is “correct” by computing the appropriate
scalar products.

4. Dualizing : Interchange the primal/dual bases.

5. Square lengths : Compute the squared vector lengths. The values can be displayed either in
full (large integers) or in scientific notation.

6. Sorting : Sorts the vectors of B1 by increasing length.

7. Pre-reduction : Performs “pairwise” prereductions T and T ∗ of [9] in various combinations or
orders. Can also ask for a given number of pre-reductions.

8. Shortest vector/Minkowski reduction : Computes the shortest vector in the lattice, or a MRLB,
using the module REDBAS (does not compute error bounds).

9. Shortest/Minkowski verification : Verifies whether the first vector of B1 is really a shortest vec-
tor, or whether the current basis is really a MRLB, by performing the branch-and-bound
with error bounds (using either REDBAS2 or REDBAS3). An option is also available to compute
the squared distance between each vector of B1 and the subspace generated by all the other
vectors, and to select the vectors for which that distance is smaller than the length of the
(current) shortest vector in B1.

Operations involving B1 and B2 :

10. Copy B1 onto B2 : Copies the basis B1 onto B2.

11. Permute B1 and B2 : Permutes B1 and B2.

12. Equivalence of B1 and B2 : Tells whether or not B1 and B2 generate the same lattice. Assumes
that the dual basis is “updated”.

13. Relative coordinates : Gives the relative coordinates of a vector of B1 relative to the basis B2.

14. Lexicographic order : Displays the squared lengths of the vectors of B1 and B2 in lexicographic
order. Assumes that the two bases are already sorted.

Operations involving B1 and Ve :

15. Vector construction : Permits one to either initialize Ve to zero; add to Ve a multiple of a
vector of B1; increase the dimension of Ve by one (the new coordinate is zero); shift the
coordinates of Ve to the right by one (provided that the last coordinate is zero); or perform
a linear combination of iterates of the latter shifting operations (as in [4]).

16. Relative coordinates : Computes the coordinates of Ve relative to B1.

17. Insertion of Ve in B1 : Inserts Ve into the basis B1, provided that Ve belongs to the lattice
generated by B1 and is primitive.
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APPENDIX B

Intermediate-Level Modules
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LATMRG

The files LATMRG.h and LATMRG.c exist uniquely to permit one to use LatMRG directly from a
C program. For this, one must include the directive

#include "LATMRG.h"

at the beginning of the file and then add

LATMRG_BEGIN (argc, argv);

as a first instruction in the fonction

int main(int argc, char **argv);

To use functions from mylib, simod, and sentiers, one must include the header files

#include "MYLIB.h"

#include "SIMOD.h"

#include "SENTIERS.h"

One can consult the appropriate *.h header files in latmrg/xds to see the prototypes for the
external C functions.

DEFINITION MODULE ["C"] LATMRG;

PROCEDURE LATMRG_BEGIN();

END LATMRG.
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palpha

Le Pα(s) est une mesure de la qualité d’intégration d’une règle de treillis. D’une manière

générale, une règle de treillis permet d’approximer l’intégrale de f , une fonction, sur le cube unitaire

de dimension s. f doit être lisse et périodique par rapport à x ∈ R.

La formule générale du Pα(s) pour α entier et pair est

Pα(s) = −1 + 1/m
m−2∑
i=0

s−1∏
j=0

[
1 − (−1)α/2(2π)α

α!
Bα(xi+j)

]
(28)

où les Bα(x) sont les polynômes de Bernoulli. xi+j est le i + je nombre généré et se situe entre 0

et 1. Les premiers polynômes de Bernoulli sont

B0(x) = 1, B1(x) = x− 1/2, B2(x) = x3 − x2 + 1/6,

B3(x) = x3 − (3/2)x2 + (1/2)x, B4(x) = x4 − 2x2 + x− 1/30

Les Bα(x) se calculent en utilisant l’extension de la série suivante:

text

et − 1
=

∞∑
s=0

Bs
ts

s!

On peut ajouter un poids à chacune des dimensions s, pour des α pairs. La formule du Pα(s)

devient:

P2α(s) = β0
{
− 1 + 1/m

m−2∑
i=0

s−1∏
j=0

[
1 − ( − (2πβj+1)

2)α

2α!
B2α(xi+j)

]}

Le Bα(s), à ne pas confondre avec le Bα(x), est une mesure indiquant qu’il existe au moins un

Pα(s) ≤ Bα(s). D’une manière générale, on peut le voir comme une borne supérieure valide en

présence des conditions suivantes: m > eαs/(α−1) et premier, s ≥ 2 et α > 1. Pour plus de détails

consulter le théorème 4.4, p.83 du livre de Sloan et Joe. Il se calcule ainsi:

Bα(s) =
(e
s

)αs (2 lnm+ s)αs

mα

Le module PALPHA

Module servant de support aux programmes PAl, BAl et Coeff. Ils permettent respectivement de
trouver le Pα ou le Bα d’un générateur ou enfin de trouver des bons coefficients pour un générateur
en utilisant le Pα comme discriminant.

palpha

Ce programme permet de calculer le Pα pour un générateur et un α donné. Tout dépendant du
α la fonction de calcul changera. Les données suivantes doivent être placées dans un fichier avec
l’extension ".dat" selon le format de la figure 1. Les résultats seront placés dans un fichier avec
l’extension ".res".
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balpha

Permet de calculer le Bα d’un générateur. Pour l’instant seulement le cas avec α = 2 est
implémenté. Le format du fichier est le même que pour le programme PAl. Les données devront
être placées dans un fichier avec l’extension ".dat" et les résultats se trouveront dans le fichier
avec le même préfixe, cette fois avec l’extension ".res".

Le format du fichier d’entrée pour PAl ou BAl

LCG SorteGenerateur
PAl ou BAl Type de calcul
251 m modulo
true modulo premier
33 a multiplicateur
2 mindim
4 maxdim
2 saut
2 alpha
false VerifBooleen
1 seed
1.0 2.0 3.0 1.0 1.0 Beta(0),...,Beta(MaxDim)

Figure 1 : Format du fichier pour PAl ou BAl

Type de calcul : Permet de déterminer le type de calcul à effectuer.

Modulo : le modulo du générateur en base 10, soit un nombre premier ou une puissance de 2. Ce
nombre doit être inférieur à 3.03E09 ou 231.

Modulo premier : Booléen indiquant si le modulo utilisé est un nombre premier.

Multiplicateur : le multiplicateur du générateur en base 10. Il doit être inférieur au modulo. Ou un
intervalle dans le cas de la recherche de coefficient. La recherche permettra de trouver le meilleur
coefficient dans cet intervalle en fonction du Pα.

Mindim : Entier donnant la borne inférieur sur le s (la dimension) dans le calcul à effectuer.

Maxdim : Entier donnant la borne supérieur sur le s (la dimension) dans le calcul à effectuer.

Saut : Entier déterminant le saut à effectuer entre les dimensions.

alpha : Entier pair, en général de 2 à 10.

VerifBooleen : Si true alors on vérifira si la période est maximale, mettre à false si aucune
vérification n’est nécessaire. Dans le cas de la recherche de coefficient, si true alors seulement les
générateurs à période maximale seront considérés, si false alors le Pα de tous les générateurs sera
évalué. Si par contre le modulo n’est pas un nombre premier alors peu importe la valeur entrée à
VerifBooleen, nous allons effectuer une recherche sur l’ensemble des coefficients.

Seed : Entier inférieur au modulo qui servira de germe dans le générateur.

Beta : Nombres réels permettant de donner un poids à chacune des dimensions. Il faut entrer dans
le fichier une valeur pour β(0), ..., β(MaxDim).
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LATIO

This module contains several tools for input/output, for performing generator searches, for
managing and storing lists of generators, and the like. It contains the actual implementations of
the high-level “seek” and “lat” programs. The procedures here use most of the other lower-level
and intermediate-level modules. All the Read... procedures read the data in the format explained
in the documentation of the seekl program.

The searches for lists of (good or bad) generators are performed by categories, as explained in
the documentation of the seekl program. The set of dimensions for which the lattice structure
is examined is partitioned into a certain number of intervals (one or more), also called categories.
We give bounds on the accepted values of the figure of merit for each category and, for any given
category c, we consider only those generators that satisfy the bounds for all the categories less or
equal to c. Then we retain a list of generators with the best or worst figures of merit for each
category.

DEFINITION MODULE LATIO;

FROM SUPINT IMPORT SuperInteger;
FROM SUPFACT IMPORT Factors;
FROM CONFIG IMPORT BDim, OutputType, MaxJ, MaxCat, Indexj, MaxNbGen;
FROM MULT IMPORT MScal, MVect;
FROM NORM IMPORT CriterionType;
FROM REDBAS IMPORT VerifyType;
IMPORT BASISLR;

TYPE
GenerType = (MRG, MWC);

Type of generator that can be considered.

CondType = (NoCond, AppFact, MaxBits);

Type of condition on the multipliers.

VerifType = (VerifyAll2, VerifyRetained2,
VerifyAll3, VerifyRetained3, NoVerify);

Type of verification that can be performed on the results (i.e., type of computational method).

Poly = POINTER TO InfoPoly;
InfoPoly = RECORD

a : MVect;
NextPoly : Poly
END;

Elements to store a linked list of polynomials.

Resultats = POINTER TO InfoRes;
InfoRes = RECORD

RD2, RS2, RQ2 : BASISLR.BVect;
DimD2, DimQ2 : BDim
END;

Type of record used as a field of the record type InfoGen, to store detailed results for a given generator.
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It contains the squared values of the dt, St, and qt, and the maximal dimensions DimD2 and DimQ2 for
which dt and qt, respectively, have been computed.

Generateur = POINTER TO InfoGen;
InfoGen = RECORD

Maj : ARRAY Indexj OF MVect;
a : MVect;
DimMerit : BDim;
Merit : LONGREAL;
Res : Resultats;
NextGen : Generateur
END;

Type of record used to store a linked list of generators. Used to store the generators that are kept
in each category. The coefficients aj,i of the components are in Maj whereas those of the combined
generator are in a. DimMerit is the dimension where the minimum is attained for the figure of merit
(for the given category) and Merit gives the value of this figure of merit. Res is a pointer to the more
detailed results and NextGen is a pointer to the next generator in the list.

ToZone = POINTER TO Zone;
Zone = RECORD

No : INTEGER;
Binf, Bsup : SuperInteger;
p : LONGREAL;
PetiteDiff : BOOLEAN;
BsupMsH : SuperInteger;
Mq, MBsup : MScal;
NextZone : ToZone;
END;

Type of record used to store the research zones. No is the number of the zone, which is in {0, 1, 2, 3}.
Binf and Bsup are the lower and upper bounds defining the zone. P is the fraction of the acceptable
values of a lying in this zone (this is used for the random searches). PetiteDiff is TRUE iff Bsup -

Binf ≤ H (or Hk), and when it is TRUE, BsupMsH is equal to Bsup + 1 − H (or Hk). This is also used
for random searches. The variables Mq and MBsup are used in ExamAllZones.

ToRegion = POINTER TO Region;
Region = RECORD

No : INTEGER;
Binf, Bsup : MScal;
Mq : MScal
END;

Type of record used to store the regions that are to be searched. No is the zone number where this
region is (in {0, 1, 2, 3}). Binf and Bsup are the lower and upper bounds defining the region. The
variable Mq is used in ExamRegion.

PROCEDURE TimeOver () : BOOLEAN;

Returns TRUE if and only if the cpu time limit has been reached.

PROCEDURE CreateGenerateur (VAR G : Generateur);

Creates a record for a generator G and initializes its fields.

PROCEDURE CreateZone (VAR Z : ToZone);

Creates a record for a zone Z and initializes its fields.
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PROCEDURE CreateRegion (VAR R : ToRegion);

Creates a record for a region R and initializes its fields.

PROCEDURE LireFact (VAR L : Factors; NomFch : ARRAY OF CHAR);

Reads a list of factors in the file NomFich and places them in the list L. Assumes that the factors in the
file are written according to the format used by Ecrirefact.

PROCEDURE EcrireFact (L : Factors; NomFch : ARRAY OF CHAR);

Writes the factors of the list L to the file NomFich. It this file exists, it is rewritten. The factors can be
read back later by LireFact.

PROCEDURE Readm (j : Indexj);

Reads the modulo mj for the component j. Initializes some constants that depend on it.

PROCEDURE ReadOnea (aa : SuperInteger);

Reads one multiplier aj,i or one bound bj,i or cj,i in the format described in seekl.

PROCEDURE ReadReadGen;

Reads a boolean indicating if the generators to be tested should be taken from a ‘.gen’ file, and if true,
also reads the name of the file, without the .gen extension.

PROCEDURE ReadTypeGen (j : Indexj);

Reads the type of generator to be considered, MRG or MWC, for component j.

PROCEDURE ReadOrder (j : Indexj);

Reads the order kj of the recurrence for component j.

PROCEDURE ReadPerMax (j : Indexj);

Reads a boolean indicating if component j should have maximal period. The muliplier mj must have
been read in the ‘3 numbers’ format by readmj, otherwise this boolean is reset to FALSE.

PROCEDURE ReadImplemCond (j : Indexj);

Reads the condition that we impose on the coefficients aj,i for the component j.

PROCEDURE ReadFactmr (j : Indexj);

Reads what to do about the factorizations of mj − 1 and rj = (m
kj

j − 1)/(mj − 1), for the component j.

PROCEDURE Reada (j : Indexj);

Reads the kj multipliers aj,1, . . . , aj,kj
for component j.

PROCEDURE Readbc (j : Indexj);

Reads the 2kj bounds bj,1, cj,1 . . . , bj,kj , cj,kj on the multipliers for component j.

PROCEDURE ReadSearchMethod (j : Indexj);

Reads the method of search, exhaustive or random, for the polynomials for component j. If the method
is Random, the it reads also the number of regions and their sizes.
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PROCEDURE ReadMRGComponent (j : Indexj);

Reads all the parameters related to the component j, by calling the appropriate ‘Read...’ procedures
above. Also creates the required data structures for this component.

PROCEDURE ReadMinMaxDim;

Reads the minimal and maximal numbers of dimensions in which the test is to be applied, the number
of categories, and the boundaries of these categories. The format is slightly different for the ‘seek’ and
‘lat’ programs.

PROCEDURE ReadMinMaxMerit;

Reads the minimum and maximum acceptable values for the figure of merit for each category of dimen-
sions.

PROCEDURE ReadNbGen;

Reads the number of generators that we want to retain in each category.

PROCEDURE ReadCriterion;

Reads the selection criterion (figure of merit).

PROCEDURE ReadLatInfo;

Reads what lattice information we want to be printed in the results.

PROCEDURE ReadLatType;

Reads which type of lattice we want to analyze: That generated by the recurrent states only, or that
generated by a single orbit, or that generated by the longest cycle of a generator with prime power
modulus, or the full lattice generated by the union of all the orbits. In the case of Orbit, this procedure
also reads the initial state and initializes some additional data structures.

PROCEDURE ReadLaIndices;

Reads the indices (lacunary or successive) that are to be considered.

PROCEDURE ReadVerifyBB;

Reads the verification level that we want to use.

PROCEDURE ReadMaxNodesBB;

Reads the maximum number of nodes that will be allowed in the branch-and-bound tree. When that
number is exceeded, the branch-and-bound procedure will stop.

PROCEDURE ReadTimeLimit;

Reads the cpu time limit that is allowed for a search. When that limit is exceeded, the search procedure
stops and reports what it has found so far.

PROCEDURE ReadSeeds;

Reads the seeds that are used for the random number generator of SENTIERS. This generator is used
for the random searches.



44 LATIO

PROCEDURE ReadResultForm;

Reads the form of the output (on the terminal, in a .gen file, in a .res file, in a .tex file).

PROCEDURE Computem;

Computes the order and the modulus m for the combined generator, given those of the components.
Computes also the period lengths of the components and of the combination.

PROCEDURE Computea;

Computes the vector of multipliers a for the combined generators, given the parameters of the components.
Assumes that the moduli of the components are all prime. Initializes the vectors Maj and a.

PROCEDURE SaisieDonnees;

Calls the different low-level procedures to read the data from the data file, in the format appropriate for
the programs latl and seekl. Also creates some of the data structures (e.g., SuperInteger’s) that are
required.

PROCEDURE ReadGenFile;

Reads a set of generators from the file ‘xxx.gen’, assuming that the data has been read from ‘xxx.dat’.

PROCEDURE PerMaxPowPrime (j : Indexj) : BOOLEAN;

Assumes that mj is a power of a prime p, that kj = 1, and that the recurrence is homogeneous. Returns
TRUE iff the maximal period conditions are satisfied for that case for component j.

PROCEDURE Reducemj (VAR a : MVect);

Reduces mj and reinitializes the module MRG accordingly in the case where the modulus is a power of a
prime and where LatType = PrimePower. Called by testGen.

PROCEDURE InitZones (j, i : INTEGER);

Initializes the research zones for the multiplier ai of the component j. In the case of a random search,
this procedure also creates the region for (j, i). Called by SetupGenSeek.

PROCEDURE ChoisirBornes (j : Indexj);

This procedure is called by SeekGen in the case of a random search. It chooses a region at random and
initializes its boundaries. This region will then be searched completely.

PROCEDURE TestGen
( VAR a : MVect;
T : CriterionType;
VerifyBB : VerifyType;
Out : OutputType

);

Tests the (combined) generator with multiplier (vector) a.

PROCEDURE ConserverGen (C : INTEGER; tMerit2 : BDim);

Inserts the most recently tested generator into the list for the categoty Cat. The value tMerit2 indicates
the dimension where the worst-case is attained for the figure of merit. This procedure is called by
VerifyCategories.
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PROCEDURE VerifyCategories (VAR Me2 : BASISLR.BVect);

Verifies if the most recently tested generator can be included in any of the lists corresponding to the
different categories. If so, includes it in the appropriate lists. The vector Me2 is either Q2 or S2, depending
on the figure of merit that is used.

PROCEDURE ExamAllZones (j, i : INTEGER);

This procedure is used in the “exhaustive search” case. When J > 1, it collects primitive polynomials
for the given j. When J = 1, it tests all generators in the region. The initial call should be with i equal
to the degree of the polynomials for component j. Then, the procedure calls itself recursively for smaller
i.

PROCEDURE ExamRegion (j, i : INTEGER);

Similar to ExamAllZones, but used for the “Random search” case.

PROCEDURE ExamCombPoly (jj : Indexj);

Used only when J > 1. Examines all combinations of the primitive polynomials found by ExamRegion or
ExamAllZones.

PROCEDURE ExamCurrenta;

Tests the generator that corresponds to the current value of the multiplier (vector) a, and adds it to the
list(s) if it is competitive. Called only by TestGenFromFile.

PROCEDURE TestGenFromFile;

Examines all the generators from a .gen file, which is assumed to be the current input file.

PROCEDURE CalculNbreGen (j : Indexj);

Computes the total number of simple generators (i.e., polynomials) examined, for the component j, and
puts the result in TotGen [j].

PROCEDURE CalculerResteInfo;

After the search has been completed, computes all the remaining required information on the retained
generators. Computes the dt or the qt when required and not already done. Redo the computations with
error bounds if requested.

PROCEDURE PrintErrBounds (T : INTEGER);

Computes and prints the bounds on the Euclidean distances between the points produced by a L’Ecuyer-
style combined MRG and the corresponding points produced by the associated MRG, in dimensions 2 to
T. This is used only when J > 1.

PROCEDURE EcrisGen (G : Generateur; Cat : INTEGER);

Writes the parameters and the results relative to a retained generator G, in category Cat. Called by
WriteSeekRes.

PROCEDURE WriteLatHead;

Writes a heading for the results of a lattice test. Called by LatGen.

PROCEDURE WriteLatHeadTex;

Writes a heading for the results of a lattice test in LATEX form. Called by LatGen.
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PROCEDURE WriteDataComponent (j : Indexj);

Write the statistical data relative to component j.

PROCEDURE WriteStatComponent (j : Indexj);

Writes the statistics on the searches for primitive (or examined) polynomials for the component j. Called
by WriteSeekRes.

PROCEDURE WriteTabBest (l : LONGINT; G : Generateur);

Prints a one-line summary of the figures of merit in each interval, for best generator retained in category
(i.e., interval) number l.

PROCEDURE WriteSeekHead;

Writes, in the current output file, the heading and the data for a search by the SeekGen procedure.
Writes also the factorizations in the files if this was requested.

PROCEDURE WriteSeekRes;

Writes the results of a search in the current output file, then closes it.

PROCEDURE WriteSeekGen;

Writes in a .gen file the generators found in a search. If the data was read in xxx.dat, then this procedure
will open the file xxx.gen and write in it.

PROCEDURE SetupSeekGen;

Called by SetUp. Performs initializations for the searches of generators. Creates the ordered lists to store
the ‘best’ NbGen [C] generators in each category C. Initializes the bounds on the figures of merit in each
dimension. Initializes the polynomial lists (to empty) and the search zones.

PROCEDURE Setup;

Obtains and opens data file, reads data and performs initializations. Initializes REDBAS and MRG. This
procedure is called by SeekGen and LatGen.

PROCEDURE LatGen;

Applies the required tests (for “lat” programs) and prints results.

PROCEDURE SeekGen;

Performs a seek for “good” generators (implements “seek” programs).

PROCEDURE CalcLaIndicesStreams (s, w : LONGINT);

Calculates lacunary indices by groups of s spaced by 2w

PROCEDURE LatGenStreams;

Applies the test for different values of w where a big generator is divided into smaller ones, which are
separated by 2w.

END LATIO.
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MRG

This module offers tools to analyze simple or combined multiple recursive (linear congruential)
generators (MRGs). One must first initialize the module with a given modulus, a given order, and
a maximal dimension, by calling InitMRG. Each MRG will then be defined by a vector of multipliers
a, where a[i] represents ai and the MRG is defined by

xn := (a1xn−1 + · · · + akxn−k) mod m.

One can then build the lattice basis associated to a vector of multipliers for a given dimension,
or apply the spectral test, or the Beyer test, or both simultaneously, for all dimensions up to a
specified limit. The multipliers and modulus can be represented as LONGINT or SuperInteger.
This can be changed by the command select.

DEFINITION MODULE MRG;

FROM MULT IMPORT MScal, MVect;
FROM BASIS IMPORT BVect;
FROM CONFIG IMPORT MDim, BDim, OutputType;
FROM LATBASIS IMPORT Basis;
FROM TESTLAT IMPORT TestConfig;
FROM NORM IMPORT CriterionType, NormType, Normaliz;
FROM REDBAS IMPORT VerifyType;
FROM SUPINT IMPORT SuperInteger;
FROM SUPFACT IMPORT Factors;
IMPORT BASISLR, MULTLI, MULTSI;

TYPE
MRGen = POINTER TO InfoMRG;
InfoMRG = RECORD

Bas : Basis;
k : MDim; (* k = Order of the recurrence *)
aLI : MULTLI.MVect; (* Coefficients of the recurrence *)
aSI : MULTSI.MVect; (* " *)
END;

LatticeType = (Full, Recurrent, Orbit, PrimePower);

Indicates which type of lattice is analyzed: that generated by all possible states (Full), or by the set
of recurrent states (Recurrent), or by a single forward orbit of the generator (Orbit) for the case
where it has several cycles, or by a single orbit in the case where some component is an MLCG with
modulus that is a power of a prime p (PrimePower). In the latter case, one must divide the modulus
by an appropriate power of p, as described in [29], before calling a test procedure. When LatticeType

= Orbit, the initial state must be specified in the array InSta (see below). See also the data field
LatticeType for the program seekl.

VAR
Bas : Basis;

Lattice basis built and used by the procedure Test. Can be recovered after calling Test.
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Q2, D2, S2 : BASISLR.BVect;

Those vectors contain the squares of the Beyer quotients qt, of the distances between hyperplanes dt,
and of the values of St, respectively, computed in the last call of Test or TestLa.

Mins2, Minq2 : BASISLR.BVect;

Gives the current minimal values of St and qt for a generator to be considered, in each dimension.
The module initializes these bounds to zero.

MaxAllDim : BOOLEAN;

TRUE if we are always looking for generators with the highest figures of merit, in all the dimensions.
FALSE if we want to minimize the figure of merit in some set of dimensions (that is, in some interval
or category).

TestCompleted : BOOLEAN;

TRUE if the last call to Test or TestLa has been successful, FALSE otherwise.

Lacunary : BOOLEAN;

When this variable is TRUE, the module treats lacunary indices; otherwise it assumes that the vectors
are formed with successive indices.

LatType : LatticeType;

Indicates which lattice or sublattice is analyzed. See the data field LatticeType in seekl. However,
in the case PrimePower, the modulus of each component must be divided appropriately before calling
Test or TestLa; these test procedures assume that the modulus has already been ajusted (reduced).

DualLattice : BOOLEAN;

When TRUE, we seek short vectors in the dual lattice (e.g., to compute the distance between adjacent
hyperplanes). When FALSE, we seek short vectors in the primal lattice. The default value is TRUE.

UsedNorm : NormType;

Which norm type is used to measure the length of the vectors. The default value is L2Norm. WARN-
ING: For other norms, the implementation is only partial, and only Spectral is admitted for the type
of test.

NormalG : Normaliz;

To normalize the length of the shortest vectors (See module NORM).

InvertCrit : BOOLEAN;

If TRUE, the value of the criterion St is inverted in the results, i.e., the criterion St becomes a number
larger than 1, the smaller the better.

InSta : ARRAY MDim OF SuperInteger;

If LatType = Orbit then the user must specify a seed which will be stored in InSta.

PROCEDURE InitMRG (m : MScal; k : MDim; d : BDim);

From now on, this module will treat multiple recursive generators of order k with modulus m. Dimensions
of bases cannot exceed d. (One can recall this procedure to change m, k, or d). This procedure calls
MULT.MSetm.
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PROCEDURE DeleteMRG (d : BDim);

Deallocates the memory allocated to the matrices of SuperIntegers VSI and WSI, and to the vec-
tors of type BVect, xi, LacI and q, at a previous call to InitMRG. It also calls the procedure
LATBASIS.DeleteBasis, because LATBASIS.InitBasis is called by InitMRG. Must be called only if
InitMRG has been called previously.

PROCEDURE BuildBasis (B : Basis; VAR a : MVect; n : BDim);

Builds the basis directly in dimension n.

PROCEDURE IncDimBasis (B : Basis);

Increments by 1 the dimension of the basis.

PROCEDURE Test
( VAR a : MVect;
T : CriterionType;
FromDim, ToDim : BDim;
VerifyBB : VerifyType;
Out : OutputType );

Applies the test T (Beyer and/or Spectral) to the MRG generator corresponding to a, in dimensions
FromDim to ToDim. The initial basis is built automatically, and during the procedure, the variable Bas

will contain the current basis. VerifyBB indicates if the results must be verified in a second pass, with
error bounds on the floating-point computations for the branch-and-bound. The parameter Out specifies
the form of output produced. If a test fails, then the procedure stops and the variable TestCompleted is
set to FALSE.

PROCEDURE TestCri
( VAR a : MVect;
T : CriterionType;
FromDim, ToDim : BDim;
VerifyBB : VerifyType;
Out : OutputType;
r : BDim;
n : INTEGER );

Does the same thing as Test, but two additional parameters r and n must be specified, which are the
rank and the copy factor for copy-rules, and then the basis are modified accordingly. Must be used only
if FromDim is larger than r. Not very useful in the context of LCG’s, but it would have been complicated
to write this procedure and the one it calls, CriSpectralTest(), in a separate module, because they use
variables internally declared in MRG. The LCG corresponding to the rank 1 rule must have its modulo
and multiplier modified before TestCri is called. THIS PROCEDURE IS NOT IMPLEMENTED.

PROCEDURE BuildLaBasis
(B : Basis; VAR a : MVect; VAR I : BVect; n, MaxDim : BDim);

Builds the (lacunary) basis directly in dimension n. One must indicate MaxDim and use IncDimLaBasis
only for dimensions smaller than this. The vector I must contain the MaxDim lacunary indices.

PROCEDURE IncDimLaBasis (B : Basis);

Increments by 1 the dimension of the basis. The basis must have been initialized by InitLaBasis and
the dimension of B must be less than MaxDim.
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PROCEDURE TestLa
( VAR a : MVect;
VAR I : BVect;
T : CriterionType;
FromDim, ToDim : BDim;
VerifyBB : VerifyType;
Out : OutputType );

Similar as Test, but with lacunary indices. The vector I must contain the ToDim lacunary indices.

PROCEDURE PerMax (VAR a : MVect; VAR ListmMS1, Listr : Factors) : BOOLEAN;

Checks if the generator corresponding to a has maximal period. If m is not prime then the procedures
stops and TestCompleted is set to FALSE. ListmMS1 and Listr must contain the factors of m-1 and r,
or NIL if the factors are unknown. (See MULT.SetFactors.)

END MRG.
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TESTLAT

This module offers a procedure to test several projections of the lattice specified by a modulus
and a set of generating vectors. Several categories of projections can be considered, with specific
projections in each category. All these parameters are specified via InitTestConfig, stored in a
TestConfig structure which is passed to the TestLattice procedure.

DEFINITION MODULE TESTLAT;

FROM BASIS IMPORT BVect;
FROM MULT IMPORT MScal, MVect;
FROM CONFIG IMPORT MDim, BDim, DimProj, MCoord, Categ, OutputType;
FROM NORM IMPORT CriterionType, Normaliz, NormType, GammaType;
FROM LATBASIS IMPORT Basis;
FROM REDBAS IMPORT VerifyType;
IMPORT BASISLR;

TYPE
CoordSet = SET OF MCoord;

TestConfig = POINTER TO InfoTestConfig;
InfoTestConfig = RECORD

m : MScal;

The modulus.

k : MDim;

Number of generating vectors (usually equal to the order of the linear recurrence).

NbCoord : MCoord;

Total number of coordinates that are considered.

Maxds : BDim;
Maxdp : DimProj;

Maxds is the maximum dimension of the projections over successive coordinates. Maxdp is the
maximum dimension of the projections over nonsuccessive coordinates. These are the values used
for memory allocation in InitTestConfig.

NbCats, C : Categ;

Number of categories (or lists) that are considered. The variable C is initially set to NbCats by
TestLattice, and is decreased when the generator is not good enough for the category currently
considered.

DimenProj : ARRAY Categ OF BDim;
RangeProj : ARRAY Categ OF ARRAY DimProj OF BDim;
DimRegLag : ARRAY Categ OF BDim;
RangeRegLag : ARRAY Categ OF ARRAY DimProj OF BDim;

These arrays specify which projections are considered for each category. DimenProj[c] is the
maximum number of dimensions for which the projections over non-successive and non-regular
indices are considered. (E.g., if the value is 3, the pairs and triples are considered.) For j >
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1, RangeProj[c,j] indicates the maximal value of ij + 1 that is considered for j-dimensional
projections in category c, assuming that i1 = 0. For j = 1, it gives the maximum dimension
for the successive dimensions, for category c. Non-successive indices that are regularly spaced,
i.e., where ij = (j − 1)s for some s, are also considered. For category c, DimRegLag[c] gives the
maximum value of s and RangeRegLag[c,s] gives the maximum value of j (number of dimensions)
that is considered for this s.

Mins2, Maxs2 : ARRAY Categ OF LONGREAL;

For each category c, gives the minimum and maximum value of the worst-case criterion within
category c for a generator to be considered for category c and the categories above it. Whenever
ValCrit[c] is outside the range [Mins2[c], Maxs2[c]], the corresponding generator need not be
considered any longer for all the categories c′ ≥ c. It may still be considered, however, for the
categories c′ < c.

InvertL, InvertS : BOOLEAN;

Indicates if we want to print the multiplicative inverses of the length of the shortest vector and/or
the figure of merit S2. For the spectral test with the Euclidean norm, for instance, if InvertL
= TRUE, we obtain the distance between hyperplanes instead of the length of the shortest vector.
Default values are FALSE.

Criterion : CriterionType;

Indicates which criterion is used.

Normal : Normaliz;

Normal specifies the normalization method used to compute S2.

Verify : VerifyType;

Indicates the level of verification (i.e., REDBAS2 or REDBAS3 is used).

Output : OutputType;

Indicates what kind of output is written during the test.

MasterGen : ARRAY MDim OF ARRAY MCoord OF MScal;

MasterGen contains an initial set of k generating vectors for all the NbCoord coordinates that are
to be considered in the projections. The projections of these vectors, obtained by selecting the
appropriate columns in MasterGen, together with additional vectors of the form (. . . ,m, . . .), are
used to build the triangular bases in TBas.

TBas : Basis;

Contains a triangular version of the basis for the d coordinates that are currently under consider-
ation. Used by the TestProjections procedure.

RBas : ARRAY DimProj OF Basis;

RBas[d] contains a reduced basis for the d coordinates that are currently under consideration.
This is used by the TestProjections procedure, which goes back and forth in this array while
exploring the tree of projections. RBas[0] is used for the lattices that correspond to successive
coordinates.



TESTLAT 53

L2, S2 : ARRAY DimProj OF BASISLR.BVect;

The vector L2 will contain the lengths of the shortest vectors raised to the power p in case of
the spectral test with the Lp norm. More precisely, L2[1,t] is the value for the lattice that
corresponds to successive coordinates in t dimensions, whereas L2[d,t], for d > 1, is the worst
value for all the d-dimensional projections over coordinate sets I = {i1, . . . , id} where i1 = 0 and
id = t − 1. In all cases, S2[d,t] will contain the corresponding normalized quantity, also raised
to the power p, or the Beyer quotient in case of the Beyer test.

ValCrit : ARRAY Categ OF LONGREAL;

ValCrit[c] will contain the worst-case value of the figure of merit in S2[d,t] over the set of
projections that are considered for category c.

OK : BOOLEAN;

Indicates if the last operation (e.g., call to TestLattice, SpectralTest, etc.) has been successful.

END;

PROCEDURE CreateTestConfig (VAR T : TestConfig);

Creates the structure T. One must then call InitTestConfig to allocate memory for the elements of
MasterGen, TBas, RBas, L2, and S2.

PROCEDURE DeleteTestConfig (VAR T : TestConfig);

Deletes the structure T, after deallocating the memory allocated to its fields by InitTestConfig.

PROCEDURE InitTestConfig
( T : TestConfig; Norm : NormType;

m : MScal; k : MDim; NbCoord : MCoord;
ds : BDim; dp : DimProj; NbCats : Categ;
gamma : GammaType; beta : LONGREAL

);

Initializes the structure T. In the parameters, m represent the modulus, k the number of generating vectors,
NbCoord the total number of coordinates to be considered, ds the maximum dimension of the projections
over successive coordinates, dp the maximum dimension of the projections over nonsuccessive coordi-
nates, and NbCats the number of categories. This procedure creates the elements of MasterGen[1..k,
1..NbCoord], L2, and S2, creates the bases TBas and RBas[0..d], initializes their sizes appropriately,
their modulus to m, and their Norm field to Norm. The parameters gamma and beta are used to initialize
T^.Normal by calling InitNormaliz.

PROCEDURE AddToBasis (T : TestConfig; d : BDim; Ind : CoordSet; n : BDim);

Assumes that MasterGen has been initialized to a proper set of generating vectors. Adds a vector to
the basis TBas that corresponds to adding the jth coordinate of the generating vectors, and updates the
dual.

PROCEDURE RemoveFromBasis (T : TestConfig; d : BDim; Ind : CoordSet; n : BDim);

Removes from the basis TBas the vector that corresponds to the jth coordinate, and updates the dual.

PROCEDURE TestLattice (T : TestConfig);

Applies the tests specified by T to the lattice whose set of generating vectors is in its field MasterGen.

END TESTLAT.
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REDBAS

This module offers tools to reduce a basis in various ways, and to find a shortest vector in a
lattice using pre-reductions and a branch-and-bound (BB) procedure. It also has a procedure to
compute a Minkowski-reduced basis (this is much more expensive than finding a shortest vector).
One must first call InitREDBAS before calling any other procedure in this module.

DEFINITION MODULE REDBAS;

IMPORT BASISLR;
FROM LATBASIS IMPORT Basis;
FROM CONFIG IMPORT BDim;

TYPE
VerifyType = (Verify0, Verify2, Verify3);

Type of verification performed by the tests: uses REDBAS, REDBAS2, or REDBAS3 for Verify0, Verify2,
and Verify3, respectively.

VAR
PreRedDieterSV, PreRedLLLSV, PreRedLLLRM : BOOLEAN;

These boolean variables indicate which type of pre-reduction is to be performed for ShortestVector
(SV) and for ReductMinkowski (RM). Dieter means the pairwise pre-reduction as in the procedure
PreRedDieter. LLL means the LLL reduction of Lenstra, Lenstra, and Lovász.

The variable PreRedDieterSV is originally set to TRUE and the 2 others are originally set to FALSE.
These variables are reset automatically depending on the thresholds MinkLLL, ShortDiet, ShortLLL

as explained below. Note that the LLL reduction is never performed when SISquares = TRUE. 1

ShortDiet : LONGINT;

Whenever the number of nodes in the BB tree exceeds the threshold ShortDiet, in the ShortestVector
procedure, PreRedDieterSV is automatically set to TRUE for the next call; otherwise it is set to FALSE.
The default value is 1000.

ShortLLL : LONGINT;

Whenever the number of nodes in the BB tree exceeds the threshold ShortLLL, in the ShortestVector
procedure, PreRedLLLSV is automatically set to TRUE for the next call; otherwise it is set to FALSE.
The default value is 1000.

MinkLLL : LONGINT;

Whenever the number of nodes in the BB tree exceeds MinkLLL in the ReductMinkowski procedure,
PreRedLLLRM is automatically set to TRUE for the next call; otherwise it is set to FALSE. The default
value is 500 000.

MaxPreRed : LONGINT;

Maximum number of transformations in the procedure PreRedDieter. After MaxPreRed successful
transformations have been performed, the prereduction is stopped. The default value is 1 000 000.

1From Pierre: Reason?
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MaxNodesBB : LONGINT;

The maximum number of nodes that we are ready to accept in the branch-and-bound (BB) tree when
calling ShortestVector or ReductMinkowski. When this number is exceeded, the procedure aborts
and returns FALSE. The default value is 10 000 000.

PROCEDURE InitREDBAS (MaxDim : BDim);

Initializes the internal variables of this module with a given upper dimension MaxDim for the bases, for
memory allocation purposes. This MaxDim (saved in the internal variable CurMaxDim) should be at least
as large as the dimension of any Basis B that this module has to work on (i.e., B^.Dim can never exceed
CurMaxDim).

PROCEDURE DeleteREDBAS;

Deallocates the memory which was allocated when calling InitREDBAS for the last time. Must be called
only if InitREDBAS has been called previously.

PROCEDURE GetMaxDim (): BDim;

Returns the current value of CurMaxDim.

PROCEDURE PairwiseRedPrimal (B : Basis; i, d : BDim);

Performs pairwise reductions. This procedure tries to reduce each basis vector with index larger than d,
and distinct from i, by adding to it a multiple of the i-th vector. Always use the Euclidean norm.

PROCEDURE PairwiseRedDual (B : Basis; i : BDim);

Performs pairwise reductions, trying to reduce every other vector of the dual basis by adding multiples
of the i-th vector. That may change the i-th vector in the primal basis. Each such dual reduction is
actually performed only if that does not increase the length of vector i in the primal basis. Always use
the Euclidean norm.

PROCEDURE PreRedDieter (B : Basis; d : BDim);

Performs the reductions of the preceding two procedures using cyclically all values of i (only for i > d
in the latter case) and stops after either MaxPreRed successful transformations have been achieved or no
further reduction is possible. Always use the Euclidean norm.

PROCEDURE SetScale (B : Basis);

This procedure is used when SISquares = TRUE, just before doing the Choleski decomposition for the
branch-and-bound procedure, in the procedures ShortestVector and ReductMinkowski. It rescales the
square Euclidean lengths of the basis and m-dual basis vectors by factors EchVV and EchWW, respectively,
and m2 by the product EchVV * EchWW. These factors are chosen by the procedure so that the log of the
largest squared Euclidean length is not too far from 0. The rescaled values are placed in VVLR and WWLR,
and the rescaled value of m2 in mLR2. The Choleski decomposition and the branch-and-bound procedures
use these rescaled values to avoid LONGREAL overflow.

PROCEDURE RedLLL (B : Basis; fact : LONGREAL; m : LONGINT; Max : BDim);

Performs a LLL basis reduction with coefficient fact, which must be smaller than one. If fact is closer
to one, the basis will be (typically) “more reduced”, but that will require (slightly) more work. Always
use the Euclidean norm. Danger: With the current implementation, there could be LONGREAL overflow
when SISquares = TRUE and there are very long basis vectors.
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PROCEDURE CalculCholeski (B : Basis; VAR DC2 : BASISLR.BVect;
VAR C0 : BASISLR.BMatr) : BOOLEAN;

Performs a Choleski decomposition of the matrix of scalar products of the basis vectors, i.e., U′U = V′V
where V is the matrix of the basis vectors and U is upper triangular. Returns in C0 the elements of
U that are strictly above the diagonal, i.e., ui,j for j > i. Returns in DC2 the squared elements of the
diagonal of U. If SISquares = TRUE, these elements are rescaled (divided) by EchVV. Returns TRUE if
the decomposition was successful.

PROCEDURE TransformStage3 (B : Basis; VAR z : BASISLR.VectLI; VAR k : BDim);

Procedure used in ReductMinkowski to perform a transformation of stage 3 described in [1]. Also used
in ShortestVector. Assumes that

∑t
i=1 ziVi is a short vector that will enter the basis. Tries to reduce

some vectors by looking for indices i < j such that |zj | > 1 and q = ⌊zi/zj⌋ ≠ 0, and adding qVi to Vj
when this happens. Returns in k the last index j such that |zj | = 1.

PROCEDURE ShortestVector (B : Basis) : BOOLEAN;

Computes the shortest vector in lattice with basis B, using branch-and-bound. If MaxNodesBB is exceeded
during one of the branch-and-bounds, the procedure aborts and returns FALSE. Otherwise, it returns
TRUE.

PROCEDURE ReductMinkowski (B : Basis; d : BDim) : BOOLEAN;

Reduces B into a Minkowski reduced basis, with respect to the Euclidean norm, assuming that the first d
vectors are already reduced and sorted. If MaxNodesBB is exceeded during one of the branch-and-bounds,
the procedure aborts and returns FALSE. Otherwise, it returns TRUE, and the basis is reduced and is
sorted by vector lengths (the shortest vector is V[1] and the longest is V[Dim]). This procedure does
not care about numerical imprecision due to the (64-bit) floating-point representation. In this sense, the
results are not 100% reliable.

END REDBAS.
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REDBAS2

This module offers tools to reduce a basis in the sense of Minkowski and find a shortest vector
in a lattice. The difference between this and REDBAS is that here, bounds on the numerical errors
are computed to make sure that the results are formally correct.

DEFINITION MODULE REDBAS2;

FROM CONFIG IMPORT BDim;
FROM LATBASIS IMPORT Basis;

PROCEDURE InitREDBAS2 (d : BDim);

Initializes the module. The value of d should be at least as large as the dimension of the largest basis to
be considered by the procedures below.

PROCEDURE VerifMinkowski (B : Basis; d : BDim) : BOOLEAN;

Performs a formal verification and returns TRUE if the basis B is really reduced. Assumes that the first d
vectors are really reduced and verifies only the remaining ones.

PROCEDURE ReductVerifMinkowski (B : Basis) : BOOLEAN;

Performs a reduction as in ReductMinkowski, then verifies it formally, and if the basis is not really
reduced, completes the reduction. This is usually much more costly than ReductMinkowski, but the
result is perfectly reliable.

PROCEDURE VerifShortest (B : Basis) : BOOLEAN;

Performs a formal verification and returns TRUE if the first vector of basis B is the shortest vector in the
lattice generated by B.

PROCEDURE ShortestVectorVerif (B : Basis) : BOOLEAN;

Computes the shortest vector as in ShortestVector, performs a formal verification, and if the vector
was not really the shortest due to numerical (floating-point) imprecisions, computes the shortest one.
Returns TRUE if the procedure succeeds. This is usually much more costly than ShortestVector, but
the result is perfectly reliable.

END REDBAS2.
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REDBAS3

This module offers tools similar to those of REDBAS2, except that the “provably correct” results
are obtained by a different method than in REDBAS2, bypassing all floating-point calculations, as
explained in [6].

DEFINITION MODULE REDBAS3;

FROM CONFIG IMPORT BDim;
FROM LATBASIS IMPORT Basis;
FROM BASISLR IMPORT VectLI;

PROCEDURE VerifMinkowski (B : Basis; d : BDim) : BOOLEAN;

Performs a formal verification and returns TRUE if the basis B is really reduced.

PROCEDURE VerifShortest (B : Basis; d1, d2 : BDim; VAR z : VectLI) : BOOLEAN;

Performs a formal verification and returns TRUE if the first vector of basis B is the shortest vector in the
lattice generated by the first d1 vectors of B. The parameter d2 is a threshold, which should be between
1 and the dimension of the lattice, and may affect the performance. To compute the relevant coefficients
(expressed as determinants in the primal or dual basis), we use the primal basis up to dimension d2, and
then the dual basis. When the procedure returns FALSE, then the coefficients of a shorter vector with
respect to the basis are returned in z.

END REDBAS3.
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LATBASIS

This module offers tools to manipulate lattice bases (see Section 1.3). Each lattice is represented
by a basis V and its dual W . It is sometimes possible, as in the case with lattices associated with
LCGs or MRGs, to multiply a lattice (and its dual) by a constant factor in such a way that they
are included in ZZt, allowing exact representation of basis vector coordinates. The duality relation
will now read Vi ·Wj = mδij for some integer constant m.

The squared lengths of the basis vectors and that of their duals are stored as LONGREAL in VVLR

and WWLR respectively. However, if they are too large to fit in a LONGREAL, even approximately,
then SISquares is set to TRUE and they are stored as SuperInteger in VVSI and WWSI.

A variable of type Basis is created by calling CreateBasis. The squared vector lengths VVLR

and WWLR (or VVSI and WWSI) can then be updated by calling UpdateVVWW. But it is not necessary
to update them before calling any of the procedures of the modules REDBAS and REDBAS2 (including
ReductMinkowski and ShortestVector).

DEFINITION MODULE LATBASIS;

FROM SUPINT IMPORT SuperInteger;

IMPORT BASISLR, BASISSI;
FROM BASIS IMPORT BMatr, BScal;
FROM CONFIG IMPORT BDim;
FROM NORM IMPORT NormType;
FROM MULT IMPORT MScal;

TYPE
Basis = POINTER TO InfoBasis;
InfoBasis = RECORD

ResDim : BDim; (* Dimension of allocated memory. *)
Dim : BDim; (* Actual dimension. *)
mLR : LONGREAL; (* Modulus m. *)
mSI : SuperInteger; (* Modulus m. *)
mLR2 : LONGREAL; (* m^2, rescaled if SISquares. *)
mSI2 : SuperInteger; (* Value of m^2 when SISquares. *)
V, W : BMatr; (* Basis and dual basis vectors. *)
Norm : NormType;
Lmin, Lmin2 : LONGREAL; (* Length and squared length of shor- *)

(* test basis vector, using Norm. *)
(* Different meaning in REDBB. *)

SISquares : BOOLEAN;
VVLR, WWLR : BASISLR.BVect; (* Squared Euclidean vector lengths, *)

(* if not SISquares. *)
EchVV, EchWW : SuperInteger; (* Scaling factors when SISquares. *)
VVSI, WWSI : BASISSI.BVect; (* Rescaled squared Euclidean vector *)

(* lengths, if SISquares. *)
XX : ARRAY BDim OF BOOLEAN; (* Used for ReductMinkowski only. *)

(* Ask R. Couture for details. *)
END;

A lattice basis. ResDim is the dimension of the arrays allocated for the basis (the maximum value
that Dim can take). The memory for the BVect and BMatr elements is allocated for dimensions 0 to
ResDim if ResDim > 0, whereas no memory is allocated if ResDim = 0.
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Dim is the current dimension of the basis, V contains the basis, and W the m-dual basis. The integer
constant m used in the duality relation is stored as a LONGREAL in mLR, and as a SuperInteger in
mSI.

Norm is the type of norm used to measure the vector lengths. Lmin and Lmin2 are used to store the
length and the squared length of the shortest vector found to date, using this norm. (Usually, only
one of these 2 variables is used at a time; see REDBAS.)

The boolean SISquares is set to TRUE by InitBasis when m exceeds approximately 2480, and to
FALSE otherwise.

When SISquares = FALSE, mLR2 contains the value of m2, VVLR and WWLR may memorize the squared
Euclidean lengths of the vectors in V and in W . They are not always updated, and when they are
not, they are set to negative values.

When SISquares = TRUE, mSI2 contains m2, mLR2 contains m2 divided (rescaled) by EchVV * EchWW,
the squared Euclidean vector lengths (again, not always updated), are stored in VVSI and WWSI, and
Lmin2 is rescaled by EchVV. Also, the squared vector lengths rescaled by the factors EchVV and EchWW,
are put in VVLR and WWLR, respectively, by SetScale. The scaling factors EchVV and EchWW are
computed by the procedure SetScale and set to values such that the log of the squared Euclidean
length of the longest vector is not too far from 0. The aim of this rescaling is to avoid LONGREAL

overflow.

PROCEDURE CreateBasis (VAR B : Basis);

Creates the data structure B for a basis. SISquares is initialized to FALSE, Norm is initialized to L2Norm,
and ResDim is set to 0. One must then call InitBasis to reserve the memory for the BVect and BMatr

elements.

PROCEDURE InitBasis (B : Basis; m : MScal; Nor : NormType; d : BDim);

Initializes the modulus and the norm for the basis B. Reserves the memory for the BVect and BMatr fields
of B, for indices 0 to d if d > 0. Here, d is the new value of ResDim. If d < B^.ResDim, then the memory
already reserved which is no longer needed is deallocated.

PROCEDURE DeleteBasis (B : Basis);

Does the same as InitBasis (B, B^.m, B^.Norm, 0), and then the opposite of CreateBasis (B).

PROCEDURE WriteBasis (B : Basis);

Writes content of B in current output file.

PROCEDURE ReadBasis (VAR B : Basis);

Reads a basis from current input file. The basis must have been written to the file by WriteBasis.

PROCEDURE CopyBasis (B1, B2 : Basis);

Copies B1 into B2.

PROCEDURE Permute (B : Basis; i, j : BDim);

Exchanges vectors i and j in the basis and its dual.

PROCEDURE SortBasis (B : Basis; d : BDim);

Sorts the basis vectors (with index from d + 1 to B^.Dim) by increasing length. The dual vectors are
permuted accordingly. Assumes that VVLR and WWLR (or VVSI and WWSI, if SISquares) are up to date.
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PROCEDURE Dualize (B : Basis);

Exchanges V, VVLR, VVSI, EchVV and W, WWLR, WWSI, EchWW.

PROCEDURE UpdateVVWW (B : Basis; d : BDim);

Updates VVLR and WWLR (or VVSI and WWSI if SISquares) as the square Euclidean lengths of the vectors
in V and W (for vectors with index from d+ 1 to B^.Dim).

PROCEDURE EraseVVWW (B : Basis);

Sets the vectors VVLR and WWLR (or VVSI and WWSI if SISquares) to negative values.

PROCEDURE CheckDuality (B : Basis): BOOLEAN;

Check that Basis B satisfies the duality relation V [i]·W [j] = mδij . If so, returns TRUE, otherwise returns
FALSE.

PROCEDURE BaseEquivalence (B1, B2 : Basis) : BOOLEAN;

Check that Basis B1 and B2 are equivalent. If so, returns TRUE, otherwise returns FALSE.

PROCEDURE RandomLattice (B : Basis; m : BScal; d : BDim);

Constructs a random basis for an integral lattice, chosen with the uniform distribution over the finite
set of all lattices whose fundamental volume is md−1 and which contains mZZd as a sublattice, for the
specified values of m and d.

END LATBASIS.
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PRIM

This module provides some procedures to search for integers m that are prime, for which
r = (mk − 1)/(m− 1) is also prime for certain values of k, and perhaps for which (m− 1)/2 is also
prime. The values of r are always represented as SuperInteger’s.

DEFINITION MODULE PRIM;

FROM SUPINT IMPORT SuperInteger;
FROM SUPFACT IMPORT Factors;

PROCEDURE Trier (VAR L : Factors);

Sorts the factors in the list L in decreasing order.

PROCEDURE SFindPrimer (k, e : LONGINT; S1, S2 : SuperInteger;
Safe : BOOLEAN);

Finds and prints all integers m such that S1 ≤ m ≤ S2 and such that both m and r = (mk − 1)/(m− 1)
are prime. If Safe = TRUE, it is also required that (m − 1)/2 be prime. If k = 1, then r is considered
prime. The retained m are printed in decreasing order, in the form m = 2e ± x and also as decimal
integers. The factors of m− 1 are also printed.

PROCEDURE FindPrimer (k, m0, m1 : LONGINT; Safe : BOOLEAN);

Similar to SFindPrimemr, but for values of m less than 231.

PROCEDURE FindPrimesmr
(k, e, c1, c2 : LONGINT; Safe : BOOLEAN; F : ARRAY OF CHAR);

Calls SFindPrimer for S1 = 2e + c1 and S2 = 2e + c2, creates the file F and prints the results in it.

END PRIM.
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APPENDIX C

Lower-Level Modules
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NORM

This module provides tools to define normalization constants for the shortest vectors.

DEFINITION MODULE NORM;

IMPORT BASISLR;
FROM CONFIG IMPORT BDim, MDim;
FROM MULT IMPORT MScal;

TYPE
CriterionType = (Spectral, SpectralP, SpectralL1, Beyer, BeyerSpectral,

Palpha);

Types of merit criteria for lattices. Spectral means that the criterion is based on the shortest vector
in the dual lattice. In this case, one must specify which approximation is used for γt (see GammaType

below). SpectralP is similar to Spectral, except that it is based on the shortest vector in the primal
lattice. SpectralL1 is similar to Spectral, except that the length of the (dual) vectors are measured
with the L1 norm, minus 1. The length of the shortest dual vector is then an upper bound on the
minimal number of hyperplanes that cover all the points ([9] and [21], Exercises 3.3.4-15 and 16).
Beyer means that the criterion is the Beyer quotient qt. BeyerSpectral means that both Beyer and
Spectral apply simultaneously. Palpha means that the criterion is Pα. In this case, one must specify
a value of α and weights may also be used (see the module PALPHA).

NormType = (L1Norm, L2Norm, SupNorm);

Type of norm used to measure the vector lengths. For V = (v1, . . . , vt), the L1 norm is ∥V ∥ =
|v1| + · · · + |vt|, the L2 (or Euclidean) norm is ∥V ∥ = (v21 + · · · + v2t )1/2, and the sup norm is
∥V ∥ = max(|v1|, . . . , |vt|).

GammaType = (BestLat, Laminated, Minkowski, Rogers, MinkL1);

Types of bound on γt which can be used to normalize the length of the shortest vector. The normalized
value is the figure of merit used as a selection criterion. BestLat, Laminated, Minkowski, Rogers

correspond respectively to the bounds γLt , γBt , γZt , and γRt , for the Euclidean norm. MinkL1 must be
used for the L1 norm and corresponds to γMt = (t!)1/t.

Normaliz = POINTER TO InfoNormaliz;
InfoNormaliz = RECORD

Name : ARRAY [0..31] OF CHAR;
Norm : NormType;
GType : GammaType;
Beta : LONGREAL;
Maxt : BDim;
Gamma : BASISLR.BVect;
Cst : BASISLR.BVect;
END;

Data structure used to store a vector of values that are used to normalize the lengths ℓt of the shortest
vectors. The array Gamma contains values of γ̃t that are approximations of γt which appears in the
bounds given in Section 1. The normalized figure of merit will be ℓt/ℓ̄t, where

ℓ̄t =

{
γ̃tmβ

t if t ≤ k;

γ̃tm
k/tβt if t > k,

(29)
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where β is an additional multiplicative factor stored in the variable Beta (often equal to 1). The
vector Cst contains the values of ℓ̄2t in case of the Euclidean norm, and ℓ̄t otherwise.

The structure must be created by the procedure CreateNormaliz, initialized by InitNormaliz, and
deleted by DeleteNormaliz. The field Name is a character string that describes the type of γ̃t. Norm is
the type of norm that is used to measure the vector lengths, GType indicates the type of normalization
constants γ̃t, Beta is the weighting factor used in (29), Maxt is the maximum index for which the
arrays have been initialized, i.e., the largest value of t that can be considered.

PROCEDURE CreateNormaliz (VAR G : Normaliz);

Creates the structure G without initializing anything in it.

PROCEDURE InitNormaliz
( G : Normaliz;
Name : ARRAY OF CHAR;
Norm : NormType;
GType : GammaType;
Beta : LONGREAL;
Maxt : BDim;

m : MScal;
k : MDim

);

Initializes the structure G so that Gamma[t] contains the approximation of γt that corresponds to T, for
1 ≤ t ≤ Maxt. Cst[t] will contain the value of ℓ̄2t in case of the Euclidean norm (Norm = L2Norm), and
ℓ̄t otherwise, where ℓ̄t is defined in (29), γ̃t is determined by GType, and β is the value of Beta.

Normally, this procedure is called with β = 1. Taking β < 1 inflates the figure of merit by (1/β)t, thus
weakening the requirements for large t in a worst-case figure of merit such as (9).

The constant Maxt cannot exceed the maximum value of t for which the approximation of γt has been
pre-computed and is available (this depends on the type GType of γ̃t).

PROCEDURE DeleteNormaliz (VAR G : Normaliz);

Deletes the structure G.

PROCEDURE WriteNormaliz (G : Normaliz);

Writes the information contained in G.

END NORM.
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CONFIG

Here, we define constants, elementary types, and configuration variables that are used through-
out the package.

DEFINITION MODULE CONFIG;

CONST
MMaxDim = 16;

Maximum number of dimensions of arrays and matrices in module MULT. Maximal order of a multiple
recursive generator.

BMaxDim = 48;

Maximum number of dimensions for a lattice basis (module BASIS).

MaxCoord = 64;

Maximum total number of coordinates that can be considered when constructing the generating
vectors in module TESTLAT.

MaxDimProj = 8;

Maximum number of dimensions for the projections over non-successive indices, that can be considered
by the module TESTLAT.

MaxCat = 5;

Maximum number of categories into which the set of dimensions can be partitioned.

MaxNbGen = 256;

Maximum number of generators that can be stored in a list (in module SEARCH).

MaxJ = 5;

Maximum number of components J for a combined generator.

TYPE
MDim = [0..MMaxDim];

A dimension or coordinate in module MULT.

BDim = [0..BMaxDim];

A dimension or coordinate for a lattice basis.

MCoord = [0..MaxCoord];

A coordinate number that can be considered when constructing the generating vectors, and for the
projections.

DimProj = [0..MaxDimProj];

Dimension of a projection.
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Categ = [0..MaxCat];

A category of generators.

Indexj = [1..MaxJ];

Index of a component j of a combined generator.

OutputType = (None, CurOut, CurOutTex);

Kind of output to be produced. None means that nothing is written to the current output. CurOut

and CurOutTex mean that the results will be written to the current default output. The difference is
that for the latter, they are written in LATEX format.

END CONFIG.

MULT

This can be either MULTLI or MULTSI, depending on the chosen representation. One can copy one
of these two in MULT (i.e. copy the “.def” and the “.mod” for one of them) and change the module
name (in the code) to MULT. This can also be done automatically using the command select. This
module provides tools for manipulating multipliers before and during the construction of lattice
basis (e.g., checking if the period is maximal, etc.).

BASIS

This can be either BASISLR or BASISSI, depending on the chosen representation. One can copy
one of these two in BASIS (i.e. copy the “.def” and the “.mod” for one of them) and change the
module name (in the code) to BASIS. This can also be done automatically using the command
select. This module provides tools for manipulating the vectors of a lattice basis (reduction, etc.)
after its construction.

CONVERT

This can be either LILR, SILR, SISI or LISI, depending the chosen representation. One can
copy one of these four in CONVERT (i.e. copy the “.def” and the “.mod” for one of them) and
change the module name (in the code) to CONVERT. This can also be done automatically using the
command select.
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MULTLI

This module offers basic tools to manipulate scalars, vectors and matrices used as multipliers
for linear congruential (or multiple recursive) generators. They are represented using the LONGINT

type. Before calling any of the procedures with suffix Modm, one must first call MSetm to fix the value
of the modulus m. MaxPeriod and PrimElem can be used to verify the maximal period conditions for
prime moduli given in Knuth [20]. Before calling these procedures, one must first call SetFactors
to give or compute the decomposition of m− 1 and r.

DEFINITION MODULE MULTLI;

FROM SUPINT IMPORT SuperInteger;
FROM SUPFACT IMPORT Factors;
FROM CONFIG IMPORT MDim;

TYPE
MScal = LONGINT;
MVect = ARRAY MDim OF MScal;
MMatr = ARRAY MDim OF MVect;

VAR
MZero, MOne, MTwo : MScal; (* Constants 0, 1, and 2. *)

PROCEDURE MCreateScal (VAR S : MScal);

Creates S. (Is there for compatibility with MULTSI. Does nothing in the case of MULTLI.)

PROCEDURE MDeleteScal (VAR S : MScal);

Deallocates the memory allocated to S by a previous call to MCreateScal.

PROCEDURE MCreateVect (VAR V : MVect; k1, k2 : MDim);

Creates entries of V, using MCreateScal, for indices k1 to k2 inclusive. If k2 is smaller than k1 then does
nothing.

PROCEDURE MDeleteVect (VAR V : MVect; k1, k2 : MDim);

Deallocates the memory that was allocated for the creation of V, of type MVect, at a previous call to
MCreateVect with indices from k1 to k2 inclusive.

PROCEDURE MCreateMatr (VAR M : MMatr; k1, k2 : MDim);

Creates the elements of M, as in MCreateVect.

PROCEDURE MDeleteMatr (VAR M : MMatr; k1, k2 : MDim);

Deallocates the memory that was allocated for the creation of M, of type MMatr, at a previous call to
MCreateMatr with parameters k1 and k2.

PROCEDURE MReadScal (VAR S : MScal);

Reads S from current intput file.

PROCEDURE MWriteScal (S : MScal);

Writes S to current output file.
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PROCEDURE MWriteScalBin (S : MScal);

Writes S to current output file in binary form.

PROCEDURE MWriteVect (VAR V : MVect; n : MDim);

Writes content of V in current output file.

PROCEDURE MScalToLI (S : MScal) : LONGINT;

Returns the LONGINT representation of S.

PROCEDURE MScalToLR (S : MScal) : LONGREAL;

Returns the LONGREAL representation of S.

PROCEDURE MScalToSup (S : MScal; T : SuperInteger);

Converts S to the SuperInteger T (which must have been created before).

PROCEDURE SupToMScal (T : SuperInteger; VAR S : MScal);

Converts T to the MScal S (which must have been created before).

PROCEDURE LIToMScal (I : LONGINT; VAR S : MScal);

Converts I to the MScal S.

PROCEDURE MAffect (S : MScal; VAR T : MScal);

Gives to T the value of S.

PROCEDURE MEqual (S, T : MScal): BOOLEAN;

Returns TRUE if S is equal to T, FALSE otherwise.

PROCEDURE MGreater (S1, S2 : MScal): BOOLEAN;

Returns TRUE if S1 is greater than S2, FALSE otherwise.

PROCEDURE MSmaller (S1, S2 : MScal): BOOLEAN;

Returns TRUE if S1 is smaller than S2, FALSE otherwise.

PROCEDURE MChangeSign (VAR S : MScal);

Changes the sign of S.

PROCEDURE MInc (VAR S : MScal; I : LONGINT);

Adds I to S. The result is in S.

PROCEDURE MAdd (S1, S2 : MScal; VAR T : MScal);

Adds S1 to S2 and puts the results in T.

PROCEDURE MSubtract (S1, S2 : MScal; VAR T : MScal);

Subtracts S2 from S1 and puts the results in T.



70 MULTLI

PROCEDURE MAffectIdentMatr (VAR M : MMatr; n : MDim);

Initializes M[1..n,1..n] to the identity matrix.

PROCEDURE MCopyVect (VAR U, V : MVect; n : MDim);

Copies vector U, of dimension n, into vector V.

PROCEDURE MCopyMatr (VAR M, N : MMatr; n : MDim);

Copies matrix M, of dimension n×n, into matrix N.

PROCEDURE MModifVect (VAR U,V : MVect; R : MScal; n : MDim);

Adds R times the vector V to the vector U.

PROCEDURE MPowerLI (S : MScal; i : LONGINT; VAR R : MScal);

Returns Si in R.

PROCEDURE MMultiply (T, S : MScal; VAR R : MScal);

Returns the product of T by S in R.

PROCEDURE MQuotient (T, S : MScal; VAR Q : MScal);

Returns the (truncated) quotient of T by S in Q.

PROCEDURE MModulo (T, S : MScal; VAR R : MScal);

Returns T modulo S in R.

PROCEDURE MSetm (m : MScal);

Sets the value of the modulus m which will be used from now on in the procedures below.

PROCEDURE MGetm (VAR m : MScal);

Returns in m the value of the current modulus.

PROCEDURE MProdModm (S, T : MScal; VAR R : MScal);

Returns in R the product of S by T modulo m. Assumes that S and T are between -m and m.

PROCEDURE MProdScalModm (VAR U, V : MVect; VAR Q, R : MScal; n : MDim);

Returns in R the scalar product of U by V modulo m, using components 1 to n of these vectors. Q contains
the quotient.

PROCEDURE MModifVectModm (VAR U, V : MVect; R : MScal; n : MDim);

Adds R times the vector V to the vector U.

PROCEDURE MPowerPolyMod (VAR A : MVect; n : MDim; q : MScal; VAR R : MVect);

Returns in R the coefficients of the polynomial xq mod f(x) ( mod m), where f(x) = xn − A1x
n−1 −

· · · −An.

PROCEDURE SetFactors (VAR ListmMS1, Listr : Factors; k : MDim);

Sets the factors of m−1 and r [= (mk−1)/(m−1)]. If ListmMS1 is NIL, then the procedure will calculate
and return the factors of m − 1. If not, then the procedure will take the list of factors (see SUPFACT of
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SENTIERS) and verify if they are factors of m − 1. The program will stop if the product does not give
m− 1. The same things are done with Listr and the factors of r.

PROCEDURE PrimElem (VAR A : MVect) : BOOLEAN;

Verifies a first condition for f(x) to be primitive modulo m, namely that (−1)k−1ak is a primitive element
modulo m. Must have called SetFactors before.

PROCEDURE MaxPeriod (VAR A : MVect) : BOOLEAN;

Verifies the remaining conditions for f(x) to be primitive modulom, assuming that PrimElem has returned
TRUE.

END MULTLI.
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MULTSI

Same as MULTLI, except that the values are represented using the SuperInteger type, and that
MCreateScal, MCreateVect, and MCreateMatr are required to create the SuperIntegers. The
initial memory space (in words) allocated for the digits of the SuperIntegers thus created is 2 to
the power MSizeSI (currently 4 words). (See Create in SUPINT).

DEFINITION MODULE MULTSI;

FROM SUPINT IMPORT SuperInteger;
FROM SUPFACT IMPORT Factors;
FROM CONFIG IMPORT MMaxDim, MDim;

TYPE
MScal = SuperInteger;
MVect = ARRAY MDim OF MScal;
MMatr = ARRAY MDim OF MVect;

VAR
MZero, MOne, MTwo : MScal; (* These should be constants *)

PROCEDURE MCreateScal (VAR S : MScal);
PROCEDURE MDeleteScal (VAR S : MScal);
PROCEDURE MCreateVect (VAR V : MVect; k1, k2 : MDim);
PROCEDURE MDeleteVect (VAR V : MVect; k1, k2 : MDim);
PROCEDURE MCreateMatr (VAR M : MMatr; k1, k2 : MDim);
PROCEDURE MDeleteMatr (VAR M : MMatr; k1, k2 : MDim);
PROCEDURE MReadScal (VAR S : MScal);
PROCEDURE MEqual (S, T : MScal): BOOLEAN;
PROCEDURE MGreater (S1, S2 : MScal): BOOLEAN;
PROCEDURE MSmaller (S1, S2 : MScal): BOOLEAN;
PROCEDURE MChangeSign (S : MScal);
PROCEDURE MInc (VAR S : MScal; I : LONGINT);
PROCEDURE MAdd (S1, S2 : MScal; VAR S3 : MScal);
PROCEDURE MSubtract (S1, S2 : MScal; VAR S3 : MScal);
PROCEDURE MWriteScal (S : MScal);
PROCEDURE MWriteScalBin (S : MScal);
PROCEDURE MWriteVect (VAR V : MVect; n : MDim);
PROCEDURE MScalToLI (S : MScal) : LONGINT;
PROCEDURE MScalToLR (S : MScal) : LONGREAL;
PROCEDURE MScalToSup (S: MScal; T : SuperInteger);
PROCEDURE LIToMScal (I : LONGINT; VAR S : MScal);
PROCEDURE MAffect (S : MScal; VAR T : MScal);
PROCEDURE MAffectIdentMatr (VAR M : MMatr; n : MDim);
PROCEDURE MCopyVect (VAR U, V : MVect; n : MDim);
PROCEDURE MCopyMatr (VAR M, N : MMatr; n : MDim);
PROCEDURE MModifVect (VAR U,V : MVect; R : MScal; n : MDim);
PROCEDURE MPowerLI (S : MScal; i : LONGINT; VAR R : MScal);
PROCEDURE MMultiply (T, S : MScal; VAR R : MScal);
PROCEDURE MQuotient (T, S : MScal; VAR Q : MScal);
PROCEDURE MModulo (T, S : MScal; VAR R : MScal);
PROCEDURE MSetm (m : MScal);
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PROCEDURE MGetm (VAR m : MScal);
PROCEDURE MProdModm (S, T : MScal; VAR R : MScal);
PROCEDURE MProdScalModm (VAR U, V : MVect; VAR a, R : MScal; n : MDim);

PROCEDURE MModifVectModm (VAR U,V : MVect; R : MScal; n : MDim);
PROCEDURE MPowerPolyMod (VAR A : MVect; n : MDim; q : MScal; VAR R : MVect);
PROCEDURE SetFactors (VAR ListmMS1, Listr : Factors; k : MDim);

PROCEDURE PrimElem (VAR A : MVect) : BOOLEAN;
PROCEDURE MaxPeriod (VAR A : MVect) : BOOLEAN;
END MULTSI.
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BASISLR

This module offers basic tools to manipulate scalars, vectors, and matrices that are used to
represent lattice bases, using the LONGREAL type. It is used by the modules LATBASIS, REDBAS, etc.,
when this representation type is used. See that module for more details.

DEFINITION MODULE BASISLR;

FROM SUPINT IMPORT SuperInteger;
FROM CONFIG IMPORT BMaxDim, BDim;

TYPE
BScal = LONGREAL;
BVect = ARRAY BDim OF BScal;
BMatr = ARRAY BDim OF BVect;
VectLI = ARRAY BDim OF LONGINT;

VAR
BZero, BOne, BMinusOne : BScal; (* 0, 1, and -1. *)

PROCEDURE BCreateScal (VAR S : BScal);

PROCEDURE BDeleteScal (VAR S : BScal);

PROCEDURE BCreateVect (VAR V : BVect; d1, d2 : BDim);

PROCEDURE BDeleteVect (VAR V : BVect; d1, d2 : BDim);

PROCEDURE BCreateMatr (VAR M : BMatr; d1, d2 : BDim);

PROCEDURE BDeleteMatr (VAR M : BMatr; d1, d2 : BDim);

These 6 procedures do nothing. There are there only for compatibility with the corresponding procedures
in BASISSI.

PROCEDURE BReadScal (VAR S : BScal);

PROCEDURE BWriteScal (S : BScal; nb : CARDINAL);

Writes content of S in current output file. Uses a total of at least nb positions.

PROCEDURE BWriteVect (VAR V : BVect; n : BDim; nb : CARDINAL);

Writes content of V for indices [1..n] in current output file. Uses a total of at least nb positions for each
number.

PROCEDURE BWriteMatr (VAR M : BMatr; n : BDim; nb : CARDINAL);

Writes content of M for indices [1..n][1..n] in current output file. Uses a total of at least nb positions
for each number.

PROCEDURE BProdScalVect (s : BScal; VAR V : BVect; d : BDim);

Multiplies vector V by scalar s.

PROCEDURE BProdScal (VAR U, V : BVect; n : BDim; VAR S : BScal);

Returns in S the scalar product of U by V, using components from 1 to n.
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PROCEDURE BProdScalLR (VAR U, V : BVect; n : BDim) : LONGREAL;

Returns the scalar product of U by V, using components from 1 to n.

PROCEDURE BProdScalSI (VAR U, V : BVect; n : BDim; Res : SuperInteger);

Returns in S the scalar product of U by V, using components from 1 to n. U and V are rounded and
converted into SuperInteger representation before the computation of the scalar product.

PROCEDURE BL1NormLR (VAR V : BVect; n : BDim) : LONGREAL;

Returns the L1 norm of V, using components from 1 to n.

PROCEDURE BL2NormLR (VAR V : BVect; n : BDim) : LONGREAL;

Returns the L2 norm of V, using components from 1 to n.

PROCEDURE BL1NormSI (VAR V : BVect; n : BDim; S1 : SuperInteger);

Returns in S1 the L1 norm of V, using components from 1 to n.

PROCEDURE BSupNormLR (VAR V : BVect; n : BDim) : LONGREAL;

Returns the sup norm of V, using components from 1 to n.

PROCEDURE BSupNormSI (VAR V : BVect; n : BDim; S1 : SuperInteger);

Returns in S1 the sup norm of V, using components from 1 to n.

PROCEDURE BModifVectLR (VAR U, V : BVect; c : LONGREAL; n : BDim);

Adds c times the vector V to the vector U. Assumes that both vectors have dimension n.

PROCEDURE BModifVectLI (VAR U, V : BVect; c : LONGINT; n : BDim);

Adds c times the vector V to the vector U. Assumes that both vectors have dimension n.

PROCEDURE BModifVect (VAR U, V : BVect; c : BScal; n : BDim);

Adds c times the vector V to the vector U. Assumes that both vectors have dimension n.

PROCEDURE BChangeSign (VAR S : BScal);

Changes the sign of S.

PROCEDURE BChangeSignVect (VAR V : BVect; n : BDim);

Changes the sign of elements 1 to n of vector V.

PROCEDURE BAffect (S : BScal; VAR T : BScal);

Gives to T the value of S.

PROCEDURE BExchange (VAR S, T : BScal);

PROCEDURE BEqual (S, T : BScal): BOOLEAN;

Returns TRUE if S is equal to T, FALSE otherwise.
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PROCEDURE BSmaller (S, T : BScal): BOOLEAN;

Returns TRUE if S is smaller than T, FALSE otherwise.

PROCEDURE BGreater (S, T : BScal): BOOLEAN;

Returns TRUE if S is greater than T, FALSE otherwise.

PROCEDURE BAbsSizeOrd (S, T : BScal): INTEGER;

Returns -1 (resp. 0, +1) according as S > (resp. =, <) T.

PROCEDURE BAbs (S : BScal; VAR T : BScal);

Returns in T the absolute value of S.

PROCEDURE BSetNeg (VAR S : BScal);

Changes the sign of S if it is not negative.

PROCEDURE BInc (VAR S : BScal; i : LONGINT);

Adds i to S.

PROCEDURE BAdd (S, T : BScal; VAR Res : BScal);

Returns in Res the sum of S and T.

PROCEDURE BMultiply (S, T : BScal; VAR Res : BScal);

Returns in Res the product of S by T.

PROCEDURE BDivideRound (S, T : BScal; VAR Res : BScal);

Returns in Res the result of the division of S by T. The result is rounded. For results just in the middle
of two integers, the value returned by the function is the integer the nearest of zero. Ex.: If S = 5.0 and
T = 10.0, then the returned value is 0. If S = −5.0 and T = 10.0, then the returned value is also 0.

PROCEDURE BCopyVect (VAR U, V : BVect; n : BDim);

Copies the vector U, of dimension n, into vector V.

PROCEDURE BCopyMatr (VAR M1, M2 : BMatr; n : BDim);

Copies matrix M1, of dimension n, into matrix M2.

PROCEDURE BConvLR (S : BScal): LONGREAL;

Returns the LONGREAL representation of S. Is there only for compatibility with BASISSI.

PROCEDURE BConvSI (R : BScal; S : SuperInteger);

Returns in S the SuperInteger representation of R.

PROCEDURE LIToBScal (i : LONGINT; VAR S : BScal);

Converts i to S

PROCEDURE BAffectIdentMatr (VAR M : BMatr; n : BDim);

Initializes M[1..n,1..n] to the identity matrix.
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PROCEDURE BTrMatr (M : BMatr; VAR Mtr : BMatr; d : BDim);

Computes the transposed matrix of M, and returns the result in Mtr.

PROCEDURE BCanonicalVect (VAR V : BVect; i : BDim);

Produces the vector with all coordinates equal to zero with the exception of the i-th coordinate which is
equal to one.

PROCEDURE BRandomScal (VAR s : BScal; m : BScal);

Produces a random integer in the interval [0,m), with a uniform distribution.

PROCEDURE GCD2vect (VAR V : VectLI; k, n : BDim) : LONGINT;

Computes and returns the greatest common divisor of the vectors V[k],...,V[n].

PROCEDURE BEuclide (A, B : BScal; VAR C, D, E, F, G : BScal);

For given A and B, returns C, D, E, F , G such that:

CA+DB = G = gcd(A,B)

EA+ FB = 0,

where gcd is the greatest common denominator.

END BASISLR.
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BASISSI

Same as BASISLR, except that the values are represented using the SuperInteger type.

DEFINITION MODULE BASISSI;

FROM SUPINT IMPORT SuperInteger;
FROM CONFIG IMPORT BDim;

CONST
BSizeSI = 2; (* Used in BCreateScal. *)

TYPE
BScal = SuperInteger;
BVect = ARRAY BDim OF BScal;
BMatr = ARRAY BDim OF BVect;

VAR
BZero, BOne, BMinusOne : BScal; (* 0, 1, and -1 *)

PROCEDURE BCreateScal (VAR S : BScal);

Creates the SuperInteger S. The initial memory space (in words) allocated for the digits of S is 2 to
the power BSizeSI (currently 4 words). (See Create in SUPINT).

PROCEDURE BDeleteScal (VAR S : BScal);

Deallocates the memory allocated for the SuperInteger S, at a previous call to BCreateScal.

PROCEDURE BCreateVect (VAR V : BVect; d1, d2 : BDim);

Creates the SuperInteger entries for indices d1 to d2 inclusive (i.e., extends V[0..d1-1] to V[0..d2]).
If d2 is smaller than d1 then does nothing.

PROCEDURE BDeleteVect (VAR V : BVect; d1, d2 : BDim);

Deallocates the memory allocated to the SuperInteger elements of V[d1..d2].

PROCEDURE BCreateMatr (VAR M : BMatr; d1, d2 : BDim);

Creates the SuperInteger entries for indices d1 to d2 inclusive; i.e., extends the square matrix
M[0..d1-1, 0..d1-1] to M[0..d2, 0..d2]. If d1 > 0, creates the missing entries in the d1 vectors
already there, in addition to creating the d2 - d1 + 1 missing vectors.

PROCEDURE BDeleteMatr (VAR M : BMatr; d1, d2 : BDim);

Does exactly the opposite of BCreateMatr (M, d1, d2).

PROCEDURE BReadScal (VAR S : BScal);

PROCEDURE BWriteScal (S : BScal; nb : CARDINAL);

Writes the contents of S to the current output. Uses nb digits per line.

PROCEDURE BWriteVect (VAR V : BVect; n : BDim; nb : CARDINAL);

Writes contents of V to current output. Uses nb digits per line for each number.
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PROCEDURE BWriteMatr (VAR M : BMatr; n : BDim; nb : CARDINAL);

Writes contents of M to current output. Uses nb digits per line for each number.

PROCEDURE BProdScalVect (s : BScal; VAR V : BVect; d : BDim);
PROCEDURE BProdScal (VAR U, V : BVect; n : BDim; VAR S : BScal);
PROCEDURE BProdScalLR (VAR U, V : BVect; n : BDim) : LONGREAL;
PROCEDURE BProdScalSI (VAR U, V : BVect; n : BDim; Res : SuperInteger);

PROCEDURE BL1NormLR (VAR V : BVect; n : BDim) : LONGREAL;
PROCEDURE BL1NormSI (VAR V : BVect; n : BDim; S1 : SuperInteger);
PROCEDURE BL2NormLR (VAR V : BVect; n : BDim) : LONGREAL;
PROCEDURE BSupNormLR (VAR V : BVect; n : BDim) : LONGREAL;
PROCEDURE BSupNormSI (VAR V : BVect; n : BDim; S1 : SuperInteger);

PROCEDURE BModifVectLR (VAR U, V : BVect; c : LONGREAL; n : BDim);
PROCEDURE BModifVectLI (VAR U, V : BVect; c : LONGINT; n : BDim);
PROCEDURE BModifVect (VAR U, V : BVect; c : BScal; n : BDim);

PROCEDURE BChangeSign (VAR S : BScal);
PROCEDURE BChangeSignVect (VAR V : BVect; n : BDim);
PROCEDURE BAffect (S : BScal; VAR T : BScal);
PROCEDURE BExchange (VAR S, T : BScal);

PROCEDURE BEqual (S, T : BScal): BOOLEAN;
PROCEDURE BSmaller (S, T : BScal): BOOLEAN;
PROCEDURE BGreater (S, T : BScal): BOOLEAN;

PROCEDURE BAbsSizeOrd (S, T : BScal): INTEGER;
PROCEDURE BAbs (S : BScal; VAR T : BScal);
PROCEDURE BSetNeg (VAR S : BScal);
PROCEDURE BInc (VAR S : BScal; i : LONGINT);
PROCEDURE BAdd (S, T : BScal; VAR Res : BScal);
PROCEDURE BMultiply (S, T : BScal; VAR Res : BScal);
PROCEDURE BDivideRound (S, T : BScal; VAR Res : BScal);
PROCEDURE BCopyVect (VAR U, V : BVect; n : BDim);
PROCEDURE BCopyMatr (VAR M1, M2 : BMatr; n : BDim);
PROCEDURE BConvLR (S : BScal): LONGREAL;
PROCEDURE BConvSI (R : BScal; S : SuperInteger);
PROCEDURE LIToBScal (i : LONGINT; VAR S : BScal);
PROCEDURE BAffectIdentMatr (VAR M : BMatr; n : BDim);
PROCEDURE BTrMatr (M : BMatr; VAR Mtr : BMatr; d : BDim);
PROCEDURE BCanonicalVect (VAR V : BVect; i : BDim);
PROCEDURE BRandomScal (VAR s : BScal; m : BScal);

PROCEDURE BEuclide (A, B : BScal; VAR C, D, E, F, G : BScal);

For given A and B, returns C, D, E, F , G such that:

CA+DB = G = gcd(A,B)

EA+ FB = 0.

where gcd is the greatest common denominator.

END BASISSI.
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LILR

Procedures to convert between LONGINT (multipliers) and LONGREAL (elements of basis vectors).
This is one of the four versions of the module CONVERT. The other versions are LISI, SILR, SISI.
Which one is used depends on the current representation, as selected by the command select.

DEFINITION MODULE LILR;

FROM MULTLI IMPORT MScal; (* LONGINT. *)
FROM BASISLR IMPORT BScal; (* LONGREAL. *)
FROM SUPINT IMPORT SuperInteger;

PROCEDURE MScalToBScal (S : MScal; VAR R : BScal);

Converts S to R (from LONGINT to LONGREAL).

PROCEDURE BScalToMScal (S : BScal; VAR R : MScal);

Converts S to R (from LONGREAL to LONGINT).

PROCEDURE SupToBScal (S : SuperInteger; VAR R : BScal);

Converts S to R (from SuperInteger to LONGREAL).

PROCEDURE SupToMScal (S : SuperInteger; VAR R : MScal);

Converts S to R (from SuperInteger to LONGINT).

PROCEDURE BScalToSup (S : BScal; R : SuperInteger);

Converts S to R (from LONGREAL to SuperInteger).

PROCEDURE MScalToSup (S : MScal; R : SuperInteger);

Converts S to R (from LONGINT to SuperInteger).

END LILR.
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LISI

Procedures to convert between LONGINT (multipliers) and SuperInteger (elements of basis
vectors). Similar to LILR.

DEFINITION MODULE LISI;

FROM MULTLI IMPORT MScal; (* LONGINT. *)
FROM BASISSI IMPORT BScal; (* SuperInteger. *)
FROM SUPINT IMPORT SuperInteger;

PROCEDURE MScalToBScal (S : MScal; VAR R : BScal);

Converts S to R (from LONGINT to SuperInteger).

PROCEDURE BScalToMScal (S : BScal; VAR R : MScal);

Converts S to R (from SuperInteger to LONGINT).

PROCEDURE SupToBScal (S : SuperInteger; VAR R : BScal);

Copies S to R.

PROCEDURE SupToMScal (S : SuperInteger; VAR R : MScal);

Converts S to R (from SuperInteger to LONGINT).

PROCEDURE BScalToSup (S : BScal; R : SuperInteger);

Copies S to R.

PROCEDURE MScalToSup (S : MScal; R : SuperInteger);

Converts S to R (from LONGINT to SuperInteger).

END LISI.
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SILR

Procedures to convert between SuperInteger (multipliers) and LONGREAL (elements of basis
vectors). Similar to LILR.

DEFINITION MODULE SILR;

FROM SUPINT IMPORT SuperInteger;
FROM MULTSI IMPORT MScal; (* SuperInteger. *)
FROM BASISLR IMPORT BScal; (* LONGREAL. *)

PROCEDURE MScalToBScal (S : MScal; VAR R : BScal);

Converts S to R (from SuperInteger to LONGREAL).

PROCEDURE BScalToMScal (S : BScal; VAR R : MScal);

Converts S to R (from LONGREAL to SuperInteger).

PROCEDURE SupToBScal (S : SuperInteger; VAR R : BScal);

Converts S to R (from SuperInteger to LONGREAL).

PROCEDURE SupToMScal (S : SuperInteger; VAR R : MScal);

Copies S to R.

PROCEDURE BScalToSup (S : BScal; R : SuperInteger);

Converts S to R (from LONGREAL to SuperInteger).

PROCEDURE MScalToSup (S : MScal; R : SuperInteger);

Copies S to R.

END SILR.



83

SISI

Procedures to convert between SuperInteger (multipliers) and SuperInteger (elements of
basis vectors). Simply copies the value (equivalent to Affect in SUPINT).

DEFINITION MODULE SISI;

FROM MULTSI IMPORT MScal; (* SuperInteger. *)
FROM BASISSI IMPORT BScal; (* SuperInteger. *)
FROM SUPINT IMPORT SuperInteger;

PROCEDURE MScalToBScal (S : MScal; VAR R : BScal);

Copies S to R.

PROCEDURE BScalToMScal (S : BScal; VAR R : MScal);

Copies S to R.

PROCEDURE SupToBScal (S : SuperInteger; VAR R : BScal);

Copies S to R.

PROCEDURE SupToMScal (S : SuperInteger; VAR R : MScal);

Copies S to R.

PROCEDURE BScalToSup (S : BScal; R : SuperInteger);

Copies S to R.

PROCEDURE MScalToSup (S : MScal; R : SuperInteger);

Copies S to R.

END SISI.
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select

This command will change automatically the representations of the moduli and multipliers in
the modules MULT, BASIS and CONVERT. To run this program, type “select” xx yy, where xx is
LI or SI, and yy is LR or SI. Parameters xx and yy determine the types used for multipliers and
for the moduli, respectively. The program copies MULTxx in MULT, BASISyy in BASIS, and xxyy in
CONVERT. The module names are also changed appropriately.
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