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Abstract We consider a class of Markov chain models that includes the highly reliable
Markovian systems (HRMS) often used to represent the evolution of multicomponent sys-
tems in reliability settings. We are interested in the design of efficient importance sampling
(IS) schemes to estimate the reliability of such systems by simulation. For these models,
there is in fact a zero-variance IS scheme that can be writtenexactly in terms of a value
function that gives the expected cost-to-go (the exact reliability, in our case) from any state
of the chain. This IS scheme is impractical to implement exactly, but it can be approximated
by approximating this value function. We examine how this can be effectively used to es-
timate the reliability of a highly-reliable multicomponent system with Markovian behavior.
In our implementation, we start with a simple crude approximation of the value function, we
use it in a first-order IS scheme to obtain a better approximation at a few selected states, then
we interpolate in between and use this interpolation in our final (second-order) IS scheme.
In numerical illustrations, our approach outperforms the popular IS heuristics previously
proposed for this class of problems. We also perform an asymptotic analysis in which the
HRMS model is parameterized in a standardwayby a rarity parameterε, so that the relative
error (or relative variance) of the crude Monte Carlo estimator is unbounded whenε → 0.
We show that with our approximation, the IS estimator has bounded relative error (BRE) un-
der very mild conditions, and vanishing relative error (VRE), which means that the relative
error converges to 0 whenε → 0, under slightly stronger conditions.

Keywords Monte Carlo· rare events· importance sampling

1 Introduction

Estimating dependability measures for a highly-reliable multicomponent system is an im-
portant problem in many areas of applications such as telecommunications, computer sys-
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tems, aircraft design, air traffic control, power utilities, and many others. Dependability mea-
sures of interest include (among others) themean time to failure(MTTF), defined as the
expected time until the first failure of the system given thatall its components are initially
operational, themean time between failures(MTBF), defined as the inverse of the average
number of system failures per unit of time in the long run (over an infinite horizon), and
the systemavailability, defined as the fraction of the time when the system is operational,
in the long run [8,23]. Dependability is typically improvedby introducing redundancy in
the components. To estimate these measures, the system is often modeled as a continuous-
time Markov chain (CTMC), by assuming that component lifetimes and repair times are
exponentially distributed.

However, with the exception of very simple situations, the state space of the CTMC
is usually so large that analytic and numerical methods are impractical, and one must rely
on simulation to estimate the dependability measures of interest. Moreover, standard (crude)
Monte Carlo method is much too inefficient, because system failures occur too rarely to pro-
vide a meaningful estimator within a reasonable amount of time. In this context, importance
sampling (IS) is the standard way of making the important rare events (the system failures, in
this case) occur more frequently, in order to recover an unbiased estimator with smaller vari-
ance [10,14,22,26]. The main difficulty is to find a good, robust, and easily implementable
IS strategy. Popular IS heuristics previously proposed forthis class of problems include
simple failure biasing (SFB), balanced failure biasing (BFB), the general biasing scheme
(GBS), failure-distance biasing (FDB), and the balance likelihood ratio (BLR) method [2,
6,7,12,13,23,26,27,29]. Here, we study a different approach in which we approximate the
zero-variance change of measure via a simple approximationof the value function (in this
case, the conditional probability that the rare event occurs, as a function of the current state).

In agreement with previous literature, we adopt a CTMC modelwith finite state space,
whose jumps (transitions) correspond to component failures and repairs. This model is re-
generative, and we can define the regeneration times as timeswhen the chain returns to the
initial state, in which all the components are operational.The transitions that correspond
to component failures have very small rates, but not those that correspond to repairs. As a
result, the system tends to return to its initial state very often and rarely reaches the failed
state.

In this setting, the MTTF can be written as a ratio of two expectations, where the numer-
ator is the expected time until the system reaches either thefailed state or the initial state,
and the denominator is the probabilityµ0 that the system reaches the failed state before re-
turning to its initial state, both under the assumption thatthe system starts from its initial
state [10,23,25]. The numerator is easy to estimate by standard Monte Carlo, but not the
denominator, because it is the probability of a rare event. The MTBF and the availability
can also be written as ratios of expectations where one of thetwo expectations in the ratio
involves the same rare event as inµ0. IS schemes that work well forµ0 typically work fine
also for these expectations [10,12]. In this paper, we focuson low-variance estimation of
µ0.

Since the occurrence of the rare event of interest here does not depend on the sojourn
times in the states visited by the CTMC, it suffices to simulate the embedded discrete-time
Markov chain (DTMC), and this is what we will do.

Theremainderis organized as follows. In Section 2, we specify the HRMS model con-
sidered in this paperand we briefly summarizethe IS heuristicsproposed earlier for this
model. In Section 3, we definea zero-variance IS sampling scheme to estimateµ0, and we
propose practical heuristics to approximate this scheme inpractice. Zero-varianceestima-
tors for general Markov chains have been studied earlier, in [5,14,15,20], for example. In
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asymptotic analysis of IS for highly-dependable systems, the failure probabilities are often
parameterized by some parameterε so that these probabilities converge to 0 whenε → 0
while the repair probabilities remain bounded, and one studies the asymptotic behavior of
the estimator (e.g., its relative error) whenε → 0. In Section 4, we recall the basic definitions
for this type of analysis, and prove some asymptotic properties of the IS estimators proposed
in Section 3. We show thatour IS estimators havethe BRE property under mild conditions,
and the VRE property under slightly stronger conditions.In numerical experiments reported
in Section 5,the new IS methodsoutperformthe IS heuristics previously proposed for this
class of problems. A conclusion follows in Section 6. A subset of this paper (mostly parts
of Sections 3 and 5) was presented at the 2007 European Simulation Conference [19].

2 Markovian Model of a Highly Reliable System

We consider a model of highly reliable Markovian system (HRMS) as in [6,25–27], among
others. The system hasc types of components, withni identical components of typei, for
i = 1, . . . ,c. We assume that each component is either in a failed state or in an operational
state, and that the system evolves as a CTMC whosestateis a vectory = (y(1), . . . ,y(c)),
wherey(i) represents the number offailed components of typei. This implies in particular
that the failure and repair rates depend only ony, but they may depend on the entire statey.
This CTMC has a finite state spaceY of cardinality(n1+1) · · ·(nc+1). Let λ (y,y′) denote
its jump rate from statey to statey′. A jump correspondseither to the (simultaneous) failure
of one or more components, or to the repair of one or more failed components. This model
covers the notion of failure propagation, where the failureof a component may trigger the
(almost) simultaneous failure of other components. It alsocovers deferred and group repairs
[12], where repairs can occur only when there are enough failed components. For example,
for a certain type of component, all components of that type might be repaired as a group
(simultaneously) at a given rate when at least three of them are failed, and the repair rate for
these components is zero otherwise.However, our results in this paper are obtained under
additional assumptions that preclude these deferred and group repairs.

One could of course define more general CTMC models where additional information
must be incorporated in the state. This happens, for example, if the failed components are
repaired according to some priority rules that take into account their failure time (then the
state space remains finite but the state must contain the relevant ordering information), or if
some of the lifetime or repair distributions are no longer exponential (then the state space
is infinite, with continuous coordinates). Our proposed methodology could be extended in
principle to these more general models, but it may become much more complicated to im-
plement. The IS methodology studied here is only for the estimation of µ0 in the CTMC
model.

We suppose thatY is partitioned in two subsetsU andF , whereU is a decreasing
set (i.e., ify∈ U andy≥ y′ ∈ Y , theny′ ∈ U ) that contains the initial state0 = (0, . . . ,0)
in which all the components are operational. When we return to this state where all the
components are operational, we must recognize that we are not in the same situation as
initially, because we now know that we have returned to0 before reaching the failed state.
In this second case, we will call the state0′, to make the distinction.In other words, we split
the state0 in two states: From now on,0 will refer only to the initial state at the beginning
of the simulation, and0′ will refer to the state where all the components are operational at
any other stage of the simulation. Formally, this increasesthe cardinality of the state space
by 1. We also denoteU0 = U \{0′}.
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Let {Yj , j ≥ 0} be the DTMC embedded in the CTMC. That is, the CTMC starts in state
Y0 and enters stateYj at its jth jump, for j = 1,2,3, . . .. The transition probabilities for this
DTMC are

p(y,y′) = P[Yj = y′ |Yj−1 = y] =
λ (y,y′)

∑y′′∈Y λ (y,y′′)

for all y,y′ ∈Y . We assume that state0′ can be reached (directly or indirectly) from any state
y∈U0. Let τF = inf{ j ≥ 0 :Yj ∈F}, τ0′ = inf{ j ≥ 0 :Yj = 0′}, andτ = min(τF , τ0′). Our
assumption that0′ can be reached from anyy ∈ U implies thatE[τ] < ∞. For all y ∈ Y ,
define

µ(y) = P[τF < τ0′ |Y0 = y].

Note thatµ(y) = 1 wheny ∈ F , µ(0′) = 0, andµ(0) = µ0 is the probability we want to
estimate. To avoid trivialities, we suppose that 0< µ0 < 1.

The standard (crude) Monte Carlo method [3] estimatesµ0 by simulatingn independent
copies of the DTMC under its original probability law, and averages then copies of the
random variableX = I[τF < τ0′ ], whereI is the indicator function.The variance ofX is
µ0(1− µ0). A confidence interval onµ0 can be computed by assuming that this average is
approximately normally distributed (relying on the central-limit theorem) and estimating its
variance by the sample variance of then copies ofX, divided byn. In our rare-event setting,
however, only rare realizations ofX are nonzero. The crude Monte Carlo estimator has a
relative error (the standard deviation divided by the mean)of

√

µ0(1−µ0)/n/µ0, which is
approximately(nµ0)

−1/2 whenµ0 is small, and becomes very large whenµ0 is very small.
IS consists in replacing the transition probabilitiesp(y,y′) by new probabilitiesq(y,y′)

that satisfyq(y,y′) > 0 wheneverp(y,y′)µ(y′) > 0. We useEis and Varis to denote the ex-
pectation and variance operators under these new probabilities. The estimatorX is replaced
by

Xis = X
τ

∏
j=1

p(Yj−1,Yj)

q(Yj−1,Yj)
,

where the last product is thelikelihood ratioassociated with the sample path. This estimator
is unbiased [9]:

Eis[Xis |Y0 = y] = E[X |Y0 = y] = µ(y).

IS schemes such as SFB, BFB, RBS, FDB, and BLR, mentioned earlier, provide specific
ways of selecting the probabilitiesq(y,y′).

BFB [26] defines

q(y,y′) =



















1
|F(y)| if y′ ∈ F(y) andpR(y) = 0;

ρ 1
|F(y)| if y′ ∈ F(y) andpR(y) > 0;

(1−ρ) p(y,y′)
pR(y) if y′ ∈ R(y);

0 otherwise,

whereF(y) is the set of statesy′ directly reachable fromy (in a single transition) by a failure
event,R(y) is the set of states directly reachable fromy (in a single transition) by a repair
event,pR(y) = P[Yj ∈ R(y) | Yj−1 = y], andρ ∈ (0,1) is a constant, usually taken as 0.5.
This ρ represents the fraction of probability devoted to failure transitions at each step. This
probability is divided equally between all failure transitions having nonzero probability.

SFB [27] is similar, except that 1/|F(y)| is replaced byp(y,y′)/∑y′∈F(y) p(y,y′) in the
above equation, i.e., the failure probability is allocatedto the transitions in proportion to
their original probabilities.
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GBS and other refinements were developed in [12,13] for situations where there are
high-probability cycles. The main idea is to make sure that the probabilities are not reduced
too much along these high-probability cycles, because these cycles would otherwise con-
tribute huge values (with low probabilities) to the likelihood ratio, thus increasing the vari-
ance. High-probability cycles are common in models with deferred or group repairs, for ex-
ample.In our asymptotic analysis in Section 4, Assumption 1 will disallow high-probability
cycles.

Other schemes have been proposed, trying to take advantage of some knowledge or
learning of the model structure. For instance, we may decompose the set of component
types in those have already experienced a failure and those who have not, and give fixed
probabilities to each of those transitions (to favor those that seem to driveus closer to a
failed state). In each case, we can balance the probabilities in each subset or take them
proportional to the original ones in the spirit of SFB and BFB[6]. In particular, FDB [7]
changes the probabilities by taking into account the minimal number of transitions to failure
from each statey′ to which we can jump.

In BLR [2], the probabilities are changed in a way that over any cycle, the cumulated
likelihood ratio remains bounded when the failure probabilities converge to zero. Variants
are also defined that use structural information by identifying events on shortest paths to
failure, and pushing more toward those events.

3 Approximate Zero-Variance Sampling

Here we propose and study an alternative heuristic based on the approximation of thefol-
lowing zero-variance IS sampling scheme. Suppose we apply IS to ourDTMC with

q(y,y′) = q∗(y,y′)
def
=

{

p(y,y′)µ(y′)/µ(y) if 0 < µ(y) < 1,
p(y,y′) otherwise.

(1)

Note that∑y′∈Y q(y,y′) = 1 for eachy.

Proposition 1 With the probabilities (1), we haveVaris[Xis] = 0 and Eis[τ] < ∞ for any
initial state Y0 = y∈ U0.

Proof Under these probabilities,P[X = 0] = 0, becauseq∗(y,0′) = µ(0′) = 0 for y∈ U0, so
X = 1 with probability 1. IfX = 1, thenµ(Yτ) = 1, and therefore

Xis = X
τ

∏
j=1

p(Yj−1,Yj)

q(Yj−1,Yj)
=

τ

∏
j=1

µ(Yj−1)

µ(Yj)
=

µ(Y0)

µ(Yτ)
= µ0,

a constant, so its variance is zero.
For the second property, observe that a statey 6= 0′ with µ(y) = 0 cannot be reached

under the new probabilities. Then, one can see that there is aconstantδ > 0 such that from
any visited statey 6= 0′, there is a path of probability at leastδ leading toF . The result then
follows from astandardgeometrictrials argument. �

This zero-variance scheme cannot be implemented exactly, because the functionµ is
unknown, but it can be replaced by an approximationv that is easy to compute during the
simulation.That is, for each simulation run, we take an approximationv of the functionµ
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and plug it in (1) in place ofµ to define the change of probabilities for the IS estimator. This
gives

q(y,y′) =

{

p(y,y′)v(y′)/ṽ(y) if 0 < ṽ(y) < 1,
p(y,y′) otherwise,

(2)

whereṽ(y) = ∑y′∈Y p(y,y′)v(y′). We will assume henceforth thatv matchesµ at 0′ and in
F , where its value is known:v(0′) = 0 andv(y) = 1 for y∈ F .

Several types ofadaptive ISmethods that learn a good functionv iteratively have been
proposed and studied in the literature; see [1,4,14,15,20,24,28], for example. The general
idea of these adaptive methods is to use the realizations of the previous sample paths, where
each sample path provides one realization ofX, to construct an approximationv. Under
some conditions, this approximation can sometimes be shownto converge toµ asn→ ∞,
wheren is the number of realizations ofX. There are even situations where one can prove
that the variance converges to zero exponentially inn [4,15].

In some of these methods, eitherv or the IS probabilitiesq are restricted to be in a
preselected parametric class of functions parameterized by a multivariate parameterθ , and
the current value ofθ used for each sample path is selected based of what has been learned
from the previous sample paths. Some methods directly parameterize the IS probabilities
with θ and then learn adaptively theθ that minimizes the variance. Anotherclass of methods
definesv as a linear combination of a fixed set of basis functions, and estimates the best
coefficients in the linear combination (the parameters) by least squares, using data fromthe
previous sample paths[14]. The main difficulty with these methods is the choice of basis
functions,and they often require a significant amount of work and storage to updateθ .

In this paper, we shall consider simpler, more direct, approximations that can be com-
puted at little cost and require practically no storage.

As a rough-cut approximation of the functionµ in our model, we start with the follow-
ing. For any statey∈ U0, letΠ(y) be the set of all pathsπ = (y= y0 → y1 →·· ·→ yk) going
from statey to the setF , wherey j ∈U0 for j = 0, . . . ,k−1, p(y j−1,y j) > 0 for j = 1, . . . ,k,
andyk ∈ F . Each pathπ ∈ Π(y) has original probability

p(π) =
k

∏
j=1

p(y j−1,y j)

and we have thatµ(y) = ∑π∈Π(y) p(π). However, the latter sum is normally too complicated
to compute in practice, because it involves too many paths (there is often an infinite number
of paths, because the paths may contain an unlimited number of cycles withinU ).

A very crude estimate is to replace the sum by the maximum; i.e., approximateµ(y) by
its lower bound

v0(y) = max
π∈Π(y)

p(π).

Computing thisv0(y) amounts to computing the shortest path fromy to F , where the length
of the directed link fromy′ to y′′ is − logp(y′,y′′) for any pair of states(y′,y′′), or equiva-
lently the longest path where the length of a path is its probability (the product of probabili-
ties of its one-step transitions).In general, the worst-case time complexity for computing this
shortest path isΘ(|U | log|U |), which is certainly better than theΘ(|U |3) work required
to solve the linear system that would provide all the probabilities µ(y) for y∈ U , but still
expensive for large systems. Moreover, the shortest path would be needed from each state
y visited during the simulation. Of course, one could save work by storing in a hash table
any shortest path computed so far, including the shortest paths from other statesy′ computed
simultaneously while computing the shortest path from a given statey. Whenever we would
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needv0(y) for some statey, we would first check the hash table to see if it has already been
computed. Fortunately, all this overhead can often be bypassed by exploiting the model’s
structure, sometimes even for large and complicated systems, as we shall illustrate in our
examples. In many cases, the shortest path can be computed almost at no cost from anyy.

This v0 would do well in the cases where a single path dominates the sum. But this
lower bound onµ(y) could still underestimate the true value by a significant factor. An easy
improvement is to take the sum over a small set of disjoint paths (only a few of them) in-
stead of just considering the single most dominant one. These dominant paths can often be
selected by exploiting our knowledge of the structure of thesystem. For example, in some
cases, it makes sense to compute the probability of a path that leads toF from failures of
a single type of component, do this for each component type, and add these probabilities.
This computation can be done very quickly. We will use it in our numerical illustrations,
for systems that fail whenever fewer than a given number of components of any given type
are operational. WhenF has a different type of structure, other inexpensive approxima-
tions can often be used instead. For example, if the system fails when thetotal number of
failed components (regardless of their type) exceeds a given threshold, we can approximate
µ(y) by approximating the probability of reaching the failed stated by a sequence of failure
transitions only (no repair). We will give an illustration of this in Section 5.

Our general definition ofv0 for the rest of the paper is then as follows: Select a small set
of disjoint pathsΠ0(y) ⊆ Π(y) and define

v0(y) = ∑
π∈Π0(y)

p(π).

In [18], we had good luck with the following simple type of additional correction (this
was used there in a splitting algorithm): estimateµ(0) in preliminary runs with some initial
IS strategy, and compute the exponentα such that(v0(0))α equals this estimate. Then,
replace the estimatev0(y) by

v1(y) = (v0(y))
α

for all y ∈ U . This functionv1 matchesµ for y ∈ F and matches its estimate aty = 0.
In between, it uses an exponential interpolation, motivated by the crude idea that if there
is a single component type,y denotes the number of failed components, and if we assume
that the probability that the next event is a failure does notdepend ony, then the model
turns essentially into a gambler’s ruin problem andµ(y) decreases (approximately) as an
exponential function of−y [20].

This idea can be refined. One possibility is to replaceα by a state-dependent correction
exponentα(y). Here we shall consider the following form forα(y):

α(y) = 1+[α(0)−1]
logv0(y)
logv0(0)

,

whereα(0) is the value ofα as in the previous paragraph. The rationale for this form is
that the correction exponent is needed usually becausev0(y) accounts for only a few paths
and disregards many other ways of reachingF from y. Since the set of paths leading to
F is generally richer when we are farther fromF , it appears sensible to have a correction
exponent that changes progressively from 1 when we are very close toF , to α(0) when
we are in state0, and reflects the “distance” toF for the states in between. We denote the
resulting approximation by

v2(y) = (v0(y))
α(y).
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Among other possibilities, instead of estimatingµ(y) only at y = 0, we can estimate
it directly, via IS, over a finite subset of statesE ⊂ U , in preliminary runs. For example,
in an HRMS model,E could be the set of states where no more than one component is
failed, or the set of states where no more than two componentsare failed (depending on the
structure and size of the model). For each statey∈ E , we definev3(y) as the direct estimate
of µ(y) and we computeα(y) such that(v0(y))α(y) = v3(y). For each statey∈ U \E , we
may interpolate exponentially as follows: We can select a statey′ ∈ E such thaty′ ≤ y, and
definev3(y) = (v0(y))α(y′) (the selection is arbitrary and could be problem-dependent). Or
we may selectall statesy′ ∈ E such thaty 6= y′ ≤ y, and definev4(y) as the average of the
corresponding values of(v0(y))α(y′). Yet another possibility is to estimate asingleexponent
α for all statesy, based on all available information, e.g., by least-squares regression. As
an extreme case, takingE = U means that we have a direct estimate ofµ(y) for all states
y∈ U , and no interpolation is needed. Then, we are back to an estimator similar to that of
[1], depending on how the estimation is done (these authors change the measure dynamically
at each step, at the same time as they update their estimates of µ(y)). Our proposal is a matter
of compromise between this extreme case and just takingv0 (the other extreme).

All these possibilities would deserve further analysis andempirical comparison in real-
istic examples. In the Section 5, we compare some of them withthe best known IS heuristics,
on a few examples.

4 Asymptotic analysis

Asymptotic analysis of IS estimators in the context of HRMS systems, to characterize their
behavior when the failure rates converge to zero in certain ways while the rest remains fixed,
is usually done by parameterizing the transition rates of the CTMC in a polynomial form as
follows [14,21,26]:

λ (y,y′) = λ (y,y′,ε) = a(y,y′)εb(y,y′)

for some state-dependent constantsa(y,y′) ≥ 0 andb(y,y′) ≥ 0 (that do not depend onε).
We usually haveb(y,y′) > 0 for failure transitions andb(y,y′) = 0 for repair transitions. We
then look at what happens whenε → 0. Thus, the failure rates become smaller and smaller
whenε → 0, but the repair rates remain inΘ(1), andµ0 = µ0(ε) > 0 converges to 0. This
parameterization is transmitted to the transition probabilities p(y,y′) of the DTMC. The
rationale is that studying the asymptotic properties in this type of setting should give a good
idea of what happens for a given model, provided that we use the right constantsb(y,y′) to
somehow mimic the relationships between the different failure rates.

Suppose we have an estimatorX = X(ε) taking its value in[0,∞), such thatE[X(ε)] =
µ0(ε) and Var[X(ε)] = σ2

0 (ε) for eachε > 0.

Definition 1 (a) The estimatorX(ε) hasbounded relative error(BRE) [11,26], or equiva-
lently bounded relative variance, if

limsup
ε→0

σ0(ε)

µ0(ε)
< ∞. (3)

(b) It hasvanishing relative error(VRE) [16] if

limsup
ε→0

σ0(ε)

µ0(ε)
= 0, (4)
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or equivalently if

limsup
ε→0

E[X2(ε)]

µ2
0(ε)

= 1. (5)

BRE essentially means that for a given number of simulation runs, the relative width of a
confidence interval based on the central-limit theorem remains bounded whenε → 0. Under
the assumption that the DTMC has no high-probability cycle,BFB provides an IS estimator
with BRE, whereas SFB does not [21]. On the other hand, BRE does not necessarily mean
that the estimator is practically efficient, because there could be a large hidden constant. It
has been recognized that BFB can waste computing time by giving certain low-probability
paths more weight than necessary, and this can degrade performance especially when the
system has a high level of redundancy [2,23].

VRE is obviously much stronger than BRE and it is related to zero-variance simulation
in the sense that VRE implies thatX(ε) is generated from a probability law that converges
in the L∞ norm to the zero-variance IS scheme [16]. In our setting, this means that VRE
implies that

lim
ε→0

sup
y,y′∈Y

∣

∣q(y,y′)−q∗(y,y′)
∣

∣ = 0.

VRE means that the estimation becomeseasierwhenε → 0, which is the opposite of what
normally happens with crude Monte Carlo.

In what follows, we provide sufficient conditions for VRE, and then for BRE, for IS
sampling based on zero-variance approximation with some functionv, applied to the HRMS
model of Section 2. The key ingredient is the quality of the approximation ofµ by v.

But first, we start by giving a simple example showing that thezero-variance IS scheme
is not (asymptotically) balanced in general, in the sense that from a given state, the optimal
transition probabilities for different failure transitions can be of different orders (different
powers ofε). When this happens, BFB is likely to perform poorly compared with a better
(unbalanced) heuristic, even if the asymptotic BRE property holds. Again, this poor perfor-
mance of BFB (and of balanced schemes in general) in some situations has been observed
earlier, for example in [23].

Example 1Suppose thatc = 2, n1 = n2 = 2, and that the system is operational when at
least two components (of any kind) are operational. Let the transitions probabilities of the
corresponding DTMC be those given in Figure 1, where the states inF are shaded, and
statey = (y(1),y(2)) means (as usual) thaty(1) components of type 1 andy(2) components of
type 2 are down.

For this small example, we can easily computeµ(y) for all statesy by solving the fol-
lowing system of linear equations (the balance equations ofthe DTMC):































µ(1,1) = 2ε2 +
(

1−2ε2
)

µ(0,1)/2+
(

1−2ε2
)

µ(1,0)/2
µ(0,2) = ε +(1− ε)µ(0,1)
µ(2,0) = ε +(1− ε)µ(1,0)
µ(0,1) = ε3µ(0,2)+ εµ(1,1)
µ(1,0) = ε3µ(2,0)+ εµ(1,1)
µ(0,0) = µ(0,1)/2+ µ(1,0)/2

This gives














µ(1,1) = 2ε2 +(1− ε) 2ε3+ε4

1−ε+ε3+ε4 = Θ(ε2)

µ(2,0) = µ(0,2) = ε +(1− ε) 2ε3+ε4

1−ε+ε3+ε4 = Θ(ε)

µ(0,1) = µ(1,0) = µ(0,0) = 2ε3+ε4

1−ε+ε3+ε4 = Θ(ε3).
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0,1

0,2

2,2

1,1

ε3

≈ 1/2 ≈ 1/2≈ 1/2

1/21/2

1/2

≈ 1

ε ε

≈ 1/2

≈ 1

ε

≈ 1/2

ε2

ε

≈ 1/2

≈ 1

ε

≈ 1

1,0

2,0

2,11,2

1/2

ε3

ε

Fig. 1 Transition probabilities in Exemple 1

Now, if we look for instance at the two failure transitions from state (0,1), under the zero-
variance IS, we have

q((0,1),(0,2)) =
ε3µ(0,2)

µ(0,1)
= Θ(ε),

whereas

q((0,1),(1,1)) =
εµ(1,1)

µ(0,1)
= Θ(1),

which means that the change of measure is unbalanced betweenthese two failure transitions.
The explanation is that all the paths from (0,0) toF that include the transition(0,1) →
(0,2) have much smaller probability than those that include the transition(0,1) → (1,1)
(O(ε4) compared withΘ(ε3)), so we should waste much less time simulating the former
than the latter; i.e., an optimal IS scheme must takeq((0,1),(0,2)) significantly smaller
thanq((0,1),(1,1)). On the other hand, takingq((0,1),(0,2)) too small can be as bad (or
worse) than taking it too large. If it is too small, the likelihood ratio will become very large
when this transition occurs, and this would increase the variance significantly. �

The next theorem gives a sufficient condition for VRE. It usesthe following definition.
For ally∈ U0, there is a set of pathsΠd(y) ⊂ Π(y) such that

p(π) = p(π,ε) = a(π)εb(y) +o(εb(y))

for all π ∈ Πd(y), for some constantsa(π) > 0 andb(y) > 0 that do not depend onε, and
p(π,ε) = o(εb(y)) for all π 6∈ Πd(y). The paths in this setΠd(y) are called thedominant
paths from y toF . They account asymptotically for all the probability of reachingF , in the
sense that

lim
ε→0

1
µ0(y)

∑
π∈Πd(y)

p(π,ε) = 1. (6)

Fory= 0, they are just called the dominant paths. For our next results, we make the following
assumption.
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Assumption 1 All cycles that belong to some pathπ ∈ Π(y) have probability O(εδ ), for
some constantδ > 0.

This assumption implies thatΠd cannot contain paths having a cycle, and thereforeΠd

must be finite. It also rules out several models with deferredor group repairs, for which the
Markov chain has high-probability cycles, as mentioned earlier.

Theorem 1 Under Assumption 1, iflimε→0 v(y)/µ(y) = 1 for all y∈Y , then we have VRE.
This happens, in particular, if v(y) is defined as the sum of probabilities of all dominant paths
from y toF .

Proof BecauseY is finite andv(y) = µ(y)(1+(o(1)) for all y, there are positive constants
δ1 andr, independent ofε andy, such that

|v(y)/µ(y)−1| ≤ δ1ε r

for ε sufficiently small. Therefore, there existδ > 0, independent ofε andy, such that

ṽ(y)
v(y′)

= ∑
y′′∈Y

p(y,y′′)v(y′′)
v(y′)

≤ ∑
y′′∈Y

p(y,y′′)
µ(y′′)
µ(y′)

(1+δε r) =
µ(y)
µ(y′)

(1+δε r)

for ε sufficiently small. Thus, the IS estimator satisfies

Xis ≤
τ

∏
j=1

ṽ(Yj−1)

v(Yj)
≤ µ0(1+δε r)τ ,

giving
Eis[X

2
is] ≤ µ2

0Eis[(1+δε r)2τ ]. (7)

Definem(y) as the maximal length (in number of transitions) of a pathπ ∈ Πd(y). For
y∈ F , we havem(y) = 0. Let m= maxy∈U0 m(y), the maximal length taken over the whole
set of states. Note that thism is finite thanks to our assumption that no dominant path can
have a cycle. Similarly, definepc(y) as the probability,under IS,of using a dominant path
from y to F given that we are in statey∈ U0, and letp0 = miny∈U0 pc(y). Also for all
integersi ≥ 0, under IS,

P[τ ≥ mi] ≤ (1− p0)
i ,

because this probability does not exceed the probability ofnot reachingF in i independent
trials, starting fromy. Consequently, the random variableτ/m is stochastically bounded
by a geometric random variableY with parameterp0, whose generating functionGY(s) =
E[sY] = p0s/[1− (1− p0)s] is finite for (1− p0)|s| < 1. Therefore,

Eis[X
2
is] ≤ µ2

0E[((1+δε r)2m)τ/m] ≤ µ2
0

p0(1+δε r)2m

1− (1− p0)(1+δε r)2m (8)

provided that(1− p0)(1+δε r)2m < 1, where the last inequality bounds the moment gener-
ating function ofτ/mby that of the geometric random variable.

It remains to show thatp0 → 1 whenε → 0, and then by plugging this in (8), we would
obtain thatEis[X2

is] → µ2
0 asε → 0, leading to VRE and completing the proof.

Under the assumptions of the theorem, the transition probabilities under IS satisfy

q(y,y′) =
p(y,y′)v(y′)

∑z∈Y p(y,z)v(z)
=

p(y,y′)µ(y′)+o(1)

∑z∈Y p(y,z)µ(z)+o(1)
=

p(y,y′)µ(y′)
µ(y)

+o(1).
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So under IS, fory∈ U0, any pathπ = (y = y0 → y1 → ·· · → yk) ∈ Π(y) has probability

pis(π) =
k

∏
j=1

p(y j−1,y j)µ(y j)

µ(y j−1)
+o(1) =

p(π)

µ(y)
+o(1).

Thus, the dominant paths have probabilityΘ(1) and the non-dominant paths have probabil-
ity o(1). This implies thatpc(y) → 1, and then thatp0 → 1, whenε → 0. �

We now give an example showing that VRE is sometimes satisfiedeven when the condi-
tions of Theorem 1 are not satisfied. The example satisfies theweaker condition thatv(y) is
the probability of one dominant path, which has the same order of magnitude as the sum of
probabilities over all dominant paths. One might conjecture from this example that estimat-
ing µ(y) by av(y) having the right order of magnitude in terms ofε would be enough for
VRE. We give another example showing that this is not true. That is, it shows that VRE may
not hold if we do not split the probability correctly, at eachstep, amongall the transitions
that belong to a dominant path.

Example 2In the example of Figure 1, suppose we takev(y) = v0(y), defined as the prob-
ability of the (single) most probable path fromy to F . This givesv(0,0) = ε3/2, v(0,1) =
v(1,0) = ε3, v(2,0) = v(0,2) = ε, andv(1,1) = ε2. Using thisv in (2) leads to the transition
probabilitiesq(y,y′) given in Table 1.

Table 1 Transition probabilitiesq(y,y′) for Example 2.

Origin state Destination state Probability
(0,0) (0,1) 1/2
(0,0) (1,0) 1/2
(0,1) (0,2) ε/(1+ ε)
(0,1) (1,1) 1/(1+ ε)
(1,0) (2,0) ε/(1+ ε)
(1,0) (1,1) 1/(1+ ε)
(1,1) (0,1), (1,0) (1/2− ε2)ε/(2+(1−2ε2)ε)
(1,1) (1,2), (2,1) 1/(2+(1−2ε2)ε)
(0,2) (0,1) ε2(1− ε)/(1+ ε2(1− ε))
(0,2) (1,2) 1/(1+ ε2(1− ε))
(2,0) (1,0) ε2(1− ε)/(1+ ε2(1− ε))
(2,0) (2,1) 1/(1+ ε2(1− ε))

Let β (y) = Varis[Xis] whenY0 = y, under these probabilities. By conditioning on the first
transition, we find that these variances satisfy the system of equations

β (y) = ∑
y′∈Y

q(y,y′)

(

p(y,y′)
q(y,y′)

µ(y′)

)2

− (µ(y))2 + ∑
y′∈Y

q(y,y′)

(

p(y,y′)
q(y,y′)

)2

β (y′)

for all y∈ Y . Solving this system gives, in particular,

β (0,0) =
3+12ε +12ε2 +o(ε2)

1−4ε +2ε2 +o(ε2)
ε7 = Θ(ε7).

Hence,β (0,0)/µ2(0,0) = Θ(ε), meaning that we have VRE. On the other hand, the con-
ditions of Theorem 1 are not satisfied in this case, becausev(1,1) = ε2 whereasµ(1,1) =
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2ε2 + o(ε2). In fact we somehow got lucky to get VRE. For instance,v(1,1) wrongly es-
timatesµ(1,1) by a multiplicative constant, but the corresponding transition failure proba-
bilities nevertheless have the good first order approximation, because an error by the same
multiplicative constant appears in both the numerator and the denominator of the most im-
portant transition probabilities, so these errors cancel out. This error cancellation occurs
at all nodes in this particular example! However, this does not occur in general, for other
examples. �

Suppose that for a given initial statey, there are different dominant paths, using different
initial transitions, say(y,y1) and (y,y2), for which v(y1) = µ(y1)(c1 + o(1)) andv(y2) =
µ(y2)(c2+o(1)), but with different multiplicative constantsc1 andc2. Using thisv, the new
probability

q(y,y1) =
p(y,y1)ν(y1)

p(y,y1)ν(y1)+ p(y,y2)ν(y2)
(1+o(1))

does not correspond asymptotically to the zero-variance probability

p(y,y1)µ(y1)

µ(y)
(1+o(1)).

The next example illustrates this.

Example 3Consider again a system withc = 2 andn1 = n2 = 2, and where failure occurs
whenever any two components are failed. The transition probabilities are depicted Figure 2.
For each statey, definev(y) as the probability of the most probable path fromy to F . This

0,0

0,1

0,2 1,1 2,0

1,0

ε

1/21/2

ε2 1/(1+ ε)
ε/(1+ ε)

1−2ε

1− ε − ε2

Fig. 2 Transition probabilities for Example 3.

givesv(0,0)= ε/2,v(0,1) = ε, andv(1,0) = ε, whereas the exact values areµ(0,0) = (3ε +
ε2)/2, ν(0,1) = 2ε, andν(1,0) = ε + ε2. Using this functionv in (2) gives the transition
probabilitiesq(y,y′) of Figure 3. It leads toq((0,0),(1,0)) = 1/2, whereas for the zero-
variance change of measure, we should have

q((0,0),(1,0)) =
(ε + ε2)/2

(ε + ε2)/2+ ε
=

1
3
.

This asymptotic difference prevents VRE to hold. On the other hand, it is not difficult to
verify that BRE holds: Just by enumerating all paths (there are not so many here), one can
check thatµ(0,0) = (3ε + ε2)/2 andβ (0,0) = ε2/4− ε3/2+ ε4/4. �
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1/2

0,0

0,1

0,2 1,1 2,0

1,0

1/2

ε/(1+ ε) 1/2

1/2

1/(1+ ε)

Fig. 3 Transitions probabilities based onv for Example 3.

In general, we have the following sufficient condition for BRE, which is weaker than
the condition for VRE.

Theorem 2 If Assumption 1 holds and v(y) = Θ(µ(y)), then we have BRE. This condition
holds in particular if we take v(y) as the sum of probabilities of any nonempty subsetΠ0(y)
of Πd(y) (it could be a single path, or more).

Proof For the first part, the proof mimics that of the previous theorem. There are positive
constantsδ ′

1,δ ′
2 andr ′ independent ofε andy, andcy independent ofε, such that

cyµ(y)(1−δ ′
1ε r ′) ≤ v(y) ≤ cyµ(y)(1+δ ′

2ε r ′)

for ε sufficiently small. Therefore, there existsδ ′,δ ′′ independent ofε andy such that

ṽ(y)
v(y′)

≤ ∑y′′∈Y p(y,y′′)cy′′µ(y′′)

cy′µ(y′)
(1+δ ′ε r ′)

for all y,y′, for ε sufficiently small. LetcM = maxy∈Y cy andcm = miny∈Y cy. Then

ṽ(y)
v(y′)

≤ (1+δ ′ε r ′)
cMµ(y)
cmµ(y′)

,

and forY0 = y,

Eis[X
2
is] ≤ µ2

0E

[

(

cM

cm
(1+δε r)

)2τ
]

.

For the rest of the proof, we use a similar argument as in Theorem 1. We have thatq(y,y′) =
Θ(p(y,y′)µ(y′)/µ(y)), and so any pathπ ∈ Π(y) has probabilitypis(π) = Θ(p(π)/µ(y))
under IS. It follows that the dominant paths have probability Θ(1), the non-dominant paths
have probabilityo(1), and thatp0 → 1 whenε → 0. From this, by bounding again the
moment generating function ofτ/m, we obtain thatEis[X2

is]/µ2
0 remains bounded whenε →

0.
For the second part, we havev(y) = ∑π∈Π0(y) p(π). If v(y) = o(µ(y)), then it means that

no dominant path is taken into account in the computation ofv(y), which contradicts the fact
thatΠ0(y) contains at least one dominant path. �
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5 Numerical examples

Example 4We consider a system withc = 3 component types, withn1 = n2 = n3. Each
component has an exponentially distributed time to failurewith rateλi for components of
typei, whereλ1 = ε, λ2 = 1.5ε, andλ3 = 2ε2, for some parameterε. Any failed component
has an exponentially distributed repair time with rate 1. Times to failure and repair times
are all independent. The system is down whenever fewer than two components ofany one
type are operational. We want to estimateµ0, as explained earlier. We will experiment with
different values ofni andε.

For this example, we definev0(y) as follows. For each component typei, we consider
the path that goes fromy to F whose only transitions are failures of components of typei.
There are three such paths for each statey∈ U , and their probabilitiesp(π) are very easy
to compute. We simply definev0(y) as the sum of their probabilities.For example, for the
initial statey = 0 and component type 1, the sample pathπ corresponds ton1−1 failures of
components of type 1 in succession, and its probability is

p(π) =
n1−2

∏
j=0

(n1− j)λ1

(n1− j)λ1 +n2λ2 +n3λ3 + j
.

Again, this choice ofv0 is appropriate for the specific structure ofF considered here.
The methods we try and compare are BFB, a version of BLR proposed in [2] named

simple BLR (SBLR), and our proposed IS method based on zero-variance approximation,
using the functionv0 just described, and its modificationsv1 andv2 defined earlier. We will
denote these methods by ZVA(v0), ZVA(v1), ZVA(v2), respectively. For each parameter set
that we have selected, Table 2 gives (in the third column) ourbest estimate ofµ0, obtained
from a very large number of simulation runs with our ZVA strategies (these numbers are
accurate at least for the digits given in the table), the rough-cut approximationv0(0) of µ0,
and the estimate obtained fromn= 220 (approximately one million) independent simulation
runs, by each of the five methods.A simulation run is defined as a sample path of the DTMC
starting in state0 and running until we reach the stopping timeτ. Here it would be feasible
to computeµ0 numerically by building and solving a large system of linearequations giving
µ(y) for all statesy, because the number of states forni = 12 is only 2198, but we did not
do it because it was much simpler (and accurate enough for ourpurpose) to use simulation.
Table 3 shows the empirical variances computed from thosen runs, for each method. One
can easily get an idea of the square relative error (the variance divided by the square mean)
by dividing these values byµ2

0 , also given in the table.

Table 2 Parameter sets and estimates ofµ(0) with each method, for Example 4.

ni ε µ0 v0(0) BFB SBLR ZVA(v0) ZVA(v1) ZVA(v2)

3 0.001 2.6×10−3 1.3×10−3 2.7×10−3 2.6×10−3 2.6×10−3 2.6×10−3 2.6×10−3

6 0.01 1.8×10−7 3.4×10−8 1.9×10−7 (9.9×10−11) 1.8×10−7 1.8×10−7 1.8×10−7

6 0.001 1.7×10−11 3.4×10−12 1.8×10−11 (1.8×10−16) 1.7×10−11 1.7×10−11 1.7×10−11

12 0.1 6.0×10−8 3.2×10−9 4.8×10−8 1.3×10−8 6.0×10−8 6.2×10−8 6.7×10−8

12 0.001 3.9×10−28 3.5×10−29 (1.8×10−40) (2.9×10−45) 3.9×10−28 3.9×10−28 3.9×10−28
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Table 3 Empirical variances based onn = 220 independent runs, for Example 4.

ni ε α µ2
0 BFB SBLR ZVA(v0) ZVA(v1) ZVA(v2) RE(v2)

3 0.001 0.906 6.8×10−6 6.2×10−5 8.0×10−3 2.2×10−8 6.6×10−9 9.3×10−9 0.04
6 0.01 0.903 3.2×10−14 6.3×10−11 (4.5×10−16) 2.0×10−14 1.2×10−14 7.7×10−15 0.48
6 0.001 0.939 3.0×10−22 8.8×10−19 (2.0×10−26) 1.2×10−23 1.1×10−23 7.6×10−24 0.16

12 0.1 0.851 3.6×10−15 8.1×10−10 1.7×10−10 1.6×10−10 2.9×10−10 1.5×10−11 64.5
12 0.001 0.963 1.5×10−55 (3.2×10−74) (3.5×10−84) 1.4×10−55 9.3×10−56 9.4×10−56 0.78

In those tables, the entries in parentheses are empirical means and variances that clearly
underestimate their exact counterparts by a large factor. For the empirical means, those en-
tries are actually even lower (by a large factor) than the crude lower boundv0(0). When we
have serious underestimation for the mean, then we have it for the variance as well. The
usual explanation is that certain types of paths that have animportant relative contribution
to the mean are given a too small probability by the IS heuristic, and never occur in the sam-
ple, so their contribution is totally missed by the estimator. This reduces both the empirical
mean and empirical variance (but not the true variance). If one of these paths would occur,
it would potentially have a huge contribution, due to a largelikelihood ratio. All these prob-
lematic entries are for the BFB and SBLR heuristics, and things generally worsen whenµ0

gets smaller andni gets larger. These heuristics were designed to cope with very low failure
rates for the components (very smallε), but are not doing very when the paths toF have a
large number of transitions (i.e., whenni is large, in our example).

With our proposed approach, usingv0 as an approximation already gives much better
results than BFB and SBLR, in the sense that we at least get theright order of magnitude
for all parameter values. The adjustmentv1 does not provide much improvement overv0

in this example, whereasv2 does provide a more significant improvement for many cases.
This seems to confirm the idea that the exponential correction should take into account the
distance to failure. This appears to be especially true whenni is small, in which case we
need much less corrections for the states that are very closeto failure than for the initial
state (compare the results ofv2 with the other ones whenni = 3).

With any of the three variants (v0, v1, andv2), we are able to estimate very small proba-
bilities (smaller than 10−55 in our example) quite accurately with a reasonably small number
of simulation runs. For example, forni = 12 andε = 0.001, if we take the average overn
simulation runs withv2, the relative error is

√
9.4×10−56/(3.9×10−28√n) ≈ 0.786/

√
n,

so we only needn = (78.6/x)2 to getx% relative error. For example,n = 61 sufficesto ob-
tain 10% relative error. Forni = 12 andε = 0.1, on the other hand, the relative error withv2

is
√

1.5×10−11/(6.0×10−8√n) ≈ 64.5/
√

n, so we needn≈ (6450/x)2 to getx% relative
error. The relative errors withv2 are given in the table, under RE(v2). Note that withni = 12,
the relative error with our heuristic is much smaller withε = 0.001 than withε = 0.1. This
is most likely due to the fact that our approximationv becomes too crude whenε increases.

Another observation is thatα (used forv1) increases, and apparently converges to 1,
whenε → 0 for fixedni , or whenni increases whileε is fixed. The intuitive explanation is
that for this example, the dominant (most probable) paths leading toF are the direct ones,
that involve failures of components of only one type, and these paths are all included in the
computation ofv1.

Of course, comparing only the variances and neglecting the computing costs might be
unfair. A standard practice is to look at the work-normalized variance, which is the variance
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Table 4 Total computating times (in seconds) forn = 220 runs, for Example 4.

ni ε BFB SBLR ZVA(v0) ZVA(v1) ZVA(v2)

3 0.001 2.2 2.8 3.6 6.7 6.7
6 0.01 17.4 12 37 54 54
6 0.001 17 11 36 47 47

12 0.1 47 102 447 652 525
12 0.001 47 25 89 114 115

multiplied by the (expected) time required to compute the estimator. On the other hand,
the computing time often depends very much on the implementation details, the computer,
the programming language, and even the compiler. For this reason, we report the comput-
ing times separately. Table 4 reports the CPU times needed tomaken = 220 independent
simulation runs (this excludes the pilot runs made to estimate α used inv1 andv2). The
simulations were performed in Java using SSJ [17] on a computer with a 2.00 GHz Intel
Pentium processor. The CPU times are generally larger with our new methods than with
BFB and SBLR, by a factor of about 3 or 4 in most cases and up to about 15 in the worst
case (with ZVA(v1) whenni = 12 andε = 0.1). This higher cost is more than compensated
by the large gains in accuracy; in fact, BFB and SBLR only provide misleading mean and
variance estimates in many cases. We note that the larger CPUtimes for ZVA come not only
from the time required to compute the functionv(·) at each step, but also (sometimes more
importantly) from the fact that the sample paths are longer on average, because they reach
F more often. �

Example 5We now consider a simplified version of an example taken from [25], to which
the BFB methodology is supposed to fit well. The system is comprised of two sets of pro-
cessors with two processors per set, two sets of disk controllers with two controllers per
set, and six clusters of disks with four disks per cluster. The failure rates for processors,
controllers, and disks are 5×10−5, 2×10−5 and 2×10−5, respectively. The repair rate is
1 for each type of component. In each disk cluster, data is replicated, which means thatthe
failure of a single disk does not provoke system’s failure.The system is operational if all
data is accessible from both processor types, meaning that at least one processor of each
type, one controller of each set, and three disks of each cluster are operational. This can be
modeled byc = 10 different types of components, to differentiate betweenthe different sets
of the same kind of component, and eachni is 2 or 4. We use again 220 independent sample
paths for the estimations. Table 5 displays the empirical varianceand the CPU times for the
220 runs, for each method. The exact value isµ0 ≈ 5.6× 10−5 and the exponent inv1 is
α ≈ 0.949. We see that the ZVA methods work very nicely for this example as well, for all
three choices ofv. They outperform both BFB and SBLR. �

Table 5 Empirical variances and CPU times for Example 5.

Method BFB SBLR ZVA(v0) ZVA(v1) ZVA(v2)

Variance 5.8×10−8 1.3×10−4 2.3×10−12 1.0×10−12 1.2×10−12

CPU time 8.5 9.0 27 39 40
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In the next example, we replace the approximationv0 by a different one, to illustrate the
idea that a good choice ofv really depends on the structure of the model.

Example 6We consider a system that fails when the total number of failed components (re-
gardless of their type) reaches a given number (threshold).This kind of system makes sense
if we classify the components in types according to their failure rate, and we need a minimal
total number. In this case, we can easily find a good approximation for the probability that
there is the required number of failures (in succession) before any repair occurs, and use it
for v. A simple approximation is: the probability that the first transition is a failure (which
is 1), multiplied by the probability that the second transition is a failure given that the first
failed component is one with the largest failure rate, multiplied by the probability that the
third transition is a failure given that the first two failed components have the largest failure
rates, and so on. We callv3 this approximation.

For a numerical illustration, we take a system comprised of 20 types of components
numbered from 0 to 19, with 4 components of each type. All repair rates are assumed to be
1, but component’s failure rates differ: type-i components have failure rateλi = (1+ i/10)ε
for 0≤ i ≤ 9 andλi = iε2/10 for 10≤ i ≤ 19, whereε = 10−3. The system is failed whenever
a total of 7 components are failed. Table 6 compares the results (estimates, variance, CPU
times, and average number of steps per run) for BFB, SBLR, andZVA(v3). Again, the results
obtained by ZVA are very accurate; the variance is reduced with respect to BFB by a factor
6×106. The increase in CPU time is on the other hand very limited. Toinvestigate more
closely where this additional time comes from, the last lineof Table 6 reports the average
number of steps per run. It shows that SBLR has shorter paths on average, due to the fact that
small paths from0 to 0′ are more likely to happen. With ZVA(v3), no sample path finishes at
0′, and the paths are longer on average for this reason, but the increase with respect to BFB
is very small. Thus, in this example, the larger CPU times forZVA come mostly from the
required time to compute the approximationv3.

Table 6 Empirical estimates variancesCPU timesand average steps per run for Example 6.

Method BFB SBLR ZVA(v3)

Estimate 3.1×10−11 (3.5×10−14) 3.0×10−11

Variance 8.5×10−18 (5.1×10−25) 1.3×10−24

CPU time 11 19 97
Steps per run 7.0 4.7 7.2

6 Conclusion

Zero-variance simulation is an utopian ideal that can be achieved only in very simple situa-
tions where the quantities of interest can be computed exactly without doing any simulation.
However, it can be approximated to a reasonable extent in several interesting situations, and
can provide very large variance reduction factors in a practical way. The method relies on a
reasonable approximation of the functionµ and this would generally depend on the model.
We have shown in this paper how very simple approximations ofthe zero-variance change
of measure, in a reliability setting, can bring significant improvements. In our numerical
examples, the proposed approach yields a low-variance estimator where all other previously
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proposed algorithmsmiss the target.Further studies with larger and more complex systems
are needed to find the practical limits of the method. We anticipate that difficulties may show
up for large and complicated systems for which there is a large number of dominant paths
whose sum of probabilities is hard to approximate. Additional heuristics might be needed
for this type of situation.
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