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We study the links between the likelihood-ratio (LR ) gradient-estimation technique (sometimes
called the score-function (SF) method ), and infinitesimal perturbation analysis (IPA ). We show
how IPA can be viewed as a (degenerate) special case of the LR and SF techniques by selecting
an appropriate representation of the underlying sample space for a given simulation experiment.
We also show how different definitions of the sample space yield different variants of the LR
method, some of them mixing IPA with more straightforward LR. We illustrate this by many
examples. We also give sufficient conditions under which the gradient estimators are unbiased.
(DISCRETE EVENT SYSTEMS; SIMULATION; GRADIENT ESTIMATION; PERTURBA-
TION ANALYSIS; LIKELIHOOD RATIO; SCORE FUNCTION)

1. The LR Gradient Estimation Technique

Consider a stochastic simulation model parameterized by a real vector ¢ € O of con-
tinuous parameters, where © is some open subset of R<. Suppose we want to estimate
the gradient Va(8) of the (differentiable ) expected value a(#) of some real-valued objective
function. Infinitesimal perturbation analysis (IPA) and a likelihood ratios (LR ) approach,
sometimes called the score function (SF) method, are among the proposed techniques
to estimate such a gradient by simulation. For IPA, see Glasserman (1988a, b, ¢), Gong
and Ho (1987), Heidelberger et al. (1989), Ho (1987), and Suri (1987, 1989). For LR
(or SF), see Aleksandrov, Sysoyev, and Shemeneva (1968), Arsham et al. (1989), Bratley,
Fox, and Schrage (1987), Glynn (1987), Reiman and Weiss (1989), and Rubinstein
(1986, 1989, 1990). Other techniques are based on finite differences (see, for example,
L’Ecuyer, Giroux, and Glynn 1990: Meketon 1987; Suri 1989; and Arsham et al. 1989).
IPA and LR (or SF) have often been viewed as distinct (competing) techniques. The
aim of this paper is to present them in a unified framework and show the strong links
that exist between them.

The basic 1dea of LR is that «(f) can usually be viewed as the expectation of some
function of # and of the “sample path” w, say (8, ), with respect to a probability
measure Py over some measurable space (2, Z). Here, Q is the sample space, and w € Q
represents all the “random elements” in the simulation, so that when w is fixed, the
evolution of the system becomes deterministic. More specifically, we assume that 4(4,
-) is Z-measurable. Usually, one cannot differentiate this expectation directly by differ-
entiating inside the integral: one reason is that P, typically depends on 8. That dependence
can be eliminated if one can take, on the same measurable space, a probability measure
G independent of # that dominates the Py’s for § € ©; this means that P, is absolutely
continuous with respect to G—that is for every measurable set B, G(B) = 0 implies
Py( B) = 0. In that case, one can rewrite

P,
a(f) =Lh(0, w)dPy(w) = L[h((), w)%(w)]d(;(w)

:f h(0, w)L(G, 8, w)dG(w), (1)
Q
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GRADIENT ESTIMATION TECHNIQUES 1365

where L(G, 0, w) = (dPy/ dG)(w) is the Radon-Nikodym derivative of P, with respect
to G. By the Radon-Nikodym theorem (Billingsley 1986, Theorem 32.2), L(G, 6, )
exists and (1) is valid if and only if G dominates P,. If sampling is done using G, then
h(0, w)L(G, 8, w) can be used as an estimator of a(#). This “change of measure” approach,
called importance sampling, is also a variance reduction technique (Bratley, Fox, and
Schrage 1987; Glynn and Iglehart 1988; Rubinstein 1989; and Goyal et al. 1989).

Under appropriate regularity conditions ( that permit interchanging the derivative and
expectation ), one can differentiate o by differentiating the bracketed term with respect
to 0 inside the integral:

Vaa(ﬂ):fg\#(ﬂ,w)d@(w), (2)

where
\tb(o’ w) = V(;(h(e, w)L(G9 83 (l.)))
= L(G, 0, w)Veh(8, w) + h(0, )V, L(G, 8, w) (3)

when this gradient exists. Sufficient regularity conditions are given in Glasserman ( 1988a,
b, ¢), Reiman and Weiss (1989), and Rubinstein (1989), either in very general form,
or for special cases. In §3 of this paper, we give conditions that are not the most general,
but are practical and general enough for most applications. The need for these regularity
conditions and for the existence of the Radon-Nikodym derivative certainly impose some
limitations on gradient estimation methods that are based on (2) and (3) (see the examples
in §4), but there are also many practical cases where these methods work well.

When (2) holds, Y6, ) can be used to estimate Va(#). Only one simulation experiment
(using G) is required to estimate the gradient. However, the work to compute Wb, )
could be much higher than the work to generate w and compute /(6, ), especially if
is large. In principle, Y(-, w) can be evaluated at any value of # for which (2) holds,
permitting estimation of the gradient at different points with the same G (Arsham et al.
1989; Rubinstein 1986 and 1990). But the variance of the gradient estimator is sometimes
dramatically high for some values of 8. In some cases, for any fixed G and w, the estimator
Y(0, w) can be written down explicitly, after observing the simulation, as a function of
0. This permits one to estimate the gradient everywhere in 0 by a single simulation. The
(sample) function Y( -, w) can then be used directly in a standard (nonlinear) optimization
algorithm, yielding an estimator of the optimum by a single simulation. Rubinstein
(1990) discusses this approach and gives numerical results.

How do we choose G? Among those G for which (2) and (1) hold, one would like to
choose one for which the variance is low, ¥(f, w) is easy to compute, and w is easy to
generate. But this is not always easy to do.

To estimate Va(#,) at a single point 6, an easy choice for G, when (1) and (2) hold
for it, is P,,. In that case. L(P,,, 0y, w) =1 and at 6 = 6,, we obtain

Y(0, w) = Voh(8, w) + h(8, ©)S(8, ). (4)
where
S(0> w):VvL(Pﬂ’ v, w)lv:(}- (5)

Since 6y can vary in ©, (4) can be viewed in that case as defining Y( 0, w) for all § € O,
with the interpretation that w is generated according to P,.

Typically, w can be viewed as the set of values taken by a finite sequence of independent
(possibly multivariate) random variables. For example, let © = (X1, oy X, Y1y ey
Vq), where for 1 <i < pand.l <j < gq, x; is the value taken by a continuous random
variable with density f,, and y; is the value taken by a discrete random variable with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1366 PIERRE L’ECUYER

probability mass p; . In that case, with G = Py,, the Radon-Nikodym derivative becomes
the likelihood ratio

4 fi,o(xi))( g Pj,o(J’j)) (6)

L(Py, 0 = —
(Pog. 6. ) (Eﬁ,oo(xi) j=1pj,ﬂo(yj)

and its gradient is

S(6, w) =V,In (Hﬁ,o(xi) H P;,e(y;)) =2V In fio(x;) + 2 Voln Dio(¥;). (7)

i=1 Jj=1 i=1 j=1

Note that S(8, w) is a sum whose number of terms (p + ¢) is the number of basic density
and probability mass functions that depend on 8. Of course, this number can be random
(that is, p and g can be different for different «’s). Assuming that the variances of the
sample performance measure /(f, w) and of the gradient V,4(6, w) are bounded, we see
that the variance of the gradient estimator (4 ) increases linearly (in general) with (p + g)
(which is typically a linear function of the simulation length). From this reasoning, we
should expect this technique to work much better for finite-horizon simulations for which
only a small number of random variates are generated with probability laws that depend
on §. L’Ecuyer and Glynn (1990) have also developed a control variate approach that
reduces the variance from O(p + g) to O(1).

Since regenerative simulations can be analyzed in a way very similar to finite-horizon
simulations (Glynn 1987; Glynn and Iglehart 1988), the above remark also applies to
steady-state regenerative simulations for which a small number of §-dependent varates
are generated per regenerative cycle. A version of the method specially adapted for re-
generative systems is presented in Glynn (1987). Arsham et al. (1989) present another
version based on the “batch means” technique, for dealing with steady-state systems.

The method can be generalized to higher order derivatives (see Reiman and Weiss
1989; Rubinstein 1989 and 1990 for special cases). Let Vaa(8) denote the d X d Hessian
matrix, whose element (i, j) is the (second order) partial derivative of a(8), with respect
to the components i and j of . More generally, let Via(0) denote the d X d X - - - X d
(r times) array (that is, r-dimensional tensor ) that contains all rth order partial derivatives.
To obtain an estimator of Via(#), take the (r — 1)th derivative of (3). This yields

r

Via(8) = Vi 'Y(b, w) = 3 (:)(Véh(& @) ® (Vi 'L(G, 8, w)), (8)

i=0

where ® denotes the external product (the product of an /-dimensional tensor by a (r
- i)-dimensional one gives an r-dimensional tensor). Sufficient conditions for unbiased-
ness can be obtained by adapting Assumption Al of §3. As a special case, if G = Py, and
h(0, w) is independent of 4, then the estimator of Vja(8) becomes

h(8, w)V5L(Pyy, 0, w) = h(8, @)V~ 'S8, w).

For example, an unbiased estimator of the Hessian is obtained, under appropriate
regularity conditions, by differentiating (3) with respect to 6, which yields

Vaa(6) = h(6, @)VIL(G, 6, ©) + 2V,L(G, 6, @)(Voh(6, @)) + L(G, 0, 0)V3h(0, ),
(9)

where ' denotes the transposition into a line vector. If G = Py, that Hessian estimator
becomes

Via(8) = h(0, ©)V,S(8, ©) + 258, ©)(Voh(0, ©))’
+ V2Ih(8, w) + h(8, w)[S(8,w)]>.  (10)
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Using the right-hand-side expression in (4) as a gradient estimator has been proposed
(sometimes in a less general setting) by, e.g., Aleksandrov, Sysoyev, and Shemeneva
(1968), Arsham et al. (1989), Glynn (1987), Reiman and Weiss (1989), and Rubinstein
(1986, 1989, 1990). Some authors call this technique the score function (SF ) method,
because in statistics, the expression (7) is called the score function. Others call it the
likelihood ratio (LR ) method, because L(G, 6, ) is typically a likelihood ratio. Arsham
etal. (1989) reserve the term LR for the more general estimators, like (3), that incorporate
importance sampling. Another name for that (general) technique could be “common
probability space approach.” In this paper, we adopt the following definition.

DEFINITION 1. An LR gradient estimator for Voa(#) is one that is defined by the
right-hand-side expression in (3), where w obeys G, provided that this expression exists
for almost all w and /(4, -) is a measurable function of w whose expectation is a(0). We
call such an estimator an SF gradient estimator if it is also defined by (4), where « obeys
Py. Under the same conditions, the estimators (9) and (10) are called LR and SF Hessian
estimators respectively. [

2. Choosing What « Should Represent
2.1. The Underlying Sample Space

A key point of this paper concerns the choice of the sample space Q. In fact, for a
given simulation model, there can be different ways of defining the sample space and
the meaning of w. Generally, all random variables are generated by generating U(0, 1)
variates as needed and transforming them in the appropriate way. Hence, w can be
viewed as a sequence of independent U(0, 1) variates, and the value of the objective
function 4(6, ) is a (measurable ) function of this sequence. But this is only one way of
viewing it. In fact, there is no need to assume that U(0, 1) variates are used to drive the
simulation in the first place. For instance, the SF technique can be used to estimate the
gradient not only for a simulation model, but also for a real system (provided P, is known
and w can be observed). In that case, w will usually not be a sequence of U(0, 1 ) variates.
Consider for instance an M/G/ 1 queue. One possibility is to view w as the sequence of
interarrival and service times, and define Q = [0, c0)* as the sample space. In that case,
the distribution of w depends on 8, whereas it does not when w is defined as a sequence
of U(0, 1) variates.

So, there might be different ways of defining the sample space (and the associated
probability space (2, Z, P;)). Different choices may lead to different gradient estimators,
some being more efficient than others. This will be discussed further in the next subsection.

Some might feel more comfortable with an underlying probability space in which the
“basic”” random element is a sequence of independent U(0, 1) variates. Let ({2, 2, P)
be such a space. If (Q, Z, Pp) # (Q, Z, P), we assume that there is a measurable trans-
formation ¢,: ! = Q such that w = = ¢¢(@) and such that P B) = P(¢;'(B )) for every
measurable set B. Note that w may contain less information than &, and that its probability
law may depend on 6. We can also define the 3-measurable function h(o, +) by A(8,
@) = h(8, ¢4(@)) (note that (0, -) is S-measurable). We have

a(0)=fnh(0,w)dPg(w)=Liz(e,a)dﬁ(a).

In fact, this notion of an underlying sample space ! and transformation ¢ 1s not really
necessary. We introduced it here just to clarify some links with the common practice (in
simulation) of viewing the sample space that way. What we really have in mind is to
just define the sample space as Q and forget about €.
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2.2. Infinitesimal Perturbation Analysis

Suppose that P, is defined in such a way that w can be viewed as a sequence of inde-
pendent U(0, 1) variates. Then, P, is independent of 8, L(Py,, 6, w) = 1, and the last
term in (4) vanishes. In that case, under the appropriate regularity conditions, we obtain

Va(b) = f Voh(8, w)dPy(w) (11)

and Vyh(6, w) is the usual IPA gradient estimator (Cao 1987; Glasserman 1988a, b;
Heidelberger et al. 1989; Ho 1987; Rubinstein 1989; Suri 1987, 1989).

DEFINITION 2. An IPA estimator for Va(#) is defined as V,4(0, w) (provided that
this quantity exists for almost all w), where w is a sequence of values taken by independent
U(0, 1) random variables, and /(#6, ) is a measurable function of w whose expectation
is a(8). Likewise, V2 h(8, w) is an IPA Hessian estimator. [

When ( 11) is satisfied, we have an unbiased IPA gradient estimator (and similarly for
the Hessian). There often exist different functions 4(8, -) that satisfy the above definition,
and thus different IPA gradient (or Hessian) estimators for the same «. Often, some are
unbiased while others are not. In practice, the function /(6, ) is usually defined or
implied by the simulation model.

The basic idea of IPA is to generate a sample path w, viewed as a sequence of U(0, 1)
variates; and then for w fixed, to observe the effect of an infinitesimal perturbation on 6
(around 6,) by propagating it over the sample path, assuming that the sequence of events
does not change and that the events can only “slide” in time. The gradient estimator is
taken as the gradient of the objective function for that fixed value of w. The propagation
rules permit evaluating Vy/1(6, w) only at § = 6, and thus estimating the gradient only
at . If that definition of w is used in (2) with G # Py, one gets a combination of IPA
with importance sampling.

According to the above definitions, IPA can be viewed as a special case of SF (and
LR). One big advantage of IPA is that since no component of w depends on 6, the
variance no longer increases with the simulation length. But the function 4(6, ») must
absorb all the transformations and may become overly complex, sometimes making the
actual computation of V,4(#6, w) intractable, or invalidating (2). Typically, in that case,
one of the requirements of assumption A1 (§3) is no longer satisfied. In §4, we give
examples of this. In many cases, 4( -, w) remains differentiable almost everywhere, but
becomes discontinuous. Sometimes, a clever definition of /(0, w) might yield an unbiased
IPA estimator, while more straightforward definitions lead to biased estimators. See, for
example, Glasserman (1989) and Gong and Ho (1987). In fact, a large part of the IPA
literature deals with the development of effective techniques to compute Vo4 (8, ) during
the simulation (see, e.g., Glasserman 1989; Gong and Ho 1987; Ho 1987; Suri 1987 and
1989). One might even associate the term IPA more with these techniques than with
equation (11), and these “IPA” techniques can be used to implement LR as well. Some
people might argue that since the likelihood ratio has disappeared in (11), this is no
longer LR. In fact, we just view it as a special case (or degenerate case, in some sense ).

As we said before, w can also represent something other than a sequence of U(0, 1)
variates. For example, w can be viewed as representing the whole history of the system,
including all events with their types and occurrence times, etc. In many cases, w can
carry enough 6-dependent high level information so that for a given value of w, #(8, w)
does not depend on 6 any more, and the first term of the right-hand-side expression in
(3) vanishes. In that case, we will say that we have pure LR (or SF). But if w carries too
much information, one might be unable to write down P, explicitly, preventing the actual
computation of the score function and of the gradient estimator. For this reason, w is
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usually taken as a sequence of independent random variates. In Glynn (1987), for ex-
ample, when simulating a Markov chain, w is taken as the sequence of transitions of
the chain.

For the extreme case where w is defined as the value of the objective function itself,
i.e., h(f, ) = w (and @ = R) by definition, P, is actually the distribution function of the
cost. When we can write down P, and the associated likelihood ratio, there is usually no
need to simulate, since Va(6) can be computed directly. Monte-Carlo methods are pre-
cisely useful for the cases where we cannot efficiently compute the expression directly.

Between these extremes, there are often other possibilities. For instance, if a set of
U(0, 1) values must go through many levels of transformation, one may choose any one
of the levels to define w. See §4.5 for an example. Also, w might contain the original U(0,
1) values for some of the generated random variables, and the transformed values for
others. This gives rise to hybrid methods “mixing” in some way IPA with SF. According
to our definitions, this is still SF (and LR ). In §4, we give examples for which one might
think that SF does not apply, but for which SF effectively applies if the sample space and
w are defined appropriately.

But what is the best way, then, to define w? There is no easy answer to this question.
There is no straightforward recipe. Of course, one would like (2) to be valid. There are
examples for which (2) is valid if w represents higher-level information, e.g., the set of
actual interarrival times, service times, and transitions between nodes in a queueing
network, while (2) is not valid if » represents the sequence of U(0, 1) variates. But for
other examples, the opposite is true (see Reiman and Weiss 1989; Glasserman 1988a,
b; and the examples in §4). In certain situations, (2) might be valid for none of the
extreme cases, but for some intermediate definition of w (see §4.5). If (2) is valid for
many possible definitions of w, one will then try to minimize the variance multiplied by
the expected work per run (see Fox and Glynn 1990). This is certainly problem-dependent,
but according to the remarks following equation (7), trying to put the least number of
6-dependent components in w appears to be a good strategy.

One consequence of the above discussion is that many properties of the IPA method
also apply to LR, and vice-versa. For example, the validity of interchanging the derivative
and expectation is a problem for the LR method in general. Various ( problem dependent)
devices have been suggested to “smooth out™ or transform some problems for which
IPA does not apply directly, into problems for which IPA will work correctly (see, e.g.,
Glasserman 1989; Gong and Ho 1987; the references in Glasserman 1988a, b; Heidelberger
et al. 1989; and Suri 1989). In principle, one could think of developing such devices for
LR in general.

When o(0) is a steady-state performance measure and w contains an infinite sequence
of #-dependent random variates, the Radon-Nikodym derivative in (1) typically does
not exist. However, (11) might be valid in that case, and then, one typically has VA (6.
w) = Va(#) with probability one (this is when IPA is strongly consistent).

3. Interchanging the Derivative and Expectation

In this section, we give sufficient validity conditions for the interchange of derivative
and expectation that is required to justify (2). Conditions for specific cases are also given
in Glasserman (1988a, b, ¢), Reiman and Weiss (1989), and Rubinstein (1989). Verifying
directly the most general conditions (uniform integrability ) is usually not straightforward.
But often, the conditions below can be verified directly, as we will see in the examples
of the next section. See also the discussion in Glasserman (1988a).

Each component of the gradient can be dealt with separately. For i = 1, ..., d, to
study the ith component of the gradient, we look at what happens when only the com-
ponent / of § is allowed to change and all other components of 6 are fixed. To simplify
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things, in this section, we assume that 4 = 1. For the more general case, just apply the
results below to each component of 8 (while the other components are fixed). All prob-
abilistic statements in this section are made with respect to the probability measure G.
The theorem below is an adaptation of Lemma 1 in Glasserman (1988a). It uses the
following assumption:

ASSUMPTION Al. Letd = 1 and H(f, w) = h(0, w)L(G, 6, »). There is an open
neighborhood T of ), T < 0, and a measurable set = < Q, such that G(Z) = 1, and for
all w € =, H(-, w) exists and is continuous everywhere in T, and is also differentiable in
D(w) < T, where T\ D(w) is at most a denumerable set. Assume that (1) holds for all 4
€ T. Define

6eD(w) (12)

sup |Y(6, w)| if w€5E
Y(w) =
[ otherwise.

Assume that there exists a function I': @ — R, integrable with respect to G, such that
Y(w)<N(w)foralw e Q. O

THEOREM 1. Under A1, equation (2) is valid for 6 = 6,.

PROOF. The proofis largely inspired by the proof of Lemma 1 in Glasserman (1988a).
From a generalized version of the mean value theorem (see Theorem 8.5.3 in Dieudonné
1969), if 6p and 6y + harein Tand w €E =,

H( + h, ) — H(bo, »)
h

< sup (0, w)| = IN(w).

0E [60,80+h]1ND(w)

Hence, from the dominated convergence theorem,

pr(ﬂo,w)dG(w):L(lim H(0°+k’“’)_H(0°""))dG(w)

h—0 h

. (a(ﬂo + h) — a(00))
= lIim

h—0 h
= Valp). O

In Assumption Al, we do not need continuous differentiability, nor differentiability
everywhere in T. But continuity is usually essential. Saying that (1) holds for all § € T
means that the first two equalities in ( 1) hold, and implies in particular that G dominates
P, for all # € T. We only require ¥ to be bounded by an integrable function instead of
requiring its own integrability. This way, we do not need to check if ¥ is measurable.
Checking the last condition of A1 using (12) is typically easier than directly bounding
(H(6y + h, w) — H(8y, w))/h uniformly in /4 for # in some neighborhood of 0. If for all
w€ =, H(-,w)iscontinuously differentiable in T and T is bounded, then one can trivially
take I'(w) = ¥(w) = supger| VoH(8, w)| as the integrable bounding function. (See also
Fox. 1989).

4. Examples

In this section, we give simple examples, some with numerical results, to illustrate the
main ideas of the paper. The first five examples deal with a simple M/G/1 queue that
evolves until a certain (fixed ) number of departures have occurred ( this is slightly simpler
than the case of a fixed-time horizon, where the SF has a random number of terms and
the IPA estimator is a bit more complicated to compute). The next two examples consider
the lifetime of a k-out-of- N reliability system, without repairs. The following one discusses
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a general continuous-time Markov chain, while the last one looks at sensitivity with
respect to thresholds. In particular, we look at replacement policies defined by thresholds
in a multicomponent system. In the latter case, we actually do not know how LR can
be used efficiently to estimate the gradient.

Consider a M/G/ 1 queue, initially empty, and let «(6) be the expected mean system
time (waiting + service times) for the first 7" customers in the system, where 0 is a
parameter of the service time distribution. The arrival rate is A = 1. We want to estimate
the derivative o/(#) at a given point § = 6, by simulating at that point. For a given
realization w, h(0, w) represents the observed average system time for the T customers.
We have

T
h(a,w)ﬁz(wwsi) (13)

where W; and S; are respectively the actual (observed) waiting time and service time for
customer i ( these are [deterministic] functions of § and w). Let 4; denote the interarrival
time between customers i — 1 and i (4, is the arrival time of customer 1 and the system
starts at time 0). We have W, = 0, and W, = max (0, W; — 441 + S)) for i > 0. The
first five examples below are variants of this one; only the service time distributions differ.
Application of IPA to this system has been analyzed in Suri and Zazanis (1988) when
the objective function is the steady-state average system time per customer. It has been
shown that under some conditions on the service time distribution, IPA gives an asymp-
totically unbiased and strongly consistent gradient estimate. For the case of a finite number
of customers, the validity of IPA has been analyzed, e.g., in Glasserman ( 1988a, Exam-
ple 4).

4.1. Applying IPA or SF to an M /M1 Queue

Let the service time distribution be exponential with mean 8,0 < a <6 <b.IPA is
known to work for that case: assuming that the interarrival and service times are generated
by inversion, one can take w as the sequence of U(0, 1) values used to generate them,
ie,w=(U,...,Us),4;=—In(1 — Uy_,)and S; = —81In (1 — Uy). An infinitesimal
perturbation on S; affects the system time of customer / and of all the customers (if any)
that follow him in the same busy period. Therefore,

1 I 3S;
W0, w) = Veh(0, w) = }Z > 6—0’ (14)
i=1 jEB;

where B; is the set containing customer / and all the customers that precede him in the
same busy period (if any), and 3S;/86 = S;/8. This can be computed during the simulation
as described in Suri and Zazanis (1988). We can easily verify assumption Al. In fact,
for any w, S; is continuous and differentiable in 6, and 4(-, w) is continuous in the S;’s
(and in the W;’s, which are continuous in the S;’s). Also, A(-, ) is not differentiable
at 6 only when two events (arrival or departure) occur simultaneously, and this happens
at most for a finite number of values of 6. Since

T i T
sup Y0, )| <(1/T) 2 2 (~In(1 = Uy)) = =2 In(1 = Uy)
a<f<b i=1 j=1 j=1
and the latter is integrable, Lemma 1 applies and IPA provides an unbiased gradient
estimator for that case. However, Al is not satisfied for the IPA Hessian estimator, since
Veh (-, w) is usually discontinuous. In fact, V2h(0, ) is zero whenever it exists.
Another choice takes w as the set of actual interarrival and service times: w = (4, Si,

..., Ar, Sr)and G = P,,. In this case, d P w)/dw is the product of their densities:
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T
1
de(Q)) = H (E e_S"”eA‘dS,-dAi) 5
i=1
and Vyh(6, w) = 0. This is pure SF. Only the service time densities appear in the likelihood
ratio, since the interarrival times are independent of 8 (in fact, taking either the actual
interarrival times or the corresponding U(0, 1) values in » makes no difference here).

One has
-
L(Py, 0, w) = (60/0)" [T e=5/0+ 5%
i=1
and
S0, w) = éil le‘S"" —iET:(S‘—O)
¢ i=18‘9n Y 021=1 l .

S(6, w) can be computed easily together with /4(f, w) during the simulation. For any w,
H(-, w)is continuous and differentiable in (a, b) (note that H(8, w) depends on 6 only
through L(Py,, 0, w)). The gradient estimator (4), for all § € (a, b), is

1

V(0. @) = 53

T T
(Z Wi+ SHH(Z (Si = 0).

i=1

Here, for any w,

T T
Y(w) < (Z (W + SH(Z (S, + b))/ (Ta?).

i=1 i=1

For each 8, € (a, b), the latter is clearly P, -integrable, so that Lemma 1 applies. The
corresponding Hessian estimator

| 7 T
h(8, w)VeS(0, w) = I E (2 Wi+ SONTO—2 2 S)
i=1

i=1

is also unbiased.

When the cost function is a sum of terms like in (13), one can estimate the gradient
of each individual term separately. For a given term, it is not always necessary to use the
“global” score function; one can use a score function based only on the random variables
that influence that term. This usually reduces variance. For example, to estimate the
gradient of

a;i(0) = E[hi(8, w)] = E[(W,; + )/ T1,
using “pure” SF as above, one can use the score function
Si(, w) = 2 (S;— 6)/6?,
j=1

in which case the estimator becomes

Y0, w) = (W; + S)) Z (S; — 8)/(T8).

Jj=1
An estimator of Va(#) is then

1

T i
=57 2 (Wi +.5) 2 (5, 0)).

i=1 j=1

T
2 wi(es (D) =

i=1
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This SF gradient estimator has approximately half the number of terms and half the
variance of the previous one.

In principle, one can also combine the IPA and pure SF approaches. For instance,
one can take S; for some of the customers and the corresponding U(0, 1) values for
others. This would give rise to more complex expressions but could be implemented in
practice without too much difficulty, and Lemma 1 would still apply. There might be
no practical advantage of doing such a combination in that case, but there are other
examples where it can be helpful. See, e.g., §4.4. Suppose now that w contains only the
set of waiting times. Then, one faces the problem of expressing P,. In fact, the waiting
times are dependent random variables whose distributions are quite complex in general.
Except for small values of T, this is not practical. Finally, for the extreme case where w
= h(#, w), one has to compute the distribution of the average cost (and generate w)
using numerical methods!

42. An M/G/1 Queue whose Service Time is Discrete with Parameter-Dependent
Probability Mass

Let0 <a<b,0<c<f<d<1,and suppose that the service time is b with probability
9, and a with probability 1 — 8. In this case, IPA does not apply (see also Suri and Zazanis
1988), but if w contains the set of actual service times, then SF does apply.

Suppose U,, ..., Urare the U(0, 1) variates used to generate the service times. Let
C;=1land S;=bifU;<0,C;=0and S;=a otherwise (C; is Bernoulli (8)). For IPA,
w contains (U, . .., Up),and H(+, w) = h(-, w)is discontinuous since S; jumps from
bto a at § = U,. This is why IPA does not work. But suppose w = (A, S1,.-.,Ar, ST).
In this case, the likelihood ratio can be expressed in terms of the varables Ci, ..., Cr.
Their joint probability mass is

T
pB(Cl9 s CT) = H 0Ci(l - 0)176"‘9
i=1
and H(6, @) = K(w)p C\, . . ., Cr), where K(w) = h(8, @)/ pg(Cis - - - Cr) does not

depend on 8 (because w contains all the information to compute A(8, «) independently
of 8). H(-, w) is continuous and differentiable on (0, 1). Since

T T T
W8, w)| = (1/T) X (W, +8) 2 1Ci—81/(6(1 — 0)) < > (Wi + S))/(c(1 — d)),
i=1

i=1 i=1

¥ is bounded by an integrable function, so that Al is satisfied and we get an unbiased
estimator.

4.3. An M/G/\ Queue whose Service Time is Discrete with Parameter-Dependent
Support

Suppose that the service time is 6 with probability p, and 26 with probability 1 — p,
where 8 > 0 is the parameter and p is a constant, 0 < p < 1. Here, the “naive” application
of LR, where w contains the set of actual service times and G = Py, does not apply
because there is no neighborhood of 6, in which the Radon-Nikodym derivative exists
(the event {S; # 0o, S; # 26, } has Pg-measure 0, but not P,-measure O for 8 # ;). Even
if one defines L directly as in (6), one gets H(0, w) =0 everywhere except at § = o,
which is discontinuous. For IPA, one can use U, . . ., Ur to generate the service times:
S; = 0if U; < p, S; = 20 otherwise. ¥(6, w) can be computed as in ( 14), again with 35/
38 = S;/6. The arguments to verify Al are the same as in §4.1, and so IPA applies.

4.4. Applying a Mixture of IPA and Pure SF to an M/G/1 Queue

Let g be a constant, 0 < g < 1, and suppose that the service time is generated as in
§4.2 with probability ¢, and as in §4.3 with probability 1| — g. Let Dy, ..., Dy be the
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corresponding Bernoulli (g) random variables, i.e., D; = 1 if the service time of the ith
customer 1s generated from the first distribution (Example 4.2), D; = 0 otherwise. When
D; = 1, let C; be a Bernoulli (#) random variable and S; = a + Ci(b — a), as in §4.2;
otherwise let C; be Bernoulli (p) and S; = 26 — 6C;, as in §4.3. In that case, we can define
w as the sequence of values of D; and C;, plus the U(0, 1) values used to generate the
interarrival times. The likelihood ratio depends on w only through the D;>s and C;’s,
whose joint probability mass is

T
p Dy, Cy, ..., Dy, Cr) =[] (01 — 6)")P((1 = g)p<i(1 — p)' =)'~
i=1
and one obtains

T
S0, w) =2 D;

i=1

(C l—C,»)_ L Di(Ci—0)

9 1-0 o1 — 6)

i=1
This can be computed along with 4(6, w) during the simulation. To compute Vz4(6, w)
for a fixed w, one applies a mixture of the more traditional IPA and SF techniques: the
service times of the customers for which D; = 0 are “perturbed” using the usual IPA
technique, while the perturbations for the other service times are considered to be zero.
More specifically, for a fixed w, Vyh (6, w) is computed using the right-hand side of (14),
but with

— =<1 if D, =0 and S; =6,
2 if D, =0 and S; = 26.

Again, assumption Al is easily verified, by combining the arguments of the two previous
examples. Therefore, by mixing IPA with SF, we obtain an unbiased gradient estimate,
despite the fact that neither IPA alone nor “pure” SF (putting all the S;’s in w) works.

Table 1 gives the results of a numerical experiment for this example. We used 7 = 10,
g=p=a=3% b=3 and estimated the derivative at = 0.2, 0.5 and 0.9. We used two
gradient estimation techniques: symmetric finite differences with common random num-
bers (FDC) (see L’Ecuyer, Giroux, and Glynn 1990, Meketon 1987, Suri 1989), and
the “hybrid” SF method described above (SF-IPA). For FDC, simulations were made
at 6 = 0.01, starting from the same (empty) state, and the same U(0, 1) values were
used on both sides, with proper synchronization. In each case, we made 100000 repli-
cations and computed a 95% confidence interval. The same streams of random numbers
were used for the six different entries of Table 1. As expected, the results from the two
techniques agree. They also agree with the exact values. For FDC, the gradient estimator
has some bias, due to the finite differences, but here, that bias is “lost in the noise”, since
the confidence intervals cover the exact values. The FDC estimates took approximately
twice the time of the SF estimates to compute. The Appendix explains how to compute
the exact gradient values.

TABLE 1

Numerical Results for Example 4.4: 95% Confidence Intervals for the
Gradient, Based on 10° Replications

0 True Grad. SF-IPA FDC
0.2 2.551 2.53 = .04 2.55+ .03
0.5 3.980 3.96 = .06 4.01 £ .04
0.9 5.525 5.53 .16 5.53£.05
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4.5. An M/G/1 Queue whose Service Time is k8 Times a Bernoulli (6)

Suppose that the service time is k@ with probability 8, and 0 with probability 1 — 6,
for some constant k > 0. For each service time, one can generate a U(0, 1) variate U;,
then define C; = 1 and S; = k8 if U; < 6, C; = S; = 0 otherwise. In that case, it is easy to
see that neither w = (4,, Uy, ..., Ar, Ur)norw =(4,, S, ..., 4r, S7) works. However,
if one takes w = (A4,, C1, ..., A7, Cr), then SF works. In fact, C; is Bernoulli (#). The
score function is
T

(Ci—9)

S0, w) =2 ———,
001 —8)

and V,4(8, w) can be computed using the right-hand side of (14), with 45,/ a0 = kC;

= S,' / 0.

For this example, we performed the same numerical experiment as for the previous
example, with k = 2, and the results appear in Table 2. Again, they agree very well with
the exact values (computed as explained in the Appendix). The FDC estimates took
approximately twice the time to compute.

4.6. A k-out-of-N Reliability System with Parameter-Dependent Component-Lifetime
Densities

Consider a k-out-of- N reliability system with identical components. The N components
have independent (random) lifetimes X, . . ., X, each with distribution Fy. For sim-
plicity, assume that this distribution is continuous, with density fy, that the support of
fs is independent of 6 for # € O, and that for each x > 0, both Fy(x) and fy x) are
differentiable w.r.t. 6. The system is down (failed) when less than k components are still
alive. For a given realization w, h(6, ) represents the system’s lifetime and o(6) its
expectation. We examine four of the (many) possible choices for w. We want to estimate
Va(by), using (4). Let s and X, denote the number and lifetime of the last component
that fails (the (N — k + 1)th failure). One has A(f, w) = X;.

One can take w = (X, . . ., Xy), in which case V44(8, w) = 0, and

Moo
S0, w) = T 21 fo(X).
=1
This is pure SF in its most straightforward form.

As a second choice, one can define w = (s, X;, 4), where 4 = {j| X; > X,} is the set
of k — 1 components that are still alive when the system fails. Forevery i € {1,..., N 3,
A< {l,...,N}\{i}suchthat |[4| =k — 1,x=0and é> 0, theevent {s =i, x <X
<x+8X;>x+téforjEA, X;<xforjE AU {i}} has probability

Py(x, 8) = [Fo(x + 8) — Fo(x)1[Fo(x)]V*[1 = Fy(x + 8)1".
The density of w at X; = x is therefore

lim Py(x, 8)/8 = f(x)[Fo()]V*[1 = Fo()]*"!

—0*

TABLE 2

Numerical Results for Example 4.5: 95% Confidence Intervals for the
Gradient, Based on 10° Replications

0 True Grad. SF FDC
0.2 1.038 1.03 + 0l 1.03 = .01
0.5 4.529 4.49 + .05 4.51 £ .04
0.9 16.671 16.61 + .30 16.75 = .12
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if | A] = k — 1, 0 otherwise. This family of densities is dominated by any one of them
(i.e., any 8 € ©). We still have Vsh (0, w) = 0 and the score function becomes

S0, w) = % [In f(X;) + (k — 1) In (1 = Fp(X;)) + (N — k) In Fo(X,)].

A third choice uses the IPA technique: suppose X; = Fj'(U;) where the U;’s are
independent U(0, 1) variates, for i = 1, ..., N, and take w = (U, ..., Uy). Here,
Voh(0, w) = 0F5 ' (Us)/ 6, where s is defined as above, and S(6, w) = 0. There are many
cases where we can obtain equivalent results by taking w as something else than the U’s.
Consider for example the Weibull distribution: F(x) = 1 — exp(—Ax®) and F )
= (=In (1 — U)/X)"/*. In this case, one can take w = (V, ..., V) where V; = —In (1
— U;) and this is equivalent to IPA (for § = X or § = «). The expression for Vyh (8, w)
can be obtained with slightly less manipulations in the latter case.

For exponential lifetimes, there is the following fourth choice. Let 1/6 be the failure
rate for each component, and let the state of the system be defined as the number of
components that are still alive. That system evolves as a continuous-time Markov chain.
It goes from Nto N — 1, ..., to k, and finally to k — 1 where it dies. The jump rate
from N —itoN—i— 1is (N — i)/6. Hence, w can be defined as w = (¥, . . ., Y.,
where Y; is exponential with mean 6/, and A(f, w) = Yy + - - - + Y«. One has in this
case

N /v _
s0.0- 3 (1)

2
Jj=k Y

and YV h(8, w) = 0.
For the exponential case, analytical formulas are obtained readily:

a(8) = E[h(0, w)] = E[Yy+ - -+ + Y] =0(1/N+ - -+ + 1/k),

and Va(#) = (1/N + -+ - + 1/k). This is in fact discrete-time conversion (Fox and
Glynn 1990) applied to the above continuous-time Markov chain. In this case, it yields
zero variance. For many other distributions, analytical formulas can also be obtained by
exploiting the fact that X; is an order statistic. Often, one can write down the density (or
probability mass) and the expectation of X; explicitly, and differentiate. This is what we
did to compute the exact gradient for the Weibull case in Table 3.

TABLE 3
95% Confidence Intervals for the Gradient, Based on 10° Replications (Example 4.6)

N k Distrib. 0 Exact SF1 SF2 IPA MC

8 2 Expon. 1.0 1.7179 1.694 = .042 1.705 = .036 1.718 + .004  1.732 + .040

8 6 Expon. 1.0 0.4346 0.430 = .011 0.436 = .009 0.436 £ .001  0.440 = .009

8 2 Expon. 5.0 1.7179 1.694 + .042 1.705 = .036 1.718 + .004  1.732 + .040
20 5  Expon. 1.0 1.5145 1.485 + .048 1.483 = .041 1.513 +£.002  1.523 =.045
20 10  Expon. 1.0 0.7688 0.755 +.025 0.764 + .020 0.769 +.001  0.771 = .020
20 15 Expon. 1.0 0.3462 0.340 + .012 0.347 + .008 0.347 £ .001  0.350 = .008
50 10  Expon. 1.0 1.6703 1.669 * .024 1.674 + .020 1.671 £.001  1.650 +.022
50 40 Expon. 1.0 0.2457 0.246 + .004 0.246 + .002 0.246 +.001  0.246 + .002

1 I Weibull 1.0 —0.4228 -0.404 +.033 —0.404 = 033 —0.420 +.010

8 2 Weibull 1.0 —1.0756 —1.027 +.057 -1.052+.041 —1.074 +.008

8 6 Weibull 1.0 0.2930 0.308 + .012 0.296 + .004 0.294 + .001

20 5 Weibull 1.0 —0.6843 —0.618=.063 —0.669 +.031 —0.682 £ .004
20 10 Weibull 1.0 0.1662 0.197 +.030 0.169 = .007 0.167 £ .001
20 1S Weibull 1.0 0.3389 0.350 + .014 0.342 + .006 0.340 = .001
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All'this can be adapted to more general reliability networks, with more complex struc-
tures, components that have different lifetime distributions (with possibly different pa-
rameters), repair possibilities, etc. For the last case (exponential lifetimes and fourth
choice of w), the state description of the Markov chain would get more complicated in
general. A “practical” analytical formula is not always available for the exponential case,
but replacing transition times by their (conditional) expectations, called discrete-time
conversion (Fox and Glynn 1990), always reduces variance without increasing work.
See also §4.8. In practice, importance sampling (when it works) can also be very effective
when simulating such networks (see Goyal et al. 1989).

We performed some numerical experiments, first with the exponential distribution
with mean 6: F)(x) = 1 — exp(—x/0), then with a Weibull distribution with 6 as the
shape parameter: Fi( x) = 1 — exp(—x’), x = 0. We tried different values of N and k.
The results appear in Table 3, in the form of 95% confidence intervals on Va(#). The
“methods” SF1, SF2, IPA, and MC correspond to the four choices of  described above,
in that order. “Exact” refers to the exact value of the gradient. Note that MC does not
apply for the Weibull distribution, but for the other cases, Al can be verified easily for
all § > 0. We leave that as an (easy) exercise for the reader. Expressions used in the
estimators are given in Table 4 for these two distributions. For the Weibull case, at 6
= 6y = 1, the exact value is given by
N MR (—D)i(In(k+ i) +vy—1)

(k~ 1) 20 NN =k — i)k + i)

iE[X]—
a0 :

where y = 0.5772157 is the Euler’s constant. In our implementations, the four estimators
(four methods) were computed simultaneously within the same simulations.

From these numerical results, SF2 appears to be generally better than SF1, and MC
is not much better than even SF1. The most efficient by far is certainly IPA. This is not
surprising, since the score function has zero variance in that case. In fact, in most cases
where IPA works in practice, it is typically the most efficient gradient estimation technique.

4.7. A Reliability System with Parameter-Dependent Support for the Component-
Lifetime Densities

In the previous example, suppose that the component lifetimes are uniformly distrib-
uted, between 0 and 6. The density of X; is fy( x) = 1/6 for 0 < x < 6. Since the support
of f, depends on 6, if we take w = (X, ..., Xy), the Radon-Nikodym derivative
d P,/ dPs, does not exist for § > 6, but exists for § < ,. For (1) to be valid, one can
take G = P, for some (fixed) 0, that is larger than all values of # for which we might

TABLE 4
Expressions Used in the Gradient Estimators, for Two Distributions

Exponential Weibull
Jo(x) (/0™ x>0 Xl x>0
Fy(x) 1 — v 1 — e
F\(U) —0In(l —U) (=In (1 — U)/\)¢
a
@X for X = F;\(U) X/0 —X(In X)/6
a
% In f3(x) (x — 6)/8? 1/6 + (1 = Axx% In x
d —xe™* A (In x)e™
—InF S — =
39 1 Fe 831 — ¢ ) —e™
a3
% In (I — Fy(x)) x/0? ~xx’1In x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1378 PIERRE L’ECUYER

want to estimate Va(#). But then, a different problem emerges. Since fy( x) = 1/6 for x
< 6 and O for x > 6, for any fixed w = (X, ..., Xw),

N
H(8, @) = X, [T (i(X)/ o, (X))

i=1

is discontinuous in 6 at # = X;, for each i. In fact, if G = P,, and 7T is a neighborhood
of 8., max; X; falls into T with positive probability, and whenever this happens, H( -, w)
is not continuous in T. Therefore, A1 is not satisfied. This illustrates the fact that even
when V,4(0, w) = 0, the existence of the Radon-Nikodym derivative is not a sufficient
condition for LR to apply.

Note that IPA applies for this case: the gradient estimator is X;/#6, the same as for the
exponential case.

4.8. Continuous-Time Markov Chains

Consider a continuous-time Markov chain with finite state space S. Let A; denote the
jump rate out of state i, and p;; be the transition probability from i to j. There is also a
cost incurred continuously at rate ¢; when in state i. Suppose that these quantities depend
on some parameter vector § € ® = R Let a(#) be the total expected cost for the first 7
transitions, where T is fixed.

Simulation is often the most convenient tool to analyze such chains, particularly for
very large state spaces (see, e.g., Glynn and Iglehart 1988; Fox 1989). Here, a future-
event list is not necessary to run the simulation; one can just use the transition probabilities
to jump from state to state. Typically, the transition matrix is very sparse, and from any
given state i, the number of reachable states is small. In fact, there is usually no need to
write down that matrix or to enumerate S. Take for instance a closed Jackson network
with say m nodes and » customers (one server per node, one class of customers): if m
= 20 (say) and n = 100 (say), the state space is huge, but from any given state with say
B busy nodes, there are only B possibilities for the node where the departure occurs and
at most 20 possibilities for the destination node of the departing customer. It is quite
easy to generate the two corresponding discrete variables and there is no need to generate
explicitly even a row of the transition matrix. As discussed in Fox (1990), the second
variable (destination node) can be generated in O( 1) time via the alias method (see
Bratley, Fox, and Schrage 1987), after some initial setup time to compute an alias table
for each row of the routing matrix. Using the alias method for the first variable (departing
node) is much more complicated, since its probability law varies with the set of nodes
that are busy. Of course, this variable can be generated directly, via “inversion”, or
indirectly, via a future-event schedule. If B is typically modest (say at most 20), then
either method is adequate. However, Fox (1990) proposes a clever method that beats
both of these when m is large and the traffic is heavy. His method exploits efficiently the
similarity in successive, unnormalized departure-rate vectors, and uses the alias method
as a subroutine. It also applies to simulations of highly-dependably reliability sys-

tems (§4.6).
Let {X,, n = 0} be the embedded Markov chain (the sequence of visited states), 0
=79<7; <7y < - - - the transition times (the system jumps into X, at time 7,), and

forn=0, {, = 7,41 — 7. Note that {, is exponential with mean 1/Ay,.
A simple choice for w, when Al is satisfied for it, is

w = (XOs {Ov Xl7 {l’ .. ')XT*I’ g‘T—l)'

Except for very small T, the variance of the gradient estimator is then usually quite high
and, as the previous examples suggest, one would usually prefer to use IPA if it is applicable.
Unfortunately, IPA does not always work for the transition probabilities (see Glasserman
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1989), but it can be used here for the times between jumps: take

w = (Xo, Uo, ..., Xr—1, Ur-y),

where U; is the U(0, 1) variate used to generate {; (by inversion). This could certainly
help, but there is a better choice: just take w = (Xp, ..., X7—1). The {;’s can simply be
replaced by their conditional expectations. This is discrete-time conversion (Fox and
Glynn 1990). It reduces simultaneously the variance of the cost estimate and the variance
of the likelihood ratio. In fact, there is no need to generate any {;. The cost estimate is
simply. ‘

T—-1
2 Cx,/ Ax,. (15)
n=0

If all the p;’s depend on 6, there are still 7 — 1 terms in the score function (assuming
Xo fixed) and the variance could kill us for large T. There might be cases, however, where
only some of thep;’s depend on # and this can make a big difference in the variance
of the gradient estimator. If only the transition times (and not the transition probabili-
ties) are influenced by 6, then the gradient estimator is readily obtained by differenti-
ating (15).

On the other hand, terms in the likelihood ratios cannot be replaced (in general) by
their expectations. For example, the score function in (4) has zero expectation, but is
correlated with A(6, w) and the expectation of the product is not zero. There are special
cases, however, where it can be done: see, e.g., Glasserman (1989) and Algorithm B in
Glynn (1987).

With adaptations, the above approach also applies to semi-Markov processes and
(though this is not necessarily trivial) to the case where T is a random stopping time.
Glasserman ( 1989) has developed a technique to apply IPA to a continuous-time Markov
chains when the transition probabilities depend on 6. It is based on a clever definition
of h(0, w), i.e., a clever way of transforming the U(0, 1) variates into the performance
measure. Straightforward (naive ) definitions typically do not work. Glasserman’s method
works under certain conditions, the most important being that any two states directly
accessible from a given common state also have a common state directly accessible from
them, and that the objective function is made up of continuously cumulated costs.

49. A Multi-Component Replacement System

(Example taken from Haurie and L Ecuyer 1986.) Consider a system comprised of N
identical components, that evolve independently. Each component has a random lifetime
distribution with increasing failure rate. Whenever a component fails, it must be replaced
instantly by a new one. Other components may be replaced ( preventively) on the same
occasion. The repairman can also halt the system at any moment and replace preventively
any number of working components. All replacements are assumed instantaneous. A
failure cost ¢y is incurred every time a component fails. At each intervention, there is
also a fixed cost ¢;, and a replacement cost which is ¢; times the number of components
replaced. Preventive replacements are made to avoid some of the failures, and replace-
ments are sometimes lumped together to pay the fixed cost less often.

Here, we restrict out attention to the (generally suboptimal) class of policies defined
by two thresholds: 6, > 6, > 0. Whenever a component fails or reaches age 0,, the
repairman intervenes and replaces all components older than 6,. We are interested in
the total cost for a fixed duration 7", assuming that all components are new at the begin-
ning. The parameter here is § = (6, 0,).

Suppose w is the set of generated component lifetimes (for fixed 4, this is enough for
computing the cost). Then, the likelihood ratio is always one, since the component
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lifetimes do not depend on 8, but A(6, ) is discontinuous in §. More specifically, for
any neighborhood T of § = (8, 6,), h( -, ) will be discontinuous in T if some component
lifetimes are near enough to 8, or §, to change the sequence of failures when ¢ changes
inside T (for fixed w), and the set of values of w for which this happens has positive
probability. Exactly the same problem occurs with IPA (w is‘the set of U(O0, 1) values
used to generate the component lifetimes). Suppose now that w includes the sequence
of all failures and replacements, with their times. Now, /(6, w) becomes independent of
9, but in general, for any fixed value 6§, of § and any G, the Radon-Nikodym derivative
dP,/dG does not exist in a neighborhood of 8, since a typical w will have nonzero Pg-
probability (or density ) for only one value of §. More precisely, let T be a neighborhood
of 6. For any 8 = (8, 6,) € T, let B, be the event { w|at every preventive replacement,
the age of the oldest component is 6, }. Note that Py( By) = 1, while for any 8’ = (8,
#5) € T such that 8 # 6,, one has B, N\ By = & and Py (By) = 0. For dP,/dG to exist
in 7T, it is necessary that G(B,) > O for all # € T. But since T is an interval, this is
impossible.

At this point, we do not know how to apply LR (and in particular IPA) to estimate
the gradient for this example. Many other examples, most of them involving “threshold”
parameters, fall into this category. For instance, think of a (s, S) inventory systems,
where 6 = (s, .S), or a time-sharing computer system where the parameter is the quantum
size (see Kleinrock 1976, p. 160), or a checkpoint-rollback-recovery system (for databases;
see L’Ecuyer and Malenfant 1988) where 8 is the time between checkpoints (or is used
in a rule to decide the next checkpoint time, based on the state of the system), etc. At
present, for all these examples, to the best of our knowledge, a “finite-differences” approach
(preferably with common random numbers) must be used.

5. Conclusion

We pointed out the strong relationship that exists between IPA, SF, and LR. In §3,
we gave easily verifiable conditions under which LR (and/or its special case IPA) does
apply. When LR does not apply, these conditions sometimes permit us to understand
why. We have illustrated with examples some ideas related to this approach. In particular,
there are often many different ways to implement LR, some being much more efficient
than others. IPA and “pure” SF (i.e., as used for instance in Glynn 1987; Reiman and
Weiss 1989; Rubinstein 1986 and 1989) can sometimes be combined on the same prob-
lem, and for the same parameter. However, when IPA applies, it is typically by far the
most efficient method.

In practice, the change of measure used to define (1) through (3) can sometimes be
used to reduce the variance (this is importance sampling; see Goyal et al. 1989). We
have not explored that issue in this paper. For all the examples in §4, we have used G
= Py, to estimate Va(f,), but substantial variance reductions can sometimes be obtained
by using a different (and appropriate) G.

For some examples, it appears that the method of finite differences (FD) remains the
only applicable approach at this time. Some experimental evidence (L Ecuyer, Giroux,
and Glynn 1990, and §4 in this paper) suggests that in many cases where IPA applies,
FD with common random numbers might be practically as good as IPA when 6 has only
one component (d = 1). But for a large number of parameters (large value of d), per-
forming all the simulations required for FD becomes rather time consuming, and IPA
or a good LR implementation might beat FD significantly.'

1 Most of this work was done while the author was enjoying the hospitality of the Operations Research
Department at Stanford University. It has been supported by NSERC-Canada grant #A5463 and FCAR-Québec
grant #EQ2831. I wish to thank B. L. Fox, P. W. Glynn, M. Nakayama, A. Haurie, R. Rubinstein, and R. Suri
for helpful discussions and comments. Many suggestions and corrections by the Department Editor James R.
Wilson have led to important improvements of the paper.
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Appendix: Computing Exact Gradient Values for §4.1 to §4.5

To compute the exact gradient values for §4.1-§4.5, we can write recursive equations to compute V,(s) and
VeV.(s) in terms of V., and V, V., where V,(s) represents the expected total system time spent from now
on by the next T — n customers to depart, given that there are s customers in the system, | < s < 7 — », one
of which is beginning its service. V' r_,(s) is the expected service time (independently of s), and V,( 1)/ T is the
expected average system time for the first 7 customers. V7(s) = V4V (s) = 0 for all 5, and V,(0) = V,(1) for
O0<n<T.

We now derive these recursive equations. Assume that the arrival rate is A and that the service time is a
discrete random variable, with probability mass p,, over a denumerable sample space Q' C [0, o ). Let ¢ denote
the next service time duration, and i the number of arrivals during that service time (which is the value of a
Poisson (A{) random variable). For | < s < T — n, one has

Va(s) = Z ¢o($)pe($),

e’
where

& _”( )
eo({) =5+ 2 ——— i (ei(ns )+ Sealn, s, D).
! =0 -t
Here, {s represents the waiting time during the next transition (of duration ¢) for the customers already in the
system, {@,(n, s, i) is the expected waiting time during that same period for the min (i, T — n — s) customers
who arrive during it and that are taken (we stop taking customers when a total of T have arrived ), and @i1(n,
s, 1) is the total expected waiting time from the next transition on.
Ifi> T —n—s, only the first T — n — s customers are taken. In that case,

Soa(n, s, iy =E[r{— Y, ~ ««. = V)]

where r =T —n—sand Yy, ..., Y, are the order statistics of i i.i.d. U(0, {) variates. Observe that Y;/{ has
the beta distribution with shape parameters « = jand 8 = i — j + 1. Therefore, E [Y;/¢1=j/(i + 1), so that

Sl s, ) =r{ =2 G/li+1)=r{—r(r + 1)/(200 + 1)).

J=1

One then has

Via(s+i—1) if i=T—n-ys
oi(n, s, i) = [
Veerl(T—n—1) otherwise;
i/2 if i<=T—n-—ys
ean, s, i) = {
(T—n—s)1 —(T—n—s+1)/(2(1 + 1))) otherwise.
Also,
VoVa(s) = 2 [Veps(D)eo($) + pa( o3 ( D],
req’
where
< ‘”()\f)’
¢3(§)—s Z [Vog:(n, s, 1)+ (cpz(n 5, D)+ (/§ = Nlein, s, i) + $oaln, s, HD].

Typically, the (inner) infinite sum converges quickly and can be approximated by taking a finite number of
terms. For our examples, a better precision than necessary was obtained by taking the first 30 terms.

TABLE 5
Expressions to Compute V,V,(s) in Example 4.4

e a{/00 DPe($) pe(£)/00
b 0 qb q

a 0 q(l1 — 8) -q

) 1 (1~ qp 0

26 2 (1-¢X1 —p) 0
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TABLE 6
Expressions to Compute V,V,(s) in Example 4.5

¢ 8{/98 pe(§) ps(§)/08
ko k ] 1
0 0 1-9 -1

For §4.4, A = 1 and the set of possible values for {is @' = {b, a, 6, 26}. One gets the expressions given in
Table 5. The corresponding expressions for §4.5 are given in Table 6.
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