
Version: August 27, 1996

To appear in: INFORMS Journal on Computing

An Implementation of the Lattice and Spectral Tests

for Multiple Recursive Linear Random Number Generators

Pierre L'Ecuyer and Raymond Couture /

D�epartement d'Informatique et de Recherche Op�erationnelle (IRO), Universit�e de

Montr�eal, C.P. 6128, Succ. Centre-Ville, Montr�eal, H3C 3J7, Canada;

e-mail: lecuyer@iro.umontreal.ca; couture@iro.umontreal.ca

We discuss the implementation of theoretical tests to assess the structural properties of simple

or combined linear congruential and multiple recursive random number generators. In particular, we

describe a package implementing the so-called spectral and lattice tests for such generators. Our

programs analyze the lattices generated by vectors of successive or non-successive values produced by

the generator, analyze the behavior of generators in high dimensions, and deal with moduli of practically

unlimited sizes. We give numerical illustrations. We also explain how to build lattice bases in several

di�erent cases, e.g., for vectors of far-apart non-successive values, or for sublattices generated by the

set of periodic states or by a subcycle of a generator, and, for all these cases, how to increase the

dimension of a (perhaps partially reduced) basis.

Subject classi�cations: random number generation; linear congruential generators; lattice

structure; spectral test

The aim of this paper is to explain the implementation of a software package for analyzing

the lattice structure of linear congruential or multiple recursive random number generators.

Such generators are based on linear recurrences of the form

x

n

:= (a

1

x

n�1

+ � � �+ a

k

x

n�k

)mod m: (1)

It is well-known that the set of all vectors of successive values of the form (x

n

; : : : ; x

n+t�1

),

obeying this recurrence, is the intersection of a t-dimensional integer lattice L

t

with the

hypercube [0; m)

t

. A lattice is the set of all integer linear combinations of a familly of t

linearly independent vectors. These vectors form a basis of this lattice. Among all possible

bases of a given lattice are the Minkowski-reduced bases. They are comprised of vectors

\as short as possible" in a speci�c sense. We give further details in Section 1.2. The Beyer

quotient of a Minkowski-reduced basis is de�ned as the ratio of the lengths of the shortest

to that of the longest vector in this basis. The upper bound q

t

of the Beyer quotients of all

Minkowski-reduced bases of a lattice gives an indication of the \quality" of this lattice: a q

t

close to 1 means that its points are more evenly distributed [2, 3, 11].

The lattice structure implies that all the points (x

n

; : : : ; x

n+t�1

) lie on a relatively small

familly of equidistant parallel hyperplanes, especially for large values of t [2, 15, 17, 21, 18,

27, 28, 29]. The more distant are contiguous hyperperplane in such a familly, the more this

con
icts with the idea that the sequence fx

n

g should imitate a sample of independent values

generated from the uniform distribution. As a result, the maximum d

t

of the distances asso-

ciated with all such families of hyperplanes is widely adopted as perhaps the most signi�cant

�gure of merit for ranking these generators [15, 17, 18]. If we de�ne the dual of a lattice as

the lattice with basis equal to the dual of a basis of the given lattice, then, computing d

t

is

equivalent to �nding the length of the shortest non-zero vector in the lattice dual to L

t

[7,

12]. References [2, 5, 8] address the problems of computing the shortest vector in a lattice

and of �nding a Minkowski-reduced basis.

In the next section, we recall some basic facts about linear congruential and multiple re-

cursive generators and their lattice structure. We outline an easy way to construct a lattice

basis and its dual for full period generators. We also comment on the relative pertinence

of d

t

and q

t

. In Section 2, we explain how to constuct a basis for the t-dimensional lattice

associated with a given generator by using any basis for the correspondig t� 1-dimensional

lattice. Section 3 deals with lacunary (or \leap frog") indices, i.e., with analyzing the lattice

spanned by the vectors of the form (x

n+i

1

; x

n+i

2

; : : : ; x

n+i

t

), for n � 0, where i

1

; : : : ; i

t

are

any �xed positive integers. Analyzing the lattice structure of vectors formed by such non-

successive values, which are some �xed distance apart in the sequence, is useful for studying

certain (long range) correlations between disjoint segments of the sequence. This is particu-

larly important when the generator's sequence is split into several subsequences in order to

obtain many virtual (or parallel) generators [17, 22]. In Section 4, we consider generators

with period length much smaller than the maximum achievable (that is, much smaller than

m

k

) and with transient states. Generators with these properties are often used because of

their higher speed and ease of implementation. It may happen that the lattice generated by

the set of periodic states of such a generator is a strict sublattice of that generated by all

possible initial states. We show how to construct a basis for that sublattice, for either succes-

sive or lacunary indices, and give examples. Considering such sublattices is appropriate, in

2

particular, if we want to analyze certain classes of combined generators [25, 20]. In Section

5, we analyze generators of order one (ordinary linear congruential ones) whose modulus is

a non-trivial power of a prime. In this case, the generator has di�erent subcycles and the

lattice generated by the vectors visited over a given subcycle is often a strict sublattice of

L

t

, for which we show how to construct a basis. This includes as a special case the moduli

that are powers of two. Section 6 gives a succint overview of the software package LatMRG

[23], while Section 7 gives concrete examples of results. These results show that the package

can analyze the lattice structure of a generator in large dimensions in reasonable time. It

can deal with arbitrary large moduli and multipliers. It can also perform computer searches

for good generators according to �gures of merit based on d

t

or q

t

. A preliminary version

of this package was used, for instance, to obtain the results given in [21]. The package is

available via ftp (contact the �rst author).

1. Lattice structure of linear congruential generators

1.1 Multiple recursive generators

Consider the linear recurrence (1), where m and k are positive integers and each a

i

belongs

to the ring Z

m

= Z=mZ, whose elements are identi�ed with f0; 1; : : : ; m� 1g. Let S be the

set of k-dimensional vectors with coordinates in Z

m

. For n � 0, s

n

= (x

n

; : : : ; x

n+k�1

) 2 S

is the state at step n. The initial state s

0

is called the seed . Let u

n

= x

n

=m 2 [0; 1) be

the output at step n. The sequence of output values u

n

is often used to imitate a sequence

of independent random variables uniformly distributed over the interval [0; 1). This kind of

random number generator is called a multiple recursive generator (MRG). When k = 1, it

becomes the well-known multiplicative linear congruential generator (MLCG). MLCG's in

matrix form can also be expressed as many copies of the same MRG running in parallel. For

more details, see [11, 17, 21, 18, 27, 28].

The maximal possible period for the s

n

's is � = m

k

�1, attained if and only if m is prime

and the characteristic polynomial of (1), given by

f(x) = x

k

�

k

X

i=1

a

i

x

k�i

; (2)

is primitive modulo m. Knuth [15] states necessary and su�cient conditions for f(x) to be

primitive modulo a prime m. These conditions are given in the form of an algorithm, which

is implemented in our package. If k = 1 and m = p

e

, with e > 1, then the maximal possible

period is 2

e�2

for p = 2 and (p� 1)p

e�1

for p > 2 [15].

Combining two or more MLCGs or MRGs with distinct and relatively prime moduli

provides an e�cient way of implementing a linear recurrence based on a large (non-prime)

modulus m. The combined generator is equivalent, or can be approximated (depending

on the combination approach), by an associated MLCG or MRG whose modulus is the

product of the individual moduli of its components [20, 25]. The package LatMRG permits

one to analyze combined generators by specifying only their components, and search for

\good" combined generators within speci�ed classes. Since these combined generators have

3

composite moduli, their period falls well short of m

k

� 1. In many cases, they also possess

transient states. Then, one can decide to analyze either the lattice associated with all possible

initial states, or that generated by the set of recurrent states (see Section 5).

1.2 Lattices

Let t be any positive integer. A t-dimensional lattice is a set of the form

L =

(

t

X

i=1

z

i

V

i

; each z

i

integer

)

where fV

1

; : : : ; V

t

g is a basis of R

t

. This basis is said to be a lattice basis of L. If m is any

positive real number, we will say that the basis fW

1

; : : : ;W

t

g satisfying V

0

i

W

j

= �

ij

m for

all i, j (�

ij

is the Kroenecker's delta), is the m-dual of the basis fV

1

; : : : ; V

t

g, and that the

lattice generated by this m-dual basis, is the m-dual to L. This extension of the usual notion

of dual basis, and dual lattice, will allow us, by a suitable choice of m (in our context it will

be the modulus in (1)), to deal uniquely with integer coordinate vectors, which can then be

represented exactly on the computer.

Consider the sequence x

n

produced by the recurrence (1), and the set

T

t

= f(x

n

; : : : ; x

n+t�1

) j n � 0; s

0

= (x

0

; : : : ; x

n+k�1

) 2 Z

k

m

g (3)

of all overlapping t-tuples of successive values, starting from all possible initial seeds. Then,

the periodic continuation of T

t

with period m,

L

t

= T

t

+mZ

t

;

forms a lattice with unit cell volume equal to max(1; m

t�k

) (see [7, 11, 12, 15, 18, 21, 26]).

Bases for L

t

and its dual can be constructed as follows. For t � k, L

t

comprises all t-

dimensional integer vectors. For t > k, a vector of L

t

can have arbitrary �rst k coordinates;

but then, the remaining coordinates are determined (up to a multiple ofm) by the recurrence.

Let e

i(j)

denote the i-th unit vector in dimension j. For i � k, let V

i

= (x

i;1

; : : : ; x

i;t

) be the

t-dimensional vector whose �rst k coordinates are (x

i;1

; : : : ; x

i;k

) = e

i(k)

, while the remaining

ones are determined by:

x

i;j

:= (a

1

x

i;j�1

+ � � �+ a

k

x

i;j�k

)mod m (4)

for j > k. All the vectors of T

t

can be expressed as integer linear combinations of V

1

; : : : ; V

k

,

together with \modulo m" operations. From that observation, it follows that fV

1

; : : : ; V

t

g

forms a basis for L

t

, where

V

i

=

(

(x

i;1

; : : : ; x

i;t

) for i � k,

m e

i(t)

for i > k.

(5)

The corresponding m-dual basis is fW

1

; : : : ;W

t

g, where

W

i

=

(

m e

i(t)

for i � k,

e

i(t)

� (x

1;i

; : : : ; x

k;i

; 0; : : : ; 0) for i > k.

(6)

4

If one adds a constant b on the right-hand-side of (1), before applying the modulo oper-

ation, then the vectors of successive values will all belong to L

0

t

, where L

0

t

= L

t

+ V

0;t

is a

shift of L

t

by some constant V

0;t

2 Z

t

m

. Such a \shifted lattice" is called a grid . Since L

0

t

and L

t

have the same structural properties, LatMRG does not consider the possible presence

of a constant b in (1). In other words, we consider only the MLCGs and MRGs.

When m is prime and the MRG has full period m

k

� 1, then T

t

is the set of all t-

tuples produced by the generator over its main cycle, plus the zero vector. Otherwise, if the

generator does not have full period, then the set of t-dimensional vectors produced over any

given (sub)cycle (plus the zero vector and plus mZ

t

) is a strict subset of L

t

which may not

form a lattice. In that case, LatMRG can still analyze the set of all t-tuples produced over the

union of all subcycles, but can also analyze some strict sublattices (if desired), as described

in Sections 5 and 6.

A lattice basis for which the vectors are \reduced" in the following sense is called a

Minkowski-reduced lattice basis (MRLB) [1, 2, 11]: (i) the �rst vector V

1

of the basis is a

shortest vector in the lattice; (ii) for each i < t, given the �rst i vectors V

1

; : : : ; V

i

, the

(i + 1)th vector V

i+1

of the basis is a shortest vector among those vectors V such that

the set fV

1

; : : : ; V

i

; V g can be extended into a lattice basis of the t-dimensional lattice.

Geometrically, a MRLB is a basis for which the vectors are in some sense the most orthogonal

(see [3, 11]). The Beyer quotient of a Minkowski reduced basis is de�ned as the ratio of the

lengths of the shortest to that of the longest vector in this basis. In dimensions t > 6, there

may exist two MRLB with unequal Beyer quotients [30]. We denote by q

t

the upper bound

of the Beyer quotients of all MRLB of L

t

. Values of q

t

close to one are preferable. A �gure

of merit can be Q

T

= min

k<t�T

q

t

for some large enough T . Our package permits one to

compute q

t

. We note that de�ning q

t

via a MRLB is somewhat arbitrary. There are other

de�nitions of a reduced basis that one could use instead, e.g., a Hermite-reduced basis [13].

The lattice structure implies that all points of T

t

lie in a relatively small family of equidis-

tant parallel hyperplanes. Among all such families of hyperplanes that cover all the points,

choose the one for which the successive hyperplanes are farthest apart, and let D

t

be the

distance between them. This distance is in fact equal to one over the length of the short-

est vector in the dual lattice to L

t

. Our package computes that shortest vector through a

branch-and-bound algorithm, as described in [5, 8]. For large dimensions t, this algorithm

is much faster than the one given by Dieter [7] and Knuth [15]. If we rescale the hypercube

[0; m)

t

that contains T

t

to [0; 1)

t

, the distance between hyperplanes becomes d

t

= D

t

=m.

There is a theoretical lower bound d

�

t

on d

t

[15, 10] and one can de�ne the �gures of merit

S

t

= d

�

t

=d

t

and M

T

= min

k�t�T

S

t

, which lie between 0 and 1. Again, one seeks values near

one. Note that d

�

t

is known only for t � 8.

The measure d

t

is easier to interpret and justify than q

t

. It is also much faster to compute.

Our package deals with q

t

mainly for historical reasons. One advantage of the Beyer quotients

is that they are all normalized (between 0 and 1) and that Q

T

is de�ned for all positive T ,

in contrast to M

T

. One may then compare (and rank) generators of the same size using the

�gure of meritQ

T

for a large T . To do the same withM

T

, for T > 8, one could compute (e.g.,

by simulation) approximations of the d

�

t

(or �nd tight bounds) and use these approximations

to de�ne a �gure of merit approximately equivalent to M

T

. This would require more work

and we do not pursue it in the present paper.

5

2. Going up one dimension

Suppose one wants to apply the spectral or lattice test in successive dimensions t = k+1; k+

2; : : : ; T . When going up from dimension t � 1 to dimension t, a straightforward approach

uses equations (5{6) to rebuild from scratch bases for the lattice and its dual in dimension t.

Alternatively, one can try to \extend" the current basis for dimension t� 1 into a basis for

dimension t. This is done by adding a zero coordinate to each vector W

i

in the dual basis,

yielding (if one also adds an extra vector W

t

described below) a basis of the dual lattice

for dimension t. The rationale is that since the basis in dimension t � 1 has already been

reduced, the vectors in the dual basis should be small and, since extending them does not

increase their length, this must provide a much better starting point for the next round than

rebuilding the basis from scratch. This turns out to be an e�cient heuristic in practice.

The basis to be used with the extended dual basis above is obtained as follows. We add

one (new) coordinate to each vector V

i

for i < t. The value of that new coordinate, say x

i;t

,

is easily determined by (4), since the previous coordinates are known. We also add the extra

vector V

t

= m e

t(t)

. To complete the update of the m-dual basis, let

W

t

= e

t(t)

�

1

m

t�1

X

i=1

x

i;t

W

i

: (7)

It is easily veri�ed that V

i

�W

j

= m�

ij

for all i; j. Note that in general, the x

i;t

's and W

t

would not be the same as when the basis is constructed from scratch, because the �rst t� 1

coordinates of the (original) vectors V

1

; : : : ; V

t�1

have been transformed linearly and we must

apply the same transformations to their last coordinates.

3. Lacunary indices

Instead of forming vectors with successive values as in the de�nition of T

t

given in (3),

one can form vectors with values that are some distance apart in the sequence (so-called

\leapfrog" values, or lacunary indices). Let I = fi

1

; i

2

; � � � ; i

t

g be a set of �xed integers (not

necessarily ordered or distinct). Rede�ne

T

t

= f(x

i

1

+n

; : : : ; x

i

t

+n

) j n � 0; s

0

= (x

0

; : : : ; x

k�1

) 2 Z

k

m

g

and consider the lattice L

t

= T

t

+mZ

t

. The previous de�nition of L

t

was a special case of

this one, with (i

1

; : : : ; i

t

) = (0; : : : ; t� 1).

To construct a basis for this L

t

, we need to be able to compute x

i

j

from any s

0

.

To see how this can be done e�ciently even when i

j

is large, we will use the poly-

nomial representation of Z

k

m

. We consider the set of polynomials P (x) =

P

k�1

j=0

b

0;j

x

j

with coe�cients in Z

m

. To the polynomial P (x) corresponds the sequence of polyno-

mials P

n

(x) = ((x

n

P (x))mod f(x))mod m =

P

k�1

j=0

b

n;j

x

j

for all n � 0 and the state

s

0

= (b

0;k�1

; : : : ; b

k�1;k�1

). The sequence fb

n;k�1

; n � 0g follows the recurrence (1) for

all n � k, starting from the seed s

0

. This gives an e�cient way for computing x

n

for

6

large n from s

0

or from the corresponding polynomial P (x): compute P

n

(x) by a standard

divide-to-conquer algorithm (see [15]); then x

n

= b

n;k�1

.

Let U

i

2 Z

t

m

denote the vector (x

i

1

; : : : ; x

i

t

) obtained when P (x) = x

i�1

, i = 1 : : : ; k. It

is shown in [6] how to construct a system f

�

V

1

; : : : ;

�

V

t

g generating the same subgroup of Z

t

m

as (U

1

; : : : ; U

k

) and with the following properties (i{iv), where ind(V) denotes the index of

the �rst non-zero coordinate of V 2 Z

t

m

:

(i) ind(

�

V

i

) � i;

(ii) If ind(

�

V

i

) = i, then the i-th coordinate of

�

V

i

divides m;

(iii) ind(

�

V

i

) > i implies

�

V

i

= 0;

(iv) If V 2 S

0

and ind(V) � j, then V is in the subgroup of Z

t

generated byf

�

V

j

; : : : ;

�

V

t

g.

This system is a lattice basis for L

t

after one has replaced zero vectors

�

V

i

by me

i(t)

.

Let L

t

and L

t�1

be the lattices corresponding to the index sets I = fi

1

; : : : ; i

t

g and

I

0

= fi

1

; : : : ; i

t�1

g. As in the case of consecutive indices, one can extend a current (reduced)

basis V

1

; : : : ; V

t�1

for L

t�1

to a basis of L

t

in such a way that the dual vectors W

i

, i < t in

dimension t are obtained by adding a zero coordinate to the dual vectors of the previous

dimension.

This can be done using the basis for L

t

given by

�

V

1

; : : : ;

�

V

t

. Observe that L

t�1

admits

the basis formed by the vectors obtained from

�

V

i

, i < t by omitting the last coordinate. One

can therefore add a coordinate to each vector V

i

, i < t so that

0

B

B

@

V

1

.

.

.

V

t�1

1

C

C

A

=M

0

B

B

@

�

V

1

.

.

.

�

V

t�1

1

C

C

A

; (8)

where M is the (unique) unimodular matrix of order t� 1 which makes the two sides agree

in the �rst t� 1 columns. One obtains a basis for L

t

after adding the vector V

t

=

�

V

t

.

Clearly, the columns of M are easily determined from left to right using (8) since the

matrix that multipliesM on the right side of (8) is upper triangular. Once a basis is available,

the distances between hyperplanes, Beyer quotients, and so on, can then be computed as

usual.

4. Generators with transient states and lattices generated by the

recurrent states

If, in the recurrence (1), a

k

is not invertible modulo m, then the mapping s

n

7! s

n+1

de�ned

by (1) is not invertible. As a result, certain (transient) states cannot be visited more than

once by the generator. One can then consider the subset S

r

of recurrent (i.e., non-transient)

states, which form a subgroup of S = Z

k

m

. If one uses the polynomial representation of the

7

state space, this subgroup is generated by the set (x

�+i�1

mod f(x))mod m, i = 1; : : : ; k, if

2

�

> m

k

(see [6]).

Now, for a given set of (possibly lacunary) indices I = fi

1

; i

2

; � � � ; i

t

g, de�ne

T

r;t

= f(x

i

1

+n

; : : : ; x

i

t

+n

) j n � 0; s

0

= (x

0

; : : : ; x

k�1

) 2 S

r

g

and let L

r;t

be the lattice generated by T

r;t

. When S

r

6= S, L

r;t

is in general a strict sublattice

of L

t

. Bases for L

r;t

and its dual can be constructed in the same way as those constructed

in Section 4, but with x

i�1

replaced by (x

�+i�1

mod f(x))mod m.

In practice, situations where m is composite and a

k

not invertible modulo m arise when

we combine two or more MRGs [6, 20]. For example, suppose that we combine two MRGs,

the �rst one having modulus m

1

, order 2 and multipliers a

11

and a

12

, and the second one

having modulus m

2

, order 1, and multiplier a

21

. Suppose that m

1

and m

2

are relatively

prime. Then, the combined generator is \equivalent" (see [20]) to an MRG with modulus

m = m

1

m

2

, order 2, and multipliers a

1

; a

2

, such that a

2

= a

12

(m

�1

2

mod m

1

)m

2

mod m is

a multiple of m

2

and so is not invertible modulo m. See also Section 8.4 for a numerical

example.

5. Sublattices generated by subcycles in a MLCG when m is a

power of a prime

Linear congruential generators whose modulus is a power of two have been quite popular

in the past and are still widely used, mainly because the modulo operation when m is a

power of two is easily implemented and very fast on binary computers (for example, take

m = 2

32

on a 32-bit computer). Analyzing the lattice structure of such generators requires

special care, as we now explain. Consider a MLCG (k = 1) with modulus m and multiplier

a = a

1

, where m is a power of a prime p, say m = p

e

for e > 1 (p = 2 is a special case).

Generally, such a generator has several distinct subcycles and the vectors of successive values

over any given subcycle form a proper subset of T

t

. We now explain how to take care of this

situation by analyzing the appropriate associated lattice. We restrict our attention to the

(most interesting) case where the seed x

0

is prime to p.

Let p = 2. If a � 1 (mod 4) and � = maxfn > 1 j a � 1 (mod 2

n

)g, then the

period length is m=2

�

and the set of points visited over that subcycle is the intersection of

a translate of a lattice

~

L

t

with [0; m)

t

. It also turns out that bases for this lattice and its

dual can be constructed as usual, after simply replacing m by m=2

�

[9, 15]. For instance, if

a � 5 (mod 8), then � = 2. In the case where a � 3 (mod 4), the visited points form

the intersection of two translates of a same lattice

~

L

t

with the unit cube. The same as above

concerning the period length and basis construction applies to

~

L

t

, provided that we now

de�ne � = maxfn > 1 j a

2

� 1 (mod 2

n

)g.

For p > 2 we have similar phenomena. We distinguish the two cases a � 1 (mod p)

and a 6� 1 (mod p). In the �rst case we take � = maxfn > 1 j a � 1 (mod p

n

)g while in

the second case, � = maxfn > 1 j a

p�1

� 1 (mod p

n

)g. Lattice bases can be constructed

similarly as for the case where p = 2, except that one now divides m by p

�

and that in the

8

second case, the points produced over one subcycle form the intersection of p� 1 translates

of the same lattice. Note that if p is large, it is not clear whether analyzing the structure of

only one of those translates is appropriate. LatMRG also allows one to analyze the lattice L

t

associated with the union of all subcycles.

6. Overview of the software package

The package LatMRG is large software system implemented as a library of modules written in

the Modula-2 language. It provides di�erent tools for examining the theoretical properties of

generators based on linear recurrences in modular arithmetic. It o�ers facilities for checking

if a generator has maximal period or not, to apply the lattice and spectral tests, and to

perform computer searches for \good" generators according to di�erent criteria. We now

give a brief overview of the package structure and functionality.

We may classify the modules of LatMRG in three groups: (a) low-level, (b) intermediate-

level, and (c) high-level. Higher-level modules import facilities from lower-level ones. The

high-level modules (c) are in fact programs in executable form which read their data in �les

or work interactively with the user. They can either analyze a given generator or seek \good"

generators according to di�erent criteria. Examples of what they can do are given in the next

section. The intermediate-level modules (b) provide data types and procedures to construct

lattice bases for di�erent classes of generators (simple or combined MRGs, lacunary indices,

etc.), manipulate such bases, �nd a shortest vector in a lattice, reduce a basis in the sense of

Minkowski, and so on. These tools are used by the upper-level modules (c), but can also be

used directly to make programs di�erent than those already provided at level (c), o�ering

thus more
exibility. The lower-level modules (a) implement basic operations on scalars,

vectors, matrices, polynomials, and so on. They allow di�erent possible representations for

these objects, according, for example, to the size of the modulus m and to the precision we

want. To deal with large integers, they use other modules from the package SENTIERS [24].

Several procedures make conversions between the di�erent representations. These lower-level

tools are used by the modules of levels (b) and (c).

We now discuss a little more each of the three levels. We do not explain here each module

and procedure (there are more than 30 modules and several hundred procedures). For more

details, see the user's guide [23].

6.1 Level a: large numbers and basic tools

LatMRG can deal with large moduli and multipliers. Theoretically, there is no limit on the

size other than the size of the computer's memory and the cpu time. Generators with

moduli of several hundred bits can be analyzed. Operations on large integers are performed

using the package SENTIERS [24], also written in Modula-2. Of course, these operations are

performed in software and are signi�cantly slower than the standard operations supported by

hardware. For that reason, most of the basic (low-level) operations required by our programs

have been implemented in two versions.

For example, when building a basis or checking maximal period conditions, the mod-

ulus and multipliers can be represented either as LONGINT (regular 32-bit integers) or

9

SuperInteger (arbitrary large integers, from the package SENTIERS). When working on a

lattice basis (�nding shortest vector, Minkowski reduction, etc.), the vector coordinates can

be represented either as LONGREAL (64-bit
oating-point numbers) or SuperInteger. The

low-level modules support these di�erent representations, and provide basic facilities for the

other modules. To change the representation in a higher-level module or program, the latter

must be recompiled and relinked with the appropriate lower-level modules. Software tools

at the \command" level have been implemented to facilitate these operations.

6.2 Level b: basis construction and reduction

The intermediate-level modules construct and manipulate bases using the techniques we

saw in the previous sections. They can also perform di�erent types of basis reduction and

compute the shortest vector in the lattice or its dual.

To compute a shortest non-zero vector, we use a version of a branch-and-bound algorithm

described in [5, 8]. That algorithm constructs the shortest vector coordinate by coordinate,

relatively to the current lattice basis, and needs a Choleski decomposition of the matrix

of scalar products of all pairs of vectors in this basis. When this is implemented in 64-bit

oating-point arithmetic, numerical roundo� errors may occur and a�ect the results. In

fact, in high dimensions (say, 25 or more), we have observed in some examples signi�cant

numerical errors in the standard Choleski decomposition, especially when the basis includes

both short and long vectors. For that reason, we have implemented versions of the algorithms

which take into account all sources of numerical error during the computations, and compute

error bounds on them, thereby yielding \guaranteed error-free" results (see [5] for further

details). Of course, computing such bounds entails overhead. For this reason we also have

versions which do not take roundo� error into account (i.e., do not compute error bounds).

When performing a search for good generators, for instance, one can �rst perform all the

\screening" computations (involving many generators) without computing the error bounds,

and then recompute (verify) with the error bounds only for the retained generator(s). We

also implemented another approach for \guaranteed error-free" results, which bypasses all

oating-point calculations (all quantities are large integers which can be represented exactly),

and which is sometimes slower but sometimes much faster than the \error-bound" approach

(see [5] for more details).

To construct a MRLB, we use an algorithm similar to that given in [1], as explained in [5].

This is an iterative algorithm which at each step computes a shortest nonzero vector among

those vectors V such that the set of already selected vectors, plus V , can be extended into

a lattice basis. That shortest vector is computed via a branch-and-bound algorithm similar

to the one mentioned above, but with additional constraints. In case of a tie between two

or more distinct V , each such V can lead to one (or more) distinct MRLB. The algorithm

then �nds all MRLBs and selects the one whose longest vector is shortest.

6.3 Level c: programs in executable form

At the high-level end, LatMRG provides programs in executable form to (i) verify the maximal

period conditions for a MRG, (ii) analyze the lattice structure of a simple or combined MRG,

10

and (iii) perform a search for good generators. The programs for (ii) and (iii) come in di�erent

versions, with di�erent computer representations for the multipliers and bases. Some allow

larger numbers while others are faster.

In the data �le, the user speci�es the parameters of each MRG (each component, in

the case of a combined generator), which information to compute (q

t

, d

t

, or both), in which

dimensions, which lattice to analyze (the one generated by all states, or only one subcycle, or

only the recurrent states), whether lacunary indices are used and which ones, in which form

the results should be given (only on the terminal screen, or in a text �le, or in a specially

formatted �le which can be read back by the program for further analysis in a later run), and

a few other parameters of the basis reduction of search algorithms. The list of generators

to analyze (or to search from) can also be taken from a separate �le previously produced by

one of the programs in (ii) or (iii).

The search programs (iii) can perform a search for the N

g

\best" generators of a given

form, based on either Q

T

or M

T

, for given values of T and N

g

. One must specify, for each

MRG component, how the search is performed (exhaustive or random, see below), in which

area of the space of multipliers, whether maximal period is required or not, and if we want

some further conditions on the multipliers (for ease of implementation). Besides what we

mentioned in the previous paragraph, the data �le should also say how many generators to

retain (N

g

), what is the search criterion (Q

T

orM

T

), what is the minimal acceptable �gure of

merit, and some further parameters such as a cpu time limit. The search programs produce

a report listing the retained generators, their properties, and various statistics on the search.

We now look more closely at how the searches are performed. For a given modulus m

and order k, the search for good vectors of multipliers is made inside a region bounded by

speci�ed vectors b = (b

1

; : : : ; b

k

) and c = (c

1

; : : : ; c

k

) such that �m < b

i

� c

i

< m for each i.

The search can be exhaustive in that region, or random. One can search only among maximal

period generators, or not consider the period and examine only the lattice structure. Since

the list of retained generators can be stored in a �le (in a special format) and read back

by the program in a later run, one can easily perform multipass searches. For example, one

may �rst perform a screening over a large region, based on a criterion that does not require

expensive computations, then do a second pass over the retained generators, based on a more

stringent criterion, such as looking at the lattice structure in higher dimensions, and �nally

verifying the results by performing all computations using error bounds (see the previous

subsection).

For an exhaustive search, all vectors of multipliers of the form a = (a

1

; : : : ; a

k

) such

that b

i

� a

i

� c

i

for i = 1; : : : ; k are examined, for a total of

Q

k

i=1

(c

i

� b

i

+ 1) vectors

(generators). For a random search, we �x a number of subregions (clusters) that we want to

examine, and the size h

i

of each subregion in dimension i, for i = 1; : : : ; k. The program will

examine a total of n

Q

k

i=1

h

i

generators by repeating n times the following: For i = 1; : : : ; k,

generate �

i

randomly, uniformly over the set fb

i

; : : : ; c

i

� h

i

+ 1g; then, examine all the

vectors a = (a

1

; : : : ; a

k

) such that �

i

� a

i

� �

i

+ h

i

� 1 for each i.

When examining a vector a of multipliers, the program �rst checks if the maximal period

conditions are satis�ed, if this is required. For prime modulus m, one of these conditions

asks for (�1)

k�1

a

k

to be primitive modulo m (see condition (i) in Knuth [15, p.29]). That

condition is veri�ed only once for each distinct value of a

k

(which corresponds to

Q

k�1

i=1

h

i

11

di�erent generators). To verify the maximal period conditions, the factorizations of m � 1

and r = (m

k

� 1)=(m � 1) are required. They can be found by the program, if desired, or

provided by the user in a �le (factorizing r often takes huge amounts of time).

If a is not rejected by the maximal period test, the values of d

t

and/or q

t

are then

computed for dimensions k + 1; : : : ; T . The program always keeps a lower bound � on the

�gure of merit (M

T

or Q

T

) for the generator to be worth considering. The initial value of

the lower bound is given by the user (it can be 0.0, which means no initial lower bound).

During execution, whenever the �gure of merit x of the N

g

th best generator becomes larger

than the lower bound �, then � is increased to x. If, in a dimension t < T , the program

already sees that the considered generator will have a �gure of merit smaller than �, the

generator is rejected right away and no calculations in higher dimensions are performed for

this generator. If M

T

is used as a criterion for T > 8, the distances between hyperplanes

are computed for dimensions up to T , but the selection of generators is based only on M

8

,

because the theoretical lower bound d

�

t

is known only for t � 8.

7. Examples

We now give some numerical examples. Our aim here is not to compare di�erent generators

or to recommend any particular generator, but rather to illustrate what the programs can

do and give a rough idea of how much cpu time they take. The timings are from runs on a

SUN SparcStation 20, under SunOS 5.4, using version 4.5.1 of the MCS Modula-2 compiler

from ModulaWare [14].

7.1 Example 1: A MLCG with modulus 2

32

Table 1 gives the results of the spectral test for the MLCG with modulus m = 2

32

and

multiplier a = 1099087573 in dimensions up to 30. This multiplier was among the best

found by Fishman [9] for the modulus 2

32

, based on the lattice structure in dimensions 2 to

6. The lattice that is analyzed here is the sublattice

~

L

t

discussed in Section 6. The successive

columns give the dimension t, the distance d

t

between hyperplanes, the �gure of merit S

t

,

and the cumulative cpu time to compute and print the values in Table 1. For instance, the

total cpu time to compute d

t

in dimensions 2 to 20 was approximately 0.25 seconds, and

that for dimensions 2 to 35 was approximately 6.5 seconds. Computing q

t

is much more

expensive than computing d

t

; to give an idea, to compute q

t

on the same machine, it took

2.2 seconds for dimensions 2 to 20 and 253 seconds for dimensions 2 to 30 (not shown in the

table). These cpu times are representative of what happens in general for examples of this

type. The smallest q

t

for t � 30 is q

7

= 0:5486.

7.2 Example 2: A MLCG with lacunary indices

We consider the MLCG withm = 2

31

�1 and multiplier a = 16807, with the set I of lacunary

indices formed by 10 triplets of three successive indices, taken d = 131; 072 = 2

17

values apart;

that is, t = 30 and I = f0; 1; 2; d; d+ 1; d + 2; 2d; 2d+ 1; 2d + 2; : : : ; 10d; 10d+ 1; 10d + 2g.

12

This (well-known) generator was suggested in [4], where seeds spaced 2

17

values apart were

also given (in Section 6.8.3) to generate disjoint subsequences. So, the spectral test with the

set I of lacunary indices analyzes to some extent the correlation between the corresponding

values of the disjoint subsequences. The distances between hyperplanes and Beyer quotients

are given in Table 2. For dimensions t < 30, the results correspond to the set I

0

formed by

the �rst t values of I. The computations took a little over 5 minutes. For this example,

computing only the d

t

and S

t

for the same dimensions and on the same machine takes

approximately 4 seconds. On the other hand computing all the q

t

using bounds on the

numerical errors for formal veri�cation takes approximately 12.5 minutes.

7.3 Example 3: A combined MLCG with lacunary indices

In this example, we analyze the combined generator of L'Ecuyer [16] with lacunary indices.

That generator was shown to be \approximately" equivalent to a MLCG with modulus

m = 4611685301167870637 and multiplier a = 1968402271571654650. We consider a set

of lacunary indices similar to that of Example 2, formed by 10 triplets of three successive

indices, which are now taken d = 2

30

values apart. Table 3 shows the results. Note that the

distances between hyperplanes here are signi�cantly smaller than those of Tables 1 and 2.

7.4 Example 4: A MRG of order 2 combined with a MLCG

Consider a combined generator whose �rst component is a MRG of order k

1

= 2, modulus

m

1

= 32749, and multipliers a

11

= 180 and a

12

= �175, while the second component is a

MLCG with modulus m

2

= 32363 and multiplier a

22

= 157. Suppose that at step n, we

divide the \state" x

1n

of the �rst recurrence by m

1

, that of the second recurrence by m

2

,

and add them up modulo 1 to produce the output. Using Proposition 1 in [20], one can

verify that this yields a generator which is equivalent to a MRG of order 2 with modulus

m = m

1

m

2

= 1059855887 and multipliers a

1

= 919821343 and a

2

= 650755204. Here, m is

not prime and that generator has transient states, as explained in Section 5. If we analyze

the lattice L

p;t

determined by the set S

r

of recurrent states, we obtain the results of Table 4,

while if we consider the lattice L

t

determined by all possible states (both recurrent and

transient), we obtain the results of Table 5. Here, L

r;t

is a strict sublattice of L

t

and that

translates into larger distances between hyperplanes. In practice, when using a combined

generator, we will typically start from a recurrent state and never visit any transient state.

Therefore, it is more appropriate to analyze L

r;t

than L

t

.

7.5 Example 5: Exhaustive searches for MLCGs with speci�c properties

Consider the set of MLCGs with prime modulus m

1

= 2

31

� 1, period length m

1

� 1, and

whose multiplier a

1

sati�es the condition m

1

mod a

1

< m

1

=a

1

(for ease of implementation).

Within this set, we �nd the generator with the largest value of M

8

= min

t�8

S

t

. These

requirements are given as data to a (level c) search program. The program then performs

an exhaustive search for the best generator(s) and prints the results of Table 6. Actually,

the program prints more information than shown, but we removed some for space reduction.

13

The best multiplier found is a

1

= 45991, with M

8

= 0:6984. The exhaustive search took a

little more than 4 minutes. The program examined 52679 values of a

1

, found that 13182 of

them were primitive modulo m

1

(giving maximal period), and retained the 10 best among

these 13182, based onM

8

. The \NoVerify" option in the data means that the computations

related to the Choleski decomposition are performed in 64-bit
oating point without taking

the roundo� errors into account.

Consider now the class of MLCGs with prime modulus m

2

= 2

31

� 105, period length

m

2

� 1, and with multiplier a

2

satisfying m

2

mod a

2

< m

2

=a

2

. Combining a MLCG of this

class with the �rst one we found above (with (m

1

; a

1

) = (2

31

� 1; 45991)), using one of

the combination methods of [25], we obtain a combined generator equivalent to a MLCG

with modulus m

1

m

2

and period length m

1

m

2

=2. We seek the mutiplier a

2

such that the

combined generator has maximal value of M

8

. Again, with the appropriate data �le, the

program makes an exhaustive search and produces a results �le similar to that summarized

in Table 6. The best multiplier found is a

2

= 207707 and the corresponding combined

generator has M

8

= 0:7001. One could go on and �nd a third component such that the

combined generator with three components has the largest M

8

, and so on.

7.6 Example 6: A search for an MRG with large modulus

We now give an example of a search for an MRG of order k = 3, with modulusm = 2

63

�2247

(the largest prime m below 2

63

such that (m

3

� 1)=(m� 1) is also prime), for which a

2

= 0,

a

i

(m mod a

i

) < m for i = 1 and 3, and with maximal period � = (2

63

� 2247)

3

� 1. We

examine 1000 subregions of dimension (4 � 1 � 4), i.e., a total of 16000 generators. The

results appear (partially) in Table 7. In (roughly) one hour of random search, the program

found 1720 full period generators of the form speci�ed, but all with a very low �gure of

merit. The best one has S

4

� 4:9�10

�7

. In fact, all MRGs of the speci�ed form have a very

low S

4

, due to the constraint a

2

= 0 (see [19] for more explanations about this). For this

reason, it is recommended to avoid zero multipliers or (perhaps better) to combine MRGs

as done in [20] and in the next example. On the other hand, the distance d

t

is much smaller

here, for all t, than the one in each of the examples 1{5. So, despite a small S

4

, this MRG of

order 3 dominates the previous ones. The intuitive reason for the smaller S

4

(in comparison

with the previous examples) is that since its period length is much longer, it has more points

at its disposal, so the lower bound d

�

t

on d

t

is much smaller.

7.7 Example 7: A search for a combined MRG with large modulus

Let us now search for a \good" combined MRG with two components of order k = 3, for

64-bit computers. The two moduli chosen are m

1

= 2

63

� 2247 and m

2

= 2

63

� 9609,

respectively (these are the two largest primes m

j

below 2

63

such that (m

3

j

� 1)=(m

j

� 1) is

also prime). We impose the following conditions on the coe�cients a

i

of the recurrence. For

both components, we require ja

i

j (m mod ja

i

j) < m for all i. We also require 2

25

< a

1

< 2

35

,

a

2

= 0, and �2

35

< a

3

< �2

25

for the �rst component, and a

1

= 0, 2

25

< a

2

< 2

32

, and

�2

32

< a

3

< �2

25

for the second component. Finally, the coe�cients must be such that the

14

combined generator has maximal period � = ((2

63

� 2247)

3

� 1)((2

63

� 2247)

3

� 1)=2 � 2

377

.

Among these generators, we look for one with a large �gure of merit M

8

.

The search for good coe�cients a

i

was random and examined 100 subregions of dimension

(8�1�4) for the �rst component and 100 subregions of dimension (1�8�4) for the second

one. We found 394 primitive polynomials for the �rst component and 564 for the second one,

which gives 222216 full period combined generators satisfying the conditions. After nearly 3

hours of computations, the program came up with a list of best generators. The two best are

given in Tables 8 and 9. Their �gures of merit are M

8

= S

4

= 0:73595 for the �rst generator

and M

8

= S

8

= 0:73436 for the second one.

15

Table 1: Spectral test for the generator of Example 1.

cumulative

t d

t

S

t

cpu (sec)

2 3.184E-5 0.89204 0.01

3 1.016E-3 0.85634 0.02

4 5.399E-3 0.86035 0.03

5 0.01507 0.84205 0.04

6 0.02909 0.83254 0.05

7 0.06868 0.55466 0.06

8 0.07001 0.75065 0.07

9 0.13868 0.07

10 0.15430 0.08

11 0.17150 0.09

12 0.17678 0.10

13 0.17678 0.11

14 0.19612 0.13

15 0.23570 0.14

16 0.23570 0.16

17 0.26726 0.18

18 0.28868 0.20

19 0.28868 0.23

20 0.28868 0.25

21 0.28868 0.28

22 0.28868 0.36

23 0.28868 0.46

24 0.31623 0.55

25 0.31623 0.64

26 0.31623 0.78

27 0.31623 0.96

28 0.31623 1.24

29 0.31623 1.69

30 0.31623 2.39

31 0.35355 2.78

32 0.35355 3.19

33 0.35355 3.82

34 0.35355 4.78

35 0.35355 6.54

16

Table 2: Spectral and lattice tests results for Example 2.

cumulative

t d

t

q

t

S

t

cpu (sec)

2 5.950E-5 0.13151 0.33751 0.01

3 1.565E-3 0.29533 0.44118 0.02

4 4.810E-3 0.84208 0.81211 0.04

5 0.02503 0.31520 0.44139 0.05

6 0.04415 0.26198 0.48863 0.06

7 0.04603 0.76509 0.74959 0.08

8 0.07538 0.82702 0.63937 0.10

9 0.14142 0.56305 0.13

10 0.14142 0.55920 0.15

11 0.14586 0.65384 0.20

12 0.15076 0.82755 0.25

13 0.16903 0.79080 0.34

14 0.20412 0.68542 0.44

15 0.20851 0.78554 0.59

16 0.23570 0.75328 0.78

17 0.25820 0.72583 1.04

18 0.25820 0.90410 1.69

19 0.25820 0.87023 2.29

20 0.26726 0.85431 3.19

21 0.27735 0.84129 4.06

22 0.27735 0.82662 6.97

23 0.28868 0.88720 10.18

24 0.30151 0.86030 16.58

25 0.30151 0.82550 31.84

26 0.30151 0.82763 57.92

27 0.30151 0.88913 100.80

28 0.31623 0.86869 146.88

29 0.31623 0.88768 229.41

30 0.35355 0.86502 301.47

17

Table 3: The combined generator of L'Ecuyer, with lacunary indices.

cumulative

t d

t

S

t

cpu (sec)

2 6.502E-10 0.66650 0.01

3 7.002E-7 0.76439 0.02

4 4.552E-5 0.39867 0.04

5 3.025E-4 0.49685 0.06

6 8.949E-4 0.67113 0.08

7 2.902E-3 0.55212 0.12

8 4.560E-3 0.72029 0.16

9 8.261E-3 0.24

10 0.01416 0.31

11 0.02197 0.41

12 0.02558 0.57

13 0.03360 0.76

14 0.04096 0.98

15 0.05376 1.28

16 0.05670 1.60

17 0.06565 1.98

18 0.07906 2.43

19 0.09535 2.96

20 0.09535 3.55

21 0.10000 4.55

22 0.11111 5.72

23 0.13245 7.02

24 0.13245 8.28

25 0.13245 9.75

26 0.13868 12.03

27 0.14142 13.79

28 0.14744 16.02

29 0.16903 18.07

30 0.16903 20.51

18

Table 4: The combined generator of Example 4: sublattice L

r;t

cumulative

t d

t

S

t

cpu (sec)

3 0.00101 0.86558 0.01

4 0.00595 0.78239 0.01

5 0.02153 0.59097 0.02

6 0.04120 0.58897 0.03

7 0.08362 0.45639 0.04

8 0.08362 0.62950 0.05

9 0.10153 0.06

10 0.15250 0.07

11 0.17150 0.08

12 0.17150 0.09

13 0.19612 0.10

14 0.22361 0.11

15 0.23570 0.13

16 0.23570 0.14

17 0.25820 0.17

18 0.25820 0.19

19 0.25820 0.22

20 0.27735 0.25

Table 5: The combined generator of Example 4: full lattice

cumulative

t d

t

S

t

cpu (sec)

3 2.582E-6 0.33197 0.01

4 5.886E-5 0.43884 0.02

5 6.907E-4 0.28859 0.03

6 2.140E-3 0.35512 0.04

7 5.519E-3 0.35523 0.05

8 0.01123 0.34883 0.06

9 0.02174 0.07

10 0.03446 0.08

11 0.04608 0.09

12 0.06275 0.10

13 0.07019 0.11

14 0.10483 0.13

15 0.10483 0.15

16 0.10483 0.16

17 0.12039 0.19

18 0.15076 0.21

19 0.15076 0.24

20 0.15076 0.27

19

DATA:

Modulus m = 2147483647 (= 2^31 -1)

Bounds : a1 from : 40000

to : 1000000000

Search method : EXHAUST

Implem. cond. a_i (m mod a_i) < m : YES

Maximum period required : YES

Merit criterion : M_8

Verify Branch-and-bound : NoVerify

Maximum nodes in branch-and-bound : 1000000

Lattice Type : Full

RESULTS:

Values of a1 tried : 52679

Values of a1 primitive element : 13182

Nb. Generators conserved : 10

Total CPU time (after setup) : 0:04:15.55

1.

a_1 = 45991

t d_t q_t S_t

--

2 2.17434E-005 0.90464 0.92358

3 8.43240E-004 0.85044 0.81891

4 4.94656E-003 0.81124 0.78969

5 0.01536 0.53212 0.71917

6 0.03015 0.64010 0.71552

7 0.04531 0.83008 0.76141

8 0.06901 0.79459 0.69840

9 0.12403 0.60142

10 0.14744 0.53565

Merit = 0.69840 = S_8

2.

a_1 = 61407

.

.

.

.

.

.

Table 6: Seach for a good MLCG with modulus 2

31

� 1.

20

DATA:

Modulus m = 9223372036854773561 (= 2^63 - 2247)

Order k = 3

Bounds : a1 from : 1125899906842624

to : 9223372036854765808

a2 from : 0

to : 0

a3 from : -9223372036854765808

to : -1125899906842624

Search method : RANDOM

Sampling : Numbers of subregions = 1000, H = 4, Hk = 4

Implem. cond. a_i (m mod a_i) < m : YES

Maximum period required : YES

Merit criterion : M_8

RESULTS:

Values of a3 tried : 4000

Values of a3 primitive element : 1272

Polynomials with a3 primitive element : 5088

Primitive polynomials : 1720

Nb. Generators conserved : 3

Total CPU time (after setup) : 0:58:33.34

1.

a_1 = 1145902849652723

a_2 = 0

a_3 = -1184153554609676

t d_t q_t S_t

4 1.02228E-8 1.061E-11 4.915E-7

5 1.02228E-8 1.068E-7 3.320E-4

6 1.02228E-8 2.891E-4 0.02496

7 1.02228E-8 0.27884 0.54151

8 1.05850E-7 0.63196 0.51637

9 4.69926E-7 0.71015

10 2.01652E-6 0.63542

11 6.51884E-6 0.62227

12 1.78722E-5 0.84289

Merit = 4.91481E-7 = S_4

2.

a_1 = 1161195019118062

a_2 = 0

a_3 = -1243042053484470

.

.

.

.

.

.

Table 7: Results of the search for an MRG of order 3 with m = 2

63

� 2247.

21

Table 8: Best combined MRG of order 3 found for Example 7.

Component a

1

a

2

a

3

1 3866005879 0 -3472501966

2 0 48193584 -3751984989

t d

t

S

t

4 4.07906E-29 0.73595

5 1.63643E-23 0.86682

6 1.11424E-19 0.75401

7 5.59988E-17 0.73653

8 5.66459E-15 0.74585

9 2.42992E-13

10 4.11144E-12

11 5.86855E-11

12 3.41228E-10

Table 9: Second best combined MRG of order 3 found for Example 7.

Component a

1

a

2

a

3

1 9793152422 0 -1205362420

2 0 1545957508 -4123666983

t d

t

S

t

4 3.76340E-29 0.79768

5 1.89861E-23 0.74711

6 1.08442E-19 0.77475

7 5.45485E-17 0.75611

8 5.75317E-15 0.73436

9 2.45100E-13

10 4.33655E-12

11 4.58516E-11

12 3.05231E-10

22

Acknowledgments

This work has been supported by NSERC-Canada grant # ODGP0110050 and FCAR-

Qu�ebec grant # 93ER1654 to the �rst author. We wish to thank L. A�erbach and H.

Grothe for helpful discussions (in 1989) and the anonymous referees for their help. Fran�cois

Blouin, Marco Jacques, Armand Nkendjuo, Fran�cois Paradis, and Jos�ee Turgeon have par-

ticipated in the development of this software over a period of seven years.

References

[1] L. Afflerbach and H. Grothe, 1985. Calculation of Minkowski-reduced lattice

bases, Computing, 35, 269{276.

[2] L. Afflerbach and H. Grothe, 1988. The lattice structure of pseudo-random

vectors generated by matrix generators, Journal of Computational and Applied Mathe-

matics, 23, 127{131.

[3] W. A. Beyer, R. B. Roof, and D. Williamson, 1971. The lattice structure of

multiplicative congruential pseudo-random vectors, Mathematics of Computation, 25,

345{363.

[4] P. Bratley, B. L. Fox, and L. E. Schrage, 1987. A Guide to Simulation. second

edition, Springer-Verlag, New York.

[5] R. Couture and P. L'Ecuyer, 1996. Computation of a shortest vector and

Minkowski-reduced bases in a lattice. In preparation.

[6] R. Couture and P. L'Ecuyer, 1996. Orbits and lattices for linear random number

generators with composite moduli, Mathematics of Computation, 65, 189{201.

[7] U. Dieter, 1975. How to calculate shortest vectors in a lattice, Mathematics of Com-

putation, 29, 827{833.

[8] U. Fincke and M. Pohst, 1985. Improved methods for calculating vectors of short

length in a lattice, including a complexity analysis, Mathematics of Computation, 44,

463{471.

[9] G. S. Fishman, 1990. Multiplicative congruential random number generators with

modulus 2

�

: An exhaustive analysis for � = 32 and a partial analysis for � = 48,

Mathematics of Computation, 54, 331{344.

[10] G. S. Fishman and L. S. Moore III, 1986. An exhaustive analysis of multiplica-

tive congruential random number generators with modulus 2

31

� 1, SIAM Journal on

Scienti�c and Statistical Computing, 7, 24{45.

[11] H. Grothe, 1988. Matrixgeneratoren zur Erzeugung gleichverteilter Pseudozufallsvek-

toren, Dissertation (thesis), Tech. Hochschule Darmstadt, Germany.

23

[12] A. Grube, 1973. Mehrfach rekursiv-erzeugte Pseudo-Zufallszahlen, Zeitschrift f�ur

angewandte Mathematik und Mechanik, 53, T223{T225.

[13] P. M. Gruber and C. G. Lekkerkerker, 1987. Geometry of Numbers, North-

Holland, Amsterdam.

[14] D. J

�

ager, 1992. MCS Modula-2 Cross System, User's Guide. La Chanenche, France.

[15] D. E. Knuth, 1981. The Art of Computer Programming, Volume 2: Seminumerical

Algorithms. Second edition, Addison-Wesley, Reading, Mass.

[16] P. L'Ecuyer, 1988. E�cient and portable combined random number generators, Com-

munications of the ACM, 31, 742{749 and 774. See also the correspondance in the same

journal, 32, 8 (1989) 1019{1024.

[17] P. L'Ecuyer, 1990. Random numbers for simulation, Communications of the ACM,

33, 85{97.

[18] P. L'Ecuyer, 1994. Uniform random number generation, Annals of Operations Re-

search, 53, 77{120.

[19] P. L'Ecuyer, 1996. Bad lattice structures for vectors of non-successive values produced

by some linear recurrences, ORSA Journal on Computing. To appear.

[20] P. L'Ecuyer, 1996. Combined multiple recursive generators, Operations Research. To

appear.

[21] P. L'Ecuyer, F. Blouin, and R. Couture, 1993. A search for good multiple

recursive random number generators, ACM Transactions on Modeling and Computer

Simulation, 3, 87{98.

[22] P. L'Ecuyer and S. C

^

ot

�

e, 1991. Implementing a random number package with

splitting facilities, ACM Transactions on Mathematical Software, 17, 98{111.

[23] P. L'Ecuyer and R. Couture, 1996. LatMRG user's guide, a toolkit for theoret-

ical testing of linear congruential and multiple recursive generators, Technical report,

Montreal, Canada. In preparation.

[24] P. L'Ecuyer, G. Perron, and F. Blouin, 1988. Sentiers: Un logiciel modula-2

pour l'arithm�etique sur les grands entiers, Technical Report DIUL-RT-8802, Compter

Science Department, Laval University, Ste-Foy (Que.), Canada.

[25] P. L'Ecuyer and S. Tezuka, 1991. Structural properties for two classes of combined

random number generators, Mathematics of Computation, 57, 735{746.

[26] G. Marsaglia, 1968. Random numbers fall mainly in the planes, Proceedings of the

National Academy of Sciences of the United States of America, 60, 25{28.

24

[27] H. Niederreiter, 1986. A pseudorandom vector generator based on �nite �eld arith-

metic, Mathematica Japonica, 31, 759{774.

[28] H. Niederreiter, 1992. Random Number Generation and Quasi-Monte Carlo Meth-

ods. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63,

SIAM, Philadelphia.

[29] B. D. Ripley, 1983. The lattice structure of pseudo-random number generators, Pro-

ceedings of the Royal Society of London, Series A, 389, 197{204.

[30] S. S. Ryshkov, 1972. On hermite, Minkowski, and Venkov reduction of positive

quadratic forms in n variables, Soviet Math. Doklady, 13, 1676{1679. (Russian Trans-

lation).

25

