
Resolution-Stationary

Random Number Generators

Francois Panneton

Caisse Centrale Desjardins, 1 Complexe Desjardins, bureau 2822
Montral (Québec), H5B 1B3, Canada

Pierre L’Ecuyer

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville

Montréal (Québec), H3C 3J7, Canada

Abstract

Besides speed and period length, the quality of uniform random number generators
is usually assessed by measuring the uniformity of their point sets, formed by tak-
ing vectors of successive output values over their entire period length. For F2-linear
generators, the commonly adopted measures of uniformity are based on the equidis-
tribution of the most significant bits of the output. In this paper, we point out weak-
nesses of these measures and introduce generalizations that also give importance to
the low-order (less significant) bits. These measures look at the equidistribution
obtained when we permute the bits of each output value in a certain way. In a para-
meter search for good generators, a quality criterion based on these new measures of
equidistribution helps avoiding generators that fail statistical tests targeting their
low-order bits. We also introduce the notion of resolution-stationary generators,
whose point sets are invariant under a multiplication by certain powers of 2, mod-
ulo 1. For such generators, less significant bits have the same equidistribution prop-
erties as the most significant ones. Tausworthe generators have this property. We
finally show how an arbitrary F2-linear generator can be made resolution-stationary
by adding an appropriate linear transformation to the output. This provides new
efficient ways of implementing high-quality and long-period Tausworthe generators.

Key words: random number generation, linear recurrence modulo 2, uniformity,
quasi-Monte Carlo, Tausworthe generator

Preprint submitted to Elsevier Science 14 July 2006



1 Introduction

A broad family of random number generators (RNGs) are based on a linear
recurrence modulo 2 (i.e., a linear recurrence in the finite field F2 whose two
elements are represented by 0 and 1), sometimes with another linear transfor-
mation at the output. We call them F2-linear generators. They can be defined
by the general equations

xn = (x(0)
n , . . . , x(k−1)

n )t = Axn−1 (1)

yn = (y(0)
n , . . . , y(L−1)

n )t = Bxn (2)

un =
L−1∑
`=0

2−`−1y(`)
n ∈ [0, 1) (3)

where k and L are positive integers, xn is the state at step n, A is a k × k
transition matrix, B is a L×k tempering matrix, yn is the L-bit output vector
at step n, and all elements of these vectors and matrices are elements of F2.
That is, all the arithmetic in (1) and (2) is done “modulo 2.” The real number
un ∈ [0, 1) is the output of the generator at step n and the number of bits in
this output, L, is called the resolution of the generator.

It is well-known [3,10] that each bit of xn or yn, i.e., each sequence {x(`)
n , n ≥ 0}

or {y(`)
n , n ≥ 0} in F2 obeys a linear recurrence of order k whose characteristic

polynomial is det(A − zI), the characteristic polynomial of the matrix A,
where I denotes the identity matrix. For this reason, we call k the order of
the generator. The maximal period length of such a generator is 2k − 1.

A traditional criterion to assess the quality of these RNGs is the equidistrib-
ution of the point set

Ψt = {(u0, . . . , ut−1) : x0 ∈ Fk
2}

(viewed as a multiset) that contains the vectors of t successive output values
produced by the generator from all possible initial states [2,4,15,17]. To define
this notion, for any given positive integers t and `, we partition [0, 1)t along
each axis into 2` equal subintervals. This determines 2t` cubic cells. If each cell

? This work has been supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) Grant Number ODGP0110050, NATEQ-Québec grant
Number 02ER3218, and a Canada Research Chair to the second author. The first
author benefited from NSERC and NATEQ scholarships.

Email address: panneton@iro.umontreal.ca (Francois Panneton).
URLs: http://www.iro.umontreal.ca/~panneton (Francois Panneton),

http://www.iro.umontreal.ca/~lecuyer (Pierre L’Ecuyer).

2



contains exactly 2k−t` points from Ψt, we say that Ψt and the generator are
(t, `)-equidistributed. For any given ` > 0, let

t` = max{t ≥ 0 : Ψt is (t, `)-equidistributed}.

We have the upper bound t` ≤ bk/`c. We call

∆`
def
= bk/`c − t`

the dimension gap in resolution `. By combining the resolution gaps for dif-
ferent values of `, we can define various uniformity criteria. One example is
∆ =

∑L
`=1 ∆` [4,5,8,13,?]. A smaller ∆` means better uniformity when we con-

sider only the ` most significant bits of the output values. A small ∆ indicates
a good overall uniformity of the most significant bits.

One limitation of this type of criterion is that it puts emphasis on the most
significant bits and does not care much about the least significant ones. Be-
cause of this, when making computer searches for good F2-linear generators
based on the optimization of criterion ∆, we may end up with generators
whose low-order bits have bad equidistribution. These generators may then
fail statistical tests aimed at these least significant bits.

Example 1 When searching for good parameters for the WELL generators
of [?], with the REGPOLY software package [11], we found several instances
with k = 128 and L = 32 having full period length 2128−1 and ∆ = 5, a fairly
good value. We picked two of them that differed significantly by the quality of
their least significant bits, the first one fairing much better than the second one
in this regards (we will return to this in Example 2). We tested them with the
batteries of statistical tests SmallCrush and Crush from TestU01 [6]. These
batteries run in about one minute and 90 minutes of CPU time, respectively.
As it turned out, the first generator passed all the tests except those that
test the linear complexity (or linearity) of the output sequence (all F2-linear
generators with such a small value of k fail these types of tests), whereas the
second one failed several other tests oriented toward the least significant bits.

The primary goal of this paper is to examine uniformity criteria for F2-linear
generators and see how these criteria can take the least significant bits into
account. For this, in the next section, we introduce a new criterion that gen-
eralizes ∆. This criterion looks not only at the uniformity of Ψt, but at a
larger class of point sets constructed by permuting the bits of each output yn.
In Section 3, we introduce a notion of resolution-stationary generators. For
generators having this property, the new criterion that generalizes ∆ typically
requires less effort to compute. We look at different classes of generators and
see to what extent they are (partially or totally) resolution-stationary. We

3



prove an important result saying that the class of full-period F2-linear reso-
lution stationary generators contains the class of Tausworthe generators and
is not much larger. We then show how an arbitrary F2-linear generator can
be turned into a resolution-stationary generator by applying an appropriate
linear output transformation. This technique effectively turns an arbitrary F2-
linear RNG into a Tausworthe RNG. From another viewpoint, it provides a
variety of efficient implementation methods for Tausworthe generators.

2 A Generalization of ∆

For an arbitrary vector of bit indexes J = (j0, . . . , jL′−1), where L′ > 0 and
0 ≤ j` < L for each `, we can construct the output as

un =
L′−1∑
`=0

2−`−1y(j`)
n .

We denote by Ψt(J) the set of all t-dimensional vectors (u0, . . . , ut−1) (the
counterpart of Ψt) when un is redefined in this way. Thus, Ψt(J) depends on
L′ bits of each yn.

We do not assume that the j`’s are in increasing order. For example, the vector
J can be a permutation of (0, . . . , L− 1), in which case Ψt(J) is obtained by
applying the corresponding permutation to the bits of each output vector yn.

We define

t(J) = max{t ≥ 0 : Ψt(J) is (t, `)-equidistributed},
∆`(J) = bk/`c − t(j0, . . . , j`−1) for 1 ≤ ` ≤ L′, and

∆(J) =
∑

`=1,...,L′
∆`(J).

The latter is the value of ∆ for the point set Ψt(J). With J = (0, . . . , L− 1)
we recover the standard criterion mentioned in the introduction.

If we want to consider all bits on equal footing, one of the simplest choices is
to take the vectors J of the form Jp = (p, . . . , L−1, 0, . . . , p−1) for 0 ≤ p < L.
This corresponds to applying a p-bit left rotation to each output vector yn.
The p most significant bits become the p least significant ones and the L− p
least significant bits become the L − p most significant ones. One criterion
that considers all these point sets at once is

∆̃ = max
0≤p<L

∆(Jp).

4



Example 2 We return to the two WELL generators mentioned in Example 1,
which we now call WELL-A and WELL-B. They have k = 128 and L = 32. We
computed ∆(J0), . . . , ∆(J31) for these RNGs. The values are given in Tables 1
and 2. We get ∆̃ = 9 for WELL-A and ∆̃ = 255 for WELL-B; a huge difference!
The worst possible value of ∆(Jp) for a generator with L = 32 and k = 128 is
255, and WELL-B reaches this value for five different values of p. WELL-A is
definitely much better with respect to this criterion.

Table 1
Values of ∆(Jp) for p = 0, . . . , 31 (reading row by row from left to right and from
top to bottom) for the WELL-A generator.

5 4 4 9 6 8 7 7
8 8 7 5 5 2 6 5
4 7 7 1 5 4 8 2
8 6 5 8 6 5 7 2

Table 2
Values of ∆(Jp), p = 0, . . . , 31, for WELL-B.

5 7 10 13 18 27 37 44
54 65 79 106 104 100 112 125
144 163 205 213 215 215 213 215
235 255 255 255 255 251 255 4

A similar type of behavior can be observed with the xorshift generators pro-
posed by [7] and studied further in [13].

3 Resolution-Stationary Generators

Certain point sets Ψt(J) have the interesting property that if we shift the bits
of all coordinates of all points by j positions to the left and then discard the
first j bits (this is equivalent to multiplying all output values un by 2j, modulo
1, or to adding j to each coordinate of the vector J), then for certain values
of j the point set Ψt(J) remains unchanged. Of course, this is possible only
if enough bits remain after the shift, i.e., only if j < L − j` for all ` when
J = (j0, . . . , jL′−1). We call resolution-stationary a generator for which this
property holds whenever the condition 0 < j < L − j` is satisfied for all `. If
this holds only when j is a multiple of some positive integer v, we use the term
v-wise resolution stationary. These properties are useful because they permit
one to obtain the values of ∆(J) for several J ’s at once by computing the
value for a single J only. This can speed up the search for good parameters.
The remainder of this section is devoted to studying these properties.

To make the above definitions more formal, for J = (j0, . . . , jL′−1) and an
integer j ≥ 0, denote by J + j = (j0 + j, . . . , jL′−1 + j) the vector obtained by

5



adding j to each coordinate of J and let jmax = max0≤`<L′ j`.

Definition 1 For a given positive integer v, a generator is called v-wise
resolution-stationary if for all t, whenever j is a multiple of v and 0 ≤ j <
L− jmax, we have

Ψt(J) = Ψt(J + j).

When this holds for v = 1, we simply say resolution-stationary.

Lemma 1 For a v-wise resolution-stationary generator, we have t(J) = t(J+
j), ∆`(J) = ∆`(J + j), and ∆(J) = ∆(J + j) whenever j is a multiple of v
and 0 ≤ j < L− jmax.

The proof follows directly from the definitions. This result implies that when
v is small, we do not need to compute all ∆(J)’s: several ones can be deduced
from the other ones.

Example 3 Suppose we want to compute ∆̃ with L = 32. The values of
t(J) required in this case include (among others) t(i, i + 1) for i = 0, . . . , 30.
But if the generator is resolution-stationary, then these 31 values are all equal
to t(0, 1), so we only need to compute the latter. If the generator is 2-wise
resolution-stationary instead, then t(0, 1) = t(2, 3) = · · · = t(30, 31) and
t(1, 2) = t(3, 4) = · · · = t(29, 30), so in this case we only need to compute
t(0, 1) and t(1, 2), and we save 29 computations. In general, if no resolution-
stationarity is assumed, we need to compute L × L values t(J) to obtain ∆̃,
whereas if it is resolution-stationary, that number is reduced to L(L + 1)/2,
counting in both cases all the one-dimensional vectors J (for these, it is often
known by construction that t(J) = k).

Lemma 2 If the output of a given RNG satisfies

y(`)
n = y

(`+v)
n+d (4)

for 0 ≤ ` < L − v and all n > 0, for a given integer d ≥ 0, then this RNG
is v-wise resolution-stationary. Conversely, if an RNG is v-wise resolution-
stationary and has full period length 2k−1, then it satisfies (4) for 0 ≤ ` < L−v
and all n > 0, for some integer d ≥ 0

Proof: For the first part, observe first that (4), together with the fact that
{y(`)

n , n ≥ 0} follows the same recurrence for all `, implies that these bit
sequences are purely periodic (i.e., they have no transient part). For a given

6



integer i ≥ 0 such that j = iv < L− jmax, denote

un =
L′−1∑
`=0

2−`−1y(j`)
n

and

ũn =
L′−1∑
`=0

2−`−1y(j`+iv)
n .

Then, for any integer n ≥ 0, we have

Ψt(J) = {(un, . . . , un+t−1) : x0 ∈ Fk
2}

= {(ũn+id, . . . , ũn+id+t−1) : x0 ∈ Fk
2}

= Ψt(J + iv),

which proves that the RNG is v-wise resolution-stationary.

Conversely, suppose Ψt(J) = Ψt(J + iv) for all t whenever j = iv < L− jmax.
Take J = (0, . . . , L − v − 1) and i = 1. We know that the sequences of
{y(`)

n , n ≥ 0} and {y(`+v)
n , n ≥ 0} are the same bit sequence, with different

starting points, for all `. So we must have y(0)
n = y

(v)
n+d for some integer d ≥ 0.

But then, since Ψt(J) = Ψt(J + v) for all t, the lag between these two bit
sequences for ` > 0 must be the same as for ` = 0, i.e., it must also be d. That
is, we must have y(`)

n = y
(`+v)
n+d for the same d, for ` = 1, . . . , L′ − 1.

The primary example of resolution-stationary generators is the class of Taus-
worthe generators, to be discussed in the next section. Here we give examples
of v-wise resolution-stationary generators.

Example 4 For a large class of RNGs such as the TGFSR [8], xorshift gen-
erators [7,13], and the LFSR over F2w [11,12], the recurrence (1)–(3) has the
special form

zn =
r∑

i=1

Dizn−i (5)

yn = (Tzt
n,Tzt

n−1,Tzt
n−2, . . .)

t (6)

un =
L−1∑
`=0

2−`−1y(`)
n (7)

where r and w are positive integer such that k = rw, zn is a w-bit vector, yn

is a L-bit vector, and T and the Di’s are w×w matrices. Here, we have xn =

7



(zt
n, . . . , z

t
n−r+1)

t. From Equation (6), it is easy to see that these generators are
w-wise resolution-stationary with d = 1. Of course, this resolution-stationarity
is meaningless if L = w, which is often the case for these types of generators.
In practice, these generators are typically not resolution-stationary.

Example 5 In [12], the authors use LFSR generators over F2w (a special case
of Example 4) to construct point sets Ψt of small cardinality for quasi-Monte
Carlo integration. For that, they use values of w and r ranging from 2 to 9
and for which k = rw ≤ 18, so that the number of points does not exceed 218.
They take L = 32. These small generators are w-wise resolution-stationary.

4 Links with Tausworthe Generators

A Tausworthe generator [14,4,5] is defined by taking A = Cs, where

C =



1
1

. . .

1
ak ak−1 ak−2 . . . a1



with ak = 1 and C has a primitive characteristic polynomial P (z) = zk −
a1z

k−1 − · · · − ak, s is a positive integer such that gcd (s, 2k − 1) = 1, and
yn = (xn,C

kxn,C
2kxn, . . .). Here, L can be viewed as infinite. The period

length of this RNG is ρ = 2k − 1 and each yn is a bit sequence with period
length ρ.

Proposition 1 Any Tausworthe RNG is resolution-stationary.

Proof: As pointed out in [1], for the Tausworthe generator, the sequences
{y(`)

n , n ≥ 0} for ` = 0, 1, 2, . . ., are the same sequence with starting points that
are spaced at equal distance d from each other, where d is the multiplicative
inverse of s modulo ρ (which implies that gcd (d, ρ) = 1). That is, y(`)

n = y
(`+1)
n+d

for all `. The result then follows from Lemma 2. (A related result is given in
[5], at the end of Section 2).

Proposition 2 An F2-linear generator defined via (1)–(3) and with full period
ρ = 2k − 1 can be represented as a Tausworthe generator if and only if it is
resolution-stationary with gcd (d, ρ) = 1.

Proof: If it can be represented as a Tausworthe generator, then the prop-
erty follows from the proof of the preceding proposition. Suppose now that
it is resolution-stationary for some integer d with gcd (d, ρ) = 1. Then, from

8



Lemma 2, it satisfies y(`)
n = y

(`+1)
n+d for all ` < L− 1. The fact that the RNG is

equivalent to a Tausworthe generator then follows from Fushimi’s results [1].

The next example illustrates what happens when the condition gcd (d, ρ) = 1
is not satisfied.

Example 6 Let k = 4, L =∞,

A =


1 0 0 1
0 0 1 0
0 0 0 1
1 1 0 1

 , B =


I
A
A2

...

 ,

and x0 = (0, 1, 0, 0)t. This RNG has full period length ρ = 2k − 1 = 15 and is
easily seen to be resolution-stationary with d = 3. The bit sequences y(`)

n for
` = 0, . . . , 5 and n ≥ 0 are

011110001001101011110001001101 . . .
101011110001001101011110001001 . . .
001101011110001001101011110001 . . .
001001101011110001001101011110 . . .
110001001101011110001001101011 . . .
011110001001101011110001001101 . . .

.

Here, the bits in any given row have period length 15 and the next row is
obtained by shifting the current row to the right by three bits. After five 3-bit
shifts, we obtain the same row again. This means that the bits in any column
have period length ρ/d = 5. But since column n is the bit sequence yn, the
period length in each column would have to be ρ = 15 for the RNG to be
representable as a Tausworthe RNG.

5 Achieving Resolution-Stationarity by Transforming the Output

Many interesting classes of F2-linear generators, for instance the Mersenne
Twister [9] and the WELL [?], are not resolution-stationary. However, any
F2-linear RNG can be made resolution-stationary by applying an appropriate
linear output transformation as follows. This is equivalent to redefining the
matrix B.

9



The idea is to replace the output vector yn at step n by

ỹn = (y(0)
n , y

(0)
n−d, y

(0)
n−2d, . . . , y

(0)
n−(L−1)d)

t

It then follows from Lemma 2 that this redefined generator is resolution-
stationary. If the original generator has full period ρ = 2k−1 and gcd (d, ρ) =
1, this output transformation turns it into a Tausworthe generator. Thus, this
technique can be viewed as a new way of implementing a Tausworthe generator
from the output of any F2-linear generator. By applying this transformation to
a fast and long-period underlying (original) generator, with good uniformity
for its high-order bits and possibly many non-zero coefficients in its character-
istic polynomial, we can obtain a fast resolution-stationary generator which is
more likely to have good uniformity for all its bits.

An easy way of implementing this output transformation is by saving the
relevant bits into L-bit vectors s0, . . . , sd−1 so that y

(0)
n−d, y

(0)
n−2d, . . . , y

(0)
n−(L−1)d

can be recovered from the bit vector sn mod d at step n.

Before we start using the generator, we must initialize the vectors sj appropri-
ately. Let e1 = (1, 0, . . . , 0)t denote the L-bit unit vector, ⊕ the xor operator,
� the right shift operator, and & the bitwise-and operator. Suppose that
L > 1. The vectors sj can be initialized by the following algorithm:

Initialize x0 to a random bit vector;
Initialize sj to the zero bit vector for j = 0, . . . , d− 1;
For i = 0, . . . , L− 1 do

For j = 0, . . . , d− 1 do
sj ← (yid+j & e1)⊕ (sj � 1).

The role of the bit mask e1 is to pick up the first bit. At the end of this
initialization, sj contains

ỹ(L−1)d+j = (y
(0)
(L−1)d+j, y

(0)
(L−2)d+j, . . . , y

(0)
j )t.

Once this initialization is done, the vector ỹn, for n ≥ Ld, is obtained by

sn mod d← (sn mod d � 1)⊕ (yn&e1)

ỹn← sn mod d.

For this to work, the output vectors ỹn must be generated in sequence, so that
the vectors sj are updated appropriately. At each step n, we have sn mod d =

(y(0)
n , y

(0)
n−d, y

(0)
n−2d, . . . , y

(0)
n−(L−1)d)

t.

A drawback of this method is that it requires additional memory for the

10



sj’s. For a high-quality generator, the value of d must be large, otherwise
the bits will follow a common recurrence with a small lag. But a larger d
means more memory. This trap can be avoided by combining two (or more)
different Tausworthe generators that can be implemented in this way. Each
one can have a very small d and yet the combined Tausworthe generator will
generally have a very large d [16,4]. In other words, the output transformation
technique just introduced can be useful to implement the components of an
efficient large-period combined Tausworthe generator.

6 Conclusion

F2-linear RNGs are usually selected on the basis of the good uniformity for
their most significant bits; the least significant bits are neglected. To remedy
this situation, we have introduced a new uniformity criterion ∆̃ that gives
equal importance to all the bits. When searching for good RNGs with respect
to ∆̃, we can still use the old criterion ∆ as a filter, and compute ∆̃ only
for the RNGs whose value of ∆ exceeds a given threshold, to save computing
time.

The criterion ∆̃ considered in this paper is based on the permutations Jp,
but other types of index vectors than Jp could be considered as well, perhaps
depending on the specific classes of applications that we have in mind. For
example, if the RNG is to be used as a source of random bits by taking all
bits of y0,y1, . . . in succession, then we may want to consider the uniformity
of the point set defined by all blocks of t successive bits that can occur in the
bit sequence (yt

0,y
t
1, . . .).

Finally, we introduced a notion of resolution-stationarity, studied the links
between this notion and Tausworthe RNGs, and proposed a way of trans-
forming an arbitrary full-period F2-linear RNG into a Tausworthe RNG, thus
recovering the nice resolution-stationary properties of these RNGs.

References

[1] M. Fushimi. An equivalence relation between Tausworthe and GFSR sequences
and applications. Applied Mathematics Letters, 2(2):135–137, 1989.

[2] M. Fushimi and S. Tezuka. The k-distribution of generalized feedback shift
register pseudorandom numbers. Communications of the ACM, 26(7):516–523,
1983.

[3] P. L’Ecuyer. Uniform random number generation. Annals of Operations
Research, 53:77–120, 1994.

11



[4] P. L’Ecuyer. Maximally equidistributed combined Tausworthe generators.
Mathematics of Computation, 65(213):203–213, 1996.

[5] P. L’Ecuyer. Tables of maximally equidistributed combined LFSR generators.
Mathematics of Computation, 68(225):261–269, 1999.

[6] P. L’Ecuyer and R. Simard. TestU01: A Software Library in ANSI C for
Empirical Testing of Random Number Generators, 2002. Software user’s guide.
Available at http://www.iro.umontreal.ca/∼lecuyer.

[7] G. Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(14):1–6, 2003.
See http://www.jstatsoft.org/v08/i14/xorshift.pdf.

[8] M. Matsumoto and Y. Kurita. Twisted GFSR generators II. ACM Transactions
on Modeling and Computer Simulation, 4(3):254–266, 1994.

[9] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions
on Modeling and Computer Simulation, 8(1):3–30, 1998.

[10] H. Niederreiter. New methods for pseudorandom number and pseudorandom
vector generation. In Proceedings of the 1992 Winter Simulation Conference,
pages 264–269. IEEE Press, 1992.

[11] F. Panneton and P. L’Ecuyer. Random number generators based on linear
recurrences in F2w . In H. Niederreiter, editor, Monte Carlo and Quasi-Monte
Carlo Methods 2002, pages 367–378, Berlin, 2004. Springer-Verlag.

[12] F. Panneton and P. L’Ecuyer. Infinite-dimensional point sets based on linear
recurrences over GF(2w). In H. Niederreiter and D. Talay, editors, Monte Carlo
and Quasi-Monte Carlo Methods 2004, Berlin, 2005. Springer-Verlag. to appear.

[13] F. Panneton and P. L’Ecuyer. On the xorshift random number generators. ACM
Transactions on Modeling and Computer Simulation, 15(4), 2005. to appear.

[14] R. C. Tausworthe. Random numbers generated by linear recurrence modulo
two. Mathematics of Computation, 19:201–209, 1965.

[15] S. Tezuka. Uniform Random Numbers: Theory and Practice. Kluwer Academic
Publishers, Norwell, Mass., 1995.

[16] S. Tezuka and P. L’Ecuyer. Efficient and portable combined Tausworthe random
number generators. ACM Transactions on Modeling and Computer Simulation,
1(2):99–112, 1991.

[17] J. P. R. Tootill, W. D. Robinson, and D. J. Eagle. An asymptotically random
Tausworthe sequence. Journal of the ACM, 20:469–481, 1973.

12


