Online Appendices to
On Figures of Merit for
Randomly-Shifted Lattice Rules

Pierre L’Ecuyer and David Munger

In these appendices, we present the estimations of the ANOVA variances and
the experimental results that support our observations in Sections 77 to 77
in the published paper, where the analysis is already complete.

13 An Indicator Function

We present here the results for the indicator function described in Section 7?7
of the main paper. The estimated ANOVA variances for the most important
projections with s = 6 are shown in Figure 9. For lattices constructed with
P, 2 with projection-dependent weights, examples of the observed and fitted
variances are shown in Figure 10 and the empirical convergence rates are
displayed in Table 3.

In the last paragraph of Section 7?7 in the main paper, we report on exper-
iments with a simpler case with s = 2 where Y, ~ U[0, m) for some m € [0, 1)
and Y3 ~ UJ0,1). This corresponds to an integrand whose discontinuity is a
straight line of slope —m, linking the points (0, z) and (1,x + m):

fa) = flur,u) = Tug > x — muy), (19)

where m and x are constants such that 0 <z <1 and x —1 <m < z. This
is illustrated in Figure 11 for z = 0.8 and m = 0.375. The shaded area is the
region where the indicator equals 1.

The Fourier coefficients of this integrand are
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Fig. 9 Fractional ANOVA variances per projection for the indicator of a sum of in-
dependent exponentially distributed variables s = 6, x = 19.4 and A\; = j —1 for the
basic estimator (top) and the CMC estimator (bottom). For the basic estimator, only
the 31 more important projections out of 26 — 1 = 63 total projections are displayed.
The projections are listed on the horizontal axis, and their fraction of total variance is
plotted along the vertical axis. The limits of each vertical bar correspond to a normal
confidence interval at 95 % on the variance estimate, the standard deviation of which was
estimated across independent random draws. Note the different scales on the vertical
axes.
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for h; + hom = 0. Note that if z = 1 and m = —1, the discontinuity is a
diagonal and the only non-vanishing Fourier coefficients are those for which
h1 + hom = 0. Let 6§ and ¢ denote the angles from the positive z; axis to h
and the perpendicular to the discontinuity, respectively, such that h/||h| =
(cos@,sin @) and m = — cot . For 6 # ¢, we have

f(h17h2) ==

B sin? ¢ [1 — cos(27 | h|n)]

= 20
84 ||h||* sin? Osin? (0 — )’ (20)
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Fig. 10 Estimated variance (left) and fitted variance (right) of the basic (top) and CMC
(bottom) RQMC estimators for the indicator of the sum of exponential variables, for
s =06, with \j =1land z =5.7 ( ). On the right, we also have the plots for A; = j !
and z =19.4 (---),for \; =j ' and & =33.5 (-~ ), and for \; =572 and = = 81.5
(= = ). The lattices were constructed with the P 2 criterion using projection-dependent
weights, and the baker’s transformation was not applied.

where n = cscpsin(f — @), and csc ¢ represents the length of the segment of
discontinuity. For 8 = ¢, we have
o 2 1
‘f(hl’}”)’ " 472?||n2sin o’

which is also the limit of (20) when 8 — ¢ for fixed ||h|| and . It is easy to
check that, for fixed ||h|| and ¢, | f(h1, ho)|? has a local maximum in 6 = ¢.

In Figure 11, we show three examples of lattices with n = 97 that perform
well (on the left panel) in terms of the RQMC variance for the indicator
function (19) and three examples of lattices that perform very poorly (on the
right panel). The RQMC variances of those on the right are (approximately)
from 20 to 200 times larger than for those on the left. For n = 97, P, reaches
its minimum value of 1.53 x 1072 at as = 35, 36, 61, and 62. The values
as = 35 and ay = 36 correspond to the two lattices whose points look the
most evenly distributed in the figures, one on the left and one on the right.
Interestingly, the RQMC variance of the second is more than 20 times that
of the first! This happens because for the second lattice, the points are in
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1%
s Aj T fin,rqme basic CMC CMC
(no baker) (no baker) (with baker)
1 1.7 0.5 1.522 £ 0.006 1.998 £+ 0.001 3.980 £+ 0.010
9 Gt 2.5 0.5 1.549 + 0.006 1.998 + 0.001 3.940 £ 0.010
Gt 6.0 0.1 1.517 +0.005 1.998 4+ 0.001 4.000 £ 0.010
j2 10.4 0.5 1.501 £ 0.004 1.995 £ 0.002 3.710 £ 0.010
1 2.7 0.5 1.363 + 0.007 1.931 +0.002 2.390 £+ 0.010
3 gt 5.2 0.5 1.341 £ 0.008 1.929 £ 0.002 2.380 £ 0.010
-1 11.0 0.1 1.336 £+ 0.005 1.955 + 0.002 2.190 £ 0.010
72 11.6 0.5 1.294 4+ 0.008 1.907 4+ 0.002 2.233 £+ 0.009
1 3.7 0.5 1.288 + 0.007 1.823 +0.004 1.919 4+ 0.009
4 Gt 9.0 0.5 1.298 + 0.007 1.814 4+ 0.004 1.831 +0.008
i1 17.3 0.1 1.273 £ 0.005 1.825 £ 0.003 1.702 + 0.005
j72 26.0 0.5 1.250 + 0.008 1.860 + 0.003 1.743 + 0.006
1 4.7 0.5 1.239 £ 0.006 1.629 £ 0.008 1.643 £ 0.006
5 Gt 13.8 0.5 1.238 + 0.006 1.638 + 0.007 1.615 4+ 0.006
Gt 25.0 0.1 1.212 +0.006 1.631 +0.005 1.524 +0.004
j72 48.9 0.5 1.234 £+ 0.007 1.671 + 0.006 1.647 + 0.005
1 5.7 0.5 1.226 + 0.005 1.578 + 0.006 1.454 +0.005
6 ! 19.4 0.5 1.230 £ 0.005 1.552 £ 0.005 1.478 +0.005
Gt 33.5 0.1 1.207 £+ 0.003 1.495 + 0.005 1.418 + 0.005
72 81.5 0.5 1.205 4+ 0.006 1.623 +0.007 1.548 +0.005

Table 3 Estimated convergence rates ¥ for the indicator of a sum of random variables,
with all significant figures, with lattices constructed with the P, o criterion with a =1
without baker and a = 2 with baker. The reported precision on © corresponds to the
half-width of a 95 % confidence interval. The actual values for fin,rqme are within 1% of
the displayed value for n large enough.

u2

Ul U1

Fig. 11 Integration of an indicator function of the form (19), using RQMC with six
different lattices with n = 97. The indicator is 1 in the shaded area. The discontinuity
has slope m = —0.375 and passes through points (0, 0.8) and (1,0.425). The three (good)
lattices on the left have a2 = 35 (0), a2 = 65 (¥), and az = 73 (+). Their RQMC variances
are 3.78 x 1075, 6.71 x 107° and 8.92 x 1075, respectively. The three (bad) lattices on
the right have az = 36 (0), az = 48 (*), and a2 = 95 (+). Their RQMC variances are
1.33 x 1073, 1.14 x 10~2 and 1.73 x 1073, respectively.



Appendix to Figures of Merit for Lattice Rules 5

lines that are perfectly aligned with the discontinuity. Thus, when one line
of points jumps across the discontinuity due to a small change in the shift,
this causes a large change in the estimate, whence the larger variance. This
alignment also corresponds to a short dual vector h € L3 perpendicular to
the discontinuity. One lattice on the left (with as = 65) has all its points
regrouped in only three lines, so usual figures of merit are typically bad for
this lattice, yet it performs quite well for this particular integrand. This shows
that good lattices here do not necessarily have evenly distributed points, and
conversely; the variance depends more on the alignment between the lattice
structure and the discontinuity.

14 Example: a Stochastic Activity Network

In this section, we show the results for the stochastic activity network de-
scribed in Section ??. The ANOVA variances per projection are shown in
Figure 12 for x = 60, and per projection order in Figure 13 for all selected
values of z. Among the 10 projections contributing the most variance for
the basic estimator, excluding the one-dimensional projections, four belong
to paths linking the source to the sink and six (including the most impor-
tant one, {10, 13}), do not. The situation is different for the CMC estimator:
most of the variance belongs to projections taken from the path {1,4,8,9, 13},
which is the single path going through edge 9. This suggests that the variabil-
ity of the term P[Vy < x — Py], dominates the variance of the CMC estimator
(??7). Thus, the V;’s that sum up to Py contribute most of the variance.
The results for the basic RQMC estimator without the baker’s transfor-
mation are summarized in Table 4. In all cases, the criterion P > consistently

has relatively high values of \7R\F(220) and 7, with low values of S., but it
does not always clear dominate, as we can see in Table 4 for z = 85.

For the CMC estimator, using M., 2 or M’ ,, in contrast to using the P, 2,
criteron, generally results in more noise in the observed RQMC variances, as
illustrated in Figure 14. This discrepancy can be larger or smaller for different
values of x, but appears independent of x.

We show some results for the estimation of E[T] with the Pa, criterion
in Table 5. Curiously, the product weights provide the smallest RQMC vari-
ances (largest \71-%\1*“(220) and 7). The projection-dependent weights are not
far behind.
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Fig. 12 Fractional ANOVA variances per projection for the stochastic activity network
example with = 60 for the basic estimator (top), the CMC estimator (middle), and
the estimator of E[T] (bottom). Note the different vertical scales. Only the 31 more
important projections out of 2'3 — 1 = 8191 (basic estimator) or 2% — 1 = 255 (CMC
estimator) total projections are displayed. See Figure 9 for details on how to read this

figure.
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Fig. 13 Fractional ANOVA variances per projection order, up to order 6, for the
stochastic activity network example.
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basic estimator, x = 60

| criterion | weight type | @(220) 1% Se

Pr,2 product 21 1.201 £ 0.007 0.524
Pr,2 proj.-dep. 27 1.201 £ 0.003 0.196
Pr,2 order-dep. 18 1.182 +£0.005 0.346
My 2 geometric 14 1.180 £ 0.010 0.782
Pry,2 geometric 17 1.168 +£0.009 0.640

/%2 order-dep. 16 1.167 £ 0.005 0.390

;’2 geometric 17 1.165 £ 0.007 0.488
My 2 product 14 1.161 +£0.008 0.611
./\/lfm proj.-dep. 18 1.156 +0.005 0.359

/%2 product 16 1.154 4 0.005 0.379
M, 2 proj.-dep. 14 1.146 +0.009 0.671
My 2 order-dep. 13 1.138 - 0.008 0.565

basic estimator, x = 85
| criterion | weight type VR\F(22O) 1% Se

Pr,2 geometric 26 1.222 +£0.006 0.334
My 2 geometric 21 1.220 £ 0.010 0.737
Py2 product 28 1.211 £ 0.007 0.486
M 5 product 26 1.201 4 0.006 0.459
M;’Q geometric 22 1.187 £0.008 0.566
Pr,2 proj.-dep. 28 1.184 +£0.004 0.290
M, proj.-dep. 25 1.181 £ 0.007 0.529
My 2 product 21 1.177 £ 0.007 0.511
M 2 order-dep. 21 1.175 +0.007 0.489

;,2 order-dep. 22 1.166 +0.007 0.558
Pr,2 order-dep. 22 1.165 £+ 0.006 0.463
M 2 proj.-dep. 18 1.136 +0.008 0.612

Table 4 Estimated VRF and # for the criteria P2 and M’ 5, and for selected types of
weights, for the basic estimator with 2 = 60 (top) and 85 (bottom) without the baker’s
transformation. Projection-dependent, order-dependent and geometric order-dependent
are respectively abbreviated by proj.-dep., order-dep., geometric. The results are sorted
by decreasing order of o.

T
107° | i
8
=]
.8
g
= 10—10 - |
|
10t 10° 10° 107

n

Fig. 14 Estimated variance of the RQMC estimator using the baker’s transformation
for the stochastic activity network with @ = 44, for the P, 4 criterion (0) and for the
/\/l'mg criterion (*), both with projection-dependent weights. The results for M, 2 (not
shown here) are similar to those for M/, 5.
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without baker with baker
VRF(22°) D 8. | VRF(22) D 3.

weight type

proj.-dep. | 8.0 x 10> 1.46940.004 0.265 | 8.2 x 10> 1.38040.010 0.666

product 8.7 x 102 1.499+0.005 0.338 | 1.3 x 10> 1.422+0.007 0.512
order-dep. | 5.6 x 10 1.486 +0.005 0.339 | 7.5 x 10> 1.402 +0.009 0.602
geometric | 4.9 x 102 1.460 £0.006 0.462 | 8.4 x 10> 1.413 £ 0.008 0.585

Table 5 Estimated ﬁ, 7 and S: for the RQMC estimator of E[T] for the criterion
P~ ,2o with o = 1 and 2 without and with the baker’s transformation, respectively.

15 Example: Asian Call Option

Most of the results for the Asian call option were already presented in Sec-
tion ?7?. We show in Figures 15 and 16 the estimated ANOVA variances
for the most important projections, and in Figure 17 the total variance per
projection order.

We show in Table 6 the fitted VRF’s and empirical convergence rates for
various types of weights with the P, o, criterion using random CBC con-
struction, and for projection-dependent weights for the M, » and Mfﬂ cri-
teria, but for the Cholesky case instead of PCA like in Table ?? in the main
paper. Also for Cholesky, we show in Table 7 the fitted VRF’s and the con-
stants In ag and ¥ for criteria M, g, Mﬁy’ﬁ, M, g and ./\/l’%B, for # =1 and 2,
and for projection-dependent, product, order-dependent and geometric order-
dependent weights. In general, In ao decreases as  increases, as illustrated in
Figure 77, and the criteria M., g and /\/l;”g, based on the worst projection,
generally yield faster convergence and larger VRF than their counterparts
M, 5 and M. 5 based on a weighted sum over all projections. Besides this,
it is hard to discriminate between criteria and weight types. For example, for

] 0
Q O e B B B B B T T 1.1 7 1 T4 B O O
= F_ Asian option, s = 6, C‘holesky 3
= 1L T = .
S 10 S - L E|
> B ——_ ]
= 107%E TTT+ L E
+ E - E
8 3 B T —_—_
o 1077 E T T T T+ L3
e 0 S S e A =
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Fig. 15 Fractional ANOVA variances per projection for the Asian option with s = 6
using Cholesky factorization (top) and PCA decomposition (bottom). Only the 31 most
important projections out of 26 — 1 = 63 total projections are displayed. The two plots
here have different vertical scales and the contributions decrease much faster in the
bottom one.
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Fig. 16 Fractional ANOVA variances per projection for the down-and-in Asian option

with s = 6 using Cholesky factorization (top) and PCA decomposition (bottom). Only
the 31 most important projections out of 2° — 1 = 63 total projections are displayed.

| order 1

Asian, Cholesky
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Asian, PCA
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down-and-in, Cholesky

order 4
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——

|
0.2 0.4

|
06 08 1 |'order 6

fraction of total variance

Fig. 17 Fractional ANOVA variance per projection order for the Asian option and the

down-and-in Asian option with s = 6.

M1
respectively, whereas for M, 1, they yield ¥
which is nearly the converse.

product and projection-dependent weights yield © ~ 1.74 and 1.42,

~
~

1.45 and 1.69, respectively,
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Asian option (Cholesky), s =6

| criterion | construction | r | weight type | @(220) 1 S.
proj.-dep. | 4.2 x 10° 1.425+0.006 0.454
product 3.1x10% 1.384+0.008 0.590
CBC 50 | order-dep. | 4.1 x 10> 1.454 +0.006 0.483
Py geometric | 4.5 x 10°  1.470 +0.005 0.408
’ order 2 | 1.3 x10® 1.430+£0.020 1.47
— | proj-dep. | 5x10° 1.460+0.010 0.272
50 | proj-dep. | 2.7 x 105 1.410 £0.007 0.511
— | proj-dep. | 5.1 x 10> 1.510£0.020 0.379
M, 2 CBC 50 | proj-dep. | 1.4 x 10° 1.380+0.010 1.08
! CBC 50 | proj-dep. | 1.7 x 10 1.335+0.009 0.705

Korobov

~,2
down-and-in option (Cholesky), s = 6
| criterion | construction | r | weight type \TR\F(Z%) 1% Se
proj.-dep. 9.3 1.224 £0.004 0.321
product 10 1.262 £0.004 0.319
CBC 50 | order-dep. 9.9 1.250 £ 0.004 0.268
P geometric 9.4 1.251 £0.005 0.398
v order 2 4.2 1.210 £ 0.010 0.804
— | proj.-dep. 12 1.267 £ 0.007 0.179
50 | proj.-dep. 8.2 1.242 £0.004 0.267
Korobov  ——— —Jep. 1 1.286£0.007 0.192
M2 CBC 50 | proj.-dep. 6.7 1.229 £0.006 0.475
’%2 CBC 50 | proj.-dep. 6.0 1.198 £ 0.008 0.560

Table 6 Fitted variance reduction factors at n = 22° and empirical convergence rates
for the Asian and down-and-in options. The baker’s transformation was applied for the
Asian option, but not for the down-and-in option. When CBC is followed by a value
of r, it refers to random CBC, otherwise it refers to exhaustive CBC, and similarly for
Korobov. Order-dependent of order 2 is abbreviated as order 2.
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| criterion | weight type V/R\F(220) In ao 1 S
‘i product | 3.2x10% 864+0.1 1.74+0.01 0.918
"1 | order-dep. | 3.0x10° 85£01  1.73£0.01 0.887

My | proj-dep. | 25x10° 82+02  1.69+0.01 1.00
M,o | proj-dep. | 25x10° 824+02  1.69+0.01 1.00
M, product | 2.7x10°  7.940.1  1.6840.01 0.780
M order-dep. | 2.1x10°  7.840.1  1.65+0.01 0.964

;,1 geometric | 2.0 x 10®>  7.540.1 1.63£0.01 0.933
My1 | order-dep. | 24x10° 59+02  1.53+001 1.10
My | geometric | 2.6x10°  55+£0.1  1.50+£0.01 0.843

!
71,2

My 2 product | 1.9 x 10> 54402  1.474+0.01 0.989
M1 | order-dep. | 1.7x10° 54401  1.47+0.01 0.956
M.y 2 product | 2.0x 10> 52401  1.46+0.01 0.941

My 2 order-dep. | 2.1 x 10®  5.1+0.1 1.46 £0.01 0.932

M1 product | 1.8 x 10> 52402  1.45+0.01 1.09
M2 | order-dep. | 1.5x 10> 53402 1454001 1.04
My 2 geometric | 2.8 x 10 4.7+0.1 1.45+0.01 0.562
M, 5 geometric | 2.5 x 10 4540.1  1.43+0.01 0.650
M, proj.-dep. | 1.2x10®° 52402 1.42+0.02 1.53
My 1 product | 1.6 x 10> 49401  1.4240.01 0.973

i order-dep. | 1.9 x 10> 4.640.1  1.42+0.01 0.887
M2 geometric | 2.0 x 103 4.6 £0.1 1.42+0.01 0.763
M1 proj-dep. | 1.6 x 10> 4.7+0.1  1.41+0.01 0.870
Niwl geometric | 1.8 X 103 4.5+0.1 1.414+0.01 0.723
M, proj.-dep. | 1.8 x10° 44401  1.40+£0.01 0.670

L2 order-dep. | 1.9 x10®> 4.34+0.1  1.40+0.01 0.635
My 1 geometric | 2.0 x 10>  4.2+0.1  1.39+£0.01 0.673
My 2 proj-dep. | 1.4x10% 44402 1.38+0.01 1.08
M, proj.-dep. | 1.9x10®° 40401  1.38+0.01 0.690
M, o product | 1.6 x 10> 42401  1.374+0.01 0.860

i product | 1.4x 10> 41401  1.36+£001 0.972
M, 5 proj.-dep. | 1.7x10% 3.64+0.1  1.34+0.01 0.705

"o geometric | 1.0 x 10° 3.64+0.2  1.30+0.02 1.12
Prya geometric | 4.5 X 103 4.50+0.06 1.470 +0.005 0.408
Pry,a order-dep. | 4.1 x 10® 4.36 +£0.07 1.454 +0.006 0.483

P order 2 | 1.3x10° 52040.20 1.430+0.020 1.47
Pya | proj-dep. | 4.2x10° 3.9340.07 1.425+0.006 0.454
P product | 3.1x10° 3.70+0.10 1.384+0.008 0.590

Table 7 Estimated VR\F, o and Se for the criteria based on the spectral test M. g,

M;,B’ M, 5 and M/%B’ for =1 and 2, and for projection-dependent, product, order-
dependent and geometric order-dependent weights, for the Asian option with Cholesky
factorization with the baker’s transformation. The results are sorted by decreasing order
of ©. We have appended the results for P 4 for reference.
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