
On Array-RQMC for Markov Chains: Mapping
Alternatives and Convergence Rates

Pierre L’Ecuyer, Christian Lécot, and Adam L’Archevêque-Gaudet

Abstract We study the convergence behavior of a randomized quasi-Monte Carlo
(RQMC) method for the simulation of discrete-time Markov chains, known as array-
RQMC. The goal is to estimate the expectation of a smooth function of the sample
path of the chain. The method simulates n copies of the chain in parallel, using
highly uniform point sets randomized independently at each step. The copies are
sorted after each step, according to some multidimensional order, for the purpose of
assigning the RQMC points to the chains. In this paper, we provide some insight on
why the method works, explain what would need to be done to bound its conver-
gence rate, discuss and compare different ways of realizing the sort and assignment,
and report empirical experiments on the convergence rate of the variance and of the
mean square discrepancy between the empirical and theoretical distribution of the
states, as a function of n, for various types of discrepancies.

1 Introduction

Quasi-Monte Carlo (QMC) and randomized QMC (RQMC) methods can be quite
effective to estimate an integral when the integrand is reasonably smooth and has
low effective dimension [11, 16, 20]. But when we simulate a system (modeled as a
Markov chain) that evolves over several time steps, and the integrand is a function

Pierre L’Ecuyer and Adam L’Archevêque-Gaudet
Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, C.P.
6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada, lecuyer@iro.umontreal.ca,
larcheva@iro.umontreal.ca

Christian Lécot
Laboratoire de Mathématiques, UMR 5127 CNRS, and Université de Savoie, 73376 Le Bourget-
du-Lac Cedex, France,
Christian.Lecot@univ-savoie.fr

1

2 L’Ecuyer, Lécot, and L’Archevêque-Gaudet

of the sample path, the dimension is typically very large, the effective dimension
can also be large, and RQMC is often not very effective.

A different type of QMC and RQMC methodology, whose RQMC version is
called array-RQMC, has been introduced and developed in [8, 9, 13, 14]. This array-
RQMC algorithm simulates n copies of the chain in parallel. It advances all copies
by one step at each iteration, using an RQMC point set of cardinality n to generate
the transitions of these chains at the given step, and a clever matching of the RQMC
points to the chains. This matching is done by sorting both the chains and the points
according to their successive coordinates. The idea is (loosely speaking) to induce
negative dependence between the n copies, so that the empirical distribution of the
n states at any given step provides a much more accurate approximation of the true
distribution than if the n copies were simulated independently [14]. Empirical ex-
periments have shown that this can improve the simulation efficiency for Markov
chains simulated over several hundred steps, sometimes by factors of over 1000.
Potential applications include queueing systems, option pricing in finance, reliabil-
ity and risk assessment models, image generation in computer graphics, and more
[2, 12, 14, 21].

The aim of this paper is to provide further insight on why the method works, ex-
amine and compare alternative ways of matching the RQMC points to the chains at
each step, and report empirical experiments on the convergence rate of the variance
and of the mean square discrepancy between the empirical and theoretical distribu-
tion of the states, as a function of n, for various types of discrepancies.

The remainder is organized as follows. The Markov chain setting and the estima-
tion problems are defined in Section 2. In Section 3, we explain the array-RQMC
algorithm, provide (heuristic) arguments for why an how the variance of the re-
sulting estimator could converge faster than the Monte Carlo rate of O(1/n), and
discuss what would be the required ingredients to bound this convergence rate. In
Section 4, we examine how to map the chains to the RQMC points at each step. Em-
pirical investigations of the convergence rate of the variance and the mean square
discrepancy are reported in Section 5. A conclusion is given in Section 6.

2 A Markov chain setting

We consider a Markov chain model with state space X ⊆ ℝℓ, whose state evolves
according to the stochastic recursion

X0 = x0, X j = ϕ j(X j−1,U j), j ≥ 1,

where x0 is fixed, U1,U2, . . . are i.i.d. uniform random variables over the unit hy-
percube (0,1)d , and ϕ j : X × (0,1)d →X is a measurable mapping for each j.
As usual, we assume that the uniform random variables never take the value 0 or
1, to avoid infinite realizations after they are transformed by inversion to normals,
exponentials, etc. We want to estimate

RQMC for Markov chains 3

µ = E[Y], where Y =
τ

∑
j=1

c j(X j)

for some measurable cost functions c j : X → ℝ, and τ is a fixed positive integer.
This can in fact be generalized to the case where τ is a random stopping time, for
example the first (smallest) time when X j hits a given subset of states. The array-
RQMC also works in that case, but its performance (in terms of variance reduction)
is usually not as good as when τ is fixed, according to our experiments (see also
[11] for one example).

To estimate µ by ordinary Monte Carlo (MC), we proceed as follows. Given a
large integer n, for each i, i = 0, . . . ,n− 1, we generate a sample path of the chain
via

Xi,0 = x0, Xi, j = ϕ j(Xi, j−1,Ui, j), j = 1, . . . ,τ, (1)

where Ui,1, . . . ,Ui,τ ’s are i.i.d. uniform over (0,1)d , and we compute Yi =∑
τ
j=1 c j(Xi, j),

the realization number i of Y . These sample paths are independent. The MC estima-
tor of µ is then

µ̂n =
1
n

n−1

∑
i=0

Yi. (2)

For the classical RQMC method, let s = τd and put Vi = (Ui,1,Ui,2, . . . ,Ui,s/d).
Let Pn = {V0, . . . ,Vn−1} ⊂ (0,1)s be an s-dimensional RQMC point set, defined as
a point set with the following properties [15, 17]: (a) each point Vi has the uniform
distribution over (0,1)s, and (b) Pn has low discrepancy in some sense (the precise
meaning would depend on the definition of discrepancy that one would adopt, and
this may depend on the problem context). The RQMC estimator of µ is defined as
in (2):

µ̂rqmc,n =
1
n

n−1

∑
i=0

Yi =
1
n

n−1

∑
i=0

τ

∑
j=1

c j(Xi, j), (3)

where the Xi, j are also defined as in the MC estimator. One difficulty here is that the
dimension s can be very large when the chain has many steps.

3 The Array-RQMC Algorithm

With the array-RQMC method introduced in [13, 14], we simulate n chains in par-
allel, and use a d-dimensional RQMC point set Pn at each step to advance all the
chains by one step, in a way that at each step j, the empirical distribution of the set
of states Sn, j = {X0, j, . . . ,Xn−1, j} is a very accurate approximation of the theoreti-
cal distribution of X j, hopefully more accurate than with standard Monte Carlo. We
want the discrepancy between these two distributions to be as small as possible, for
an appropriate measure of discrepancy whose choice may depend on the application.

To explain what this means and why we want to do that, let µ j = E[c j(X j)] be
the expected cost at step j, and

4 L’Ecuyer, Lécot, and L’Archevêque-Gaudet

µ̂rqmc, j,n =
1
n

n−1

∑
i=0

c j(Xi, j), (4)

the sample average cost over the n chains at step j. The methods considered in this
paper estimate µ j by µ̂rqmc, j,n and are unbiased: E[µ̂rqmc, j,n] = µ j (for array-RQMC,
see Proposition 1 below). Our goal is to reduce the variance Var[µ̂rqmc, j,n], which in
this case is the same as the mean square error E[(µ̂rqmc, j,n−µ j)

2]. It would also be
nice if we could show (under appropriate conditions) that this variance converges
faster than O(1/n), which is the ordinary MC rate. In the remainder of this section,
we explain (with heuristic arguments) why the array-RQMC appears a sensible way
to achieve that.

Let us assume for now that X j has the uniform distribution over X = (0,1)ℓ for
each j. This assumption is in force up to the statement of Proposition 1; after that
we will relax it to cover the case of a more general distribution of X j over ℝℓ. As
is usually done to bound the mean square error for RQMC schemes [3, 4, 5, 11],
we can select a reproducing kernel Hilbert space (RKHS) of functions c j : (0,1)ℓ→
ℝ, from which we obtain a definition of function variation V and a corresponding
definition of discrepancy D for randomized point sets in (0,1)ℓ, such that

E[(µ̂rqmc, j,n−µ j)
2]≤ E[D2(Sn, j)]V 2(c j), (5)

which provides a variance bound whenever V (c j) < ∞. The next step would be to
make sure that E[D2(Sn, j)] is small for all j, and (ideally) that it converges faster
than O(1/n) for any fixed j.

In the RKHS case, D(Sn, j) is equal to the integration error of some representer
function ξ j (say) that depends on Sn, j, and such that V (ξ j) < ∞. If (1) holds for all
i, for some points Ui, j ∈ (0,1)d , then D(Sn, j) can also be written as the integration er-
ror of ξ j ∘ϕ j by the (randomized) point set Qn = {(X0, j−1,U0, j), . . . ,(Xn−1, j−1,Un−1, j)}.
To bound this integration error, we may select another discrepancy D(2) defined over
the (ℓ+d)-dimensional unit hypercube, with corresponding variation V(2), such that
for any function g : (0,1)ℓ+d → ℝ with V(2)(g) < ∞, the mean square integration
error of g by Qn is bounded by E[D2

(2)(Qn)] ⋅V 2
(2)(g). This discrepancy measure D(2)

can of course be different from D. Its role is to measure the departure of the empir-
ical distribution of Qn from the uniform distribution over (0,1)ℓ+d . If we can show
that V(2)(ξ j ∘ϕ j)< ∞ and that E[D2

(2)(Qn)] = O(n−α+ε) for any ε > 0 for some con-
stant α > 1, then this would imply that Var[µ̂rqmc, j,n] converges faster than O(1/n),
which is what we are trying to achieve. Of course, this may work only if ξ j ∘ϕ j has
sufficient “smoothness.”

Note that in the points (Xi, j−1,Ui, j) of Qn, the last d coordinates (the Ui, j) can
be defined via some RQMC scheme, but the Xi, j−1 cannot be chosen; they are de-
termined by the previous history of the chains. The aim is to select (or generate) the
Ui, j in a way that E[D2

(2)(Qn)] is small.
In the array-RQMC algorithm defined below, we (try to) achieve this in the fol-

lowing way. We select an (ℓ+d)-dimensional point set

RQMC for Markov chains 5

Q̃0
n = {(w0, ũ0), . . . ,(wn−1, ũn−1)}

having low-discrepancy with respect to D(2), where wi ∈ [0,1)ℓ and ũi ∈ [0,1)d

(these points are allowed to have zero coordinates). Then we define a randomization
of P̃0

n = {ũ0, . . . , ũn−1} with the property that if Pn = (U0, . . . ,Un−1) is (a realization
of) the randomized version and if Q̃n is the version of Q̃0

n in which P̃0
n is replaced by

its randomized version Pn, then: (a) each Ui is uniformly distributed over (0,1)d and
(b) Q̃n has low discrepancy, in the sense that E[D2

(2)(Q̃n)] is small. Note that Q̃0
n does

not have to be the same at all steps j, but taking the same point set (with independent
randomizations at the different steps) is more convenient and works fine in practice.

Then we define a permutation π j over {0, . . . ,n−1}, for which Xπ j(i), j−1 is close
to wi for each i, as much as possible, so that there is not much difference (loosely
speaking) between the point sets Q̃n and

Qπ
n, j = {(Xπ j(0), j−1,U0, j), . . . ,Xπ j(n−1), j−1,Un−1, j}.

The motivation is that if these two point sets are close to each other, then Qπ
n, j should

also have low discrepancy. This RQMC point set Qπ
n, j is the one that turns out to be

used to approximate the integral of ξ j ∘ϕ j at step j of the algorithm. The wi are fixed
once for all and are the same at all steps; their role is only to define the mapping
between the chains and the points of Q̃n. In the case of a one-dimensional state space
(ℓ = 1), we usually take wi = (i+ 1/2)/n and then the best permutation π j is the
one for which the states Xπ j(i), j−1 are sorted in increasing order, because the wi are
sorted in increasing order. The choice of permutations for higher-dimensional state
spaces is less obvious. We discuss it in Section 4.

The array-RQMC algorithm simulates (in parallel) n copies of the chain; it can
be summarized as follows.

Array-RQMC algorithm:
For i = 0, . . . ,n−1, let Xi,0 = x0;
For j = 1,2, . . . ,τ {

Randomize P̃0
n afresh (independently of the previous

randomizations) into a new Pn = Pn, j = {U0, j, . . . ,Un−1, j};
For i = 0, . . . ,n−1, let Xi, j = ϕ j(Xπ j(i), j−1,Ui, j);
Compute the permutation π j+1 for the next step;
}

Estimate µ by the same average Ȳn = µ̂rqmc,n as in (3).

This can be replicated m times to estimate the variance and compute a confidence
interval on µ . The following is proved in [14]:

Proposition 1. (a) Ȳn is an unbiased estimator of µ and (b) the empirical variance
of the m copies of Ȳn is an unbiased estimator of Var[Ȳn].

So far we have assumed that X j has the uniform distribution over (0,1)ℓ, which is
of course unrealistic for practical applications. In the case where X j has a more gen-
eral distribution over ℝℓ, the array-RQMC algorithm operates in exactly the same

6 L’Ecuyer, Lécot, and L’Archevêque-Gaudet

way. The only changes are in how to define the mappings π j of chains to points and
in the interpretation of the discrepancies.

It is standard in QMC studies to use discrepancies for the uniform distribution
over the unit hypercube (0,1)ℓ, with the understanding that more general distribu-
tions over ℝℓ can be transformed to the uniform distribution, usually via a change
of variables. To follow this path, we assume that X j has a continuous distribution
and that for each j, there is a bijection ψ j : X → (0,1)ℓ such that ψ j(X j) has the
uniform distribution over (0,1)ℓ. We then define the discrepancy of the states at step
j as

D j = D j(Sn, j) = D j(X0, j, . . . ,Xn−1, j)
def
= D(ψ j(X0, j), . . . ,ψ j(Xn−1, j)),

where D is the same as earlier. In (5), V (c j) also needs to be replaced by V (c j ∘ψ
−1
j).

We emphasize that there is no need to know ψ j to run the algorithm. For a one-
dimensional state space, the most natural definition is obviously the standard proba-
bility integral transformation, ψ j(x) =Fj(x), where Fj is the cumulative distribution
function (CDF) of X j. With this definition, the permutation π j will simply sort the
states by increasing order, at each step. In more than one dimension, this can be gen-
eralized as follows [19]: Given X j = (X (1)

j , . . . ,X (ℓ)
j), let U (1)

j =Fj,1(X
(1)
j) where Fj,1

is the CDF of X (1)
j , then let U (2)

j = Fj,2(X
(2)
j ∣ X

(1)
j) where Fj,2(⋅ ∣ X (1)

j) is the CDF

of X (2)
j conditional on X (1)

j , and so on. Then put ψ j(X j) = U j = (U (1)
j , . . . ,U (ℓ)

j).
When the distribution of X j is not continuous, this does not define a bijection, but
one could still define ψ j by taking U (1)

j as some solution of U (1)
j = Fj,1(X

(1)
j), and

so on.
It would be nice if we could show, under appropriate smoothness assumptions on

the ϕ j and ψ j, and with proper choices of discrepancies D and D(2), that

E[D2
j]≤ κ jn−α+ε (6)

for any ε > 0, for some α > 1, where κ j does not depend on n and grows only
very slowly (or not at all) with j. From this, assuming that the V (c j ∘ψ

−1
j) < ∞, it

would follow that Var[(Y0 + ⋅ ⋅ ⋅+Yn−1)/n] converges as O(n−α+ε). A natural path
to establish such a result would be to show that low mean-square discrepancy E[D2

j]
is preserved from one step j to the next.

At this time, we do not have a proof. We only have empirical evidence. In our
numerical experiments reported in Section 5, we observed a convergence rate of
O(n−2) for the variance. On the other hand, the convergence rate of the mean square
discrepancy E[D2

j] (which we estimated only for one-dimensional examples) de-
pends on the choice of discrepancy D. For example, if D is defined as the L2-star
discrepancy, the rates observed empirically are (approximately) O(n−3/2), whereas
with D equal to the discrepancy defined in Eq. (15) of [5], we observe O(n−2).

RQMC for Markov chains 7

4 Mapping the chains to the points

We now discuss how to define and implement the one-to-one mapping of the n
points to the n chains in the array-RQMC algorithm, so that each state is assigned to
a representative point that is close to it. As in the previous section, we start with the
simplified case where the chain’s state X j has the uniform distribution over (0,1)ℓ.

We consider the following way of mapping the chains to the points, called a
multivariate sort [2, 7]. Select some positive integers n1, . . . ,nν such that ν ≥ ℓ and
n1 ⋅ ⋅ ⋅nν = n. Sort the states (i.e., the chains) by their first coordinate, in n1 packets
of size n/n1. This means that any state in a given packet will have its first coordinate
smaller or equal to the first coordinate of any other state in the next packet. Then
sort each packet by the second coordinate, in n2 packets of size n/n1n2, and so on.
When we reach coordinate ℓ, we sort each packet in nℓ packets of size n/n1 ⋅ ⋅ ⋅nℓ
by the last coordinate. If ν > ℓ, then at the next step we sort each packet into nℓ+1
packets according to the first coordinate, and so on. As a special case of this, one
can take n j = 2 for all j, with n equal to a power of 2. This corresponds to splitting
each packet of states in two with respect to the next coordinate, and doing this for
each coordinate in a round-robin fashion.

If ℓ is deemed too large, we can map the state space to a lower-dimensional
space as follows. Define a sorting function v : X → [0,1)c, for c < ℓ, and apply
the multivariate sort to the transformed points v(Xi, j), in c dimensions. The function
v should be selected so that two states mapped to nearby values in [0,1)c should
be approximately equivalent in terms of the probability distribution of future costs
when we are in these two states. In [14], it was assumed that such a mapping was
always used, with c = 1, so v uniquely determined the sort, whence the appellation
“sorting function.”

Figure 1 illustrates the mappings obtained for two choices of n1, namely n1 = n
and n1 = n1/2, for an example with ℓ= 2 and n = 16.

In the more general (and realistic) case where the state space is not [0,1)ℓ but
ℝℓ (or a subset) and the ψ j cannot be computed explicitly, a reasonable heuristic
is to simply sort the states in the real space in exactly the same way as in the unit
hypercube. This is what we will do in our examples.

Further discussion and suggestions for the mapping between the points and states
can be found in [21]. On page 675, the authors assume that the points lie in a pre-
defined two-dimensional grid, exactly one point per square of the grid (in our un-
derstanding), and use what they call a Z-curve to order the points. This would work
fine to sort the points of a digital net in base 2, for example. However, sorting the
states (or chains) with this scheme seems problematic, because there is generally not
exactly one state per square of the grid. It would also need to be adapted in some
way for the (usual) case where the state space is unbounded and ψ j is unknown (X j
as an unknown distribution).

8 L’Ecuyer, Lécot, and L’Archevêque-Gaudet

(a)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
(b)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

1

1

1

1

2

22

2

3

3

3

3

4

4

4

4

Fig. 1 Two mappings between points and states, in ℓ= 2 dimensions, with n = 16. The black dots
represent the states of the chains, and the white dots are the first 16 points of the two-dimensional
Sobol’ sequence, with a random digital shift. The lines indicate the mapping between the two sets
of points. In the left picture, we have n1 = n, so we sort according to the first coordinate only: the
leftmost state is mapped to the leftmost point, the second leftmost state is mapped to the second
leftmost point, and so on. The right picture is for n1 = n1/2 = 4: we first sort both the points and
the states in four packets according to the first (horizontal) coordinate. The numbers from 1 to 4
indicate the packet number in which each pair ended up in this first sort. Within each packet, the
states are mapped to the points according to the second (vertical) coordinate. The dashed vertical
lines at 1/4, 1/2, and 3/4 separate the Sobol’ points in packets of four, but not the states. These
dashed lines are only for visual intuition; they are not used by the sorting procedure.

5 Empirical investigations of the convergence rate

We now show how the variance and the mean square discrepancy E[D2
j] (for differ-

ent definitions of D) behave as functions of j and n, for small examples. All mean
square discrepancies and variances were estimated from 100 independent replica-
tions of the array-RQMC estimator.

5.1 Example 1: An Autoregressive Process

Consider a Markov chain defined over the real line by

Y0 = 0, Y1 = Z1, Yj =
βYj−1 +Z j√

β 2 +1
for j ≥ 2, (7)

where β ≥ 0 (a constant) and Z1,Z2, . . . are i.i.d. N(0,1) (standard normal). This is
a simple autoregressive process of order one. We have that Yj ∼ N(0,1) and X j =
Φ(Yj)∼U(0,1), where Φ is the standard normal CDF. The transformed state X j has
the uniform distribution over (0,1) at each step j, so here we are able to compute

RQMC for Markov chains 9

explicitly the mean square discrepancy E[D2
j] and to see how it evolves with j and

n. This can be done for this small academic example, but cannot be done in general
for more realistic examples. The Markov chain can also be defined directly in terms
of a stochastic recurrence for X j, namely X1 =U1 and

X j = ϕ j(X j−1,U j) = Φ

(
βΦ−1(X j−1)+Φ−1(U j)√

β 2 +1

)
for j ≥ 2,

where U1,U2, . . . are i.i.d. U(0,1). Note that for β = 0 we have Yj = Z j for all j,
whereas for β → ∞ (in the limit), we have Yj = Z1 for all j.

Our primary interest is in how the variance of µ̂rqmc, j,n behaves as a function of
j and n for various choices of the cost function c j. In view of our discussion in
Section 3, we are also interested in the behavior of E[D2

j] as a function of j and of n,
for various choices of the discrepancy D. These different discrepancies correspond
to different assumptions on the smoothness of c j and/or different choices of the
RQMC point set Q̃n.

To fix ideas, we consider two specific choices of D. The first one is the L2-star
discrepancy [3]. In one dimension, its square value is the same as the Cramer-von
Mises statistic:

D2(u0, . . . ,un−1) = D2
2,∗(u0, . . . ,un−1) =

1
12n2 +

1
n

n−1

∑
i=0

(wi−ui)
2,

where wi = (i+1/2)/n and 0≤ u0 ≤ u1 ≤ ⋅⋅ ⋅ ≤ un−1 ≤ 1.
We name our second example of D the shift-baker2 discrepancy. In one dimen-

sion, its square is given by

D2
shb(u0, . . . ,un−1) =

1
n2

n−1

∑
i=0

n−1

∑
j=0

[
16
45

[B6({ui−u j−1/2})−B6({ui−u j})]

+
1
9
[10B4({ui−u j−1/2})−19B4({ui−u j})]

]
,

where the bold braces mean “mod 1”, and B4 and B6 are the Bernoulli polynomials

B4(u) = u4−2u3 +u2− 1
30

and B6(u) = u6−3u5 +
5
2

u4− 1
2

u2 +
1
42

.

This is the discrepancy given in Eq. (15) of [5], without the weights and with a
correction on the coefficient of B4({ui−u j−1/2}). This discrepancy represents the
worst-case mean square error for a class of functions with square integrable second
derivative, with the point set {u0, . . . ,un−1} randomized by a random shift modulo 1
followed by a baker’s transformation [5]. Strictly speaking, this discrepancy would
be appropriate only if we would apply the baker’s transformation to the states X j
before computing the average cost µ̂rqmc, j,n at each step, and we do not do that.

10 L’Ecuyer, Lécot, and L’Archevêque-Gaudet

We nevertheless examine Dshb as an example to illustrate how the convergence rate
might depend on the choice of discrepancy.

We also consider two choices for the two-dimensional RQMC point set used
at each stage. In the first choice, we take the first n points of the two-dimensional
Sobol’ sequence, where the second coordinate of the points is randomized by a (ran-
dom) left matrix scramble followed by a random digital shift [18]. For our second
choice, we take a Korobov lattice rule with a random shift modulo 1 followed by a
baker’s transformation [5]. For the Korobov rule, for each n, we took the parameter
a (in the usual notation) that gave the smallest shift-baker2 discrepancy in a random
search over 1000 different values. The simulations were done using SSJ [10].

Our first results are for the L2-star D2,∗ and shift-baker2 Dshb discrepancies, for
the Sobol’ point sets. Figure 2 shows our estimate of E[D2

j] (the sample average
of D2

j over 100 independent replicates of the algorithms, as said earlier) as a func-
tion of j, with n = 4096 points, for β = 0.1, β = 1, and β = 10. The mean square
discrepancy turns out to be quite stable even when we simulate this chain over a
large number of steps. We observed the same behavior as a function of j for other
discrepancies, other RQMC point sets, and also for the variance. This is very en-
couraging. For the shift-baker2 discrepancy and β = 10 (or any large β), E[D2

j]
increases in a visible way toward an horizontal asymptote as a function of j. Due to
the nature of the recurrence (7), E[D2

j] turns out to be an exponential smoothing of
the discrepancies of previous steps, plus an additional term.

j
0 25 50 75 100

E[D2
shb] (×10−8)

0.00

0.50

1.00

β = 0.1

β = 1

β = 10

j
0 25 50 75 100

E[D2
2,∗] (×10−7)

0.0

2.5

5.0

β = 0.1 (∙)

β = 1

β = 0.1 (□)

Fig. 2 Estimate of E[D2
j] as a function of j for Example 5.1 with n = 4096, for D = D2,∗ (above)

and D = Dshb (below).

For D2,∗, the behavior for β = 10 is essentially the same as for β = 0.1. This also
occurs more generally for any pair (β ,1/β) where β > 1, and could be explained
by the fact that it gives a linear combination of two independent standard normals

RQMC for Markov chains 11

log2 n
8 10 12 14 16 18 20

log2 E[D2
j]

-35

-25

-15

D2,∗, β = 0.1, j = 100,20

Dshb, β = 0.1, j = 100,20 (∙)

D2,∗, β = 1, j = 100

Dshb, β = 1, j = 100 (□)

slope = −3/2

slope = −2

log2 n
8 10 12 14 16 18 20

log2 Var[µ̂rqmc,s,n]
-50

-40

-30

-20

β = 0.1, j = 100 (∙)
β = 0.1, j = 20 (□)

β = 1.0, j = 100 (▲)
slope = −2

Fig. 3 Above: Estimate of log2E[D2
j] as a function of log2 n for Example 5.1, for D = D2,∗ and

D = Dshb. Below: Estimate of log2 Var[µ̂rqmc, j,n] as a function of log2 n.

with the coefficients swapped in (7). For Dshb, however, the discrepancy is smaller
for β = 10 than for β = 0.1. In what follows we will only report results for β = 0.1
and β = 1.

Figure 3 shows our estimate of log2E[D2
j] as a function of log2 n, for the same

values of β , for j = 20 and j = 100, again for the Sobol’ points, for D2,∗ and Dshb.
The expectation was still estimated by the average over 100 independent replica-
tions. For D2,∗, E[D2

j] seems to converge approximately as O(n−3/2) as a function
of n, and appears independent of j, as in the previous figure. With a Korobov lattice,
the results are almost the same. They are also almost the same for other similar types
of discrepancies such as unanchored L2-discrepancies defined in [4], for example.
For the shift-baker2 discrepancy Dshb, the convergence rate differs and is (empiri-
cally) quite close to O(n−2). The bottom part of Figure 3 shows our estimate of
log2 Var[µ̂rqmc, j,n] as a function of log2 n, for cost function c j(x) = x, for j = 20
and j = 100. The slope indicates a convergence rate of approximately O(n−2). This
corresponds to the convergence rate of the mean square shift-baker2 discrepancy.
We also tried other smooth cost functions such as c j(x) = x2,

√
x and ln(x) and the

observed rate was the same. The variance reduction factor compared to MC was
also roughly the same for x, x2, and

√
x, but it was approximately ten times smaller

12 L’Ecuyer, Lécot, and L’Archevêque-Gaudet

for ln(x). Here, the n chains were simulated for j steps, the cost was then averaged
over the n chains (at step j) to get one realization of the estimator µ̂rqmc, j,n. This was
repeated m = 100 times, and the variance shown is the empirical variance of those
m observations. The variance reduction factor, defined as the Monte Carlo variance
divided by the array-RQMC variance when the two estimators are based on an av-
erage for n chains, is very roughly 600n when β = 0.1 and j = 100 (although there
is significant fluctuation around this value when we change n and especially the
RQMC point set that is used). The variance is also practically independent of j.

We also tried c j(x) = I(x > 0.5), where I is the indicator function. The (empir-
ical) convergence rate then dropped to approximately O(n−3/2), and the variance
reduction factor with respect to MC was about a hundred times smaller than for x
for n = 210, and a thousand times smaller for n = 220 (that is, about half a million
instead of 500 million). It is encouraging to see that even with such a discontinuous
indicator function, the variance is much smaller than for MC and its convergence
rate is faster (empirically).

5.2 Example 2: An Asian Option

In this example, let 0 < t1 < t2 < ⋅ ⋅ ⋅< ts = T be fixed numbers (observation times),
r and σ be positive constants, S0 = s0 (a constant), and

S j = S j−1 exp[(r−σ
2/2)(t j− t j−1)+σ(t j− t j−1)

1/2
Φ
−1(U j)] (8)

where U j ∼U(0,1), for j = 1, . . . ,s. Define

S̄ j =
1
j

j

∑
i=1

Si.

We want to estimate
µ = E

[
max

(
0, S̄s−K

)]
.

This estimation problem occurs in pricing an Asian call option for a single asset
whose price evolves as a geometric Brownian motion [6]. Note that µ is then multi-
plied by a constant discount factor, which we ignore here.

To put this model in our framework, we define a Markov chain with state X j =
(S j, S̄ j) at step j, and whose transitions obey (S j, S̄ j) = ϕ j(S j−1, S̄ j−1,U j) where ϕ j
is defined via (8) and S̄ j = [(j−1)S̄ j−1+S j]/ j. The function c j is zero for j < s and
we have cs(Ss, S̄s) = max

(
0, S̄s−K

)
. The estimator is defined by (3) as usual. Here,

τ = s, we have a two-dimensional state space (ℓ= 2), and we use a two-dimensional
sort at each step: we first sort the states in n1 packets of size n/n1 based on S(t j),
then we sort the packets based on S̄ j.

In contrast with the previous example, we have no explicit mapping ψ j avail-
able to transform the state into a uniform point over the unit square, so we cannot
compute the discrepancy D j explicitly. However, we can estimate the variance and

RQMC for Markov chains 13

examine its convergence speed as a function of n. Our RQMC point set at each step
is the first n points of a Sobol’ sequence, this time in three dimensions, with coor-
dinates 2 and 3 randomized by a left matrix scramble followed by a random digital
shift.

For a numerical example, we take S(0) = 100, K = 90, T = 240/365, t1 = T −
(s−1)/365, t j− t j−1 = 1/365, r = ln1.09, σ = 0.2, and s = 10 and 60.

log2 n
8 10 12 14 16 18 20 22

log2 Var[µ̂rqmc,s,n]

-35

-25

-15

n1 =
√

n (∙)
n1 = n2/3(∘)
n1 = n1/3(▲)

n1 = n (∙)
n1 = 1 (□)

slope = −2

log2 n
8 10 12 14 16 18 20

log2 Var[µ̂rqmc,s,n]

-35

-25

-15

n1 =
√

n (∙)

n1 = n2/3(∘)
n1 = n1/3 (▲)

n1 = n (∙)
n1 = 1 (□)

slope = −2

Fig. 4 Estimate of log2 Var[µ̂rqmc,n] as a function of log2 n, for Example 5.2 with K = 90, for s= 10
(above) and s= 60 (below). For s= 10, n≥ 216, and n1 =

√
n, we made four independent replicates

of the experiment and their results are indicated by small horizontal bars on the graphs. The line
goes through the log of the average variance over these four replicates.

14 L’Ecuyer, Lécot, and L’Archevêque-Gaudet

Figures 4 show the variance as a function of n, again in a log-log scale, for dif-
ferent choices of n1, for s = 10 and s = 60, respectively. The best results are with
n1 ≈ n1/2, for which the variance seems to converge approximately as O(n−2).

For n1 ≈ n1/3 and n1 ≈ n2/3, the variance is larger (by a factor of about 10 for s =
60, n≈ 218, and n1≈ n1/3, for example). The results are even worse if we take n1 = 1
or n1 = n, which corresponds to sorting the states by one of their two coordinates
(this is the strategy that was used for this example in [14]). For s = 60 and n≈ 218,
the variance with the best two-dimensional sort adopted here is about 400 times
smaller than with a sort based on the second coordinate only. We emphasize that
not only the convergence rate of the variance is better than for MC, but the variance
is also much smaller for the range of values of n shown in the figure. For example,
with s = 10, K = 90, and the best sorting strategy (n1 =

√
n), the variance reduction

factor is approximately 5n. Thus, for n = 220, the variance with array-RQMC is
about five million times smaller than with MC.

Of course, the variance behavior depends on the option and model parameters.
For example, the probability p of a nonzero final payoff becomes very small when K
is large, and the relative error (the standard deviation divided by the mean) increases
without bound. This is a case of rare event simulation, for which RQMC is not the
right tool. In that situation, we should first apply an appropriate technique such as
importance sampling [1] to smooth out the estimator. Then we can apply RQMC
for further improvement. On the other hand, the convergence rate of the variance
for either MC or array-RQMC does not depend on K or p. With K = 90 and s = 10
as in Figure 4, we have p ≈ 0.87. If we change to K = 111, for example, we get
p ≈ 0.23 and the variance reduction factor of array-RQMC over MC turns out to
be about four times smaller than with K = 90, but we still have (approximately) an
O(n−2) convergence rate for the variance.

We also experimented with the discontinuous payoff function cs(Ss, S̄s)=max(0, S̄s−
K) for S̄s≥ Ss, and 0 otherwise. In this case, the convergence rate drops (empirically)
to O(n−1.3) with s = 10 and K = 90, and the variance reduction factor becomes
much more modest (5 for n = 210 and 50 for n = 220). Nevertheless, these factors
are non-negligible and this is encouraging.

6 Future Work and Conclusion

The array-RQMC algorithm is a promising methodology for reducing the variance
in the simulation of Markov chains. We believe that plenty of interesting results
on its convergence are waiting to be established, in particular for multidimensional
state spaces, under various sets of assumptions on the transition and cost functions.
Further empirical experimentation is also needed, with large examples, alternative
sorting strategies, and various classes of applications.

RQMC for Markov chains 15

Acknowledgements This research has been supported by NSERC-Canada grant No. ODGP0110050
and a Canada Research Chair to the first author, and an NSERC scholarship to the third author. We
thank the two anonymous reviewers and the Editor Art B. Owen for their helpful suggestions.

References

1. Asmussen, S., Glynn, P.W.: Stochastic Simulation. Springer-Verlag, New York (2007)
2. El Haddad, R., Lécot, C., L’Ecuyer, P.: Quasi-Monte Carlo simulation of discrete-time Markov

chains on multidimensional state spaces. In: A. Keller, S. Heinrich, H. Niederreiter (eds.)
Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 413–429. Springer-Verlag, Berlin
(2008)

3. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Mathematics of Com-
putation 67, 299–322 (1998)

4. Hickernell, F.J.: What affects the accuracy of quasi-Monte Carlo quadrature? In: H. Niederre-
iter, J. Spanier (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1998, pp. 16–55. Springer-
Verlag, Berlin (2000)

5. Hickernell, F.J.: Obtaining O(N−2+ε) convergence for lattice quadrature rules. In: K.T. Fang,
F.J. Hickernell, H. Niederreiter (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp.
274–289. Springer-Verlag, Berlin (2002)

6. Hull, J.C.: Options, Futures, and Other Derivatives, sixth edn. Prentice-Hall, Upper Saddle
River, N.J. (2006)

7. Lécot, C., Coulibaly, I.: A quasi-Monte Carlo scheme using nets for a linear Boltzmann equa-
tion. SIAM Journal on Numerical Analysis 35(1), 51–70 (1998)

8. Lécot, C., Ogawa, S.: Quasirandom walk methods. In: K.T. Fang, F.J. Hickernell, H. Nieder-
reiter (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 63–85. Springer-Verlag,
Berlin (2002)

9. Lécot, C., Tuffin, B.: Quasi-Monte Carlo methods for estimating transient measures of discrete
time Markov chains. In: H. Niederreiter (ed.) Monte Carlo and Quasi-Monte Carlo Methods
2002, pp. 329–343. Springer-Verlag, Berlin (2004)

10. L’Ecuyer, P.: SSJ: A Java Library for Stochastic Simulation (2008). Software user’s guide,
available at http://www.iro.umontreal.ca/~lecuyer

11. L’Ecuyer, P.: Quasi-Monte Carlo methods with applications in finance. Finance and Stochas-
tics (2009). To appear

12. L’Ecuyer, P., Demers, V., Tuffin, B.: Rare-events, splitting, and quasi-Monte Carlo. ACM
Transactions on Modeling and Computer Simulation 17(2), Article 9 (2007)

13. L’Ecuyer, P., Lécot, C., Tuffin, B.: Randomized quasi-Monte Carlo simulation of Markov
chains with an ordered state space. In: H. Niederreiter, D. Talay (eds.) Monte Carlo and
Quasi-Monte Carlo Methods 2004, pp. 331–342. Springer-Verlag, Berlin (2006)

14. L’Ecuyer, P., Lécot, C., Tuffin, B.: A randomized quasi-Monte Carlo simulation method for
Markov chains. Operations Research 56(4), 958–975 (2008)

15. L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Management Science 46(9),
1214–1235 (2000)

16. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods, SIAM CBMS-
NSF Regional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia, PA
(1992)

17. Owen, A.B.: Latin supercube sampling for very high-dimensional simulations. ACM Trans-
actions on Modeling and Computer Simulation 8(1), 71–102 (1998)

18. Owen, A.B.: Variance with alternative scramblings of digital nets. ACM Transactions on
Modeling and Computer Simulation 13(4), 363–378 (2003)

19. Rosenblatt, M.: Remarks on a multivariate transformation. The Annals of Mathematical Statis-
tics 23(3), 470–472 (1952)

16 L’Ecuyer, Lécot, and L’Archevêque-Gaudet

20. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Clarendon Press, Oxford (1994)
21. Wächter, C., Keller, A.: Efficient simultaneous simulation of Markov chains. In: A. Keller,

S. Heinrich, H. Niederreiter (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp.
669–684. Springer-Verlag, Berlin (2008)

