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Abstract Randomized quasi-Monte Carlo (RQMC) can be seen as a vari-
ance reduction method that provides an unbiased estimator of the integral
of a function f over the s-dimensional unit hypercube, with smaller variance
than standard Monte Carlo (MC) under certain conditions on f and on the
RQMC point set. When f is smooth enough, the variance converges faster,
asymptotically, as a function of the number of points n, than the MC rate of
O(1/n). The RQMC point sets are typically constructed to minimize a given
parameterized measure of discrepancy between their empirical distribution
and the uniform distribution. These parameters can give different weights to
the different subsets of coordinates (or lower-dimensional projections) of the
points, for example. The ideal parameter values (to minimize the variance)
depend very much on the integrand f and their choice (or estimation) is far
from obvious in practice. In this paper, we survey this question for randomly-
shifted lattice rules, an important class of RQMC point sets, and we explore
the practical issues that arise when we want to use the theory to construct
lattices for applications. We discuss various ways of selecting figures of merit
and for estimating their ideal parameters (including the weights), we examine
how they can be implemented in practice, and we compare their performance
on examples inspired from real-life problems. In particular, we look at how
much improvement (variance reduction) can be obtained, on some examples,
by constructing the points based on function-specific figures of merit com-
pared with more traditional general-purpose lattice-rule constructions.
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1 Introduction: Monte Carlo and Randomized
Quasi-Monte Carlo

We are concerned with the problem of estimating the integral of a func-
tion f : [0, 1)s → R over the s-dimensional unit hypercube [0, 1)s = {u =
(u1, . . . , us) : 0 ≤ uj < 1 for all j}, by evaluating f at n points in this
hypercube and taking the average. The integral can be written as

µ = µ(f) =
∫

[0,1)s

f(u) du = E[f(U)] (1)

where E denotes the mathematical expectation and U = (U1, . . . , Us) ∼
U(0, 1)s (a random vector uniformly distributed over (0, 1)s). A large class of
applications fit this framework [14, 18, 19].

The standard Monte Carlo (MC) method generates n independent real-
izations of U, say U0, . . . ,Un−1, and estimates µ by

µ̂n = 1
n

n−1∑
i=0

f(Ui).

This estimator is unbiased and its variance converges asO(n−1) when n→∞.
Randomized quasi-Monte Carlo (RQMC) employs an estimator of the same

form,

µ̂n,rqmc = 1
n

n−1∑
i=0

f(Ui) (2)

where Ui ∼ U [0, 1)s for each i, so E[µ̂n,rqmc] = µ (the estimator is
unbiased), but the Ui’s are no longer independent. The aim is to have
Var[µ̂n,rqmc] < Var[µ̂n]. For this, the randomized points are constructed so
that Pn = {U0, . . . ,Un−1} ⊂ [0, 1)s covers [0, 1)s more evenly than typical
independent random points, in the sense that some selected (expected) mea-
sure of discrepancy between the empirical distribution of Pn and the uniform
distribution over [0, 1)s is smaller. Two popular classes of RQMC point sets
are randomly-shifted lattices and digitally-shifted nets. For background on
RQMC methods, including lattice rules, see [14, 16, 18, 19, 20, 21] and the
references given there.

In this paper, we focus on randomly-shifted lattice rules, where Pn is
the intersection of a randomly-shifted lattice with [0, 1)s [21]. For any given
square-integrable f (that is, for which Var[f(Ui)] <∞), Var[µ̂n,rqmc] can be
written explicitly in terms of the square Fourier coefficients of f and on the
lattice. Conceptually, one could compute the optimal lattice for f by solving
an optimization problem that minimizes this variance expression with respect
to the lattice parameters. However, this is impractical because these Fourier
coefficients are usually unknown, and there are infinitely many, so we have to
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rely on suboptimal strategies. The variance expression is usually replaced by
a figure of merit with fewer parameters, and those parameters are selected
by heuristic methods that take into account the class of functions f to be
considered.

The aim of this paper is two-fold. First, we give a partial overview of cur-
rent knowledge on randomly-shifted lattice rules from a practical viewpoint.
Then, we examine the issues that arise when we want to exploit this theo-
retical knowledge in applications. In particular, we explore the impact of the
choice of figure of merit, the choice of weights given to the different subsets
of coordinates in discrepancy measures, we compare empirical performances
of these choices in terms of the RQMC variance, we compare the convergence
rate for the variance that are typically observed empirically (for reasonable
values of n) to the theoretical asymptotic rates (when n goes to infinity)
which are based on bounds that are usually not tight, and see what can be
observed in the common situation where the integrand is discontinuous or un-
bounded. We always assume that s is fixed. We do not consider complexity
and tractability issues.

The remainder is organized as follows. In Section 2, we recall basic def-
initions and known results on randomly-shifted lattice rules and the corre-
sponding explicit variance expressions. In Section 3, we discuss how we could
conceivably select a lattice adaptively to reduce the variance expression if
the Fourier coefficients of f were known, or could be estimated easily when
needed. The main purpose is to show the difficulty of doing this. We describe
and implement a selection method that starts with a large set of lattices
and eliminates them one by one, by visiting a sequence of important terms
in the variance expression and by keeping, at each step, only the lattices
that eliminate those large variance terms. The procedure is very effective
on the small examples on which we try it, where the Fourier coefficients are
known. But for typical real-life problems, the Fourier coefficients are unknown
and estimating them would be too time-consuming, so we need other heuris-
tics. In Section 4, we examine previously-proposed figures of merit defined as
discrepancies that assign a weight to each subset of coordinates (or projec-
tion), using a functional ANOVA decomposition of f , and we suggest ways
of specifying the weights as functions of the ANOVA variance components,
for Sobolev classes of integrands with square integrable partial derivatives
up a given order. When s is large, having a different weight for each pro-
jection may give a model with too many parameters. Parameterized choices
of weights with fewer parameters are discussed in Section 5. They include
order-dependent weights and product weights, in particular, and we examine
ways of setting those weights. In Section 6, we discuss figures of merit de-
fined in terms of the lengths of shortest nonzero vectors in dual lattices. In
Section 7, we briefly recall the algorithms we have used to search for good
lattices with respect to the selected figures of merit. Then, in the following
sections, we perform empirical experiments with some examples. Our goal is
to estimate the convergence rate of the RQMC variance as a function of n and
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the variance reduction compared with standard MC, in the practical range
of values of n, and to assess the impact of the choice of figure of merit (and
weights) on this variance, at least for our selected examples. Motivated by
the fact that discontinuous integrands are very frequent in applications, we
start in Section 9 with simple indicator functions. We give examples where
lattice rules are still effective, but where a standard measure of discrepancy
can be (sometimes) a very bad predictor of the performance. This illustrates
the difficulty of defining good and robust figures of merit in general. In one
case, we make the integrand continuous by taking a conditional expectation
with respect to one random variable (after generating the other ones) and
we examine the effect of this. In Section 10, we consider a stochastic activity
network example inspired from a real-life application, where the integrand
is also an indicator function, and we extend the study made in Section 9 to
this slightly more complicated setting. The examples of Section 9 were con-
structed as simplifications of that of Section 10, to try to better understand
the behavior of randomly-shifted lattice rules in those situations. Finally, in
Section 11, we consider the pricing of Asian-style options, with and without
a barrier. Our examples have been inspired from real-life problems, and as it
turns out, none of them satisfies the smoothness conditions that guarantee a
fast convergence of the variance (such as O(n−4)) with the best lattice con-
structions. This seems to correspond to many typical real-life problems. An
online appendix provides detailed results of our experiments.

The good news is that in the great majority of cases, most reasonable
choices of figures of merit and weights provide lattices that perform well,
for those examples, provided that none of the relevant weights is zero and
the irrelevant weights do not dominate too much. This means that there is
no need to work hard to estimate the ANOVA variances accurately. Faced
with an important application, one may want to spend a small fraction of the
available computing budget at the beginning to estimate ANOVA components
very roughly, or to just explore a few choices of weights and compare the
variances in pilot runs. Also, the convergence rate of the variance observed
empirically for reasonable values of n (up to a few millions) is slower than
the asymptotic rates proved theoretically for smooth functions. On the other
hand, this observed rate is always better than O(1/n), even for discontinuous
and unbounded integrands, in our examples.

2 Randomly-Shifted Lattice Rules

An integration lattice is a discrete vector space defined by

Ls =

v =
s∑
j=1

zjvj such that each zj ∈ Z

 ,
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where v1, . . . ,vs ∈ Rs are linearly independent over R and Ls contains
Zs, the integer vectors. A lattice rule approximates µ by the average of
f(u0), . . . , f(un−1), where P 0

n = {u0, . . . ,un−1} = Ls ∩ [0, 1)s. Almost all
lattice rules used in practice have rank 1, which means that the points
of P 0

n can be enumerated as ui = iv1 mod 1 for i = 0, . . . , n − 1, where
nv1 = a1 = (a1, . . . , as) ∈ {0, 1, . . . , n− 1} is the generating vector. We have
a Korobov rule if a1 has the form a1 = (1, a, a2 mod n, . . . ) for some integer
a ∈ Zn. For more details on lattice rules, see [4, 11, 19, 21]. For any subset
of coordinates u ⊆ {1, . . . , s}, the projection Ls(u) of Ls over the subspace
determined by u is also a lattice, in |u| dimensions. In this paper, we as-
sume that all lattices are of rank 1 and that the coordinates a1, . . . , as of the
generating vector are all relatively prime to n (when n is prime, this is auto-
matic). When the latter holds for the first coordinate, the lattice rule is called
a rank-1 simple rule [4]. Here we are assuming more: our assumption implies
that the projection of P 0

n over the subspace determined by any nonempty
subset of coordinates contains exactly n points and this projection is always
{0, 1/n, . . . , (n− 1)/n} in the case of a single coordinate. Therefore, there is
no need to measure the uniformity of these one-dimensional projections.

The point set P 0
n can be turned into an RQMC point set Pn by a random

shift modulo 1, defined as follows [5, 21]: Generate a single random point U
uniformly over (0, 1)s and add it to each point of P 0

n , modulo 1, coordinate-
wise: Ui = (ui + U) mod 1. Then, each Ui is uniformly distributed over
[0, 1)s and µ̂n,rqmc is an unbiased estimator of µ, while Pn inherits the lattice
structure of P 0

n .
A key issue is whether (and when) µ̂n,rqmc has smaller variance than the

MC estimator µ̂n. An exact expression for the variance can be obtained in
terms of the Fourier coefficients of the integrand f , as follows. If f has Fourier
expansion

f(u) =
∑

h∈Zs

f̂(h)e2π
√
−1htu,

then (see [15])
Var[µ̂n,rqmc] =

∑
0 6=h∈L∗s

|f̂(h)|2, (3)

where L∗s = {h ∈ Rs : htv ∈ Z for all v ∈ Ls} ⊆ Zs is the dual lattice
to Ls. This variance depends on f and on Ls. For any given f , an optimal
lattice Ls from the viewpoint of variance reduction would minimize D2(P 0

n) =
Var[µ̂n,rqmc]. This suggests a figure of merit of the general form

Mw(P 0
n) =

∑
0 6=h∈L∗s

w(h), (4)

with weights w(h) that mimic the anticipated behavior of the |f̂(h)|2. It may
be tempting to refer to (4) as a measure of discrepancy. However it does not
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necessarily measure a departure from the uniform distribution. For certain
functions f , the best lattice does not necessarily cover the space very evenly.

It is known [21] that if f has square-integrable mixed partial derivatives
up to order α (an integer), and the periodic continuations of its derivatives
up to order α− 2 are continuous across the unit cube boundaries, then

|f̂(h)|2 = O((max(1, h1), . . . ,max(1, hs))−2α). (5)

Moreover, there is a rank-1 lattice with v1 = v1(n) such that

P2α =
∑

0 6=h∈L∗s

(max(1, h1), . . . ,max(1, hs))−2α = O(n−2α+δ) (6)

for any δ > 0. Note that P2α in (6) is the RQMC variance for a worst-case f
having

|f̂(h)|2 = (max(1, h1), . . . ,max(1, hs))−2α,

so the convergence order in (6) applies when (5) holds. This worst-case f is
not necessarily representative of functions encountered in applications, and
therefore, P2α is not necessarily the most appropriate figure of merit.

For the preceding bound to hold with α ≥ 2, the periodic continuation
of f must be continuous. When it is not, which is often the case, f can be
transformed into a function f̃ having the same integral and a continuous pe-
riodic continuation, by compressing the graph of f horizontally along each
coordinate and then making a mirror copy with respect to 1/2. This gives
f̃(u1, . . . , us) = f(v1, . . . , vs) where vj = 2uj for uj < 1/2 and vj = 2(1−uj)
for uj ≥ 1/2. In practice, instead of changing f , we would stretch the (ran-
domized) points by a factor of two along each coordinate, and fold them back.
This is equivalent. That is, each coordinate Ui,j of Ui is replaced by 2Ui,j
if Ui,j < 1/2 and by 2(1 − Ui,j) otherwise. This is the baker’s transforma-
tion. When f is sufficiently smooth, this can reduce the RQMC variance from
O(n−2+δ) to O(n−4+δ) [12].

3 Adaptive Search for Lattices that Avoid the Large
Fourier Coefficients

Searching for a lattice that minimizes the variance expression (3) for each
f that we want to integrate is certainly impractical, because the Fourier
coefficients are usually unknown and there are infinitely many. If we estimate
them, we would have to do it for each f and this is likely to take more time
than applying RQMC to estimate µ. We nevertheless explore empirically, in
this section, what we could do if we knew (or could estimate on-demand, at
low cost) those Fourier coefficients and how much we could gain by exploiting
this knowledge (or by finding the optimal lattice for the problem at hand in
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any other way). In situations where the gain can be significant, it may be
worthwhile to investigate ways of identifying the most important Fourier
coefficients.

We start with a simple function for which we know the Fourier expansion.
But even in that case, the figure of merit (the variance) in (3) involves an
infinite number of terms. Heuristic ways of handling this could be to truncate
the sum to a finite subset B ⊂ Zs,∑

0 6=h∈L∗s∩B

|f̂(h)|2,

or to the largest q square coefficients |f̂(h)|2. But this is hard to implement.
The following heuristic truncates the sum adaptively by exploring the dual
space. It makes sense in the situation where the |f̂(h)|2 tend to decrease with
each |hj |. It starts with a large set L of lattices (or a large set of generating
vectors v1, for a given n). Then the method searches for vectors h with large
weights w(h) = |f̂(h)|2, via a neighborhood search starting at h = 0, keep-
ing a sorted list (as in Dijkstra’s shortest path algorithm), and eliminates
successively from L the lattices whose dual contains h for the next largest
w(h) found so far, until a single lattice remains. It is stated as Algorithm 1
(the scope of the while and for statements are specified by the indentation).
The ordered set Q can be implemented as a priority queue. This algorithm
requires a definition of neighborhood in the space Zs of vectors h. For exam-
ple, one can define the neighborhood of h, N (h), as the set of vectors that
differ from h by only one coordinate, and by one unit only. When the |f̂(h)|2
are unknown, we may think of estimating them whenever they are needed in
the algorithm, dynamically.

Algorithm 1 : Dual-Space Exploration
Require: a set of lattices L and a weight function w
Q ← N (0) // vectors h to be visited, sorted by decreasing weight w(h)
M←N (0) // vectors h that have already entered Q
while |L| > 1 do

h← remove first vector from Q
for all lattices Ls ∈ L such that h ∈ L∗s do

remove Ls from L
if |L| = 1 then

return the single lattice Ls ∈ L and exit
for all h′ ∈ N (h) \M do

add h′ to M and to Q with priority (weight) w(h′)

One can also define a component-by-component (CBC) version of this con-
struction algorithm, as follows. For each coordinate j, j = 1, . . . , s, we apply
the algorithm for a set L of j-dimensional lattices with common (fixed) j− 1
first coordinates, determined in the previous steps, and we select the jth coor-
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Fig. 1 Estimated variance vs. n, for s = 5, in log-log scale, with cj = 1 (left) and
cj = j (right), using lattices constructed with the dual-space exploration algorithm ( ),
and the CBC algorithm with the Pγ,2 criterion ( ).

dinate by visiting all j-dimensional vectors h having nonzero jth coordinate,
as in Algorithm 1.

Example 1. To experiment with this algorithm, we consider the product V-
shaped function

f(u) =
s∏
j=1

|4uj − 2|+ cj
1 + cj

,

for which
f̂(h) =

∏
{j :hj is odd}

4
(1 + cj)π2h2

j

.

We take s = 5 dimensions, first with cj = 1 and then with cj = j. We applied
the CBC version of the dual-space exploration algorithm for prime values of
n ranging from 25−1 = 31 to 219−1 = 524, 287, to construct a 5-dimensional
lattice for each n, then we estimated the RQMC variance for this lattice by
the empirical variance with 100 independent random shifts.

Figure 1 shows the empirical variance as a function of n, in the lower (dark)
line. The upper line represents the RQMC variance with lattices obtained
by a CBC construction using the criteria Pγ,2 defined in (9), with weights
selected based on estimated ANOVA variance components as explained in
Section 4. This is arguably the best available construction method for general
applications among those that we have tried in our experiments. The figure
shows that for this small example, our dual-space exploration method does
much better. The reason is that by constructing the lattice in terms of a
figure of merit that takes into account the individual Fourier coefficients, we
can be more accurate in selecting the vectors h that we want to eliminate
from the dual lattice, and thus kick out more of the important terms from
the variance expression (3), than if we use a criterion such as Pγ,2 that just
put weights on subsets of coordinates.
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For the dual-space exploration, with n = 216 +1, the variance was reduced
by a factor of 1.7 × 1014 for cj = 1 and 3.0 × 1016 for cj = j, compared
with MC. Empirically, the variance decreases approximately as O(n−3.46)
for cj = 1 and O(n−3.61) for cj = j. (There is one outlying value, for n =
217− 1 = 131, 071, where the algorithm did poorly for cj = 1, as can be seen
in Figure 1.) For the lattice constructions based on Pγ,2, on the other hand,
the variance was reduced by only 1.8× 1012 in the best case, and decreased
empirically (approximately) as O(n−3.24).

We also tried with theM′γ,2 criterion defined in (14), and the results were
worse than with Pγ,2.

The dual-space exploration algorithm performs much better, for this small
example, than the other methods discussed in forthcoming sections. How-
ever, in typical situations, the Fourier coefficients are unknown, not always
monotonously decreasing with the components of h, have to be estimated
during the exploration, and the dimension can be much larger than 5. Then,
this search approach is unlikely to remain practical and effective. We will
discuss alternatives in the following.

4 ANOVA Decomposition and Projection-Dependent
Weights

Given that the Fourier expansion and the sum (3) have too many terms
to be convenient figures of merit for selecting the lattice parameters, one
could seek decompositions of f into a smaller number of terms than in (3),
and define measures that take into account the relative importance of those
terms. A popular one is the functional ANOVA decomposition [8, 18, 20],
where f(u) = f(u1, . . . , us) is written as

f(u) =
∑

u⊆{1,...,s}

fu(u) = µ+
s∑
i=1

f{i}(ui) +
s∑

i,j=1:j 6=i
f{i,j}(ui, uj) + · · ·

where
fu(u) =

∫
[0,1)|ū|

f(u) duū −
∑
v⊂u

fv(uv)

ū is the complement of u, and uv refers to the projection of u on the subspace
determined by v. The MC variance then decomposes as

σ2 =
∑

u⊆{1,...,s}

σ2
u, where σ2

u = Var[fu(U)].

The variance components σ2
u can be estimated by the algorithm given in [25],

using either MC or (preferably) RQMC to estimate the integrals.
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For any h ∈ Zs, let

u(h) = u(h1, . . . , hs) = {j ∈ {1, . . . , s} : hj 6= 0}.

The RQMC variance with a randomly-shifted lattice rule decomposes as:

Var[µ̂n,rqmc] =
∑

∅6=u⊆{1,...,s}

∑
h∈L∗s :u(h)=u

|f̂(h)|2 =
∑

u⊆{1,...,s}

Var[µ̂n,rqmc(fu)].

(7)
The idea here is to adopt a criterion as in (4), but with weights w(h) that
depend on a smaller number of parameters, namely one parameter per pro-
jection u. For this, following [7] and others, we take

w(h) = γu(h)
∏
j∈u

h−2α
j (8)

for all h ∈ Zs, where α is a positive integer to be selected, and the γu are
arbitrary positive real numbers which we call projection-dependent weights.
Some authors call them general weights [6, 7], although their form is much
less general than the arbitrary weights w(h) in (4). With the weights (8), the
figure of merit (4) becomes the weighted P2α criterion [7]:

Pγ,2α(P 0
n) =

∑
06=h∈L∗s

γu(h)(max(1, h1), . . . ,max(1, hs))−2α

=
∑

∅6=u⊆{1,...,s}

1
n

n−1∑
i=0

γu

[
−(−4π2)α

(2α)!

]|u|∏
j∈u

B2α(ui,j), (9)

where ui = (ui,1, . . . , ui,s) = iv1 mod 1 is the ith lattice point before the
shift, |u| is the cardinality of u, and B2α is the Bernoulli polynomial of order
2α.

This criterion comes naturally in the following setting. Let Fα be the class
of functions f : [0, 1)s → R for which for each u ⊆ {1, . . . , s}, the partial
derivative of order α with respect to u is square integrable, and (if α ≥ 2)
the partial derivatives of orders 0 to α − 2 of the periodic continuation of f
over Rs are continuous. Define the square variation of f ∈ Fα by

V 2
γ (f) =

∑
u⊆{1,...,s}

V 2
γ (fu) =

∑
∅6=u⊆{1,...,s}

1
γu(4π2)α|u|

∫
[0,1]|u|

∣∣∣∣∂α|u|∂uα fu(u)
∣∣∣∣2 du

(10)
(which depends on the γu’s). Then, for any constant K > 0, the largest
RQMC variance over the class of functions f ∈ Fα for which V 2

γ (f) ≤ K is
equal to KPγ,2α(P 0

n), and the maximum is reached for a worst-case function
whose square Fourier coefficients are
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|f̂(h)|2 = Kγu(h)(max(1, h1), . . . ,max(1, hs))−2α.

See [6, 14] for the details. The constant K is just a scale factor that can be
incorporated in the weights γu, so we can assume that K = 1. The worst-case
function can then be written as

f∗α(u) =
∑

u⊆{1,...,s}

√
γu
∏
j∈u

(2π)α

α! Bα(uj).

The ANOVA variance components for this function are

σ2
u = γu

[
Var[Bα(U)] (4π

2)α

(α!)2

]|u|
= γu

[
|B2α(0)| (4π

2)α

(2α)!

]|u|
def= γu(κ(α))−|u|

(11)
where κ(α) is a constant that depends on α. In particular, we have

κ(1) = 3
π2 ≈ 0.30396, κ(2) = 45

π4 ≈ 0.46197, κ(3) ≈ 0.49148,

and κ(α) increases with α for α ≥ 1 and converges to 1/2 when α→∞.
To be consistent with our choice of Pγ,2α as a criterion, we can select the

weights γu as if the function f that we want to integrate has the same form
as f∗α. That is, we take the weights given by the formula

γu = σ2
u(κ(α))|u|,

in which the variance components σ2
u are replaced by estimates. These esti-

mates can be obtained with the algorithm of [25], for example. This formula
can be generalized slightly to

γu = σ2
uρ
|u|, (12)

where 0 < ρ ≤ 1 is a constant to be selected. In view of the behavior of κ(α),
it makes sense to take ρ ≤ 0.5, and smaller when we think that f is less
smooth.

It is known that for any α > 1, any δ > 0, and any choices of weights
γu, there are rank-1 lattices for which Pγ,2α(P 0

n) = O(n−2α+δ), and the
corresponding vectors v1 can be constructed explicitly one coordinate at a
time, by a component-by-component construction method [6].

5 Further Heuristics for Choosing the Weights

In (9), there are 2s − 1 parameters γu to specify, which is too many when
s is large. It is also hard to estimate these σ2

u with reasonable relative error
when they are small compared with σ2 and this typically occurs for most
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subsets u when |u| increases. This motivates the introduction of more par-
simonious models for the weights, with fewer parameters. As mentioned in
the first paragraph of Section 2, the one-dimensional projections are all the
same under our assumptions, so the weights of the one-dimensional subsets
|u| are irrelevant and we can set them to zero in the selection criterion; that
is, restrict the sum in (9) to the subsets u of cardinality |u| ≥ 2. We always
do that in our experiments when searching for good lattices. Note that multi-
plying all weights by the same constant has no impact on the selection of v1,
since it does not change the relative importance of the projections, so we can
fix one of them (the largest one, for example) to 1. But there still remains
2s − s− 2 projections weights to specify.

One way to reduce the number of parameters in (9) (and the likelihood
of overfitting) is to bundle (partition) the subsets u in subgroups, and force
the same γu within each subgroup. A well-known example of this is to take
order-dependent weights, where γu depends only on the cardinality of u, say
γu = γr when |u| = r, for r = 2, . . . , s. To specify those γr, we can estimate
each σ2

r =
∑
{u:|u|=r} σ

2
u, which represents the total variance captured by the(

s
r

)
projections of order r, and plug it in the formula

γr = Cρrσ2
r

(
s

r

)−1
,

where C > 0 is an arbitrary scaling constant. This gives s− 1 parameters to
estimate.

In one special case, we can simply assume that γr = γr−2 for all r ≥ 2,
for some constant γ, and estimate γ by least-squares fitting of the linear
regression model

lnC + r ln ρ+ 2 ln σr − ln
(
s

r

)
= (r − 2) ln γ + εr

(for example), by finding lnC and ln γ that minimize
∑∞
r=2 ε

2
r. The re-

sulting weights are geometric order-dependent weights. With constant order-
truncated weights, one simply takes γu = 1 for |u| ≤ d and γu = 0 otherwise,
for a given integer d ≥ 2. Wang [26] suggests this with d = 2.

A different type of parameterization, used in [10, 11, 24], assigns a weight
γj to each coordinate j and uses the product weights γu =

∏
j∈u γj . Again, we

can estimate the parameters γj by matching the ANOVA variances, ignoring
the one-dimensional projections. One way of doing this is to fit the weights
(12) where the variance components are estimated, over all two-dimensional
projections, via a least-squares procedure. Then we rescale all the weights by
a constant factor to match the ratio of average estimated weights (12) over the
three-dimensional projections to that over the two-dimensional projections.

More specifically, we first minimize
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R =
s∑

k=1

k−1∑
j=1

(
τjτk − ρ2σ2

{j,k}

)2

with respect to τ1, . . . , τs, where τj can be viewed as the unscaled weight for
projection j, and where the variance components σ2

u for |u| = 2 are replaced by
their estimates. Differentiating this expression with respect to τj and equaling
to 0, we obtain, for each j,

τj

s∑
k=1, k 6=j

τ2
k =

s∑
k=1, k 6=j

τkρ
2σ2
{j,k}.

We solve this (heuristically) by an iterative fixed-point algorithm:

τ
(0)
j = max

k,l=1,...,s
ρσ{k,l}, τ

(i+1)
j =

∑s
k=1, k 6=j τ

(i)
k ρ2σ2

{j,k}∑s
k=1, k 6=j

(
τ

(i)
k

)2 ,

for i = 1, 2, . . . . We then rescale the weights via γj = cτj where the constant
c satisfies ∑s

k=1
∑k−1
j=1 τjτk∑s

k=1
∑k−1
j=1

∑j−1
l=1 τjτkτl

= c

∑s
k=1

∑k−1
j=1 ρ

2σ2
{j,k}∑s

k=1
∑k−1
j=1

∑j−1
l=1 ρ

3σ2
{j,k,l}

in which the sum of weights of order 3 is again replaced by an estimate.

6 Figures of Merit Based on the Spectral Test

In view of the variance expression (3) and its decomposition (7), and because
we normally expect the square Fourier coefficients |f̂(h)|2 to decrease with
the size of h (when f is smooth, we know from (5) that these coefficients
must converge at the given rate), it seems to make sense to define a criterion
that penalizes the short non-zero vectors h in the dual lattice L∗s, as well as
in the dual lattices (Ls(u))∗ to the projections Ls(u). Note that (Ls(u))∗ is
the projection over u of {h ∈ L∗s : u(h) ⊆ u}, but not the projection of L∗s
over u.

For each u, one can compute the Euclidean length `u of a shortest nonzero
vector in (Ls(u))∗. There is a known tight theoretical upper bound `∗r(n) on
the length of a shortest nonzero vector in a lattice with n points per unit of
volume in r dimensions [3, 15], and we can divide `u by `∗|u|(n) to obtain a
standardized measure between 0 and 1, and raise it to some power β > 0,
for each u, or take the reciprocal to obtain a measure of non-uniformity
larger or equal to 1. To give more weight to more important projections, this
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measure can in turn be multiplied by some weight γu, for each u. Then we
can take either the sum or the minimum (worst case) over a selected class
J of nonempty subsets u of {1, . . . , s}. The role of β is to amplify or reduce
the relative importance of bad projections (those having a small value of
`u/`

∗
|u|(n)) in the criterion. This gives the following figures of merit

Mγ,β(P 0
n) =

∑
u∈J

γu

(
`u

`∗|u|(n)

)β
, (13)

M′γ,β(P 0
n) =

∑
u∈J

γu

(
`∗|u|(n)
`u

)β
, (14)

M̃γ,β(P 0
n) = min

u∈J
γu

(
`u

`∗|u|(n)

)β
, and (15)

M̃′γ,β(P 0
n) = max

u∈J
γu

(
`∗|u|(n)
`u

)β
. (16)

The criteria (13) and (15) are to be maximized, whereas (14) and (16) are to
be minimized. In (15) and (16), only the quality of the worst-case projections
matters, and we do not care about the quality of the other ones, whereas in
(13) and (14), the quality of all the projections contributes to the sum, so
these criteria encourage improvements on all projections, not only the worst
ones. The two variants (15) and (16) are equivalent in terms of which lattice
maximizes or minimizes them, if we invert the weights (although we do not
invert the weights in our examples). On the other hand, (13) and (14) are
really different. For a fixed β and fixed weights, in (13) the bad projections
have a small importance in the sum (they only “fail to score high”) whereas
in (14) they have more importance because they bring a large penalty.

The computing time of `u increases only very slowly with n (roughly at
a logarithmic rate), in contrast to that of Pγ,2α, but on the other hand it is
exponential in s in the worst case. In practice, it can be computed reasonably
quickly for s up to 30 or so, and n as large as we want. A computational
advantage of the criteria (15) and (16) is that poor lattices can be eliminated
quickly (on average) without having to compute all the `u’s. For example, in
(15), the lattice can be eliminated as soon as we have a small enough upper
bound on γu`u/`

∗
|u|(n) for some u (for this, we do not even need to know `u

exactly). For all the criteria based on a sum to be minimized, we can also
stop and eliminate the lattice whenever the sum exceeds a given value (e.g.,
if it exceeds the best value found so far).

A special case of (15) was used in [15], with β = 1 and
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J = J (t1, . . . , td)
= {u = {1, . . . , r} for 2 ≤ r ≤ t1}
∪{u = {j1, . . . , jr} such that 1 = j1 < · · · < jr ≤ tr and 2 ≤ r ≤ d}.

This was inspired by criteria used for random number generators having
a lattice structure [13]. The main drawback of this criterion is that many
projections are not considered at all; they can be very bad and this is not
reflected by the figure of merit.

All these criteria can also be defined based on the lengths of the shortest
vectors in the primal lattices Ls(u), instead of their dual lattices (Ls(u))∗,
and permuting minimization for maximization. This makes little difference in
terms of the uniformity of retained lattices. The length of the shortest vector
in Ls(u) represents the minimal distance between any two lattice points, and
we want this distance to be as large as possible.

7 Searching for Lattice Parameters

Once we have selected a discrepancy measure (or figure of merit) and specified
the weights, the next step is to search for lattices that minimize this measure,
for a given n. In our experiments, we will use (and compare) the following
strategies.

In the case of Korobov lattices, there is a single parameter that can take
at most n − 1 values, so we will simply make an exhaustive search for the
best vector a1 = (1, a, a2, . . . , ...) over all admissible integers a.

For general rank-1 lattices, under our assumptions, there could be up to
(n− 1)s−1 combinations and an exhaustive search is usually out of the ques-
tion (for example, this happens as soon as s exceeds a few units if n is
around a million, which is not unusual). A standard construction method in
this context is the component by component (CBC) construction algorithm,
which works as follows [22, 23]:

Let a1 = 1;
For j = 2, . . . , s, find aj ∈ {1, . . . , n − 1}, gcd(aj , n) = 1, such that

(a1, . . . , aj−1, aj) minimizes the selected figure of merit for the
first j dimensions.

We will also use the following streamlined search method, which replaces
the exhaustive search over aj at each step by a search over a small number of
different random candidates aj (the number r of candidates can be from 20
to 100, for example, depending on the computing budget that we are willing
to devote to this).

Let a1 = 1;
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For j = 2, . . . , s, try r random aj ∈ {1, . . . , n−1}, gcd(aj , n) = 1, and
retain the one for which (a1, . . . , aj−1, aj) minimizes the selected
figure of merit for the first j dimensions.

8 Experimental methodology

We summarize our experimental setting for the empirical results reported in
the following sections. For each example where this is relevant, we first es-
timate the ANOVA variance components of the integrand by the method of
[25], using RQMC with 220− 3 = 1, 048, 573 lattice points and 1000 indepen-
dent replications (random shifts). The lattice used for this (for all examples)
was constructed by a randomized CBC search with r = 50 using geometric
order-dependent weights with γ = 0.5. Next, we select the criteria among
(9) or (13)–(16) and the types of weights that we want to consider. The
weights are selected as functions of the estimated ANOVA variances, using
the strategies described in Sections 4 and 5. Occasionally, the ANOVA vari-
ance estimators are zero or take a smaller value than their precision. Then, we
give these projections a weight equal to 1/100 of the smallest nonzero com-
puted weight. For each selected criterion and type of weight, we construct
lattices using random CBC searches with r = min(50, n− 1), for 86 different
prime values of n ranging from 25− 1 = 31 to 222− 3 = 4, 194, 301. Then, for
each retained lattice, we estimate the RQMC variance with 100 independent
replications.

When constructing lattices with the Pγ,2α criterion for use with the baker’s
transformation, we set α = 2; otherwise, we set α = 1. The weights for the
criteria based on the spectral test are taken simply as γu = σ2

u, where the
latter is estimated, and we take J = {u : ∅ 6= u ⊆ {1, . . . , s}}, unless indicated
otherwise.

In most cases, the variance behaves approximately linearly in logarithmic
scale for n ≥ 103. Then we fit a linear model of the form

ln Var[µn,rqmc] = ln a0 − ν lnn+ ε (17)

for positive constants a0 and ν, where ε represents a noise term. We do this by
computing the values â0 and ν̂ of a0 and ν that minimize the sum of squares
of the values of ε for the 61 (out of 86) values of n that are greater than 103.
Our estimated (or empirical) convergence rate is then O(n−ν̂). We report
the precision on our estimates of ν̂ via 95% confidence intervals, assuming
that ε is normally distributed with mean 0 and variance S2

ε (we have checked
empirically that this is indeed a reasonable assumption).

In (17), the parameters a0 and ν tell us how the log-variance decreases “on
average” as a function of n, for a given lattice construction procedure and a
given example. They are the primary quality indicators for the procedure. The
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parameter ε represents the departure of the log-variance from the linear model
for the particular lattice selected at a given n, together with the estimation
error in the RQMC log-variance because it is based on a finite number of
replications. The latter error can be made arbitrarily small by making more
independent replicates of the RQMC estimator. The departure of the true
log-variance from the linear model typically has a larger contribution to ε
in our examples. This departure depends on the lattice parameters that are
retained by the selection algorithm for the given n; it is intrinsic to the lattice
construction procedure and it generally depends on the criterion and type of
weights. A small standard deviation Sε means that the linear model is a better
predictor of the performance for a given n, and that the returned lattices tend
to be more robust and reliable in terms of RQMC variance. When the linear
models for two or more criteria predict similar RQMC variances, we should
prefer the one with the smallest Sε.

We define the variance reduction factor (VRF) for a specific n-point
randomly-shifted lattice rule as the variance σ2 of the MC estimator di-
vided by n times the variance of the RQMC estimator. We estimate σ2 by
the empirical variance S2

n. In some cases, we replace the RQMC variance of
the specific lattice at a given value of n by the variance â0n

−ν̂ interpolated
from our linear model in log scale, and we report the corresponding interpo-
lated VRF, V̂RF(n) = nν̂−1S2

n/â0, usually with n = 220. This interpolation
is more stable than the actual variance at a given n.

Detailed results of our experiments are given in the online appendix. In
the following sections, we only summarize these results.

9 An Indicator Function

In our first set of experiments, we consider a simple discontinuous integrand
defined as the indicator that a sum of s independent random variables ex-
ceeds a given threshold. We assume that Y1, . . . , Ys are independent random
variables, and that Yj is exponential with rate λj , for each j. We estimate the
probability µ = P[Y1 + · · ·+ Ys > x] by MC or RQMC, for some constant x.
The basic estimator is X = I[Y1 + · · ·+Ys > x], where I denotes the indicator
function. It corresponds to the discontinuous s-dimensional integrand

f(u1, . . . , us) = I[F−1
1 (u1) + · · ·+ F−1

s (us) > x],

where F−1
j (uj) = − ln(1− uj)/λj is the inverse cdf of Yj evaluated at uj .

We also consider the conditional MC (CMC) estimator

Xcmc = P[Y1 + · · ·+ Ys > x | Y1 + · · ·+ Ys−1]
= exp[−λs(x− Y1 − · · · − Ys−1)] · I[x− Y1 − · · · − Ys−1 ≥ 0].
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The associated integrand,

f(u1, . . . , us−1) = 1− Fs(x− F−1
1 (u1)− · · · − F−1

s−1(us−1)),

has dimension s−1 and is continuous, but has a discontinuity in its first-order
derivatives, because the cdf of Ys, Fs(y) = [1 − exp(−λsy)] · I[y > 0], has a
discontinuous derivative at y = 0.

For the one-dimensional case, it is known (see [17]) that the basic RQMC
estimator can take only two values and its variance converges as O(n−2)
regardless of the choice of lattice. Using the dual-space exploration algo-
rithm here does not work well because the Fourier coefficients do not decrease
monotonously with ‖h‖.

We simulated these estimators for s = 2, . . . , 6, for the following four cases:
λj = 1, λj = j−1, and λj = j−2, with x chosen so that the probability µ to
be estimated is close to 0.5, and λj = j−1 with x chosen so that µ is near
0.1.

To select the lattice parameters, we tried the criterion (9) with α = 1
for both the basic and CMC estimators, with α = 2 for the CMC estima-
tor with the baker transformation, and the criteria (13)–(16) with β = 1
and 2, with projection-dependent, product, order-dependent and geometric
order-dependent weights in all cases. In general, the observed convergence
rates (reported in the online appendix) do not vary too much when only λj
or x changes. Although none of the integrands here meets the smoothness
requirements that justify using the Pγ,2α criterion, in the sense that we have
no guaranteed convergence rate for the variance of the corresponding RQMC
estimators, lattices constructed with that criterion and projection-dependent
weights gave slightly higher values of V̂RF(220) and ν̂ together with smaller
values of Ŝε on average, compared to those obtained with criteria based on
the spectral test. They give empirical convergence rates exponents of approx-
imately ν̂ ≈ (s + 1)/s for the basic estimator. For the CMC estimator, the
best convergence rates, of O(n−2) without the baker’s transformation and of
O(n−4) with the baker’s transformation, are obtained at s = 2 and degrade
as a function of s down to around O(n−1.5) and O(n−1.6), respectively, at
s = 6. The improvement on the convergence rate due to the baker’s trans-
formation is clear at s = 2 or 3 but seems marginal for s ≥ 4. The observed
convergence rates for the CMC estimator for s = 2 were expected, because
in that case the integrand is one-dimensional, is continuous in (0, 1) but its
periodic continuation is not, and these are the known convergence rates for
such an integrand [12].

Regarding the choices of weights, our estimations of the ANOVA variances
suggested that product and order-dependent weights were not justified, yet
we found no clearly observable best choice of weights for the basic estimator.
For the CMC estimator, however, projection-dependent weights, when used
with the Pγ,2α criterion, consistently offer good performance.
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We also examined a simpler case with s = 2 where Y1 ∼ U [0,m) for
some m ∈ [0, 1) and Y2 ∼ U [0, 1). Our experiments with m = 0.375 and
x = 0.8 revealed that some lattices with excellent values of standard figures
of merit, such as P2α and those based on the spectral test, are not among
the best in terms of variance reduction. These criteria, introduced earlier,
are not really appropriate in this situation, because they do not take into
account the alignment between the lattice points and the discontinuity, which
turns out to be a key factor here. On the other hand, even for this specific
artificial example, by examining all lattices for a given n, we found a clear
positive correlation between the RQMC variance and P2α. Here, the choice
of weights is not an issue, because there is a single projection in more than
one dimension.

10 Example: a Stochastic Activity Network

We consider the stochastic activity network example taken from [9] and rep-
resented in Figure 2, where the lengths V1, . . . , V13 of edges 1, . . . , 13 are
independent random variables with distribution functions F1, . . . , F13, re-
spectively. We take the same cdf’s Fj as in [2, Section 4.1]. For the activities
j = 1, 2, 4, 11, 12, we have Vj = max(0, Ṽj) where Ṽj is a normally distributed
random variable with mean θj and variance θ2

j/16. The other Vj ’s are expo-
nential with mean θj . The values of θ1, . . . , θ13 are 13.0, 5.5, 7.0, 5.2, 16.5,
14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5, respectively. See [1, 2, 15] for a complete
description of the problem. We are interested in estimating the probability
that the longest path from source (node 1) to sink (node 9) has a length T
larger than some constant x with the estimator X = I[T > x]. We also con-
sider the CMC estimator obtained by simulating the Vj ’s only for the edges
that are not in the cut set L = {5, 6, 7, 9, 10}, and taking the probability
that T > x conditional on those Vj ’s, as in [1]. This CMC estimator can be
written as

XCMC = P [T > x | {Vj : j 6∈ L}] = 1−
∏
j∈L

P[Vj ≤ x− Pj ] (18)

where Pj is the length of the longest path that goes through edge j when we
put Vj = 0 (i.e., we exclude edge j). The main motivation for considering this
estimator is that it is continuous as a function of the Vj ’s that are generated
(and therefore as a function of the underlying uniform random numbers), in
contrast to the original estimator X, and it is also easy to compute. This
example generalizes the problems and the CMC estimators considered in
the previous section. This integrand has dimension s = 13 with the basic
estimator X, and dimension s = 8 with the CMC estimator XCMC. We also
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Fig. 2 Graph of the stochastic activity network with 9 nodes and 13 links. The dashed
links are not simulated in the CMC variant.

estimated E[T ] by simulation; the corresponding integrand has dimension
s = 13.

For all types of estimators, we have estimated the ANOVA variances and
observed that they vary a lot across projections of a given order, so we do
not expect order-dependent or geometric weights to work well. In our ex-
periments, we found that the Pγ,2α criterion (with α = 1 for the standard
estimator and α = 2 for the CMC estimator) performed well in all cases,
with relatively high values of V̂RF(220) and ν̂, together with low values of
Ŝε, with slightly better performance for projection-dependent and product
weights. We also found that using the inappropriate order-dependent or ge-
ometric weights does not guarantee poor performance—in some cases the
VRF’s were even slightly higher than with the more appropriate projection-
dependent and product weights—but it makes it more unpredictable, with
VRFs as low as half of the best ones in some cases. The criteria based on
the spectral test did not perform as well as Pγ,2α, at least for projection-
dependent and product weights. The standard and CMC estimators had
similar qualitative behavior, but the observed VRFs were much larger for
the CMC estimator. For example, the best VRF for x = 60 interpolated
at n = 220 is 27 with an empirical convergence rate of 1.20 for the stan-
dard estimator, obtained with the Pγ,2α criterion with projection-dependent
weights and α = 1. For the same case but with CMC estimator and α = 2,
we observed a fitted VRF of 4.4 × 103 with an empirical convergence rate
of 1.51. The baker’s transformation offered very little improvement on the
CMC estimator. All these results are in the online appendix.
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11 Example: Asian Call Option

We consider an Asian call option based on the price S(t) of single asset at
times t0 = 0, t1, . . . , ts, with payoff:

Y = e−r̃ts max

0, 1
s

s∑
j=1

S(tj)−K

 ,
where r̃ is the risk-free interest rate and K is the strike price. The asset price
is a geometric Brownian motion:

S(t) = S(0) exp[(r̃ − σ2/2)t+ σB(t)],

where {B(t) : t ≥ 0} is a standard Brownian motion, and σ it the volatility.
We also consider a down-and-in variant of the Asian option with payoff

Y ′ = Y · I
[

min
j=1,...,s

S(tj) ≤ K ′
]
,

where K ′ is a barrier. We estimate E[Y ] and E[Y ′] with MC and RQMC. For
our experiments, we set S(0) = 100, K = 100, K ′ = 80, r̃ = 0.05, σ = 0.5,
tj = j/s for j = 0, . . . , s, and s = 6. To simulate S(t1), . . . , S(ts), Y and Y ′,
we sample a standard normal vector Z = (Z1, . . . , Zs) with Zj = Φ−1(Uj),
where Φ is the standard normal distribution function. Then we generate B =
(B(t1), . . . , B(ts)) = AZ, where C = AAt is the covariance matrix of B
with elements cj,k = σ2 min(tj , tk) We consider two standard choices for the
decomposition AAt. The first is the Cholesky factorization where A is a
lower triangular matrix. The second, based on principal component analysis
(PCA), is A = PD1/2, where P is the matrix of right eigenvectors of C and
D is a diagonal matrix that contains the eigenvalues of C sorted by increasing
order so that the components of B depend more on the first components of
Z than on the others.

For the Asian option with PCA, our estimations of the ANOVA variances
showed that projection {1} itself accounts for nearly 99 % of the total variance
for the Asian option, whereas with Cholesky all projections of order 1 together
account for only 73 % of the total variance. For the down-and-in option, the
largest part of the variance is contributed by projections of order 2 and more,
and PCA barely improves the situation with respect to Cholesky by raising
from 9 % to 14 % the percentage of variance contributed by projections of
order 1. Note that there is only one projection of order 6 and it accounts for
9.4 % and 13 % of the total variance for Cholesky and PCA, respectively.

The Asian option payoff function is continuous with respect with to the
uniforms, but the down-and-in variant is not, so we use the baker’s transfor-
mation for the former but not for the latter. For the PCA case, we show in
Table 1 the fitted VRF’s and empirical convergence rates for various types
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Asian option (PCA), s = 6

criterion construction r weight type V̂RF(220) ν̂ Ŝε

Pγ,4
CBC 50

proj.-dep. 3.1× 105 1.846± 0.004 0.325
product 3.1× 105 1.840± 0.005 0.335

order-dep. 1.6× 105 1.707± 0.008 0.632
geometric 2.4× 105 1.784± 0.005 0.399
order 2 1.4× 105 1.710± 0.010 0.852

– proj.-dep. 3.5× 105 1.870± 0.020 0.317

Korobov 50 proj.-dep. 2.6× 105 1.825± 0.005 0.354
– proj.-dep. 3.0× 105 1.850± 0.010 0.333

Mγ,2 CBC 50 proj.-dep. 1.7× 105 1.751± 0.007 0.545
M′γ,2 CBC 50 proj.-dep. 2.2× 105 1.807± 0.007 0.492

down-and-in option (PCA), s = 6

criterion construction r weight type V̂RF(220) ν̂ Ŝε

Pγ,4
CBC 50

geometric 7.8 1.180± 0.003 0.238
product 7.5 1.212± 0.004 0.332

proj.-dep. 7.5 1.169± 0.004 0.267
order-dep. 7.1 1.149± 0.005 0.372

order 2 4.0 1.160± 0.010 0.793
– proj.-dep. 9.0 1.193± 0.009 0.227

Korobov 50 proj.-dep. 7.1 1.195± 0.005 0.341
– proj.-dep. 7.6 1.181± 0.008 0.217

Mγ,2 CBC 50 proj.-dep. 6.0 1.160± 0.004 0.313
M′γ,2 CBC 50 proj.-dep. 6.2 1.183± 0.007 0.500

Table 1 Fitted variance reduction factors at n = 220 and empirical convergence rates
for the Asian and down-and-in options. The baker’s transformation was applied for the
Asian option, but not for the down-and-in option. When CBC is followed by a value
of r, it refers to random CBC, otherwise it refers to exhaustive CBC, and similarly for
Korobov. Order-dependent of order 2 is abbreviated as order 2.

of weights with the Pγ,2α criterion using random CBC construction, and for
projection-dependent weights for the Mγ,2 and M′γ,2 criteria. The error on
ln â0 (not shown in the table) is in general of the order of one tenth of the
value of Ŝε or less. Besides constant order-truncated weights at order 2, which
yield poor performance as confirmed in Figure 3, the other types of weights
all seem to offer comparable performance. With PCA, compared to Cholesky,
the VRF’s are much higher, the convergence with n is faster, and there is less
noise in the observed variances (see the appendix).

We compared the relative performance of the criteria Mγ,β , M′γ,β , M̃γ,β

and M̃′γ,β , for β = 1 and 2, and for projection-dependent, product, order-
dependent and geometric order-dependent weights. With Cholesky factoriza-
tion, M̃γ,β and M̃′γ,β , based on the worst projection, generally yield faster
convergence and larger VRF than their counterparts Mγ,β and M′γ,β based
on a weighted sum over all projections. Besides this, it is hard to discriminate
between criteria and weight types. We illustrate part of these observations in
Figure 4, where we compare (14) to (16) for β = 1 and 2 and product weights.
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Fig. 3 Estimated and fitted variance of the RQMC estimator, using lattices constructed
with the Pγ,2α criterion, for the Asian option with α = 2 and the baker’s transformation
(left) and for the down-and-in option with α = 1 without the baker’s transformation
(right), using Cholesky factorization, with projection-dependent weights ( ) and with
constant order-dependent weights truncated at order 2 ( ).
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Fig. 4 Estimated and fitted variance of the RQMC estimator for the Asian option
(Cholesky) with the baker transformation, using lattices constructed with theM′γ,β ( )
and M̃′γ,β ( ) criteria, with β = 1 (left) and β = 2 (right) and with product weights.

The observed variances are more noisy on average when using (16), but the
convergence seems faster. When using PCA, on the other hand, we did not
observe any significant difference in the results across different criteria. The
easy explanation is that for integrands where only a small part of the variance
lies in projections of order two or more, all criteria and weight types under
consideration here are practically equivalent in terms of the variance of the
RQMC estimator.

In Table 1, we also give some results for exhaustive CBC and Korobov
constructions for projection-dependent weights, for the Asian option. Ran-
dom Korobov means that we tried r random values of a. The exhaustive CBC
construction generally provides a slightly better variance reduction than ran-
dom CBC, and the Korobov construction is slightly worse than CBC, but the
difference is thin, as can be seen in Figure 5. Note that because the cost of
exhaustive CBC increases with n (there are (s−1)(n−1) vectors to examine)
we have results only for n ≤ 105 in this case.
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Fig. 5 Estimated and fitted variance of the RQMC estimator, using lattices constructed
with the Pγ,2α criterion and projection-dependent weights, for the Asian option with
α = 2 and the baker’s transformation (left) and for the down-and-in option with α = 1
without the baker’s transformation (right), using Cholesky factorization, with random
CBC construction with r = 50 ( ), exhaustive CBC construction ( ) or exhaustive
Korobov construction ( ).
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Fig. 6 Estimated and fitted variance of the RQMC estimator for lattices constructed
with the Pγ,2α criterion with projection-dependent weights, for the Asian option with
the baker’s transformation and α = 2 (left) and the down-and-in option without the
baker’s transformation with α = 1 (right), for with prime values of n ( ) and for values
of n that are powers of two ( ).

We also constructed lattices using values of n that are powers of two. In
some cases, they clearly produced larger RQMC variances than lattices with
prime n, as illustrated in Figure 6. But in most cases, the variances for n prime
or a power-of-two are comparable. For instance, this occurs for the example of
Figure 6, but with product weights instead of projection-dependent weights.
Note that in order to have each aj relatively prime with n for j = 2, . . . , s
when n is a power of two, aj has to be an odd number, which means that for
each component of the generating vector a except the first which is fixed at
a1 = 1, there is only half the number of possible values to consider. In other
words, the space of lattice parameters is 2s−1 times smaller for values of n
that are powers of two than for prime values of n. This could be part of the
explanation.
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Fig. 7 Fitted variance of the RQMC estimator for the Asian option with the baker’s
transformation (left) and the down-and-in option without the baker’s transformation
(right) with Cholesky factorization, for lattices constructed using the Pγ,2α criterion with
random CBC with r = 50 ( ) and the M̃γ,1 criterion as in (15) with J = J (32, 24, 16, 12)
( ) and Korobov construction.

We also did a few experiments with the M̃γ,1 criterion as in (15), with
J = J (32, 24, 16, 12), as proposed in [15]. As shown in Figure 7, this criterion
does not perform well. It does not appear appropriate for the problems at
hand, because too many coordinates (up to 32) are considered by the criterion
whereas projections of order 5 and 6 are ignored.

Finally, to show a situation where projection-dependent weights perform
clearly better than other types of weights, we give some results for an (artifi-
cial) example where we have two independent Asian options, each with s = 3
and the same parameters, and the payoff is the sum of the payoffs of the
two options. Of course, we could estimate the expected payoff of each of the
two options by RQMC separately and add up, but here, for the purpose of
the illustration, we simulate the first option using the first three coordinates
of the six-dimensional point set and the second option, using the last three
coordinates. Then, the ANOVA variances are non-zero only for projections
u such that ∅ 6= u ⊆ {1, 2, 3} or ∅ 6= u ⊆ {4, 5, 6}. There are thus only 14
out of 63 total projections that are relevant to the problem. This way, order-
dependent weights are unlikely to perform well, because they give significant
weight to the 9 irrelevant projections of order 2 and to the 18 irrelevant pro-
jections of order 3, rather than concentrate the weights over the important
projections. We expect product weights to do even worse, because they waste
their weights to these and on the 22 other irrelevant projections of order 4,
5, and 6. This is confirmed in Figure 8 and Table 2. Interestingly, the lattices
obtained using α = 1 appear more robust than those with α = 2, even if the
baker’s transformation was used in both cases.

In summary, other choices of weights frequently perform almost as well as
(more general) projection-dependent weights even when they are not really
justified, which is good news, but there are situations where the projection-
dependent weights really perform much better.
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Fig. 8 Fitted variance of the RQMC estimator for the sum of two Asian payoffs, with
Cholesky factorization, using the baker’s transformation and criterion Pγ,2α with α = 1
(left) and α = 2 (right), using projection-dependent weights ( ), product weights
( ), order-dependent weights ( ), and geometric weights ( ).

weight type Pγ,2 Pγ,4
V̂RF(220) ν̂ Ŝε V̂RF(220) ν̂ Ŝε

proj.-dep. 1.9× 105 1.829± 0.005 0.351 1.7× 105 1.800± 0.004 0.328
product 7.2× 103 1.85± 0.03 1.88 1.5× 104 1.88± 0.02 1.35

order-dep. 1.1× 105 1.80± 0.01 0.669 7.2× 104 1.72± 0.01 0.738
geometric 5.6× 104 1.75± 0.01 1.10 2.6× 104 1.59± 0.01 1.00

Table 2 Estimated V̂RF, ν̂ and Ŝε for the RQMC estimator of the sum of two Asian
options for the criterion Pγ,2α with α = 1 and 2 with the baker’s transformation in both
cases.

12 Conclusion

The optimal lattice, which minimizes the variance when estimating an inte-
gral by a randomly shifted lattice rule, depends on the integrand f , and opti-
mizing this lattice is harder in general than computing the integral itself. The
idea of constructing efficient adaptive algorithms by estimating the Fourier
coefficients or the variance components, for general applications, is attractive
at first sight, but estimating those quantities with reasonable accuracy usu-
ally too costly. Fortunately, crude estimates of the variance components are
generally sufficient to identify the subsets of coordinates on which to put more
weight when constructing the lattice, and doing this with a weighted Pγ,2α
figure of merit with projection-dependent weights is a robust approach that
gives very good results in most examples that we have tried. In fact, lattices
constructed based on a weighted Pγ,2α with reasonable choices of weights,
such as order-dependent weights that decrease geometrically (but not too
fast) with the cardinality of coordinate subsets, perform well enough in most
cases. Such lattices could be provided in general-purpose RQMC software. On
the other hand, lattices constructed with lousy choices of weights, that give
too little weight to some important projections (for example, giving weight
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only to the projections of order 2), or too much weight to several irrelevant
projections, often perform poorly. We also saw counterexamples (indicator
functions in two dimensions) where a lattice having the best Pγ,2α performs
very poorly, not because of a poor choice of weights, but because P2α is not
always a relevant measure in these examples. Thus, all the practical methods
that we can propose to define a figure of merit for general applications are
heuristic and none is foolproof. However, these counterexamples were con-
structed on purpose and such cases are rarely encountered in applications.

The theoretical asymptotic convergence rate of O(n−2α+δ) for Pγ,2α and
for the RQMC variance for certain classes of smooth functions is rarely ob-
served in the practical range of values of n, say up to a few millions. The
rates we have observed empirically, with the best lattices we found, are typi-
cally somewhere between O(n−2) and O(n−1). Interestingly, this applies not
only to smooth functions f , but also to non-smooth integrands, and even to
discontinuous and unbounded ones.

An ongoing project related to this study is to build integrated software
tools that can construct lattices based on a variety of parameterized figures
of merit, with flexibility for the choices of weights (or parameters), and feed
them to simulation software for arbitrary RQMC applications. This will in-
clude lattices extensible in both the dimension s and the number of points n.
Hopefully, this will put these RQMC methods closer to the hands of practi-
tioners and promote their utilization in a large variety of applications.

The online appendix to this paper can be found at http://www.iro.
umontreal.ca/˜lecuyer/myftp/papers/mcqmc-plenary-app.pdf
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