
Sudoku Latin Square Sampling for Markov
Chain Simulation

Rami El Haddad, Joseph El Maalouf, Christian Lécot, and Pierre L’Ecuyer

Abstract We are interested in Monte Carlo simulations of discrete-time Markov
chains on discrete and totally ordered state spaces. To improve simulation efficiency,
we use a technique previously introduced in the context of quasi-Monte Carlo simula-
tion of an array of N Markov chains. This method simulates the N copies of the chain
simultaneously, reorders the chains at each step by increasing order of their states,
and samples the next state by using N two-dimensional points in the unit square. The
first coordinate of each point is used to match a chain, and the second coordinate is
used to sample the next state by inversion from its cumulative distribution function
conditional on the current state. We study the case where the N points are obtained
at each step from Sudoku Latin square sampling, which means that (1) if the unit
square is uniformly divided into N identical subsquares, exactly one point lies in
each subsquare, (2) for each axis, the N projections of the points are distributed with
exactly one projection in each of the N subintervals of length 1/N that partition the
unit interval, and (3) in both cases, each individual point has the uniform distribution
in the subsquare and interval to which it belongs. We prove that the variance of the
Sudoku Latin square sampling estimator is of order O(N−3/2). The same conver-
gence rate is obtained when property (2) is removed, which gives simple stratified
sampling. However, in our numerical experiments, we observe empirically a much
smaller variance and better efficiency with the Sudoku Latin square sampling than
with simple stratified sampling alone.

Rami El Haddad · Joseph El Maalouf
Laboratoire de Mathématiques et Applications, U.R. Mathématiques et modélisation, Faculté des
sciences, Université Saint-Joseph, B.P. 7-5208, Mar Mikhaël Beyrouth 1104 2020, Liban, e-mail:
rami.haddad@usj.edu.lb, e-mail: joseph.maalouf@usj.edu.lb

Christian Lécot
Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LAMA, 73000 Chambéry,
France, e-mail: christian.lecot@univ-smb.fr

Pierre L’Ecuyer
DIRO, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada, e-mail:
lecuyer@iro.umontreal.ca

1

2 Rami El Haddad, Joseph El Maalouf, Christian Lécot, and Pierre L’Ecuyer

1 Introduction

We consider a discrete-time Markov chain {Xn, n≥ 0} over a countable state space
X , where Xn ∈X is the state at step n, and we are interested in estimating by
simulation the expected cost at step n, E[c(Xn)], for one or several cost functions
c : X → [0,∞) (we assume non-negative cost functions for simplicity). If the state
space is finite with small cardinality and sometimes when the chain has a very special
structure, it is possible to compute the exact distribution of Xn and the exact expected
cost at step n, for any n. Otherwise, one can use standard Monte Carlo (MC): simulate
the chain until step n, repeat N times independently, and average the N realizations
of c(Xn). The main drawback of this general approach is its slow convergence: The
variance of the Monte Carlo estimator of E[c(Xn)] typically converges a O(N−1) for
any n.

A (deterministic) quasi-Monte Carlo (QMC) method for Markov chains has been
proposed in [9] for the case where the chain has a totally ordered state space. The
method simulates an array of N copies of the chain in parallel. At each step n, it
reorders the chains by increasing order of their states, and it uses two-dimensional
quasi-random points to move them ahead by one step. Convergence (in the deter-
ministic sense) of the average cost to the expectation when N→ ∞ was established,
and the QMC approach outperformed plain MC in numerical experiments. However,
QMC error bounds are typically too loose and inconvenient for practical error assess-
ment. A randomized quasi-Monte Carlo (RQMC) approach named Array-RQMC,
which resembles the previous QMC scheme, was proposed and analyzed in [11, 12],
in the setting of a Markov chain model with general state space. The method was
shown to provide an unbiased estimator of E[c(Xn)] for any n, and variance bounds
for this estimator were proved under certain conditions. In particular, it was proved
that for a Markov chain with a one-dimensional state space, if stratified sampling
as in [2, 8] is used at each step to advance the array of chains by one step, and
under some technical conditions, the variance converges as O(N−3/2), which beats
Monte Carlo. In numerical experiments with Markov chains having one-dimensional
and higher-dimensional states, the empirical variance was typically much smaller
than the Monte Carlo variance, and was observed to decrease often at better rates
than O(N−3/2), sometimes even faster than O(N−2): see [12, 13, 14], for example.
However, no proof of these faster rates is available so far, and the O(N−3/2) rate has
been proved only for ordinary stratification of the unit square in identical subsquares,
for a one-dimensional state. A related convergence-rate result worth mentioning was
obtained in [7], in the context of particle filters. The authors proved that if the RQMC
point set used at each step is a (t,m,s)-net with a nested uniform scramble [18] and
if the states are sorted using a Hilbert-curve when their dimension is larger than 1,
then the variance of the Array-RQMC estimator converges as o(N−1), which is faster
than Monte Carlo.

The aim of this paper is to increase our theoretical understanding of the method by
expanding the class of sampling methods for which an O(N−3/2) convergence rate
is proved. We revisit the simple stratified sampling (SSS) setting and we consider
a Sudoku Latin square sampling (SLSS) setting, which combines two-dimensional

Page:2 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

Sudoku Latin Square Sampling for Markov Chain Simulation 3

stratified sampling with Latin hypercube sampling [15, 20]. Our theoretical results
are consolidated by three numerical experiments in which we observe a significantly
lower variance with SLSS than with simple stratification.

SLSS turns out to be a special case of the U-sampling method of [21] for sampling
N points in the unit hypercube. The U-sampling first generates a random orthogonal
array-based Latin hypercube design, which is a selection of N small cubic boxes
of side size 1/N that form an orthogonal array of strength t [16, 17] and a Latin
hypercube at the same time. Then it samples one point uniformly inside each selected
small box, independently across the boxes. For the special case where t = 2, this
type of design (the selection of the boxes) gives a Sudoku Latin square [19] for each
two-dimensional projection of the points. Thus, each two-dimensional projection
satisfies the properties (1) to (3) mentioned in the abstract. An example of a Sudoku
Latin square is given in Fig. 1. Since our SLSS is in two dimensions, there is a single
two-dimensional projection and it must form a Sudoku Latin square. Sudoku Latin
squares are also studied in [22], although these authors are only considering discrete
designs and space filling constructions, and not in sampling random points uniformly
in the unit hypercube.

0 1

1

0 1

1

0 1

1

Fig. 1 Example of a Sudoku Latin square with 16 points.

A different sampling method that generalizes the SLSS to more than two dimen-
sions was studied in [5]. In d dimensions, that method generates N = pd points
in a way that (1) there is always one point per subcube when we partition the d-
dimensional unit cube into N identical subcubes, (2) there is one value in each
subinterval when we project all the points over a single coordinate to obtain N values
in the unit interval, and we partition the unit interval into N subintervals of length
1/N, and (3) each point taken individually has the uniform distribution in the sub-
cube to which it belongs. Variance bounds have been obtained when the integral of a
function over the unit cube is estimated by the average of the function values at the N
points, under certain assumptions on the integrand. Different types of variance results,
in terms of the ANOVA decomposition of the integrand, were proved in [21] for the
same type of integration problem with U-sampling. SLSS is the two-dimensional
special case of each of these two methods.

Page:3 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

4 Rami El Haddad, Joseph El Maalouf, Christian Lécot, and Pierre L’Ecuyer

Our paper is the first to study the use of SLSS in the context of simulating an array
of Markov chains. SLSS gives stronger constructions than simple stratified points
over the unit square. Our aim is to investigate if, and how much, this strengthening
has an impact on the variance of expected cost estimators.

The remainder is organized as follows. In Sect. 2, we define our setting for Monte
Carlo simulation of discrete-state Markov chains and explain how we proceed with
plain (standard) Monte Carlo, with SSS, and with SLSS. With SSS, the way we
map the points to chain states at each step follows [6, 9] and differs from what was
done in [12]. In Sect. 3, we analyze the variance of these schemes. We prove that the
variance of the simulation estimator of an expected state-dependent cost at any given
step n is O(N−3/2) for both SSS and SLSS. This beats the known rate of O(N−1)
for standard Monte Carlo. Results of computational experiments and comparison
between standard Monte Carlo, SSS, and SLSS are given in Sect. 4. The empirical
convergence rates of the variance for SSS and SLSS are close to those established in
Sect. 3, but the variance with SLSS is significantly smaller than with SSS. In Sect. 5,
we give the technical proofs of some results and we conclude in Sect. 6.

2 Monte Carlo Simulations of Markov Chains

Let {Xn, n ≥ 0} be a stationary discrete-time Markov chain over a countable and
ordered state space X . Without loss of generality one can assume that X = N or Z.
Let P(i, j) = P(Xn+1 = j|Xn = i) denote the transition probabilities and PPP = (P(i, j) :
(i, j) ∈X 2) the transition probability matrix. We denote by µn(i) = P(Xn = i) the
state probabilities at step n and µn = (µn(i) : i ∈X) the probability vector for step
n. We assume that the initial probability vector µ0 is given (often, it is degenerate
over a single state).

For i, j ∈X we set
q j(i) := ∑

h≤ j
P(i,h). (1)

We define the conditional cumulative distribution function Fi(j) := P(Xn+1 ≤ j|Xn =
i) = q j(i). If I denotes the unit interval (0,1] we have a disjoint union I =

⋃
j∈X Ii, j,

where Ii, j := (q j−1(i),q j(i)]. So that for any i ∈X and u ∈ I, there exists a unique
j ∈X such that u ∈ Ii, j: we denote it by F−1

i (u). If Xn = i, then F−1
i (u) is the next

state.
Let δi be the Dirac measure at i, defined by

δi(j) =

{
1 if j = i,
0 otherwise.

For any integer n, the distribution µn is approximated by

Page:4 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

Sudoku Latin Square Sampling for Markov Chain Simulation 5

µ̂n :=
1
N

N

∑
k=1

δink
,

where N is a fixed integer and in1, . . . , i
n
N are calculated iteratively.

First, a set (i0k : 1≤ k ≤ N) of N states is sampled from µ0: several techniques are
proposed in [4]. In many applications, the initial state of the chain is fixed, and then
µ̂0 = µ0.

We describe the transition from step n to n+1 for three Monte Carlo methods.
We introduce µ̃n+1 := µ̂nPPP as an intermediate distribution (which is not used in
effective calculations). This µ̃n+1 is an approximation of µn+1, but it is generally
not an equally-weighted sum of Dirac measures, like µ̂n, so that an additional step
is needed. We formulate this step as a quadrature: the MC methods correspond to
quadrature algorithms, possibly combined with variance reduction techniques. To
that end, let us consider an arbitrary sequence s = (s(i) : i ∈X) (a column vector);
we assume that s is non-negative, just to avoid worrying about convergence of series.
Then

µ̃n+1s = µ̂nPPPs =
1
N

N

∑
k=1

∑
j∈X

P(ink , j)s(j).

Let 1k be the indicator function of the interval Ik := ((k−1)/N,k/N] and 1i, j denote
the indicator function of the interval Ii, j. If we associate to s the function Cn

s defined
by

Cn
s (u) :=

N

∑
k=1

∑
j∈X

1k(u1)1ink , j
(u2)s(j), u = (u1,u2) ∈ I2, (2)

then we have
µ̃n+1s =

∫
I2

Cn
s (u)du.

We obtain µ̂n+1 by approximating the integral with Monte Carlo estimation. In
the following, if m is an integer, we denote [1,m] := {1,2, . . . ,m}. The notation
U ∼U (E) means that U is a random variable uniformly distributed over the set E .

2.1 Standard Monte Carlo

The transition from step n to step n+1 acts as follows: if the state of the chain is
i, i.e. Xn = i, then a random number U with U ∼ U (I) is generated and the new
state of the chain is F−1

i (U), i.e. Xn+1 = F−1
Xn

(U). The operation is repeated N times
independently, in order to advance N copies of the chain. With our notations, this
may be written as follows. Let {Uk : 1≤ k ≤ N} be independent random variables
with Uk ∼U (I), then

in+1
k = F−1

ink
(Uk), 1≤ k ≤ N.

Page:5 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

6 Rami El Haddad, Joseph El Maalouf, Christian Lécot, and Pierre L’Ecuyer

That is, if, for any non-negative sequence s,

X̂n+1
s :=

1
N

N

∑
k=1

Cn
s

(
k−1

N
,Uk

)
, (3)

then
µ̂n+1s = X̂n+1

s . (4)

2.2 Simple Stratified Sampling

We suppose that N = p2, for some integer p > 0. The transition from n to n+1 has
two steps: renumbering of the states and numerical integration.

(S1) The states are relabeled so that in1 ≤ ·· · ≤ inN . The technique was used in the
QMC context and ensures theoretical and numerical convergence of the scheme
(see [9]) .

(S2) Consider a partition of I2 into N squares: I` =H`1×H ′`2
, where, for `∈ [1, p]2:

H`1 := ((`1−1)/p, `1/p] and H`2 := ((`2−1)/p, `2/p]. Let {V` : ` ∈ [1, p]2} be
independent random variables, where V` = (V`,1,V`,2)∼U (I`).
For an arbitrary non-negative sequence s, let

Ŷ n+1
s :=

1
N ∑

`∈[1,p]2
Cn

s (V`), (5)

then
µ̂n+1s = Ŷ n+1

s . (6)

If u ∈ I, let
κ(u) := dNue, (7)

where dxe is the least integer greater than or equal to x. Hence equation (6) means
that the next states are calculated as follows:

in+1
(`1−1)p+`2

= F−1
in
κ(V`,1)

(V`,2), ` ∈ [1, p]2

(the numbering of the states in+1
k is arbitrary). The first projection V`,1 of V` is

used for selecting the state at step n and the second projection V`,2 is used for
performing the transition to step n+1. Note that with this scheme, the mapping
between the N points and the N states is not necessarily one-to-one: it is possible
to pick the same state more than once and leave out some of the states. This differs
from the SSS scheme used in [12, 14].

Page:6 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

Sudoku Latin Square Sampling for Markov Chain Simulation 7

2.3 Sudoku Latin Square Sampling

As before, we assume N = p2, and the transition from n to n+ 1 has two steps:
renumbering of the states and numerical integration.

(S1) The states are relabeled so that in1 ≤ ·· · ≤ inN .
(S2) We consider the same partition of I2 as before: I` for ` ∈ [1, p]2. Let {W` : ` ∈

[1, p]2} be random variables, where W` = (W`,1,W`,2), with

W`,1 =
`1−1

p
+

σ1(`2)−1+ξ 1
`

p2 W`,2 =
`2−1

p
+

σ2(`1)−1+ξ 2
`

p2 .

Here σ1 and σ2 are random permutations of [1, p] and ξ 1
` ∼U (I) and ξ 2

` ∼U (I).
All these random variables being independent. The set of values of the random
variable W` is included in I` and has the properties:

(P1) for any ` ∈ [1, p]2, there is a unique point of this set in each square I`,
(P2) for any k ∈ [1,N], there is a unique point of this set in each rectangle I× Ik

or Ik× I.

In addition W` ∼U (I`). For an arbitrary non-negative sequence s, let

Ẑn+1
s :=

1
N ∑

`∈[1,p]2
Cn

s (W`). (8)

Then
µ̂n+1s = Ẑn+1

s . (9)

Due to property (P2), the mapping (see (7))

` := (`1, `2) ∈ [1, p]2→ κ(W`,1) ∈ [1,N]

is one-to-one: each state of step n is considered exactly once for a transition (this
is not the case with SSS). Equation (9) means that the next states are calculated as
follows:

in+1
(`1−1)p+`2

= F−1
in
κ(W`,1)

(W`,2), ` ∈ [1, p]2

(as before, the numbering of the states in+1
k is arbitrary). The first projection W`,1

of W` is used for selecting the state at step n and the second projection W`,2 is
used for performing the transition to step n+1.

3 Convergence Analysis

In this section we prove, for each method, that the estimator of the expected cost
at each step is unbiased and we establish that the variance of the estimator used is

Page:7 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

8 Rami El Haddad, Joseph El Maalouf, Christian Lécot, and Pierre L’Ecuyer

O(N−1) for standard MC and O(N−3/2) for SSS and SLSS, where N is the number
of simulation paths. In the following, λ is the Lebesgue measure and λ2 the two-
dimensional Lebesgue measure; we put |E | for the number of elements of a set E .
We use the sequence sh, for h ∈X :

sh(i) :=

{
1 if i≤ h,
0 otherwise.

The total variation of a sequence s = (s(i) : i ∈X) is defined by

TV (s) := ∑
i∈X
|s(i+1)− s(i)|. (10)

We use below the total variation of qh, for h ∈X . We recall that we have from (1):

qh(i) = P(Xn+1 ≤ h|Xn = i),

and from (10):

TV (qh) = ∑
i∈X
|P(Xn+1 ≤ h|Xn = i+1)−P(Xn+1 ≤ h|Xn = i)|.

In the following, we assume that

M := sup
h∈X

TV (qh)<+∞.

There are situations for which qh is monotone and situations for which M < 1 (or
both), but this is not always true. See [13, 14] for examples and further discussion.
Our M corresponds to Λ j in [12].

3.1 Standard Monte Carlo

Lemma 1. Let s be a non-negative sequence. The standard Monte Carlo estimator
of µ̃n+1s:

X̂n+1
s :=

1
N

N

∑
k=1

Cn
s

(
k−1

N
,Uk

)
has the following properties.

1. X̂n+1
s is unbiased.

2. If s = sh, for h ∈X , then

Var(X̂n+1
sh

)≤ 1
4N

.

Proof.

1. We have

Page:8 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

Sudoku Latin Square Sampling for Markov Chain Simulation 9

E
[
Cn

s

(
k−1

N
,Uk

)]
= ∑

j∈X
P(ink , j)s(j),

so that E[X̂n+1
s] = µ̃n+1s.

2. The variable

Cn
sh

(
k−1

N
,Uk

)
= ∑

j∈X , j≤h
1ink , j

(Uk)

is a Bernoulli random variable, with variance ≤ 1/4. Hence the result.
ut

We then obtain an error bound by using the same techniques as in [12]. We assume
that, for any non-negative sequence s, the standard Monte Carlo estimator µ̂0s of µ0s
is unbiased and that, for any h ∈X ,

Var(µ̂0sh)≤
x0

N
,

for some x0 ≥ 0 (as noticed before, in many applications, µ̂0 = µ0).

Proposition 1. For the standard Monte Carlo method, it holds:

1. for any non-negative sequence s

E [µ̂ns] = µns,

2. for any h ∈X ,
Var(µ̂nsh)≤

xn

N
,

where xn+1 = M2xn +1/4 (n≥ 0).

Proof.

1. We have

µn+1s− µ̂n+1s= µn+1s− µ̃n+1s+ µ̃n+1s− µ̂n+1s= µnPPPs− µ̂nPPPs+ µ̃n+1s− X̂n+1
s ,

so, by using Lemma 1, the result follows by induction.
2. The variables µn+1sh− µ̃n+1sh and µ̃n+1sh− µ̂n+1sh are uncorrelated and µ̃n+1sh−

µ̂n+1sh = µ̃n+1sh− X̂n+1
sh

is a centered variable, consequently

Var(µ̂n+1sh) = E
[
(µn+1sh− µ̃n+1sh)

2]+E
[
(µ̃n+1sh− µ̂n+1sh)

2] . (11)

For any i ∈X , we have PPPsh(i) = Fi(h), hence

µn+1sh− µ̃n+1sh =µnPPPsh− µ̂nPPPsh = ∑
i∈X

µn(i)Fi(h)− ∑
i∈X

µ̂n(i)Fi(h)

=− ∑
i∈X

µnsi(Fi+1(h)−Fi(h))+ ∑
i∈X

µ̂nsi(Fi+1(h)−Fi(h))

= ∑
i∈X

(µ̂nsi−µnsi)(Fi+1(h)−Fi(h)).

Page:9 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

10 Rami El Haddad, Joseph El Maalouf, Christian Lécot, and Pierre L’Ecuyer

On the one hand, we write

E
[
(µn+1sh− µ̃n+1sh)

2]= E

(∑
i∈X

(µ̂nsi−µnsi)(qh(i+1)−qh(i))

)2


= ∑
(i, j)∈X 2

E [(µ̂nsi−µnsi)(qh(i+1)−qh(i))(µ̂ns j−µns j)(qh(j+1)−qh(j))]

≤ ∑
(i, j)∈X 2

√
Var(µ̂nsi)Var(µ̂ns j)|qh(i+1)−qh(i)|× |qh(j+1)−qh(j)|.

On the other hand, Lemma 1 gives

E
[
(µ̃n+1sh− µ̂n+1sh)

2]= E
[
(µ̃n+1sh− X̂n+1

sh
)2
]
≤ 1

4N
.

So, by using (11), the result follows by induction.
ut

The bounds for Var(Ŷ n+1
sh

) (SSS) and Var(Ẑn+1
sh

) (SLSS) are not so easily obtained,
and the proofs of Lemma 2 and 3 are given in Sect. 5.

3.2 Simple Stratified Sampling

Lemma 2. Let s be a non-negative sequence. The SSS estimator of µ̃n+1s:

Ŷ n+1
s :=

1
N ∑

`∈[1,p]2
Cn

s (V`)

has the following properties.

1. Ŷ n+1
s is unbiased.

2. If s = sh, for h ∈X , then

Var(Ŷ n+1
sh

)≤ 1
4N3/2 (TV (qh)+2).

A similar result (with the same N−3/2 order) was established in [12], but the SSS
method studied there differs from the one used here, so we provide a different proof
(see Sect. 5). Intermediate results from this proof (eqs. (12) and (13)) will be re-used
afterwards for the analysis of SLSS.

The proof of the next result is similar to the proof of Proposition 1. We assume
that, for any non-negative sequence s, the SSS estimator µ̂0s of µ0s is unbiased and
that, for any h ∈X ,

Var(µ̂0sh)≤
y0

N3/2

for some y0 ≥ 0.

Page:10 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

Sudoku Latin Square Sampling for Markov Chain Simulation 11

Proposition 2. For the SSS method, it holds:

1. for any non-negative sequence s

E [µ̂ns] = µns,

2. for any h ∈X ,
Var(µ̂nsh)≤

yn

N3/2 ,

where yn+1 = M2yn +(M+2)/4 (n≥ 0).

3.3 Sudoku Latin Square Sampling

Lemma 3. Let s be a non-negative sequence. The SLSS estimator of µ̃n+1s:

Ẑn+1
s :=

1
N ∑

`∈[1,p]2
Cn

s (W`)

has the following properties.

1. Ẑn+1
s is unbiased.

2. If s = sh, for h ∈X , and if qh is a piecewise monotonic sequence, with r pieces,
then

Var(Ẑn+1
sh

)≤ 1
N3/2

((
13
4

+ r
)
(TV (qh)+2)+2(TV (qh)+2)2

)
.

The constant involved in the O(N−3/2) bound of Var(Ẑn+1
sh

) (SLSS) is larger than
the corresponding constant for Var(Ŷ n+1

sh
) (SSS), since r ≥ 1 in Lemma 3; this would

suggest degraded performance. But in the examples of Sect. 4 we see that it is not
necessarily the case.

The proof of the next result is similar to the proof of Proposition 1. We assume
that, for any non-negative sequence s, the SLSS estimator µ̂0s of µ0s is unbiased and
that, for any h ∈X ,

Var(µ̂0sh)≤
z0

N3/2 ,

for some z0 ≥ 0.

Proposition 3. For the SLSS method, it holds:

1. for any non-negative sequence s

E [µ̂ns] = µns,

2. for any h ∈X ,
Var(µ̂nsh)≤

zn

N3/2 ,

Page:11 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

12 Rami El Haddad, Joseph El Maalouf, Christian Lécot, and Pierre L’Ecuyer

where zn+1 = M2zn +(13/4+ r)(M+2)+2(M+2)2 n≥ 0.

Remark 1. The bounds in Propositions 1, 2, and 3 increase exponentially with n when
M > 1, and remains bounded if M < 1, which is not uncommon; see [14].

Remark 2. The variance of each estimator is bounded for a test sequence of the form
sh, for h ∈X . We obtain a bound for a nonnegative cost function c by the same
reasoning as in Proposition 1 (see [12]):

µnc− µ̂nc = ∑
i∈X

(µ̂nsi−µnsi)(c(i+1)− c(i)),

hence

E
[
(µnc− µ̂nc)2]≤ ∑

(i, j)∈X 2

√
Var(µ̂nsi)Var(µ̂ns j)|c(i+1)−c(i)|×|c(j+1)−c(j)|,

and then
Var(µ̂nc)≤ TV (c)2× sup

h∈X
Var(µ̂nsh).

4 Numerical Examples

In this section, we compare standard Monte Carlo to the variance reduction strategies
analyzed previously: SSS and SLSS, for three examples. For each example, each
strategy, and each N considered, we compute the unbiased estimator µ̂ns of µns for
the selected n, replicate this 100 times, and compute the empirical variance Var of the
100 realizations of µ̂ns. We then plot log10 Var as a function of log10 N. Assuming
that Var≈ KN−α for some positive constants K and α , we estimate the variance rate
α by linear regression. We also compute the (empirical) efficiency of each simulation
estimator, defined as the inverse of the product of Var by the CPU time [10], and
we plot log10 efficiency as a function of log10 N. Note that for standard Monte Carlo,
the efficiency does not depend on N. For SSS and SLSS, it takes into account the
additional work to compute the estimators.

4.1 A Geo/Geo/1 Queue

We consider a discrete-time Geo/Geo/1 queue (see [1]): the queue is empty at the
initial time. During each unit of time, the customer in service (if there is one)
completes it with probability 0.5, and one new customer arrives with probability 0.6.
We estimate the mean number of customers in the queue at time n = 12. Figure 2
(top) shows log10 Var as a function of log10 N on the left and log10 efficiency as a
function of log10 N on the right, for N = 102,502,1002, . . . ,10002. We find from the

Page:12 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

Sudoku Latin Square Sampling for Markov Chain Simulation 13

plots that SSS and SLSS give not only smaller variances than standard MC (for the
same N), but also better efficiencies, and that SLSS outperforms SSS. The regression
estimates of α are given in the first row of Table 1. They match the upper bounds of
O(N−3/2) established in Sect. 3.

4.2 A Gambler in a Casino

A gambler is going to a casino for four hours. He plans to play the same game every
ten seconds (so he will play 1440 times). At this game, for each Euro that he bids,
he gets 0 with probability 0.9 and m ∈ {1,2, . . . ,10} with probability 0.01 each. His
policy is the following: if he has more than 100 Euros, he plays 2 Euros, but if he
has 100 Euros or less, he plays only 1. To make sure that he can play during the four
hours, he brings 2780 Euros with him. The model is a Markov chain on state space
E = [0,28700]. We estimate the probability that the gambler has more than 1500
Euros at the end of the game. Here we use N = 102,202,302, . . . ,2002. The results
are reported in the middle rows of Fig. 2 and Table 1. We find that SSS and SLSS
produce both smaller variances and better efficiencies than standard MC for large
enough N, and that SLSS outperforms SSS. The regression estimate of α for SLSS
corresponds to the bound established in Sect. 3, but for SSS it is better. However, the
variance itself is smaller for SLSS than for SSS, and the better rate of SSS might not
hold beyond the observed range (it is likely caused by a few poor values of Var for
the smallest values of N).

4.3 Diffusion

The 1-D diffusion equation

∂c
∂ t

(x, t) = D
∂ 2c
∂ t2 (x, t), x ∈ R, t > 0 and c(x,0) = c0(x), x ∈ R

(where c0≥ 0 and
∫
R c0(x)dx= 1) may be discretized with a time step ∆ t and a spatial

step ∆x and the solution is approximated using a random walk: P(i, i−1) = P(i, i+
1) = D∆ t/∆x2, P(i, i) = 1−2D∆ t/∆x2 (we refer to [3] in a QMC context). Here we
specify D = 1 and c0 is the indicator function of the interval [−1/2,1/2]; we want
to approximate

∫ 1/2
−1/2 c(x,T)dx. We choose T = 1, with ∆ t = 6.25 10−4 and ∆x =

5.0 10−2. Here we take N = 112,192,312, . . . ,1992. In a previous version of the paper,
we had N = 102,202,302, . . . ,2002, but this gave oscillations in SLSS outcomes, with
better results when p =

√
N was a multiple of 20, because of interactions with other

discretization parameters. To avoid this, we changed our choices of p. So we use
prime numbers near the previous ones for p. The bottom part of Figure 2 and the

Page:13 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

14 Rami El Haddad, Joseph El Maalouf, Christian Lécot, and Pierre L’Ecuyer

last row of Table 1 give the results, which are very similar to those of the previous
example. Again, SLSS outperforms the other methods.

Table 1 Calculation of order α of the sample variance: comparison of standard Monte Carlo (MC),
SSS, and SLSS for three examples and estimators

Calculation MC SSS SLSS

Geo/Geo/1 queue E[X12] 0.99 1.50 1.51

Gambler in a casino P(X1440 > 1500) 1.02 1.76 1.53

Diffusion
∫ 1/2
−1/2 c(x,T)dx 0.98 1.61 1.49

5 The Proofs

5.1 Proof of Lemma 2

Proof.

1. We have

E [Cn
s (V`)] = N

N

∑
k=1

∑
j∈X

(∫
I`

1k(u1)1ink , j
(u2)du

)
s(j).

Hence

E[Ŷ n+1
s] =

1
N

N

∑
k=1

∑
j∈X

P(ink , j)s(j) = µ̃n+1s.

2. The function Cn
sh

is the indicator function of the set

Jn
h :=

N⋃
k=1

(
Ik×

⋃
j∈X , j≤h

Iink , j

)
=

N⋃
k=1

Ik× (0,qh(ink)]. (12)

The variable Cn
sh
(V`) is a Bernoulli random variable, with expectation f n

h,` =

Nλ2(Jn
h ∩ I`). Here f n

h,` = 1 if I` ⊂ Jn
h and f n

h,` = 0 if I` ∩ Jn
h = /0. Consequently,

Var(Cn
sh
(V`))= f n

h,`(1− f n
h,`)≤ 1/4 and Var(Cn

sh
(V`))= 0 if I`⊂ Jn

h or if I`∩Jn
h = /0,

so that

Var(Ŷ n+1
sh

)≤ 1
4N2

∣∣{` ∈ [1, p]2 : I` 6⊂ Jn
h and I`∩ Jn

h 6= /0}
∣∣.

a. If I` 6⊂ Jn
h , then there exists (u1,u2) which belongs to I` and not to Jn

h ; since
this u1 is in some Ik, we have:

Page:14 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

Sudoku Latin Square Sampling for Markov Chain Simulation 15

1. Geo/Geo/1 queue: sample variance (left) and efficiency (right) of 100 copies of the calculation
of E[X12] as a function of N (N = 102,502,1002, . . . ,10002) (log-log scale)

2. Gambler in a casino: sample variance (left) and efficiency (right) of 100 copies of the calculation
of P(X1440 > 1500) as a function of N (N = 102,202,302, . . . ,2002) (log-log scale)

3. Diffusion: sample variance (left) and efficiency (right) of 100 copies of the calculation of∫ 1/2
−1/2 c(x,T)dx as a function of N (N = 112,192,312, . . . ,1992) (log-log scale)

Fig. 2 Comparison of standard Monte Carlo (MC) to SSS and SLSS (Sudoku) for three examples

Page:15 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

16 Rami El Haddad, Joseph El Maalouf, Christian Lécot, and Pierre L’Ecuyer

∃k ∈ [1,N],∃(u1,u2) ∈ I` : u1 ∈ Ik ⊂
(
`1−1

p
,
`1

p

]
and u2 /∈ (0,qh(ink)],

so that

∃k ∈ {p(`1−1)+1, p(`1−1)+2, . . . , p`1},∃u2 ∈
(
`2−1

p
,
`2

p

]
: u2 > qh(ink),

consequently
`2 > p min

p(`1−1)<k≤p`1
qh(ink).

b. Analogously, if I`∩ Jn
h 6= /0, then there exists (u1,u2) which belongs to I` and

also to Jn
h ; and we eventually obtain:

`2 < p max
p(`1−1)<k≤p`1

qh(ink)+1.

We then have the following bounds∣∣{` ∈ [1, p]2 : I` 6⊂ Jn
h and I`∩ Jn

h 6= /0}
∣∣

≤ p

(
p

∑
`1=1

(
max

p(`1−1)<k≤p`1
qh(ink)− min

p(`1−1)<k≤p`1
qh(ink)

)
+2

)

≤ N1/2

(
∑

i∈X
|qh(i+1)−qh(i)|+2

)
,

because the states are relabeled so that in1 ≤ ·· · ≤ inN . Consequently,∣∣{` ∈ [1, p]2 : I` 6⊂ Jn
h and I`∩ Jn

h 6= /0}
∣∣≤ N1/2(TV (qh)+2), (13)

and the result follows.
ut

5.2 Proof of Lemma 3

Proof.

1. Since W` ∼U (I`), the demonstration is the same as in Lemma 2.
2. In the following, we have many summations with `,`′,m,m′ ∈ [1, p]2. In order to

lighten the notations, we omit this set. We have

Var(Ẑn+1
sh

) =V0(Ẑn+1
sh

)+
1

N2 ∑
(`,`′): 6̀=`′

Cov
(
Cn

sh
(W`),Cn

sh
(W`′)

)
,

where

Page:16 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

Sudoku Latin Square Sampling for Markov Chain Simulation 17

V0(Ẑn+1
sh

) :=
1

N2 ∑
`

Var
(
Cn

sh
(W`)

)
.

a. The function Cn
sh

is the indicator function of the set Jn
h defined by (12). Since

W` ∼U (I`), we have, as in Lemma 2:

V0(Ẑn+1
sh

)≤ 1
4N2

∣∣{` ∈ [1, p]2; I` 6⊂ Jn
h and I`∩ Jn

h 6= /0}
∣∣.

From the bound (13), we deduce

V0(Ẑn+1
sh

)≤ 1
4N3/2 (TV (qh)+2).

b. We split Var(Ẑn+1
sh

) =V0(Ẑn+1
sh

)+V1(Ẑn+1
sh

)+V2(Ẑn+1
sh

)+V3(Ẑn+1
sh

), with

V1(Ẑn+1
sh

) :=
1

N2 ∑
(`,`′):`1 6=`′1,`2=`′2

Cov
(
Cn

sh
(W`),Cn

sh
(W`′)

)
,

V2(Ẑn+1
sh

) :=
1

N2 ∑
(`,`′):`1=`′1,`2 6=`′2

Cov
(
Cn

sh
(W`),Cn

sh
(W`′)

)
,

V3(Ẑn+1
sh

) :=
1

N2 ∑
(`,`′):`1 6=`′1,`2 6=`′2

Cov
(
Cn

sh
(W`),Cn

sh
(W`′)

)
.

We introduce the N2 squares I`,m = H`1,m1 ×H`2,m2 , where, for (`,m) ∈ [1, p]4:

H`1,m1 :=((`1−1)/p+(m1−1)/N,(`1−1)/p+m1/N],

H`2,m2 :=((`2−1)/p+(m2−1)/N,(`2−1)/p+m2/N].

We have

Page:17 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

18 Rami El Haddad, Joseph El Maalouf, Christian Lécot, and Pierre L’Ecuyer

V1(Ẑn+1
sh

) = ∑
(`,`′):`1 6=`′1,`2=`′2

(
N

p−1 ∑
(m,m′):m1=m′1,m2 6=m′2

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h)

−λ2(I`∩ Jn
h)λ2(I`′ ∩ Jn

h)

)
,

V2(Ẑn+1
sh

) = ∑
(`,`′):`1=`′1,`2 6=`′2

(
N

p−1 ∑
(m,m′):m1 6=m′1,m2=m′2

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h)

−λ2(I`∩ Jn
h)λ2(I`′ ∩ Jn

h)

)
,

V3(Ẑn+1
sh

) = ∑
(`,`′):`1 6=`′1,`2 6=`′2

(
N

(p−1)2 ∑
(m,m′):m1 6=m′1,m2 6=m′2

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h)

−λ2(I`∩ Jn
h)λ2(I`′ ∩ Jn

h)

)
.

i. We have
V1(Ẑn+1

sh
) = ∑

`:I` 6⊂Jn
h ,I`∩Jn

h 6= /0
∑

`′:`′1 6=`1,`
′
2=`2

V1(`,`
′),

where

V1(`,`
′) :=

N
p−1 ∑

(m,m′):m1=m′1,m2 6=m′2

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h)

−λ2(I`∩ Jn
h)λ2(I`′ ∩ Jn

h).

We split V1(`,`
′) = V̂1(`,`

′)+V̌1(`,`
′), with

V̂1(`,`
′) :=

N
p−1 ∑

(m,m′):m1=m′1,m2 6=m′2

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h)

− N
p ∑

(m,m′):m1=m′1

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h),

V̌1(`,`
′) :=p

× ∑
(m,m′):m1=m′1

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h)−λ2(I`∩ Jn
h)λ2(I`′ ∩ Jn

h).

On one side

Page:18 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

Sudoku Latin Square Sampling for Markov Chain Simulation 19

V̂1(`,`
′) =N ∑

m
λ2(I`,m∩ Jn

h)

×

 1
p(p−1) ∑

m′:m′1=m1,m′2 6=m2

λ2(I`′,m′ ∩ Jn
h)−

1
p

λ2(I`′,m∩ Jn
h)

 .

Since both terms inside the parentheses are bounded by 1/(pN2), we have
|V̂1(`,`

′)| ≤ 1/(pN2) and so∣∣∣∣∣∣ ∑
`′:`′1 6=`1,`

′
2=`2

V̂1(`,`
′)

∣∣∣∣∣∣≤ p−1
pN2 .

On the other side

V̌1(`,`
′) = ∑

m1∈[1,p]
λ2((H`1,m1 ×H`2)∩ Jn

h) ∑
m′1∈[1,p]

V̌1(`,`
′,m1,m′1),

where V̌1(`,`
′,m1,m′1) := λ2((H`′1,m1

×H`2)∩Jn
h)−λ2((H`′1,m

′
1
×H`2)∩Jn

h).
We have

V̌1(`,`
′,m1,m′1) =

1
N

(
λ

(
H`2 ∩ (0,qh(inp(`′1−1)+m1

)]
)

−λ

(
H`2 ∩ (0,qh(inp(`′1−1)+m′1

)]
))

.

As we have

|V̌1(`,`
′,m1,m′1)| ≤

1
N

×λ

(
H`2 ∩

[
min

p(`′1−1)<k≤p`′1
qh(ink), max

p(`′1−1)<k≤p`′1
qh(ink)

])
,

we deduce

|V̌1(`,`
′)| ≤ 1

N p
λ

(
H`2 ∩

[
min

p(`′1−1)<k≤p`′1
qh(ink), max

p(`′1−1)<k≤p`′1
qh(ink)

])
.

Consequently∣∣∣∣∣∣ ∑
`′:`′1 6=`1,`

′
2=`2

V̌1(`,`
′)

∣∣∣∣∣∣≤ 1
N p

× ∑
`′1∈[1,p]:`

′
1 6=`1

λ

(
H`2 ∩

[
min

p(`′1−1)<k≤p`′1
qh(ink), max

p(`′1−1)<k≤p`′1
qh(ink)

])
.

Page:19 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

20 Rami El Haddad, Joseph El Maalouf, Christian Lécot, and Pierre L’Ecuyer

Since qh is a piecewise monotonic sequence, and because the states are
relabeled so that in1 ≤ ·· · ≤ inN the intervals(

min
p(`′1−1)<k≤p`′1

qh(ink), max
p(`′1−1)<k≤p`′1

qh(ink)

)
, `′1 ∈ [1, p]

are pairwise disjoint on each of the r pieces where qh is monotonic, and we
obtain ∣∣∣∣∣∣ ∑

`′:`′1 6=`1,`
′
2=`2

V̌1(`,`
′)

∣∣∣∣∣∣≤ r
N p

λ (H`2)≤
r

N2 .

And so, using the bound (13):

|V1(Ẑn+1
sh

)| ≤ (r+1)p−1
pN3/2 (TV (qh)+2).

ii. We have
V2(Ẑn+1

sh
) = ∑

`:I` 6⊂Jn
h ,I`∩Jn

h 6= /0
∑

`′:`′1=`1,`
′
2 6=`2

V2(`,`
′),

where

V2(`,`
′) :=

N
p−1

× ∑
(m,m′):m1 6=m′1,m2=m′2

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h)−λ2(I`∩ Jn
h)λ2(I`′ ∩ Jn

h).

We split V2(`,`
′) = V̂2(`,`

′)+V̌2(`,`
′), with

V̂2(`,`
′) :=

N
p−1 ∑

(m,m′):m1 6=m′1,m2=m′2

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h)

− N
p ∑

(m,m′):m2=m′2

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h),

V̌2(`,`
′) :=p ∑

(m,m′):m2=m′2

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h)−λ2(I`∩ Jn
h)λ2(I`′ ∩ Jn

h).

On one side

V̂2(`,`
′) =N ∑

m
λ2(I`,m∩ Jn

h)

×

 1
p(p−1) ∑

m′:m′1 6=m1,m′2=m2

λ2(I`′,m′ ∩ Jn
h)−

1
p

λ2(I`′,m∩ Jn
h)

 .

Page:20 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

Sudoku Latin Square Sampling for Markov Chain Simulation 21

Since both terms inside the parentheses are bounded by 1/(pN2), we have
|V̂2(`,`

′)| ≤ 1/(pN2) and so∣∣∣∣∣∣ ∑
`′:`′1=`1,`

′
2 6=`2

V̂2(`,`
′)

∣∣∣∣∣∣≤ p−1
pN2 .

On the other side

V̌2(`,`
′) = ∑

m2∈[1,p]
λ2((H`1 ×H`2,m2)∩ Jn

h) ∑
m′2∈[1,p]

V̌2(`,`
′,m2,m′2),

where V̌2(`,`
′,m2,m′2) := λ2((H`1×H`′2,m2

)∩Jn
h)−λ2((H`1×H`′2,m

′
2
)∩Jn

h);
we have

V̌2(`,`
′,m2,m′2) =

1
N ∑

m′1∈[1,p]

(
λ

(
H`′2,m2

∩ (0,qh(inp(`1−1)+m′1
)]
)

−λ

(
H`′2,m

′
2
∩ (0,qh(inp(`1−1)+m′1

)]
))

.

Note that the difference in the parentheses is equal to 0 if `′2 6= `′2(`1,m′1) :=
dnqh(inp(`1−1)+m′1

)e+1. Consequently∣∣∣∣∣∣ ∑
`′:`′1=`1,`

′
2 6=`2

V̌2(`,`
′)

∣∣∣∣∣∣≤ 1
N ∑

m2∈[1,p]
λ2((H`1 ×H`2,m2)∩ Jn

h)

×∑
m′

∣∣∣λ (H`′2(`1,m′1),m2
∩ (0,qh(inp(`1−1)+m′1

)]
)

−λ

(
H`′2(`1,m′1),m

′
2
∩ (0,qh(inp(`1−1)+m′1

)]
)∣∣∣

≤ 1
N ∑

m2∈[1,p]
λ2((H`1 ×H`2,m2)∩ Jn

h)≤
1
N

λ2(I`) =
1

N2 .

And so, using the bound (13):

|V2(Ẑn+1
sh

)| ≤ 2p−1
pN3/2 (TV (qh)+2).

iii. We have
V3(Ẑn+1

sh
) = ∑

`:I` 6⊂Jn
h ,I`∩Jn

h 6= /0
∑

`′:`′1 6=`1,`
′
2 6=`2

I`′ 6⊂Jn
h ,I`′ ∩Jn

h 6= /0

V3(`,`
′),

where

Page:21 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

22 Rami El Haddad, Joseph El Maalouf, Christian Lécot, and Pierre L’Ecuyer

V3(`,`
′) :=

N
(p−1)2

× ∑
(m,m′):m1 6=m′1,m2 6=m′2

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h)−λ2(I`∩ Jn
h)λ2(I`′ ∩ Jn

h).

We split V3(`,`
′) =V a

3 (`,`
′)−V b

3 (`,`
′)−V c

3 (`,`
′)−V d

3 (`,`
′), with

V a
3 (`,`

′) :=
(

N
(p−1)2 −1

)
∑

(m,m′):m1 6=m′1,m2 6=m′2

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h),

V b
3 (`,`

′) := ∑
(m,m′):m1 6=m′1,m2=m′2

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h),

V c
3 (`,`

′) := ∑
(m,m′):m1=m′1,m2 6=m′2

λ2(I`,m∩ Jn
h)λ2(I`′,m′ ∩ Jn

h),

V d
3 (`,`

′) := ∑
m

λ2(I`,m∩ Jn
h)λ2(I`′,m∩ Jn

h).

Since

V a
3 (`,`

′)≤ 2p−1
N3 , V b

3 (`,`
′)≤ p−1

N3 , V c
3 (`,`

′)≤ p−1
N3 , V d

3 (`,`
′)≤ 1

N3 ,

using the bound (13), we obtain:

|V3(Ẑn+1
sh

)| ≤ 2p−1
N2 (TV (qh)+2)2.

Hence the final result.
ut

6 Conclusion

In this article, we analyze the convergence of Monte Carlo methods, possibly com-
bined with variance reduction techniques, for the simulation of Markov chains on
one-dimensional discrete state spaces. We prove a bound of the variance of estimators
used in one step of the simulation. We show that the convergence order (relative to
the number of simulation paths) corresponds to the experimental order as calculated
in various numerical experiments.

Albeit the theoretical convergence rates of SSS and Sudoku Latin square sampling
are the same, for the numerical examples we see that the variance reduction of the
Sudoku Latin square sampling approach is superior to that of the SSS. The difference
is smaller for pure integration problems (see [5]). A drawback of the SSS approach
for simulation is that it is not guaranteed that each state is considered exactly once
for a transition.

Page:22 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

Sudoku Latin Square Sampling for Markov Chain Simulation 23

The study aims to fill a gap between the theoretical results on variance reduction
techniques used in Monte Carlo simulations and the actual improvements observed
in computations. The Sudoku Latin square sampling is suited to situations where the
state space is one-dimensional, with a natural order. Our interest has been in physical
problems, where the states are related to particles. A numerical constraint is that N
must be a square number. The method should be extended in many directions, such
as continuous state spaces and multi-dimensional problems. This will be the subject
of forthcoming research.

References

1. A.S. Alfa. Applied Discrete-Time Queues, 2nd ed. Springer, 2016.
2. R.C.H. Cheng and T. Davenport. The problem of dimensionality in stratified sampling.

Management Science, 35:1278–1296, 1989.
3. I. Coulibaly and C. Lécot. Simulation of diffusion using quasi-random methods. Mathematics

and Computers in Simulation, 47:153–163, 1998.
4. L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986.
5. R. El Haddad, R. Fakhereddine, C. Lécot and G. Venkiteswaran. Extended Latin hypercube

sampling for integration and simulation. In J. Dick, F.Y. Kuo, G.W. Peters and I.H. Sloan,
editors, Monte Carlo and Quasi-Monte Carlo Methods 2012, pages 317–330. Springer-Verlag,
2013.

6. R. Fakhereddine, R. El Haddad, C. Lécot, and J. El Maalouf, Stratified Monte Carlo simulation
of Markov chains. Mathematics and Computers in Simulation, 135:51–62, 2017.

7. M. Gerber and N. Chopin. Sequential quasi-Monte Carlo. Journal of the Royal Statistical
Society: Series B, 77:509–579, 2015.

8. S. Haber. A modified Monte Carlo quadrature. Mathematics of Computation, 20:361–368,
1966.

9. C. Lécot and B. Tuffin. Quasi-Monte Carlo methods for estimating transient measures of
discrete time Markov chains. In H. Niederreiter, editor, Monte Carlo and Quasi-Monte Carlo
Methods 2002, pages 329–344. Springer-Verlag, 2004.

10. P. L’Ecuyer. Efficiency improvement and variance reduction. In J.D. Tew, S. Manivannan,
D.A. Sadowski and A.F. Seila, editors, Proceedings of the 1994 Winter Simulation Conference,
pages 122–132. IEEE Press, 1994.

11. P. L’Ecuyer, C. Lécot and B. Tuffin. Randomized quasi-Monte Carlo simulation of Markov
chains with an ordered state space. In H. Niederreiter and D. Talay, editors, Monte Carlo and
Quasi-Monte Carlo Methods 2004, pages 331–342. Springer-Verlag, 2006.

12. P. L’Ecuyer, C. Lécot and B. Tuffin. A randomized quasi-Monte Carlo simulation method for
Markov chains. Operations Research, 56(4):958–975, 2008.

13. P. L’Ecuyer, C. Lécot, A. L’Archevêque-Gaudet. On array-RQMC for Markov chains: mapping
alternatives and convergence rates. In P. L’Ecuyer and A. Owen, editors, Monte Carlo and
Quasi-Monte Carlo Methods 2008, pages 485–500. Springer-Verlag, 2009.

14. P. L’Ecuyer, D. Munger, C. Lécot and B. Tuffin. Sorting methods and convergence rates for
Array-RQMC: Some empirical comparisons. Mathematics and Computers in Simulation,
143:191–201, 2018.

15. M.D. McKay, R.J. Beckman and W.J. Conover. A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics,
21:239–245, 1979.

16. A.B. Owen. Orthogonal arrays for computer experiments, integration and visualization.
Statistica Sinica, 2:439–452, 1992.

Page:23 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

24 Rami El Haddad, Joseph El Maalouf, Christian Lécot, and Pierre L’Ecuyer

17. A.B. Owen. Lattice sampling revisited: Monte Carlo variance of means over randomized
orthogonal arrays. The Annals of Statistics, 22:930–945, 1994.

18. A.B. Owen. Monte Carlo variance of scrambled net quadrature. SIAM Journal on Numerical
Analysis, 34:1884–1910, 1997.

19. R.M. Pedersen and T.L. Vis. Sets of mutually orthogonal Sudoku Latin squares. The College
Mathematics Journal, 40:174–180, 2009.

20. M. Stein. Large sample properties of simulations using Latin hypercube sampling. Technomet-
rics, 29:143–151, 1987.

21. B. Tang. Orthogonal array-based Latin hypercubes. Journal of the American Statistical
Association, 88:1392–1397, 1993.

22. X. Xu, B. Haaland and P.Z.G. Qian. Sudoku-based space-filling designs. Biometrika, 98:711–
720, 2011.

Page:24 job:EELL_2018_R2_v3 macro:svmult.cls date/time:2-Sep-2019/12:54

	Sudoku Latin Square Sampling for Markov Chain Simulation
	Introduction
	Monte Carlo Simulations of Markov Chains
	Standard Monte Carlo
	Simple Stratified Sampling
	Sudoku Latin Square Sampling

	Convergence Analysis
	Standard Monte Carlo
	Simple Stratified Sampling
	Sudoku Latin Square Sampling

	Numerical Examples
	A Geo/Geo/1 Queue
	A Gambler in a Casino
	Diffusion

	The Proofs
	Proof of Lemma 2
	Proof of Lemma 3

	Conclusion
	References

