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Abstract. We study quasi-Monte Carlo (QMC) integration of smooth functions defined over5
the multi-dimensional unit cube. Inspired by a recent work of Pan and Owen, we study a new6
construction-free median QMC rule which can exploit the smoothness and the weights of function7
spaces adaptively. For weighted Korobov spaces, we draw a sample of r independent generating8
vectors of rank-1 lattice rules, compute the integral estimate for each, and approximate the true9
integral by the median of these r estimates. For weighted Sobolev spaces, we use the same approach10
but with the rank-1 lattice rules replaced by high-order polynomial lattice rules. A major advantage11
over the existing approaches is that we do not need to construct good generating vectors by a12
computer search algorithm, while our median QMC rule achieves almost the optimal worst-case13
error rate for the respective function space with any smoothness and weights, with a probability that14
converges to 1 exponentially fast as r increases. Numerical experiments illustrate and support our15
theoretical findings.16
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1. Introduction. We consider numerical integration of functions defined over20

the s-dimensional unit cube [0, 1)s. For an integrable function f : [0, 1)s → R, we21

denote the integral of f by22

Is(f) :=

∫
[0,1)s

f(x) dx.23

The quasi-Monte Carlo (QMC) method approximates Is(f) by the equally-weighted24

average of function evaluations over a deterministicN -element point set PN,s ⊂ [0, 1)s:25

QPN,s
(f) =

1

N

∑
x∈PN,s

f(x).26

The worst-case error for a given normed function space F and point set PN,s is27

ewor(QPN,s
;F) = sup

f∈F ; ∥f∥≤1

∣∣QPN,s
(f)− Is(f)

∣∣28

where ∥f∥ is the norm of f in this space. The key to success of the QMC method29

lies in a proper choice of the point set depending on a target class of functions. One30

wants to construct point sets for which this worst-case error is small and converges31

at the fastest possible rate as a function of N , for the given space F . In randomized32

QMC, the point set PN,s is randomized in a way that QPN,s
(f) becomes an unbiased33
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2 T. GODA AND P. L’ECUYER

estimator of Is(f) and one wishes to minimize its variance [25, 26, 30]. In this paper,34

we focus on deterministic QMC point sets only.35

There are two main families of QMC point sets: digital nets and sequences [10, 36]36

and lattice point sets [36, 43]. We refer the reader to [7, 30, 32] for further introductory37

details. In this paper, we consider rank-1 lattice point sets for Korobov spaces of38

periodic functions, and high-order polynomial lattice point sets [9, 35, 41] (which are39

a special type of digital nets) for Sobolev spaces of non-periodic functions. Each40

point set from these types is defined by an s-dimensional generating vector, with41

integer coordinates in the ordinary lattice case and with polynomial coordinates in42

the polynomial lattice case.43

In both cases, the weighted spaces of functions are defined by selecting a positive44

smoothness parameter α and a positive weight γu for each subset of coordinates45

u ⊆ {1, . . . , s}, with γ∅ = 1. The parameter α determines how smooth the admissible46

functions are required to be. For the Korobov spaces, it tells the minimal rate at47

which the Fourier coefficients of f are required to decay, and when it is an integer it48

corresponds to the minimal number of square-integrable mixed partial derivatives of49

f with respect to each coordinate; see [37, Appendix A]. For the Sobolev spaces, α is a50

positive integer which also imposes integrability conditions on the partial derivatives51

of f . The weights γu act as constant importance factors given to the subsets of52

coordinates [11, 45]. A larger γu means that the projection of f over the subset of53

coordinates in u can have a larger variation in some sense, so that more importance54

should be given to the uniformity of the points over this projection.55

It is known that the best possible QMC point sets cannot provide a better con-56

vergence rate than O(N−α) for the worst-case error for these two function spaces. On57

the other hand, there are effective search algorithms which, for a given α and a given58

selection of weights γu, can construct good rank-1 lattice or polynomial lattice point59

sets for the function spaces determined by these parameters, and for which the worst-60

case error converges as O(N−α+ϵ) for any ϵ > 0 [10, 22]. Software that implement61

such algorithms is also freely available [27, 29, 38]. These algorithms typically use62

a greedy component-by-component (CBC) construction approach proposed originally63

by [20], then re-introduced and popularized by [44]. With the CBC approach, the64

generating vector is determined one coordinate at a time by optimizing a figure of65

merit that depends only on this new coordinate and the previous ones, and where the66

previous coordinates can no longer be changed.67

In general, the number of weights γu to specify is 2s − 1. When s is large,68

specifying all these weights individually becomes impractical, so it is common practice69

to “parameterize” the weights by a smaller number of parameters, usually linear70

instead of exponential in s. The most popular forms of parameterizations are the71

product weights, the order-dependent weights, and their combination. For the product72

weights, one specifies a weight γj > 0 for each coordinate j = 1, . . . , s, and the γu’s73

are defined as γu =
∏

j∈u γj . For the order-dependent weights, γu depends only on74

the cardinality of u: γu = Γ|u|, where Γ1,Γ2, . . . ,Γs are selected positive constants.75

Their combination gives the product and order-dependent (POD) weights, for which76

γu = Γ|u|
∏

j∈u γj [34]. The main reason why the most popular choices of weights77

have this form is that the existing search algorithms are truly efficient for large s only78

when the weights have this specific POD form [11, 24, 27, 29, 34, 39]. Then, by using79

a fast-CBC approach that speeds up the search by exploiting a fast Fourier transform80

[29, 39], one can find a generating vector that gives a worst-case error of O(N−α+ϵ)81

in O(sN logN) operations for ordinary lattices and O(αsN logN) for polynomial82

lattices (with interlacing).83
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CONSTRUCTION-FREE MEDIAN QMC RULES 3

Although this form is convenient, the restriction to POD weights is limiting: for84

a given application, the appropriate weights may be quite far from the POD form. In85

this case, imposing POD implies that the point sets are constructed with the wrong86

weights. Moreover, even without constraints imposed on the form of weights, finding87

or approximating appropriate weights and the appropriate α for a given application is88

generally very difficult [28]. When the points are constructed with the wrong weights,89

the QMC method can be quite ineffective in general. These drawbacks have been90

addressed very partially in recent papers. In [12], the authors introduces a construc-91

tion algorithm that does not require the knowledge of α. It uses a CBC construction92

algorithm with a figure of merit that assumes α = 1, and for each coordinate it also93

constructs the generating vector one binary digit at a time. The method provides a94

convergence rate of O(N−α+ϵ). In [4], the authors study the stability of rank-1 lattice95

rules and polynomial lattice rules to a (limited) misspecification of α and the weights,96

for product and POD weights. They obtain worst-case error bounds for function spa-97

ces determined by parameters α′ and γ′ = {γ′
u} when the rules are constructed using98

parameters α and γ = {γu} instead, under certain conditions on those weights. These99

results are interesting but they do not completely eliminate the need to specify the100

weights.101

The method studied in this paper requires no knowledge at all on α and the102

weights γu. No value needs to be specified for any of these parameters. The algorithm103

is inspired by recent work from Pan and Owen [40], and works as follows. For a104

fixed odd integer r > 0, we draw r generating vectors independently and uniformly105

from the set of all admissible generating vectors. For each of them, we compute the106

corresponding QMC approximation QPN,s
(f), then we take the median M(f) of these107

r approximations as our final estimate of Is(f). Since the method does not require108

the explicit construction of a good point set, we call it a construction-free median109

QMC rule.110

Our main contribution is to prove that for F representing either a weighted111

Korobov or weighted Sobolev space determined by parameters α and γ, the error112

|M(f) − Is(f)| obeys the following type of probabilistic bound: For any ϵ > 0 and113

0 < ρ < 1, there is a constant c1 = c1(α,γ, ϵ) > 0 (which depends on α, the γu’s and114

ϵ) such that115

P

[
sup

f∈F ; ∥f∥≤1

|M(f)− Is(f)| ≤
c1(α,γ, ϵ)

(ρN)α−ϵ

]
≥ 1− ρ(r+1)/2/4.116

In other words, the worst-case error of the median estimator is bounded by a quantity117

that decreases almost at the best possible rate of O(N−α), with a probability that118

converges to 1 exponentially fast as a function of r. That is, we have a simple method119

that provides essentially the best possible convergence rate with very high probability,120

without requiring any knowledge of α and the weights. The key reason why this is121

possible is that the vast majority of the choices of generating vectors turn out to be122

quite good and give a QMC approximation which is quite close to Is(f). Only a small123

minority give a large error. For the vector giving the median value to be in that small124

minority, there must be at least (r + 1)/2 generating vectors in the sample of size r125

that belong to this small minority, and the probability that this happens decreases126

towards zero exponentially in r.127

The remainder is organized as follows. In Section 2, we recall some basic facts128

on lattice rules for Korobov spaces, and we prove our main result for the median129

estimator in this setting. In Section 3, we do the same for high-order polynomial130
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4 T. GODA AND P. L’ECUYER

lattice rules in Sobolev spaces. In Section 4, we report numerical experiments to131

support our theoretical findings.132

2. Lattice rules for Korobov spaces.133

2.1. Definitions. Lattice point sets are well suited for performing numerical134

integration of smooth periodic functions. A rank-1 lattice point set is defined as135

follows:136

Definition 2.1 (rank-1 lattice point set). Let N ≥ 2 be the number of points137

and z = (z1, . . . , zs) ∈ {1, . . . , N − 1}s. The rank-1 lattice point set defined by N and138

the generating vector z is139

PN,s,z =
{({nz1

N

}
, . . . ,

{nzs
N

})
∈ [0, 1)s | n = 0, 1, . . . , N − 1

}
,140

where {x} := x−⌊x⌋ denotes the fractional part of a real x ≥ 0. The QMC algorithm141

using PN,s,z as a point set is called the rank-1 lattice rule with generating vector z.142

Let f : [0, 1)s → R be periodic with an absolutely convergent Fourier series143

f(x) =
∑
k∈Zs

f̂(k) exp (2πik · x) ,144

where the dot product · denotes the usual inner product of two vectors on the Euclid-145

ean space Rs and f̂(k) denotes the k-th Fourier coefficient of f :146

f̂(k) :=

∫
[0,1)s

f(x) exp (−2πik · x) dx.147

Note that f̂(0) coincides with the integral Is(f). As a class of periodic functions, we148

consider the following weighted Korobov space.149

Definition 2.2 (weighted Korobov space). Let α > 1/2 and γ = {γu}u⊆{1,...,s}150

be a set of positive weights with γ∅ = 1. For a non-empty subset u ⊆ {1, . . . , s} and a151

vector ku ∈ (Z \ {0})|u|, we denote by (ku,0) the vector h ∈ Zs such that hj = kj if152

j ∈ u and hj = 0 otherwise, and define153

rα,γ(ku,0) := γu
∏
j∈u

1

|kj |α
,154

155

and set rα,γ(0) = 1. The weighted Korobov space, denoted by Fkor
s,α,γ , is a reproducing156

kernel Hilbert space with reproducing kernel157

Kkor
s,α,γ(x,y) =

∑
k∈Zs

(rα,γ(k))
2 exp (2πik · (x− y)) ,158

and inner product159

⟨f, g⟩kors,α,γ =
∑
k∈Zs

f̂(k)ĝ(k)

(rα,γ(k))2
.160

We denote the induced norm by ∥f∥kors,α,γ :=
√
⟨f, f⟩kors,α,γ .161
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CONSTRUCTION-FREE MEDIAN QMC RULES 5

One wishes to have a good generating vector z such that the worst-case error of162

the corresponding lattice rule for Fkor
s,α,γ , defined by163

ewor(QPN,s,z
;Fkor

s,α,γ) := sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

|QPN,s,z
(f)− Is(f)|,164

is small. No good explicit construction scheme for such a z is known for s ≥ 3, so that165

we usually resort to a computer search algorithm as mentioned earlier. By restricting166

each zj to be in the set167

UN := {1 ≤ z ≤ N − 1 | gcd(z,N) = 1},168

we ensure that each projection of PN,s,z on a single coordinate contains the N dis-169

tinct values {0, 1/N, . . . , (N − 1)/N} (no superposed points). The CBC construction170

algorithm for a good generating vector z starts with z1 = 1, then for j = 2, . . . , s it171

searches for the best component zj from the set UN while keeping the earlier compo-172

nents z1, . . . , zj−1 unchanged.173

For our median QMC rank-1 lattice rule for weighted Korobov spaces, we select174

an independent random sample z1, . . . ,zr from the set Us
N , and we approximate Is(f)175

by the median176

MN,s,r(f) := median
(
QPN,s,z1

(f), . . . , QPN,s,zr
(f)
)
.177

Note that, for given z1, . . . ,zr, the index ℓ for which zℓ gives the median MN,s,r(f)178

generally depends on f . The worst-case error in this case is the random variable179

(2.1) ewor(MN,s,r;Fkor
s,α,γ) := sup

f∈Fkor
s,α,γ

∥f∥kor
s,α,γ≤1

|MN,s,r(f)− Is(f)|.180

In this random expression, we assume that z1, . . . ,zr are first picked randomly, then181

f is taken as the worst-case function for the median, for these given z1, . . . ,zr.182

2.2. Our main results on lattice rules for Korobov spaces. To prove our183

main result, we need a few more definitions.184

Definition 2.3 (dual lattice). For N ≥ 2 and z ∈ Us
N , the set185

P⊥
N,s,z := {k ∈ Zs | k · z ≡ 0 (mod N)}186

is called the dual lattice of the rank-1 lattice point set PN,s,z.187

The following character property of the rank-1 lattice rule is well-known, see for188

instance [5, Lemmas 4.2 and 4.3].189

Lemma 2.4 (character property). For N ≥ 2, z ∈ Us
N and k ∈ Zs, we have190

1

N

∑
x∈PN,s,z

exp (2πik · x) =

{
1 if k ∈ P⊥

N,s,z,

0 otherwise.
191

As our first main result, we prove a probabilistic upper bound on the worst-case192

error of our median rank-1 lattice rule for weighted Korobov spaces.193
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6 T. GODA AND P. L’ECUYER

Theorem 2.5. Let N ≥ 2 be an integer, r > 0 be an odd integer, and z1, . . . ,zr194

be chosen independently and randomly from the set Us
N (with replacement). Then,195

for any α > 1/2 and γ, the worst-case error of the median rule obeys the following196

bound:197

ewor(MN,s,r;Fkor
s,α,γ) ≤ inf

1/(2α)<λ<1

 1

ηφ(N)

∑
∅̸=u⊆{1,...,s}

γ2λ
u (2ζ(2αλ))|u|

1/(2λ)

198

with a probability of at least199

1−
(

r

(r + 1)/2

)
η(r+1)/2,200

for any 0 < η < 1, where φ and ζ denote the Euler totient function and the Riemann201

zeta function, respectively.202

We note that the result for r = 1, i.e., the case without taking the median, can203

be found, for instance, in [11, Theorem 2], and has been used together with a random204

choice of N in [21] to prove an improved rate of convergence of the randomized error.205

The following inequality on medians is a key ingredient in the proof of the theorem.206

Although it can be regarded as a special case of Jensen’s inequality on medians proven207

in [33], we give a short direct proof to make the paper more self-contained.208

Lemma 2.6. For any odd integer r and real numbers a1, . . . , ar, it holds that209

|median (a1, . . . , ar)| ≤ median (|a1|, . . . , |ar|) .210

Proof. Because r is odd, the median is unique. Let median(a1, . . . , ar) = am for211

some m ∈ {1, . . . , r}. If am ≥ 0, then |am| = am ≤ median(|a1|, . . . , |ar|). If am < 0,212

there are at least (r − 1)/2 other aℓ’s for which aℓ ≤ am < 0, so |aℓ| ≥ |am| > 0.213

Then, |median(a1, . . . , ar)| = |am| ≤ median (|a1|, . . . , |ar|).214

The same inequality holds for even r by defining the median to be the arithmetic215

mean of the two middle values. However, in this paper, we focus on the case where r216

is odd for the sake of simplicity.217

We now prove our main result.218

Proof of Theorem 2.5. Since any f ∈ Fkor
s,α,γ has an absolutely convergent Fourier219

series, by applying Lemma 2.4, Lemma 2.6 and the Cauchy–Schwarz inequality, it220

holds for given z1, . . . ,zr that221

ewor(MN,s,r;Fkor
s,α,γ)222

= sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

∣∣∣∣∣∣median
1≤ℓ≤r

1

N

∑
x∈PN,s,zℓ

f(x)− I(f)

∣∣∣∣∣∣223

= sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

∣∣∣∣∣∣median
1≤ℓ≤r

1

N

∑
x∈PN,s,zℓ

∑
k∈Zs

f̂(k) exp (2πik · x)− f̂(0)

∣∣∣∣∣∣224

= sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

∣∣∣∣∣∣∣median
1≤ℓ≤r

∑
k∈P⊥

N,s,zℓ
\{0}

f̂(k)

∣∣∣∣∣∣∣225
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CONSTRUCTION-FREE MEDIAN QMC RULES 7

≤ sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

median
1≤ℓ≤r

∑
k∈P⊥

N,s,zℓ
\{0}

|f̂(k)|226

= sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

median
1≤ℓ≤r

∑
k∈P⊥

N,s,zℓ
\{0}

|f̂(k)|
rα,γ(k)

rα,γ(k)227

≤ sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

median
1≤ℓ≤r

 ∑
k∈P⊥

N,s,zℓ
\{0}

|f̂(k)|2

(rα,γ(k))2


1/2

228

×

 ∑
k∈P⊥

N,s,zℓ
\{0}

(rα,γ(k))
2


1/2

229

≤ sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

 ∑
k∈Zs\{0}

|f̂(k)|2

(rα,γ(k))2

1/2

median
1≤ℓ≤r

Sα,γ(zℓ)230

≤ median
1≤ℓ≤r

Sα,γ(zℓ),(2.2)231
232

in which233

Sα,γ(z) :=

 ∑
k∈P⊥

N,s,z\{0}

(rα,γ(k))
2

1/2

.234

For 1/(2α) < λ ≤ 1, by using the subadditivity235 (∑
i

ai

)λ

≤
∑
i

aλi ,(2.3)236

237

which holds for non-negative reals a1, a2, . . . > 0, see [5, Theorem 2.2], and noting238

that the cardinality of UN is equal to φ(N), we have239

1

(φ(N))s

∑
z∈Us

N

(Sα,γ(z))
2λ

240

=
1

(φ(N))s

∑
z∈Us

N

 ∑
k∈P⊥

N,s,z\{0}

(rα,γ(k))
2

λ

241

≤ 1

(φ(N))s

∑
z∈Us

N

∑
k∈P⊥

N,s,z\{0}

(rα,γ(k))
2λ

242

=
∑

k∈Zs\{0}

(rα,γ(k))
2λ 1

(φ(N))s

∑
z∈Us

N

1

N

∑
x∈PN,s,z

exp(2πik · x)243

=
∑

k∈Zs\{0}

(rα,γ(k))
2λ 1

(φ(N))s

∑
z∈Us

N

1

N

N−1∑
n=0

exp(2πink · z/N)244
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8 T. GODA AND P. L’ECUYER

=
∑

∅̸=u⊆{1,...,s}

γ2λ
u

∑
ku∈(Z\{0})|u|

1

(φ(N))s

∑
z∈Us

N

1

N

N−1∑
n=0

∏
j∈u

exp(2πinkjzj/N)

|kj |2αλ
245

=
1

N

N−1∑
n=0

∑
∅̸=u⊆{1,...,s}

γ2λ
u

(φ(N))|u|

∑
zu∈U|u|

N

∑
ku∈(Z\{0})|u|

∏
j∈u

exp(2πinkjzj/N)

|kj |2αλ
246

=
1

N

N−1∑
n=0

∑
∅̸=u⊆{1,...,s}

γ2λ
u (T2αλ(n,N))|u|,247

248

where we write249

T2αλ(n,N) :=
1

φ(N)

∑
z∈UN

∑
k∈Z\{0}

exp(2πinkz/N)

|k|2αλ
.250

Since it follows from [23, Lemmas 2.1 & 2.2] that, for any positive integer d251

1

N

N−1∑
n=0

(T2αλ(n,N))d ≤ (2ζ(2αλ))d

φ(N)
,252

we obtain253

1

(φ(N))s

∑
z∈Us

N

(Sα,γ(z))
2λ ≤

∑
∅̸=u⊆{1,...,s}

γ2λ
u

1

N

N−1∑
n=0

(T2αλ(n,N))|u|254

≤ 1

φ(N)

∑
∅≠u⊆{1,...,s}

γ2λ
u (2ζ(2αλ))|u|.255

256

This gives an upper bound on the average of (Sα,γ(z))
2λ over all of the admissible257

z ∈ Us
N , which holds for any 1/(2α) < λ ≤ 1.258

Then, Markov’s inequality ensures that for any 0 < η < 1, the probability of259

having260

Sα,γ(z) > inf
1/(2α)<λ<1

 1

ηφ(N)

∑
∅≠u⊆{1,...,s}

γ2λ
u (2ζ(2αλ))|u|

1/(2λ)

=: B(α,γ)261

is at most η for a random choice of z ∈ Us
N . For the median estimator MN,s,r to be262

larger than this bound B(α,γ), we must have Sα,γ(zℓ) > B(α,γ) for at least (r+1)/2263

vectors among z1, . . . ,zr. Taking the union bound on possible sets of (r+1)/2 vectors264

with Sα,γ(zℓ) > B(α,γ), the probability that this happens is bounded above by265 (
r

(r + 1)/2

)
η(r+1)/2.266

Combining this with the bound shown in (2.2) completes the proof.267

Remark 2.7. One can easily prove by induction on k that
(
2k−1

k

)
< 4k−1 for k ≥ 2.268

Indeed, this is true for k = 2, and for k ≥ 2, one has269 (
2k + 1

k + 1

)
=

2(2k + 1)

(k + 1)

(
2k − 1

k

)
< 4

(
2k − 1

k

)
< 4k.270
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Then, for any odd r ≥ 3, we have271

(2.4)

(
r

(r + 1)/2

)
η(r+1)/2 < (4η)(r+1)/2/4.272

Thus, the probability given in Theorem 2.5 must be larger than 1 − (4η)(r+1)/2/4,273

which converges to 1 exponentially fast as a function of r for 0 < η < 1/4.274

By taking 1/(2λ) = α − ϵ and ρ = 4η and using the previous remark, we obtain275

the following corollary as a simplified version of Theorem 2.5.276

Corollary 2.8. For any odd r ≥ 3, ϵ > 0, and 0 < ρ < 1, there is a constant277

c1 = c1(α,γ, ϵ) > 0 (which depends on α, the γu’s and ϵ) such that278

P
[
ewor(MN,s,r;Fkor

s,α,γ) ≤
c1(α,γ, ϵ)

(ρN)α−ϵ

]
≥ 1− ρ(r+1)/2/4.279

Proof. For prime N , we have φ(N) = N − 1 and the corollary follows from280

Theorem 2.5 and the bound (2.4) in Remark 2.7. For a general N , we know from [42,281

Theorem 15] that282

1

φ(N)
≤ 1

N

[
eC log logN +

2.50637

log logN

]
283

for any N ≥ 3, where C = 0.57721 . . . is the Euler’s constant. From this, the proba-284

bilistic bound follows.285

Remark 2.9. Under some additional conditions on the weights γ, this bound de-286

pends only polynomially on the dimension s, and can even be independent on the287

dimension s. We refer to [11, Theorem 3] for the case of general weights and [11,288

Theorem 4] for the case of product weights.289

Remark 2.10. As mentioned in Section 1, our median rank-1 lattice rule is moti-290

vated by the observation that most of the possible generating vectors z ∈ Us
N are a291

good choice, but the remaining ones are bad. To show this, let us first point out that292

Sα,γ(z) coincides with the worst-case error of the rank-1 lattice rule with the given293

z, see [7, Theorem 5.12]. As already seen in the proof of Theorem 2.5, a proportion294

of the generating vectors z which satisfy the bound of order N−α+ϵ, i.e.,295

Sα,γ(z) ≤ inf
1/(2α)<λ<1

 1

ηφ(N)

∑
∅̸=u⊆{1,...,s}

γ2λ
u (2ζ(2αλ))|u|

1/(2λ)

,296

is greater than or equal to 1− η, for any 0 < η < 1. On the other hand, the averaging297

argument in the proof of Theorem 2.5 with λ = 1 gives298

1

(φ(N))s

∑
z∈Us

N

(Sα,γ(z))
2 ≤ 1

φ(N)

∑
∅̸=u⊆{1,...,s}

γ2
u(2ζ(2α))

|u|.299

This implies that, for each N , there exists a small, distinct set of “bad” generating300

vectors whose Sα,γ(z) values are quite large so that the average of the squared worst-301

case error over all the possible generating vectors is merely of order N−1. Such bad302

vectors may include those with all components being the same.303

Remark 2.11. Theorem 2.5 (or its corollary) gives a probabilistic error bound on304

the worst-case error (2.1), together with a lower bound on the probability that this305
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10 T. GODA AND P. L’ECUYER

error bound holds. The exact value of this probability depends on the probability306

distribution of QPN,s,z
(f) when z is drawn uniformly from Us

N , and on the choices307

of r and of the other parameters in the error bound. To get some insight on how308

it behaves, we will simplify the setting slightly and look at a one-side error bound309

for a fixed f : we want to estimate the probability that the median MN,s,r(f) does310

not exceed some arbitrary constant y larger than the mean Is(f). Suppose that this311

y is the q-quantile yq of the distribution of QPN,s,z
(f) for some q ∈ (3/4, 1), i.e.,312

q = P[QPN,s,z
(f) ≤ yq]. Then the median MN,s,r(f) is larger than yq if and only if at313

least (r + 1)/2 values are larger than yq, and the probability that this happens is314

p+(r, q) =

r∑
i=(r+1)/2

(
r

i

)
(1− q)iqr−i.(2.5)315

316

Figure 1 plots log10 p+(r, q) as a function of r ∈ {3, 5, . . . , 49} for q = 0.5, q = 0.75 and317

q = 0.9, respectively. We see that p+(r, 0.5) = 0.5 for any r and that p+(r, q) ≈ 10−γr318

where γ ≈ 0.071 for q = 0.75 and γ ≈ 0.231 for q = 0.9. These plots provide some319

insight on the choice of r. In particular, for fixed q > 0.5, doubling r squares the320

probability p+(r, q). Suppose for example that we want p+(r, q) ≤ 10−4, to have a321

reasonable assurance that MN,s,r(f) ≤ yq. The plot shows that the minimal value of322

r for this is about r = 13 for q = 0.9, and about r = 49 for q = 0.75. For a given323

f ∈ Fkor
s,α,γ and fixed N , a larger q means a larger yq, but for a fixed q we can reduce324

yq and bring it close to Is(f) by increasing N . From Theorem 2.5 with r = 1 and325

η = 1 − q < 1/4 (or its corollary with ρ = 4(1 − q) < 1), we have that |yq − Is(f)|326

is O(N−α+ϵ). In summary, for a fixed q > 3/4, we can decrease the error bound327

by increasing N and increase the probability that the bound holds by increasing r.328

We can also increase both q and N in a way such that yq remains about the same;329

then the same p+(r, q) can be obtained with a reduced r. What we just said is for330

the upper bound MN,s,r(f) ≤ yq, but essentially the same discussion can be made331

concerning the assurance that MN,s,r(f) > y1−q. In applications, the values of yq332

and y1−q are unknown, but our reasoning suggests that a moderate value of r, say no333

more than 25, should be sufficient in practice, together with a large N (as large as the334

computing budget allows). The results of our numerical experiments support this.335

0 10 20 30 40 50
number of samples r
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q = 0:5
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q = 0:9

Fig. 1. Probability p+(r, q) (on a log10 scale) as a function of r for q = 0.5 (blue), q = 0.75
(red) and q = 0.9 (yellow).

Remark 2.12. It is known that rank-1 lattice rules also work for non-periodic336
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functions by applying the tent transformation337

π(x) = 1− |2x− 1|338

component-wise to every point in the set PN,s,z [18, 8, 2, 16]. The same probabilistic339

upper bound, shown in Theorem 2.5, holds for the worst-case error of the median rule340

built up of the tent-transformed rank-1 lattice rules in the so-called weighted half-341

period cosine spaces with any parameter α and weights γ. As shown in [8, Lemma 1],342

the half-period cosine space coincides with an unanchored Sobolev space with smooth-343

ness 1 when α = 1.344

3. High-order polynomial lattice rules for Sobolev spaces. We now con-345

sider high-order polynomial lattice point sets as defined in [9]. These point sets are346

well suited for performing numerical integration of smooth non-periodic functions.347

In what follows let b be a prime, and Fb be the finite field of order b, which we348

identify with the set {0, 1, . . . , b − 1}. Let N be the set of positive integers and349

N0 := N ∪ {0}. For k ∈ N0 having the b-adic finite expansion k = κ0 + κ1b+ · · · , we350

write k(x) = κ0 + κ1x + · · · ∈ Fb[x]. With these ingredients, we have the following351

definition from [9].352

Definition 3.1 (high-order polynomial lattice point sets). Let m,n ∈ N with353

m ≤ n, p ∈ Fb[x] with deg(p) = n and q = (q1, . . . , qs) ∈ (Fb[x])
s with deg(qj) < n.354

The high-order polynomial lattice point set defined by m,n, p and q consists of N = bm355

points and is given by356

Pm,n,s,p,q =

{(
νn

(
h(x)q1(x)

p(x)

)
, . . . , νn

(
h(x)qs(x)

p(x)

))
∈ [0, 1)s | h = 0, . . . , bm − 1

}
,357

where νn : Fb((x
−1)) → [0, 1) is defined by358

νn

( ∞∑
i=w

ai
xi

)
:=

n∑
i=max(1,w)

ai
bi
.359

The QMC algorithm using Pm,n,s,p,q as a point set is called the high-order polynomial360

lattice rule with modulus p and generating vector q. The order of this rule is defined361

as ⌊n/m⌋.362

Typically, n will be a multiple of m. When n = m, this gives the digital net363

construction introduced in [35] and called polynomial lattice rule in [10]. Note that [26,364

31] introduced the term “polynomial lattice rule” with a slightly different definition,365

in which the coordinates of the points have an infinite periodic expansion and the366

modulus p has degree m. The construction in Definition 3.1 essentially builds a367

polynomial lattice point set with bn points and uses only the first bm points.368

Instead of the weighted Korobov space Fkor
s,α,γ , we consider the following Sobolev-369

type Banach space as our target space for high-order polynomial lattice rules.370

Definition 3.2 (weighted Sobolev space). Let α ∈ N, α ≥ 2, 1 ≤ q ≤ ∞ and371

let γ = {γu}u⊆{1,...,s} be a set of positive weights with γ∅ = 1. The weighted Sobolev372

space, denoted by F sob
s,α,γ,q, is a Banach space consisting of non-periodic (in the sense373

of not necessarily periodic) smooth functions with the norm374

∥f∥sobs,α,γ,q :=375
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12 T. GODA AND P. L’ECUYER

sup
u⊆{1,...,s}

γ−1
u

∑
v⊆u

∑
τu\v∈{1,...,α}|u\v|

∫
[0,1)|v|

∣∣∣∣∣
∫
[0,1)s−|v|

f (τu\v,αv,0)(x) dx−v

∣∣∣∣∣
q

dxv


1/q

,376

where (τu\v,αv,0) denotes the vector h ∈ Ns
0 such that hj = τj if j ∈ u \ v, hj = α377

if j ∈ v, and hj = 0 otherwise, and f (τu\v,αv,0)(x) denotes the mixed derivative of378

order (τu\v,αv,0) of f . Moreover, we write xv = (xj)j∈v and x−v = (xj)j∈{1,...,s}\v.379

This Sobolev space was introduced by [6] in the context of partial differential380

equations with random coefficients. (The original function space in [6] contains the381

additional parameter r ∈ [1,∞], and the definition of the norm has been corrected in382

https://arxiv.org/abs/1309.4624. In this paper we choose r = ∞, which makes the383

norm smallest over r ∈ [1,∞].) The parameter α determines the differentiability of384

the non-periodic functions. As for the rank-1 lattice rules for the weighted Korobov385

spaces, it is desirable to have good modulus p and generating vector q such that the386

worst-case error of the corresponding high-order polynomial lattice rule for F sob
s,α,γ is387

small. Originally in [6], interlaced polynomial lattice rules [13, 15] were used instead388

of high-order polynomial lattice rules, and it was shown that the worst-case error389

bound of order N−α+ϵ with arbitrarily small ϵ > 0 can be achieved by the CBC390

algorithm applied to interlaced polynomial lattice rules. The major advantage of391

interlaced polynomial lattice rules over high-order polynomial lattice rules lies in the392

construction cost for the CBC algorithm: for the product weights, constructing an393

interlaced rule requires O(αsN logN) operations with O(N) memory [13], whereas394

constructing a high-order rule require O(sNα logN) operations with O(Nα) memory395

[1].396

However, interlaced polynomial lattice rules are not necessarily a better choice397

than high-order polynomial lattice rules. To construct an interlaced polynomial lat-398

tice rule, which relies on the digit interlacing method due to Dick [3], we must select399

an integer interlacing factor d, the construction cost increases linearly with d, and400

the resulting rule cannot exploit the smoothness of functions beyond d. This means401

that if α > d, the worst-case error bound is only of order N−d+ϵ. High-order poly-402

nomial lattice rules do not explicitly require such a factor. We only need to specify403

the maximum precision n of the points. This n can be set as large as possible, for in-404

stance, with b = 2, we can take n = 53 for the double-precision floating-point format.405

This way, high-order polynomial lattice rules can be possibly made adaptive to the406

smoothness α of functions, addressing the drawback of interlaced polynomial lattice407

rules. Since we do not apply CBC in this paper, we prefer high-order rules over the408

interlaced ones.409

In what follows, we assume that the polynomial p is irreducible and we write410

Gn := {q ∈ Fb[x] | q ̸= 0 and deg(q) < n}.411

Analogously to the rank-1 lattice case in Section 2, we consider the following median412

high-order polynomial lattice rule for weighted Sobolev spaces. For an odd integer r,413

we draw q1, . . . , qr randomly and independently from the set Gs
n, and we approximate414

Is(f) by415

Mm,n,s,p,r(f) := median
(
QPm,n,s,p,q1

(f), . . . , QPm,n,s,p,qr
(f)
)
.416

The worst-case error is the random variable417

ewor(Mm,n,s,p,r;F sob
s,α,γ,q) := sup

f∈Fsob
s,α,γ,q

∥f∥sob
s,α,γ,q≤1

|Mm,n,s,p,r(f)− Is(f)|.418

This manuscript is for review purposes only.
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3.1. Main results for polynomial lattice point sets in Sobolev spaces.419

We first need a few definitions and lemmas.420

Definition 3.3 (dual polynomial lattice). Let m,n ∈ N with m ≤ n, p ∈421

Fb[x] with deg(p) = n and q ∈ Gs
n. For k ∈ N0 with the b-adic finite expansion422

k = κ0 + κ1b+ · · · , we define423

trn(k) =

n−1∑
i=0

κix
i ∈ Gn ∪ {0}.424

This operator is applied component-wise to a vector. Then the set425

P⊥
m,n,s,p,q = {k ∈ Ns

0 | trn(k) · q ≡ a (mod p) with deg(a) < n−m} ,426

is called the dual net of the high-order polynomial lattice point set Pm,n,s,p,q.427

Definition 3.4 (Walsh functions). Let us write ωb := exp(2πi/b). For k ∈ N0,428

we denote the b-adic expansion of k by k = κ0 + κ1b+ · · · . The k-th Walsh function429

walk : [0, 1) → C is defined by430

walk(x) := ωκ0ξ1+κ1ξ2+···
b ,431

where the b-adic expansion of x ∈ [0, 1) is denoted by x = ξ1/b+ ξ2/b
2 + · · · , which is432

understood to be unique in the sense that infinitely many of the ξi are different from433

b− 1.434

For s ≥ 2 and k = (k1, . . . , ks) ∈ Ns
0, the s-dimensional k-th Walsh function435

walk : [0, 1)
s → C is defined by436

walk(x) :=

s∏
j=1

walkj
(xj).437

It is well-known that the system of Walsh functions is a complete orthogonal system in438

L2([0, 1)
s), see [10, Appendix A]. The following character property of the high-order439

polynomial lattice point set is analogous to what is stated in Lemma 2.4.440

Lemma 3.5 (character property). For m,n ∈ N with m ≤ n, p ∈ Fb[x] with441

deg(p) = n and q ∈ Gs
n, we have442

1

bm

∑
x∈Pm,n,s,p,q

walk(x) =

{
1 if k ∈ P⊥

m,n,s,p,q,

0 otherwise.
443

For any f ∈ F sob
s,α,γ,q, we have the following absolutely convergent Walsh series444

f(x) =
∑
k∈Ns

0

f̃(k)walk(x),445

where f̃(k) denotes the k-th Walsh coefficient of f :446

f̃(k) :=

∫
[0,1)s

f(x)walk(x) dx.447

Note that f̃(0) coincides with the integral Is(f). The following result on the decay of448

Walsh coefficients for f ∈ F sob
s,α,γ,q was shown in [6, Theorem 3.5].449
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14 T. GODA AND P. L’ECUYER

Lemma 3.6 (decay of Walsh coefficients). Let α ∈ N, α ≥ 2, 1 ≤ q ≤ ∞ and450

γ = {γu}u⊆{1,...,s} be a set of positive weights with γ∅ = 1. For any f ∈ F sob
s,α,γ,q, a451

non-empty subset u ⊆ {1, . . . , s} and ku ∈ N|u|, it holds that452

|f̃(ku,0)| ≤ ∥f∥sobs,α,γ,qγuC
|u|
α b−µα(ku),453

where454

Cα :=

(
1 +

1

b
+

1

b(b+ 1)

)α−2(
3 +

2

b
+

2b+ 1

b− 1

)
max

(
2

(2 sin π
b )

α
, max
1≤τ<α

1

(2 sin π
b )

τ

)
455

and µα(ku) :=
∑

j∈u µα(kj), with456

µα(k) =

min(α,c)∑
i=1

ai457

for k ∈ N whose b-adic expansion is given by k = κ1b
a1−1 + κ2b

a2−1 + · · · + κcb
ac−1458

such that c ≥ 1, κ1, . . . , κc ∈ {1, . . . , b− 1} and a1 > · · · > ac.459

As the second main result of this paper, we show a probabilistic upper bound460

on the worst-case error of our median high-order polynomial lattice rule for weighted461

Sobolev spaces.462

Theorem 3.7. Let m,n ∈ N with m ≤ n, p ∈ Fb[x] be irreducible with deg(p) =463

n, r be odd and q1, . . . , qr be chosen independently and randomly from the set Gs
n.464

Then, for any integer α ≥ 2 and γ, the worst-case error is bounded above by465

ewor(Mm,n,s,p,r;F sob
s,α,γ,q) ≤ inf

1/α<λ<1

 2

η(bmin(m,λn) − 1)

∑
∅≠u⊆{1,...,s}

γλ
uC

λ|u|
α A

|u|
α,λ

1/λ

466

with a probability of at least467

1−
(

r

(r + 1)/2

)
η(r+1)/2,468

for any 0 < η < 1, where we write469

Aα,λ =

α−1∑
τ=1

τ∏
i=1

b− 1

bλi − 1
+

bλα − 1

bλα − b

α∏
i=1

b− 1

bλi − 1
.(3.1)470

471

Proof. Throughout this proof, we write472

r̃α,γ(ku,0) = γuC
|u|
α b−µα(ku),473

for a non-empty subset u ⊆ {1, . . . , s} and ku ∈ N|u|. Since any f ∈ F sob
s,α,γ,q has474

an absolutely convergent Walsh series, by applying Lemma 3.5, Lemma 2.6, Hölder’s475

inequality and Lemma 3.6 in this order, it holds that476

ewor(Mm,n,s,p,r;F sob
s,α,γ,q)477

= sup
f∈Fsob

s,α,γ,q

∥f∥sob
s,α,γ,q≤1

∣∣∣∣∣∣median
1≤ℓ≤r

1

bm

∑
x∈Pm,n,s,p,qℓ

f(x)− I(f)

∣∣∣∣∣∣478
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= sup
f∈Fsob

s,α,γ,q

∥f∥sob
s,α,γ,q≤1

∣∣∣∣∣∣median
1≤ℓ≤r

1

bm

∑
x∈Pm,n,s,p,qℓ

∑
k∈Ns

0

f̃(k)walk(x)− f̃(0)

∣∣∣∣∣∣479

= sup
f∈Fsob

s,α,γ,q

∥f∥sob
s,α,γ,q≤1

∣∣∣∣∣∣median
1≤ℓ≤r

∑
k∈P⊥

m,n,s,p,qℓ
\{0}

f̃(k)

∣∣∣∣∣∣480

≤ sup
f∈Fsob

s,α,γ,q

∥f∥sob
s,α,γ,q≤1

median
1≤ℓ≤r

∑
k∈P⊥

m,n,s,p,qℓ
\{0}

|f̃(k)|
r̃α,γ(k)

r̃α,γ(k)481

≤ sup
f∈Fsob

s,α,γ,q

∥f∥sob
s,α,γ,q≤1

median
1≤ℓ≤r

(
sup

k∈P⊥
m,n,s,p,qℓ

\{0}

|f̃(k)|
r̃α,γ(k)

) ∑
k∈P⊥

m,n,s,p,qℓ
\{0}

r̃α,γ(k)

482

≤ sup
f∈Fsob

s,α,γ,q

∥f∥sob
s,α,γ,q≤1

(
sup

k∈Ns
0\{0}

|f̃(k)|
r̃α,γ(k)

)
median
1≤ℓ≤r

S̃α,γ,p(qℓ)483

≤ median
1≤ℓ≤r

S̃α,γ,p(qℓ),(3.2)484
485

where486

S̃α,γ,p(q) =
∑

k∈P⊥
m,n,s,p,q\{0}

r̃α,γ(k).487

For 1/(α) < λ ≤ 1, by using the subadditivity (2.3), we have488

1

|Gn|s
∑
q∈Gs

n

(S̃α,γ,p(q))
λ =

1

(bn − 1)s

∑
q∈Gs

n

 ∑
k∈P⊥

m,n,s,p,qℓ
\{0}

r̃α,γ(k)

λ

489

≤ 1

(bn − 1)s

∑
q∈Gs

n

∑
k∈P⊥

m,n,s,p,qℓ
\{0}

(r̃α,γ(k))
λ

490

=
∑

k∈Ns
0\{0}

(r̃α,γ(k))
λ 1

(bn − 1)s

∑
q∈Gs

n

trn(k)·q≡a (mod p)
deg(a)<n−m

1.491

492

If p | trn(k), the condition trn(k) · q ≡ a (mod p) trivially holds with a = 0 for all493

q ∈ Gs
n. Otherwise if p ∤ trn(k), i.e., if there exists a non-empty subset u ⊆ {1, . . . , s}494

such that p ∤ trn(kj) for all j ∈ u and p | trn(kj) for j ̸∈ u, the condition trn(k) ·q ≡ a495

(mod p) is equivalent to trn(ku) · qu ≡ a (mod p), which itself is equivalent to496

trn(kj)qj ≡ a− trn(ku\{j}) · qu\{j} (mod p),497

for any j ∈ u. As we have p ∤ trn(kj) and we assume that p is irreducible, there498

exists at most one qj ∈ Gn which satisfies the above equality for each a ∈ Fb[x] with499

deg(a) < n−m and qu\{j} ∈ G
|u|−1
n . Therefore, the number of q ∈ Gs

n which satisfy500

p ∤ trn(k) and trn(k) · q ≡ a (mod p) with deg(a) < n − m is bounded above by501
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16 T. GODA AND P. L’ECUYER

the product of the number of possible choices for a ∈ Fb[x], which is bn−m, and the502

number of possible choices for q{1,...,s}\{j}, which is (bn − 1)s−1. Thus it follows that503

1

|Gn|s
∑
q∈Gs

n

(S̃α,γ,p(q))
λ

504

≤
∑

k∈Ns
0\{0}

p|trn(k)

(r̃α,γ(k))
λ +

∑
k∈Ns

0\{0}
p∤trn(k)

(r̃α,γ(k))
λ b

n−m(bn − 1)s−1

(bn − 1)s
505

≤
∑

k∈Ns
0\{0}

(r̃α,γ(b
nk))λ +

1

bm − 1

∑
k∈Ns

0\{0}

(r̃α,γ(k))
λ

506

=
∑

∅̸=u⊆{1,...,s}

∑
ku∈N|u|

(r̃α,γ(b
nku,0))

λ +
1

bm − 1

∑
∅≠u⊆{1,...,s}

∑
ku∈N|u|

(r̃α,γ(ku,0))
λ

507

=
∑

∅̸=u⊆{1,...,s}

γλ
uC

λ|u|
α

(∑
k∈N

b−λµα(bnk)

)|u|

508

+
1

bm − 1

∑
∅̸=u⊆{1,...,s}

γλ
uC

λ|u|
α

(∑
k∈N

b−λµα(k)

)|u|

509

≤
∑

∅̸=u⊆{1,...,s}

γλ
u

C
λ|u|
α A

|u|
α,λ

bλn|u|
+

1

bm − 1

∑
∅̸=u⊆{1,...,s}

γλ
uC

λ|u|
α A

|u|
α,λ510

≤ 2

bmin(m,λn) − 1

∑
∅̸=u⊆{1,...,s}

γλ
uC

λ|u|
α A

|u|
α,λ,511

512

where we have used the results of [14, Lemma 7] on the sums of b−λµα(k) and b−λµα(bnk)513

in the third inequality, which involve Aα,λ given in (3.1). This gives a bound on the514

average of (S̃α,γ,p(q))
λ which holds for any 1/α < λ ≤ 1.515

Then, Markov’s inequality ensures that, for any 0 < η < 1, the event516

S̃α,γ,p(q) > inf
1/α<λ<1

 2

η(bmin(m,λn) − 1)

∑
∅̸=u⊆{1,...,s}

γλ
uC

λ|u|
α A

|u|
α,λ

1/λ

=: B̃(α,γ)517

happens with a probability of at most η under a random choice of q ∈ Gs
n. For518

the median estimator Mm,n,s,p,r to be larger than this bound B̃(α,γ), we must have519

S̃α,γ(qℓ) > B̃(α,γ) for at least (r + 1)/2 vectors among q1, . . . , qr. The probability520

that this happens is bounded above by521 (
r

(r + 1)/2

)
η(r+1)/2.522

Combining this with the bound shown in (3.2) completes the proof.523

As pointed out in [6, Section 3.1], α ≥ 2 is required to ensure the convergence of524

the infinite sum525 ∑
k∈P⊥

m,n,s,p,q\{0}

b−µα(k),526

for any irreducible p and q ∈ Gs
n. Thus, the case α = 1 is not covered by our result.527

Using Remark 2.7, we obtain the following corollary:528
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Corollary 3.8. Let α ≥ 2, γ be a set of weights, and n ≥ αm = α logb N . Then529

for any odd r ≥ 3, ϵ > 0 and 0 < ρ < 1, there is a constant c1 = c1(α,γ, ϵ) > 0 (which530

depends on α, the γu’s and ϵ) such that531

P
[
ewor(Mm,n,s,p,r;F sob

s,α,γ) ≤
c1(α,γ, ϵ)

(ρN)α−ϵ

]
≥ 1− ρ(r+1)/2/4.532

Proof. Take 1/λ = α − ϵ. Under the assumption on n, we have n ≥ αm > m/λ533

and then (bmin(m,λn))−1/λ = b−min(m/λ,n) = N−1/λ = N−α+ϵ. Then the result follows534

from Theorem 3.7 and the bound (2.4) in Remark 2.7.535

Thus, provided that we take n large enough, we get a convergence rate of almost536

O(N−α) (with high probability) for any α ≥ 2. In other words, our median high-537

order polynomial lattice rule exploits the smoothness of functions adaptively. Note538

that Remark 2.11 also applies here.539

4. Numerical experiments. We conclude this paper with numerical experi-540

ments both for rank-1 lattice rules and high-order polynomial lattice rules. The goal541

is to illustrate how the worst-case error for the median rule truly behaves on some542

concrete examples. In particular, we want to illustrate the fact that most of the543

possible generating vectors are a good choice, while a small minority are bad.544

4.1. Lattice rules for periodic functions.545

Example 4.1. For our first example, we consider a weighted Korobov space with546

integer smoothness parameter α ≥ 1 and product weights γu =
∏

j∈u γj . The worst-547

case error of the rank-1 lattice rule with generating vector z for that space has the548

explicit form549

Sα,γ(z) =

−1 +
1

N

∑
x∈PN,s,z

s∏
j=1

[
1 + γ2

j

(−1)α+1(2π)2α

(2α)!
B2α(xj)

]1/2

,550

where B2α denotes the Bernoulli polynomial of degree 2α; see [28] and [7, Section 5].551

In this artificial simple case, we know the exact optimal weights that must be taken in552

a CBC search for z, so we can compare the median estimator with the best possible553

case of a CBC search.554

We take two primes N = 251 and N = 2039, both for s = 50 dimensions, with555

α = 2 and γj = 1/j3. For each of those N , we drew 105 generating vectors z556

randomly and uniformly from {1, . . . , N − 1}s, and computed Sα,γ(z) for each. The557

left panels of Figure 2 show a histogram of the 105 realizations of log2 Sα,γ(z) for each558

of these two cases. Each histogram provides a good estimate of the true distribution559

of log2 Sα,γ(z), which is a discrete distribution because z is drawn from a finite set.560

Interestingly, the distributions are very asymmetric and are far from smooth on the561

right side: some rectangles are very high while others are zero in the same area. The562

largest observed values are −2.4353 for N = 251 and −2.4967 for N = 2039. We can563

estimate from this data the q-quantiles yq of the distribution of Sα,γ(z), similar to564

those of the distribution ofQPN,s,z
(f) in Remark 2.11. For q = 0.75, the corresponding565

empirical q-quantiles are −8.3907 for N = 251 and −12.0306 for N = 2039, while,566

for q = 0.9, they are −7.0975 for N = 251 and −10.3101 for N = 2039. These567

quantiles are much less than the worst observed values. These empirical results agree568

with the fact that only a very small proportion of the vectors z are bad. Suppose we569

draw r random realizations of z and want the median of the r corresponding values570
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Fig. 2. Histograms of the log2 of the worst-case error Sα,γ(z) with α = 2 and γj = 1/j3

for rank-1 lattice rules with randomly chosen generating vectors with N = 251 (upper panels) and
N = 2039 (lower panels). The left panels are for a single choice (r = 1), while for the right panels
we take the median of the worst-case error for rank-1 lattice rules with r = 11 randomly chosen
generating vectors.

of Sα,γ(z) to be larger than y = 10−3 ≈ 2−10 with a probability smaller than 10−4.571

For N = 2039 this y equals yq for q ≈ 0.9, and Figure 1 shows that we can achieve572

approximately the target probability of 10−4 with r = 13. For a larger N , the required573

r is even smaller. Note that for N = 251, yp = 2−10 corresponds to some q < 0.5, for574

which the target probability of 10−4 cannot be achieved even for a very large r, as575

shown in Figure 1.576

For the remainder of our experiments reported in this paper, we took r = 11.577

The right panels of Figure 2 show histograms of 105 independent realizations of578

log2[median(Sα,γ(z1), . . . ,Sα,γ(zr))] for randomly chosen z1, . . . ,zr with r = 11,579

corresponding to the cases N = 251 and N = 2039. We see that the distributions580

have much less variance and are more symmetric than for a single random z, con-581

firming the fact that taking the median successfully filters (adaptively) the bad vector582

generators. Recall that the standard deviation of the empirical median as a function583

of r generally decreases as O(r−1/2). That is, increasing r decreases the noise rather584

slowly. For the following examples, we made additional experiments with r = 31585

to see if it would make the error plots less noisy, and we did not see much visible586

difference.587

Example 4.2. For our second example, we perform a numerical integration of588
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the smooth, periodic function589

fper
β,ω(x) =

s∏
j=1

[1 + ωj (gβ(xj)− 1)] ,590

with parameters β and ωj , where the univariate function gβ : [0, 1] → R is defined by591

gβ(x) = (2β + 1)

(
2β

β

)
xβ(1− x)β .592

Note that Is(f
per
β,ω) = 1. The function gβ has been used for periodization of non-593

periodic functions, and our test function fper
β,ω belongs to the Korobov space with594

α = β when β is a positive integer, see [7, Section 5.10]. In what follows, we take595

s = 50 and consider the four cases that correspond to β = 2 or β = 5, and ωj = 1/jβ+1596

or ωj = 1/(s − j + 1)β+1. We compare our median lattice rule with r = 11, a597

QMC rule using non-randomized Sobol’ points provided by MATLAB, and the rank-598

1 lattice rule with generating vector constructed by the fast CBC algorithm with599

Sα,γ(z) as a criterion, with α = 2 and the product weights γj = 1/j3. These weights600

are not optimal, but they are a good heuristic choice when ωj = 1/jβ+1. When601

ωj = 1/(s − j + 1)β+1, on the other hand, the weights decrease in the opposite602

direction as they should: they are very large for the unimportant coordinates and603

small for the important ones. We do this to show how badly the CBC construction604

method can work when we have the wrong weights, whereas the median estimator605

does not need any knowledge about the weights to perform well. We choose N to be606

a power of 2 for Sobol’ points and to be a prime close to a power of 2 for lattice point607

sets.608

The results for the four cases are shown in the corresponding panels of Figure 3.609

Both our median lattice rule and the rank-1 lattice rule constructed by the CBC610

algorithm can exploit the periodicity of the integrand and achieve a higher-order611

rate of convergence than O(1/N). With a good choice of the weights in the CBC612

algorithm, the resulting rank-1 lattice rule performs better than our median lattice613

rule, as shown in the left panels. However, as the right panels clearly depict, if614

the relative importance of each of individual variables is not correctly specified, the615

performance of the rank-1 lattice rule with the CBC algorithm can deteriorate and616

even become inferior to the QMC rule using the Sobol’ points when N is not large. In617

contrast, our median lattice rule performs quite stably regardless of smoothness and618

weights.619

To show that our median lattice rule performs well for functions of non-product620

forms, let us consider the additional test functions given by621

fper,cyc
β (x) =

1

5

5∑
ℓ=1

s/5∏
j=1

gβ(xj+s(ℓ−1)/5) and fper,mod
β (x) =

1

5

5∑
ℓ=1

s/5∏
j=1

gβ(xℓ+5(j−1)),622

respectively, with β = 5 and s = 20. We have that Is(f
per,cyc
β ) = Is(f

per,mod
β ) = 1 and623

these two integrands belong to the Korobov space with α = β. The results for the two624

integrands are shown in the corresponding panels of Figure 4. For large N , both our625

median lattice rule and the rank-1 lattice rule constructed by the CBC algorithm are626

superior to the QMC rule using the Sobol’ points. Although the difference between627

fper,cyc
β and fper,mod

β lies only in the ordering of variables, the convergence behavior628

of the rank-1 lattice rule constructed by the CBC algorithm is not consistent for these629
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Fig. 3. Comparison of the integration error by our median lattice rule (yellow), QMC rule
using Sobol’ points (blue), and rank-1 lattice rule with the fast CBC algorithm (orange). The results
are shown for the test function fper

β,ω with the choices β = 2 and ωj = 1/j3 (upper left), β = 2 and

ωj = 1/(s−j+1)3 (upper right), β = 5 and ωj = 1/j6 (lower left), and β = 5 and ωj = 1/(s−j+1)6

(lower right).

functions and a strange zig-zag pattern shows up for fper,mod
β . On the contrary, our630

median lattice rule is not subject to the difference between the ordering of variables631

and performs almost equivalently.632

4.2. High-order polynomial lattice rules for non-periodic functions.633

Our next examples concern high-order polynomial lattice rules. Here we fix the pre-634

cision to n = 52 and always use the primitive polynomial p(x) = x52 + x3 + 1, found635

in [17], as the modulus of the polynomial lattice point sets.636

Example 4.3. We first consider the two following one-dimensional test functions:637

fnonper
1 (x) = x3(1/4 + log x) and fnonper

2 (x) = xex/4.638

We can see that the third derivative of fnonper
1 is in Lq([0, 1)) for any 1 ≤ q < ∞,639

whereas the fourth derivative is not in L1([0, 1)), implying that fnonper
1 ∈ F sob

1,3,γ,q but640

fnonper
1 ̸∈ F sob

1,4,γ,1. Thus fnonper
1 has a finite smoothness. On the other hand, fnonper

2641

is obviously infinitely differentiable, so that fnonper
2 ∈ F sob

1,α,γ,q for any α ≥ 2 and642

1 ≤ q ≤ ∞. Note that I1(f
nonper
1 ) = 0 and I1(f

nonper
2 ) = 16 − 12e1/4. We compare643

our median high-order polynomial lattice rule with r = 11 and QMC rules using order644

2 and order 3 Sobol’ points constructed by the interlacing procedure of [3], with the645

direction numbers provided in MATLAB (taken from [19]). To construct a Sobol’646
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Fig. 4. Comparison of the integration error by our median lattice rule (yellow), QMC rule
using Sobol’ points (blue), and rank-1 lattice rule with the fast CBC algorithm (orange). The results

are shown for the test functions fper,cyc
β (left) and fper,mod

β (right) with the choices β = 5 and
s = 20.
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Fig. 5. Comparison of the one-dimensional integration error by our median high-order poly-
nomial lattice rule (yellow), QMC rules using order 2 Sobol’ points (blue) and order 3 Sobol’ points
(orange). The results are shown for the test functions fnonper

1 (left) and fnonper
2 (right), respectively.

point set of order d by interlacing, we first construct a ds-dimensional Sobol point set647

with 2m points (with s = 1 in this case) and then apply the digit interlacing procedure648

defined in [3] to obtain the digits of the s-dimensional points. This procedure extracts649

the first m digits of the ds-dimensional points and reorders them in a special way to650

obtain the first dm digits of the s-dimensional points.651

The results for the two one-dimensional functions are shown in Figure 5, respec-652

tively. As we can see from the result for fnonper
1 , the QMC rule using order 2 Sobol’653

points cannot fully exploit the smoothness of the function and the error decays at the654

rate of N−2. On the other hand, the QMC rule using order 3 Sobol’ points and our655

median high-order polynomial lattice rule can exploit the smoothness and achieves656

the convergence rate of N−3. For the infinitely differentiable function fnonper
2 , the657

plot suggests that our median high-order polynomial lattice rule may converge even658

faster than N−3. These numerical results show the major advantage of our proposed659

rule in terms of adaptivity in smoothness.660

Example 4.4. Finally, we consider the two multivariate non-periodic test func-661
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tions662

fnonper
3,ω (x) = exp

−
s∑

j=1

ωjxj

 and fnonper
3,ω,flip(x) = exp

−
s∑

j=1

ωjxs−j+1

 ,663

with s = 10 and ωj = 1/(4j4). It is obvious that both fnonper
3,ω and fnonper

3,ω,flip are infinitely664

differentiable and belong to F sob
s,α,γ,q with arbitrary α ≥ 2 and 1 ≤ q ≤ ∞. Note that665

fnonper
3,ω,flip is defined by reordering the variables of fnonper

3,ω so that xj is replaced by666

xs−j+1, and that we have667

Is(f
nonper
3,ω ) = Is(f

nonper
3,ω,flip) =

s∏
j=1

1− exp(−ωj)

ωj
.668

The variables are ordered by decreasing order of importance in the first function, and669

by increasing order in the second one. As our median high-order polynomial lattice670

rule, based on random choices of generating vectors, does not care about the ordering671

of variables, it should perform the same for fnonper
3,ω and fnonper

3,ω,flip.672

The results are shown in Figure 6. Here again, we compare our median high-673

order polynomial lattice rule with r = 11 and QMC rules using order 2 and order 3674

interlaced Sobol’ points. For the function fnonper
3,ω , our median high-order polynomial675

lattice rule can exploit the smoothness better than the QMC rule using order 2 Sobol’676

points. The QMC rule using order 3 Sobol’ points exploits the smoothness of the677

integrand best and the error decays at the rate of N−3 and outperforms our median678

high-order polynomial lattice rule approximately by a constant factor for small N ,679

but this rate breaks down at around log2 N = 13 and our median rule catches up at680

log2 N = 16.681

For fnonper
3,ω,flip, the situation changes. Our median high-order polynomial lattice682

rule is now comparable to the QMC rule using order 3 Sobol’ points when N is small,683

and performs better for larger N . The error decays approximately at the rate of684

N−2.5, which the QMC rule using order 2 Sobol’ points cannot attain. The slowdown685

of the convergence for the QMC rule using order 3 Sobol’ points might be due to686

the misspecification of important variables. Although xs, xs−1, . . . are the order of687

the relatively important variables for fnonper
3,ω,flip, we use the later coordinates of order 3688

Sobol’ points, whose lower-dimensional projections are not well-distributed compared689

to the earlier coordinates. In this sense, the median high-order polynomial lattice rule690

is more robust and adaptive to the integrand at hand.691
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