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Abstract

We examine the effectiveness of randomized quasi-Monte Carlo (RQMC) tech-
niques to estimate the integrals that express the discrete choice probabilities in a
mixed logit model, for which no closed form formula is available. These mod-
els are used extensively in travel behavior research. We consider popular RQMC
constructions such as randomized Sobol’, Faure, and Halton points, but our main
emphasis is on randomly-shifted lattice rules, for which we study how to select
the parameters as a function of the considered class of integrands. We compare
the effectiveness of all these methods and of standard Monte Carlo (MC) to re-
duce both the variance and the bias when estimating the log-likelihood function at
a given parameter value. In our numerical experiments, randomized lattice rules
(with carefully selected parameters) and digital nets are the best performers and
they reduce the bias as much as the variance. With panel data, in our examples,
the performance of all RQMC methods degrades rapidly when we simultaneously
increase the dimension and the number of observations per individual.

1. Introduction

Travel behavior analysis makes heavy use of discrete choice models. Recent
modeling frameworks account for a large number of (random) effects: hetero-
geneity in preferences (Hess et al., 2005; Cirillo and Axhausen, 2006) and/or in
scale factor (Hess et al., 2009), variability in willingness to pay (Bastin et al.,
2010), correlation across alternatives (Brownstone et al., 2000), in space (Bhat
and Sener, 2009), etc. Advanced discrete choice models are often associated with
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choice probabilities that can be written as multivariate integrals, but do not admit
a closed-form formula. In mixed logit models, for example, we have an integral
with respect to the mixing density, which depends on unknown parameters that we
want to estimate. These integrals are typically estimated by Monte Carlo (MC) or
quasi-Monte Carlo (QMC) methods (McFadden and Train, 2000; Train, 2003). In
particular, Halton sequences have found widespread application for mixed logit
model estimation in transportation (Train, 2000; Bhat, 2001, 2003). Sándor and
Train (2004) experimented with digital nets and sequences such as those of Sobol’.
Sivakumar et al. (2005) observed that Faure sequences performed better empiri-
cally than Halton sequences in the evaluation of the multidimensional integrals
they considered.

In other areas of applications, for example in finance (L’Ecuyer, 2009), the
best empirical results are usually obtained by Sobol’ nets with certain types of
scrambles and by randomly-shifted lattice rules with a baker’s transformation.
These methods have not been studied for estimating the integrals involved in
mixed logit models and our primary aim in this paper is to fill this gap. A cru-
cial issue in the application of lattice rules is the selection of their parameters,
which should depend in principle on the considered class of integrands. Ideally,
the parameters are selected to minimize a measure of discrepancy adapted to the
problem, which gives a weight to each subset of coordinates, and those weights
are chosen based on a functional analysis of variance (ANOVA) decomposition of
the integrand (Dick et al., 2004; L’Ecuyer, 2009). We show in this paper how this
methodology can be adapted to the setting of mixed logit log-likelihood estima-
tion. This is not direct, because the log-likelihood is not expressed as an integral
and we do not have an unbiased estimator of it, so we are not in a standard RQMC
framework. We study both the bias and the variance of the log-likelihood estima-
tor, and we examine and compare different ways of selecting the weights in the
discrepancy. Given that computing the ANOVA for each application would be un-
practical because it is too time consuming, we also compare the performance ob-
tained with simplified weight-selection procedures. Fortunately, we find (empiri-
cally) that the rules obtained with simplified weight selections perform practically
as well as those constructed from an extensive and costly ANOVA estimation, and
are robust to changes in the model.

We focus in this paper on the estimation of the log-likelihood function at a
given parameter value, for a given data set. This is the basic building block and
the main source of error when estimating the parameter value that maximizes the
log-likelihood function. Just examining the log-likelihood estimator permits one
to avoid additional error sources from the maximization and to distinguish and
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study separately the bias and the variance. Besides lattice rules and standard MC,
we consider RQMC point sets constructed from the Sobol’, Faure, and Halton
sequences. We find that RQMC reduces both the variance and the simulation bias,
and we explain why.

The remainder is organized as follows. In Section 2, we present basic defi-
nitions and properties of the mixed logit model considered in this paper, and we
analyze the bias and variance of an MC estimator of the log-likelihood. In Sec-
tion 3, we review briefly RQMC methods, with special focus on randomly-shifted
lattice rules and the choice of their parameters, and we develop a methodology of
parameter selection for the present setting, based on an ANOVA and a weighted
discrepancy. In Section 4, we report numerical experiments that examine and
compare the convergence of the bias and variance for various RQMC estimators,
first for synthetic data (with 1 to 10 observations per individual), then for a real-
life data set. We also report an experiment on parameter estimation (log-likelihood
maximization) with the real-life data. Section 5 concludes the paper.

2. The mixed logit model and log-likelihood estimation

2.1. The model and the likelihood function
In a popular form of multinomial mixed logit model (McFadden and Train,

2000; Train, 2003) the utility of alternative j for individual q is

Uq,j = βt
qxq,j + εq,j =

s∑
`=1

βq,`xq,j,` + εq,j

where βq = (βq,1, . . . , βq,s)
t is an unobserved random vector of taste parameters

(or coefficients) for each individual q, xq,j = (xq,j,1, . . . , xq,j,s)
t gives the observed

attributes for choice j and individual q, and the εq,j are independent Gumbel ran-
dom variables with mean 0 and scale factor of 1, which represent unobserved
random noise. For a random individual q, the (random) vector βq has a multivari-
ate density fθ that depends on a parameter vector θ. Individual q always selects
the alternative j having the largest utility Uq,j .

Conditional on βq, the individual q selects alternative j with probability

Lq(j,βq) =
exp[βt

qxq,j]∑
a∈A(q) exp[βt

qxq,a]
, (1)
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independently of other individuals, where A(q) is the set of his alternatives. The
unconditional probability that a random individual selects alternative j is then

pq(j,θ) = E[Lq(j,βq)] =

∫
Rs

Lq(j,β)fθ(β) dβ. (2)

We assume that the random vector βq can be written as βq = h(θ,U) for some
explicit function h, where U is a vector of independent uniform random variables
over (0, 1). This assumption is standard and is required to simulate realizations
of βq from independent uniform random numbers. In the examples considered in
this paper, U has dimension s. Then we have

pq(j,θ) = E [Lq(j, h(θ,U))] =

∫
(0,1)s

Lq(j, h(θ,u)) du. (3)

To estimate the integral (2) or (3) by MC, for a given θ and q, we generate
nq independent random points U(1)

q , . . . ,U
(nq)
q in (0, 1)s, put β(i)

q (θ) = h(θ,U
(i)
q )

for i = 1, . . . , nq, and compute the unbiased estimator

p̂nq
q (j,θ) =

1

nq

nq∑
i=1

Lq(j,β
(i)
q (θ)) =

1

nq

nq∑
i=1

Lq(j, h(θ,U(i)
q )), (4)

where each Lq(j,β(i)
q (θ)) is computed via (1).

When the same individual (with the same βq) delivers Tq > 1 observations
and selects alternative jt for his tth decision, assuming that the selections are
independent conditionally on βq, the joint likelihood of this choice sequence is

LTqq (j1, . . . , jTq ,βq) =

Tq∏
t=1

Lq(jt,βq),

where each Lq(jt,βq) is computed as in (1), and its unconditional probability is

pq(j1, . . . , jTq ,θ) = E
[
LTqq (j1, . . . , jTq , h(θ,U))

]
.

This expectation can be estimated by MC in a manner similar to (4), with each
Lq(·) replaced by a product LTqq (·).
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2.2. Estimating the log-likelihood of a sample: bias and variance
With (4), we can estimate the likelihood of θ for a single individual. But

to estimate θ from a data set, one would usually maximize the log-likelihood
lnL(θ) (the logarithm of the likelihood) of the entire data set, as a function of θ,
and we do not have an unbiased estimator for this function. Specifically, suppose
we have a data set of one observation per individual for m individuals, in which
individual q was given the vector of attributes xq,j for each alternative j and made
the choice yq, for q = 1, . . . ,m. The log-likelihood, which we divide by m to
obtain an average over individuals and prevent the expression from blowing up
when m→∞, is

lnL(θ)

m
=

1

m
ln

m∏
q=1

pq(yq,θ) =
1

m

m∑
q=1

ln pq(yq,θ). (5)

Replacing the pq(yq,θ) by their estimators p̂nq
q (yq,θ) defined in (4) yields the

following estimator of lnL(θ)/m:

ln(L̂(θ))

m
=

1

m

m∑
q=1

ln
(
p̂nq
q (yq,θ)

)
=

1

m

m∑
q=1

ln

(
1

nq

nq∑
i=1

Lq
(
yq, h(θ,U(i)

q )
))

.

(6)
When Tq > 1, the Lq(·) inside the sum is replaced by the product LTqq (·). This
estimator is biased, because ln is not a linear function, and the bias is negative
because ln is concave. To find the dominant terms of the bias and variance, let

Rq =
p̂
nq
q (yq,θ)− pq(yq,θ)

pq(yq,θ)
, (7)

the relative estimation error in pq(yq,θ). A Taylor expansion of ln(p̂
nq
q (yq,θ))

around ln(pq(yq,θ)) gives

ln(p̂nq
q (yq,θ))− ln(pq(yq,θ)) = Rq −R2

q/2 +O(|Rq|3). (8)

The total bias in (6) can then be written (using that E[Rq] = 0) as

E

[
ln(L̂(θ))− ln(L(θ))

m

]
=

1

m

m∑
q=1

E
[
−
R2
q

2
+O(|Rq|3)

]
≈ − 1

2m

m∑
q=1

E[R2
q ],

(9)
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and, since Var[Rq] = E[R2
q ] and the Rq’s are independent, the variance is

Var

[
ln(L̂(θ))

m

]
≈ Var

[
1

m

m∑
q=1

Rq

]
=

1

m2

m∑
q=1

E[R2
q ]. (10)

With MC, E[R2
q ] = O(1/nq), so if nq = n for all q, the bias is O(1/n) and the

variance is O(1/(mn)). Thus, for fixed m, the contribution of the square bias to
the mean square error (MSE) becomes negligible compared to that of the variance
when n is large enough: O(n−2) compared withO((mn)−1). But in practice, n is
not always very large, so the bias can be significant, and it is not reduced when we
increase m, in contrast to the variance. For this reason, it is important to study the
convergence of the bias in addition to that of the variance when we compare MC
and RQMC methods. With RQMC, the terms E[R2

q ] and the convergence rate as a
function of n are not the same as with MC. One may expect from (7) that E[R2

q ] is
larger when pq is smaller, and this is typically what we have observed empirically:
the individuals with small pq’s tend to contribute more to the sums in (9) and (10).

3. RQMC Methods

3.1. RQMC and variance bounds
RQMC methods (Owen, 1998; L’Ecuyer, 2009; Lemieux, 2009) estimate the

integral µ =
∫
(0,1)s

f(u) du of a function f over the s-dimensional unit cube
(0, 1)s by averaging evaluations of f over a set of n points Pn = {U0, . . . ,Un−1}:

µ̂n,rqmc =
1

n

n−1∑
i=0

f(Ui). (11)

These points must form an RQMC point set, which means that

(a) Pn covers (0, 1)s very uniformly when taken as a set and
(b) each individual point Ui has the uniform distribution over (0, 1)s.

Condition (b) ensures that the average µ̂n,rqmc is an unbiased estimator of µ. With
condition (a), we expect the RQMC estimator (11) to have smaller variance than
the ordinary MC estimator, if f is sufficiently smooth. Different ways of mea-
suring the uniformity of Pn in (a) are used for different types of constructions
and classes of integrands, to obtain error and variance bounds (Niederreiter, 1992;
Hickernell, 1998, 2000; L’Ecuyer, 2009). For this, one usually specifies a class
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H of functions f , often a reproducing kernel Hilbert space, and one derives a
worst-case bound on the integration error of the form

|µ̂n,rqmc − µ| ≤ D(Pn)V (f) (12)

for all f ∈ H and any point set Pn ⊂ (0, 1)s, where D(Pn) measures the dis-
crepancy of Pn from the uniform distribution and V (f) = ‖f − µ‖H measures
the variability of f in H. The definitions of D(Pn) and V (f) depend on each
other, and a definition that makes V (f) smaller will generally make D(Pn) larger,
and vice-versa. One special case of (12) is the classical Koksma-Hlawka inequal-
ity often associated with QMC methods, where Pn is deterministic (Niederreiter,
1992). When Pn is randomized, we obtain the variance bound

Var[µ̂n,rqmc] = E[(µ̂n,rqmc − µ)2] ≤ E[D2(Pn)]V 2(f). (13)

Then, if V (f) < ∞, the variance converges at the same rate as E[D2(Pn)] as a
function of n. RQMC point sets used in this paper include randomized lattices,
digital nets, and Halton points. They are discussed in the remainder of this section.

3.2. Functional ANOVA decomposition
Covering the s-dimensional unit hypercube very uniformly requires a num-

ber of points n that increases exponentially with s, so accurate high-dimensional
integration by RQMC looks hopeless at first sight (L’Ecuyer, 2009). Yet empiri-
cally, the method works well even in hundreds of dimensions in some cases. The
usual explanation is that in those cases, the integrand f can be well approximated
by a sum of low-dimensional functions that are accurately integrated by RQMC,
and the residual has small variance (Owen, 1998; L’Ecuyer, 2009). This can be
formalized via the functional ANOVA decomposition of f , defined as follows. If

σ2 = Var[f(U)] =

∫
(0,1)s

f(u) du− µ2 <∞

for U uniformly distributed over (0, 1)s, one can write

f(u) = µ+
∑

∅6=u⊆{1,...,s}

fu(u) (14)

where u denotes an arbitrary subset of coordinates (this is standard notation, not to
be confused with u), each fu : (0, 1)s → R depends only on {ui, i ∈ u}, the fu’s
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integrate to zero and are orthogonal, and the variance admits the corresponding
decomposition σ2 =

∑
u⊆{1,...,s} σ

2
u where σ2

u = Var[fu(U)].
If
∑

u∈U σ
2
u/σ

2 is very close to 1 for a relatively small set U of subsets of
{1, . . . , s}, that is, the approximation of f by

∑
u∈U fu accounts for most of the

MC variance, then we can construct the RQMC point set Pn by focusing on the
uniformity of its projections over the subsets of coordinates u ∈ U , by giving
them an importance in relation with σ2

u , and neglect the other projections. This is
how most good RQMC point sets are constructed, either by assuming a priori a
certain behavior for the σ2

u or by trying to estimate them.

3.3. Randomly-shifted lattice rules
A rank-1 lattice rule with n points in s dimensions is defined as follows

(Niederreiter, 1992; Sloan and Joe, 1994). Select a vector a1 = (a1, . . . , as)
whose coordinates belong to Zn = {0, . . . , n− 1}, let v1 = (v1, . . . , vs) = a1/n,
and define P 0

n = {v = iv1 mod 1, i = 0, 1, . . . , n − 1}, where the division and
the modulo operation are coordinate-wise. This point set is the intersection of a
lattice with the unit hypercube in s dimensions. The aj are usually taken relatively
prime to n, so that the projection of P 0

n over any of its coordinates contains the n
distinct points {0, 1/n, . . . , (n−1)/n}. Thus, there is no need to measure the uni-
formity of the one-dimensional projections. Here we randomize P 0

n by applying a
random shift modulo 1, which consists in generating a single point U uniformly
over (0, 1)s and adding it to each point of P 0

n , modulo 1, coordinate-wise (Cranley
and Patterson, 1976; L’Ecuyer and Lemieux, 2000), to obtain Pn. We follow this
by a baker’s transformation, which replaces each coordinate u of each point by
2u if u < 1/2 and by 2 − 2u otherwise (Hickernell, 2002; L’Ecuyer, 2009). To
summarize, the following pseudocode enumerates the randomized points:

Generate U = (U1, . . . , Us) from the uniform distribution over (0, 1)s;
for i = 0 to n− 1 do

for j = 1 to s do
Ui,j ← 2((ivj + Uj) mod 1);
if Ui,j ≥ 1 then Ui,j ← 2− Ui,j;

Ui = (Ui,1, . . . , Ui,s).

The vector v1 is selected to try to minimize a given discrepancy measure of
P 0
n . In this paper, we use the weighted P2α criterion (Dick et al., 2004)

P2α(P 0
n) =

∑
∅6=u⊆{1,...,s}

γuP2α,u(P
0
n), (15)
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where α is a positive integer, the projection-dependent weights γu are arbitrary
positive real numbers, and

P2α,u(P
0
n) =

1

n

n−1∑
i=0

[
−(−4π2)α

(2α)!

]|u|∏
j∈u

B2α(ui,j) (16)

is the discrepancy for the projection over u, in which ui = (ui,1, . . . , ui,s) =
iv1 mod 1 is the ith lattice point before the shift, |u| is the cardinality of u, and
B2α is the Bernoulli polynomial of order 2α. This criterion can be motivated as
follows. Consider the class Fα of functions f for which for each subset u of
coordinates, the partial derivative of order α with respect to these coordinates is
square integrable, and the partial derivatives of orders 0 to α − 2 of the periodic
continuation of f over Rs are continuous. For α = 1, this continuity condition
just disappears, but for α = 2 the periodic continuation of f must be continuous.
It turns out that the square variation of f ∈ Fα defined as

V 2(f) =
∑

u⊆{1,...,s}

V 2(fu) =
∑

∅6=u⊆{1,...,s}

1

γu(4π2)α|u|

∫
[0,1]|u|

∣∣∣∣∂α|u|∂uα
fu(u)

∣∣∣∣2 du,
(17)

corresponds to a square discrepancy for which E[D2(Pn)] = P2α(P 0
n), and the

variance bound (13) holds for this pair (Dick et al., 2004; L’Ecuyer, 2009). It
is also known that for any α > 1, any δ > 0, and any choices of weights γu,
there exists a sequence of rank-1 lattices for which P2α(P 0

n) = O(n−2α+δ), and
the corresponding vectors v1 can be constructed explicitly one coordinate at a
time, by a so-called component-by-component (CBC) construction method (Dick
et al., 2004). This means that for any f ∈ Fα, it is possible to construct lattice
rules for which Var[µ̂n,rqmc] = O(n−2α+δ). The role of the baker’s transformation
mentioned earlier is to make the periodic condition of f continuous, so we can
have α = 2 instead of α = 1 when f is smooth enough; see Hickernell (2002) and
L’Ecuyer (2009) for detailed explanations.

3.4. Selecting the weights for lattice rules
Ideally, we would like to select the weights γu in (15) so that minimizing this

expression also minimizes the MSE of the log-likelihood estimator. In principle,
we could either select a different set of weights and a different lattice for each in-
dividual, trying to minimize the MSE of the log-likelihood for that individual, or
construct a single lattice and use it for all individuals, with independent random
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shifts across individuals. We adopt the second option because it is much more
practical and convenient. We nevertheless explored the potential MSE improve-
ment that could be achieved with the first option, by some empirical experiments,
and the gain was very small (see Section 4.3).

Note that for classical deterministic QMC methods, it is customary to use a
different point set for each individual, otherwise, the “positive dependence” across
individuals typically increases the error on the average. With RQMC, we can also
do it, but we do not have to, because the independent randomizations remove the
dependence (L’Ecuyer and Lemieux, 2000).

Both the bias and the variance in (9) and (10) depend on the sum
∑m

q=1 Var[Rq],
which we would like to minimize. Under the assumption that the integrands Lq
are sufficiently smooth to belong to Fα, from the end of Subsection 3.3 and (13),
we have the bound

Var[Rq] ≤
∑

∅6=u⊆{1,...,s}

γq,uP2α,u(P
0
n) (18)

for some per-individual projection-dependent weights γq,u, where P2α,u(P
0
n) is

given by (16). Summing up over q gives

m∑
q=1

Var[Rq] ≤
∑

∅6=u⊆{1,...,s}

γuP2α,u(P
0
n), (19)

where

γu =
m∑
q=1

γq,u. (20)

Our criterion will be the right sum in (19). It remains to estimate the appropriate
γq,u’s. For that, we will use the fact (L’Ecuyer and Munger, 2011) that the sum in
(18) is equal to the RQMC variance for a worst-case function f ∗α,q defined by

f ∗α,q(u) =
∑

∅6=u⊆{1,...,s}

√
γq,u

∏
j∈u

(2π)α

α!
Bα(uj),

whose ANOVA variance components are

σ2
q,u = γq,u

[
Var[Bα(U)]

(4π2)α

(α!)2

]|u|
= γq,u

[
|B2α(0)|(4π

2)α

(2α)!

]|u|
def
= γq,u(κ(α))−|u|

(21)

10



where κ(α) is a constant that depends on α. In particular, we have κ(1) = 3/π2 ≈
0.30396 and κ(2) = 45/π4 ≈ 0.46197. Acting as if we were integrating this
f ∗α,q, we adopt weights γq,u given by these formulas, in which the σ2

q,u are replaced
by estimates of the ANOVA components of Var[Rq]. This amounts to taking the
weights γu = (κ(α))|u|σ̄2

u where σ̄2
u = (1/m)

∑m
q=1 σ

2
q,u. In our experiments, we

estimated those σ2
q,u using the algorithm of Sobol’ and Myshetskaya (2007) and

we used α = 2 (because we apply the baker’s transformation) to compute the
weights γq,u, then γu. In our results, we denote the lattices constructed based on
P2α(P 0

n) with those weights by lattice-γu.
The lattice-γu are our best shot at building lattices adapted to our problems.

However, estimating all those weights becomes impractical when s increases, be-
cause there are 2s − 1 variance components to estimate. Note that the weights
of one-dimensional projections (for which |u| = 1) are irrelevant for selecting
v1, because all one-dimensional projections are the same under our assumptions,
so there is no need to specify them. This gives s fewer parameters to estimate.
Also, multiplying all weights by a given constant has no impact on the selection
of v1, since it does not change the relative importance of the projections. To fur-
ther reduce the number of parameters to estimate (and at the same time reduce
the likelihood of overfitting), we may bundle the projections u in subgroups, and
attach one weight to each subgroup. For example, we can have order-dependent
weights, where all projections of cardinality (or order) r are given the weight γr,
for r = 2, . . . , s. For this, we can estimate σ2

r =
∑
{u:|u|=r} σ̄

2
u , and plug it in the

formula γr = C(κ(α))rσ2
r/
(
s
r

)
, where C is an arbitrary positive constant and

(
s
r

)
is the number of projections of order r. This gives s − 1 parameters to estimate.
In our results, we will use lattice-order to refer to these rules.

To reduce this number even further, we can simply assume that γr = Cγr for
all r, for some constant γ, and estimate a γ that best fits this model, for instance
by fitting a linear regression model of the form

r lnκ(α) + 2 lnσr = lnC + r ln γ + εr

by finding C and γ that minimize
∑∞

r=2 ε
2
r . We call the resulting weights geomet-

ric order-dependent weights. In our experiments, we will end up taking either a
best fit for γ, or the fixed values γ = 0.1 or γ = 0.5, and we refer to the corre-
sponding rules by lattice-γ, lattice-0.1 and lattice-0.5. Note that multiplying γ by
some factor here is equivalent to multiplying κ(α) in (21) by the same factor.

We also considered for comparison some Korobov lattices tabulated by L’Ecuyer
and Lemieux (2000), whose parameters were selected based on the M32,24,16,12
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criterion defined in that paper, and which accounts for projections in up to 32 di-
mensions over successive coordinates, and a selected set of projections of order 2,
3, and 4 only. This criterion also takes the worst case over the selected projections
instead of a weighted average as in (15). These point sets were constructed with
no particular application in mind. We refer to them by lattice-M32.

3.5. Sobol’ and Faure nets
Randomized digital nets, which include Sobol’ and Faure nets among others,

form another important class of RQMC constructions. A Sobol’ net with n = 2k

points in s dimensions, for a positive integer k, contains the first n points of a
Sobol’ sequence in s dimensions (Sobol’, 1967; Lemieux, 2009). These points
are defined by w × k binary generator matrices C1, . . . ,Cs. To define the ith
point ui, for i = 0, . . . , 2k − 1, we write the digital expansion of i in base 2 and
multiply the vector of its digits by Cj , modulo 2, to obtain the first w digits of
the binary expansion of the jth coordinate of ui. The columns of the matrices Cj

are determined by direction numbers that must be chosen. For our experiments
here, we have used the default direction numbers of SSJ (L’Ecuyer, 2008), taken
from Lemieux et al. (2004), which improve upon previous proposals. To random-
ize our Sobol’ nets, we first apply a left matrix scramble, which multiplies each
Cj (modulo 2) by a lower triangular binary matrix Mj with 1’s on the diagonal
and random bits below the diagonal (Owen, 2003). This is followed by a digital
random shift, which generates a single point U uniformly over (0, 1)s and adds
each digit of the binary expansion of each of its coordinate to the corresponding
digit of each point, modulo 2 (Owen, 2003).

The randomized Faure nets are defined in a similar way, except that all binary
operations are replaced by operations modulo a prime integer b (the base), and
the matrices Cj are defined in a specific way, with elements in {0, . . . , b − 1}
(Lemieux, 2009). One must have b ≥ s− 1 and n a power of b for the method to
be effective. These requirements are a problem when s is large.

3.6. Halton points
We also try Pn defined as the first n points of randomized versions of the

Halton sequence in s dimensions, using again the same points with independent
randomizations across individuals. These Halton points are popular in discrete
choice modeling and analysis. Faure and Lemieux (2009) provide a recent ex-
tensive study of various scrambles and randomizations for the Halton sequence,
and propose a new scrambling that compares favorably with all the previous ones
when combined either with a digital random shift, or with a random starting point
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as proposed in Struckmeier (1995) and discussed in Ökten (2009). These two
randomizations yield very similar performances in their results. We implemented
these scrambled Halton points with a random starting point, and we refer to them
as Halton-FL points. We also try a simpler randomization of the Halton points, by
random shifts modulo 1, and we refer to these points as Halton-shift points. We
also experimented with the more traditional practice of defining Pn for individual
q as the points (q − 1)n− 1 through qn of the Halton sequence, i.e., individual 1
has the first n points, individual 2 has the next n points, and so on (Train, 2000;
Bhat, 2001, 2003). This strategy is appropriate when using deterministic QMC
sequences, but not needed when a random shift is applied to obtain an unbiased
RQMC estimator, as we do here. In all our experiments, the variance and bias are
almost undistinguishable from the case where we randomize the same points for
all individuals, so we do not report the detailed results.

4. Numerical experiments

4.1. General experimental setting
We report experimental results for two examples, for which we estimate and

compare the bias and variance of various RQMC estimators of the log-likelihood
averaged over individuals. The first example uses artificially generated data and
has multiple variants. The second one is based on real-life data. For each example,
we select a parameter value θ not far from the optimizer of the log-likelihood. To
select the lattice rule parameters based on our methodology, we first estimate the
relative variance components σ2

q,u in the ANOVA decompositions of the integrand
fq(u) = Lq(yq, h(θ,u)) associated with (4), for each q and each u, or its exten-
sion to multiple choices per individual, using 100 independent RQMC runs with
65537 lattice points, for each u. Then we compute the weights γq,u, γu, γr, and γr

based on those estimates of the σ̄2
u’s as explained earlier, and we construct lattices

having a small value of the weighted P2α criterion (15), for each form of weights.
These lattices are used for all individuals. For some examples, we also construct
a specialized lattice based on the specific weights γq,u for each individual, just to
see if this could bring a significant gain in performance.

For MC and each RQMC method, for each n considered, we compute 1000
independent realizations of the estimator (6) of (5), then compute the empiri-
cal mean and variance of these realizations. We estimate the bias using the ap-
proximation in (9), based on the 1000 independent realizations of (4) for each
q. For MC, the lattice rules, and the Halton points, we consider 28 prime val-
ues of n ranging from 31 to 16381 (including values close to a power of two).
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For the Sobol’ nets, we consider for n all powers of two from n = 25 = 32 to
n = 214 = 16384, and match each one with its nearest prime n for the lattice
rules. For the Faure nets, for s = 5 we take b = 5 and n = 25, 125, 625, 3125,
and 15625, while for s = 10 we take b = 11 and n = 121, 1331 and 14641.

Based on (9) and (10), the variance and the square bias of (6) with RQMC
should behave as Var[ln(L̂(θ))/m] ≈ V0m

−1n−ν and Bias2[ln(L̂(θ))/m] ≈ (V0/2)2n−2ν ,
for large enough n, for constants V0 and ν that depend on the RQMC method.
Thus, the square bias dominates the MSE for small n and large m, and is negligi-
ble compared with the variance when n is large enough. Thus, the MSE decreases
roughly as O(n−2ν) for small n and O(n−ν) for n large.

In fact, adding another term to the variance expansion adds another term
whose convergence order is comparable to that of the square bias in the MSE
approximation. To take this into account, we replace the constant (V0/2)2 in front
of the square bias by another arbitrary constant B0 > 0. This gives

MSE[ln(L̂(θ))/m] ≈ V0m
−1n−ν +B0n

−2ν . (22)

For MC, we know that ν = 1. For RQMC, we want to fit this model in the
range of values of n of practical interest, say from 28 to 214, instead of in the limit
when n→∞ (where the parameters might differ). We do this by applying linear
regression to the logarithm of the observations for n ≥ 28 = 256. We discard the
smaller values of n because the exponent ν sometimes changes in that range and
keeping these values would distort the results.

For any fixed n, we define the MSE reduction factor of an RQMC estimator
with n points, with respect to an MC estimator based on n independent simulation
runs, as the MSE of the MC estimator divided by that of the RQMC estimator. We
estimate this factor using the fitted versions of (22). When n is large, it increases
approximately as O(n−1/n−ν) = O(nν−1). But for small or moderate n, it is not
always increasing in n, because of the effect of the bias in (22).

4.2. Examples with synthetic data
Our first set of experiments are with an artificial data set generated from a

known model, very similar to Sivakumar et al. (2005). We consider both cross-
sectional data (Tq = 1) and panel data (with Tq = 3 and 10), and s = 5, 10,
and 15. For each s and Tq, we have |A(q)| = 4 for every q, for m = 500 in-
dividuals. The coordinates xq,j,` of the attribute vectors are independent N(1, 1)
random variables (normal with mean 1 and variance 1) for alternatives j = 1, 2
and N(0.5, 1) for alternatives j = 3, 4. The s coordinates of βq = (βq,1, . . . , βq,s)
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are also independentN(1, 1) random variables. Then we repeated the experiments
for βq multinormal with the same N(1, 1) marginals, but with correlations of 0.3
across its s components. That is, the covariance matrix has 1’s on the diagonal and
0.3 everywhere else. We refer to these two distributions as the independent and
correlated cases. To generate realizations of βq, we generate the standard normal
variates by inversion. In the correlated case we decompose the covariance matrix
via PCA, as explained in the appendix and in L’Ecuyer (2009) (this gives slightly
smaller RQMC variances than the more familiar Cholesky decomposition). After
generating an artificial data set from the model in a first stage, in the second stage
we estimate the log-likelihood function for this data set, at the value θ0 of θ used
to generate the data, by simulation. To see what happens when θ is farther away
from θ0, for the independent case with s = 5 and 10, we also estimate the log-
likelihood function at 5 values of θ generated randomly on the surface of the ball
‖θ − θ0‖ = ρ, for ρ = 0.1 and 0.3. Here we give a representative subset and a
summary of our results. Detailed results are in the online appendix.

0 0.2 0.4 0.6 0.8 1

independent, s = 5, Tq = 1
correlated (PCA) , s = 5, Tq = 1

independent, s = 5, Tq = 3
correlated (PCA) , s = 5, Tq = 3

independent, s = 5, Tq = 10
correlated (PCA) , s = 5, Tq = 10

fraction of total variance

Order 1
Order 2
Order 3
Order 4
Order 5

Figure 1: Fraction of average relative variance for all individuals, per projection order r, for s = 5,
with Tq = 1, 3 and 10, for the independent and correlated cases.

Figure 1 shows the estimated relative variances per order r, σ2
r , averaged over

individuals, for s = 5. There is not much difference between the independent
and correlated cases, except that the lower-order projections have a slightly larger
share of the variance for the correlated case, so we expect RQMC to work slightly
better in that case. Increasing the correlation would amplify this effect. The share
of lower-order projections also decreases (so we expect RQMC to be less effec-
tive) when Tq increases. A closer observation (see the appendix) reveals that all
projections of the same order contribute almost the same proportion of MC vari-
ance. This is explained by the homogeneity of the synthetic population. It sug-
gests that order-dependent weights are appropriate for this situation. For s = 5
and Tq = 1, the fractions of relative variance σ2

r/σ
2 for r = 1, . . . , 5 are 0.70,

15



25 27 29 211 213
10−10

10−8

10−6

10−4

n

va
ri

an
ce

25 27 29 211 213

10−7

10−5

10−3

n

ab
so

lu
te

bi
as

25 27 29 211 213
10−10

10−8

10−6

10−4

n

ap
pr

ox
im

at
e

M
SE

25 27 29 211 213
10−5

10−4

10−3

10−2

10−1

100

n

sq
ua

re
bi

as
/M

SE

Figure 2: Estimated variance (top left), bias (top right), MSE (bottom left), and fraction of the
MSE contributed by the square bias (bottom right) of the MC and RQMC estimators of the log-
likelihood function for the independent case with s = 5 and Tq = 1, using MC ( ), lattice-γu
( ), lattice-0.1 ( ), lattice-M32 ( ), Sobol’ nets ( ) Halton-shift points ( ), and
Halton-FL points ( ). The results for lattice-order and lattice-0.5 (not shown here) are very
similar to those of lattice-γu and lattice-0.1.

0.23, 0.057, 0.011, and 0.0014. The associated order-dependent weights (normal-
ized so that γ2 = 1) are γ3 = 0.11, γ4 = 0.021, and γ5 = 0.0057 (recall that γ1
is not used). If we fit the parameter γ for exponential order-dependent weights, in
the independent case with s = 5, we obtain γ = 0.18, 0.33 and 0.57 for Tq = 1, 3
and 10, respectively. This provides some support for adopting the lattice-0.1 rules
for Tq = 1 and the lattice-0.5 rules for Tq = 10.

The variance, bias, and MSE on the log-likelihood function, obtained with
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the lattices constructed based on those weights and for other RQMC point sets,
are given in Figure 2, in logarithmic scale. We find that all the lattice rules (ex-
cept lattice-M32) as well as the randomized Sobol’ and Faure nets have compara-
ble performances. They perform a little better than Halton-FL, much better than
Halton-shift, and they provide a large MSE reduction over MC. The lattice-M32
rules have an erratic behavior; they come close to the good ones for some values
of n and they do much worse for other values. The plausible explanation is that for
certain values of n, we are more lucky with the uniformity of the most important
projections not considered in the M32,24,16,12 criterion. For the other rank-1 lat-
tices, no choice of weights seems to offer a solid advantage over the other choices
and their differences in MSE reductions fluctuate somewhat randomly (but not
too much) across values of n. For example, the ratio of variances for lattice-0.1
and lattice-γu is larger than 1 on average but ranges from 0.5 to 3.5 for the differ-
ent values of n, and is not monotone in n. These ratios are similar for the other
choices of weights (compared with lattice-γu). When we do the same comparison
with a larger s, the main difference is that lattice-0.1 rules become slightly better
than the lattice-0.5 and the Sobol’ and Faure nets for s = 10 or 15; they reduce
the variance by up to 30 % more. The bottom right plot in the figure confirms
that the share of MSE contributed by the square bias decreases faster with RQMC
than with MC when n increases. For small n (say less than about 200), the MSE
reduction is mostly due to the bias reduction.

Estimates of the exponents ν for various RQMC methods and values of s and
Tq are given in Table B.1 of the appendix. These exponents are smaller when s or
Tq is larger. They are approximately between 1.5 and 1.7 for s = 5 and Tq = 1,
between 1.4 and 1.5 for s = 5 and Tq = 10, between 1.2 and 1.3 for s = 15
and Tq = 1, and cannot be distinguished from 1 (so we do not report them) when
s ≥ 10 and Tq = 10. In the latter case, for s ≥ 10 and Tq = 10, we could in
fact observe no significant MSE reduction at all for any of the RQMC methods!
That is, RQMC methods are no better than MC for this example, at least in the
range of values of n that we have observed. Table 1 shows the (significant) MSE
reduction factors interpolated from (22) (with estimated parameters) at n = 104.
The Sobol’ nets generally give the best MSE reduction factors in low dimensions
and when Tq = 1, but the rank-1 lattices win in higher dimension and when
Tq > 1. In general, the MSE reduction factors are much higher in situations
where the low-order projections have a large share of the variance (smaller s,
smaller Tq, and higher correlation), as expected. In fact, the Sobol’ nets generally
do a bit better in situations where the projections of order two have a larger share
of the variance (smaller s and higher correlation). This is consistent with the fact
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that their parameters were selected mainly based of the uniformity of their two-
dimensional projections. The restriction on the number of points in Faure nets
prevented us from simulating for enough values of n to fit the bias and variance
as with other RQMC constructions. We do not show the results in the figures to
reduce the number of superpositions; their performance is comparable to Sobol’
nets for s = 5 and to lattice rules for s = 10 and 15. In additional experiments,
we tried replacing the random starting point in Halton-FL with a random shift
modulo 1, and this reduced their performance to a level almost comparable to the
Halton-shift points. Reciprocally, the Halton points without the Faure-Lemieux
scramble but with a random starting point perform almost as well as Halton-FL.
This suggests that a random starting point is the key ingredient for improvement,
and that it significantly improves the projections on average.

Figure 3 illustrates the fact that the MSE reduction factor does not always
increase in n, in the range of values of n used in practice. It shows the fitted
MSE (top) and MSE reduction factors (middle) with MC and RQMC, for the
independent case with s = 10, for Tq = 1 and 3. For small n, the square bias
dominates the MSE for MC, and it decreases faster than for RQMC, which may
cause a decrease in the MSE reduction factor as a function of n. This behavior
depends in particular on the proportion of variance in projections of high order
and on the population size m.

Independent case
s 5 10 15
Tq 1 3 10 1 3 1 3

Halton-shift 43 9.0 10 7.5 2.6 3.4 1.5
Halton-FL 150 21 9.8 10 3.5 5.5 1.8
Sobol’ nets 300 32 15 14 3.4 5.0 1.9
lattice-0.1 230 30 11 18 4.4 7.9 2.4

Correlated (PCA) case
s 5 10 15
Tq 1 3 10 1 3 1 3

Halton-shift 59 15 12 13 3.1 6.2 2.1
Halton-FL 200 32 13 18 4.2 9.1 2.6
Sobol’ nets 400 60 20 24 4.9 9.9 2.8
lattice-0.1 350 47 13 27 5.4 11 3.3

Table 1: MSE reduction factors with respect to MC, approximated by (22), evaluated at n = 104,
for the independent case (top table) and the correlated case (bottom table).

When we moved θ randomly at distance ρ from θ0, we observed variations
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Figure 3: Top: fitted MSE reduction factor showing the bias and variance regimes, for the indepen-
dent case with s = 10, Tq = 1 (left) and Tq = 3 (right), using MC and RQMC (lattice-0.1 rules).
Middle: MSE reduction based on the fitted MSE, for the same cases as above, using lattice-0.1
( ), Sobol’ nets ( ) Halton-shift points ( ). and Halton-FL points ( ). Bottom: fitted
MSE reduction factor as a function ofm and n, for the same cases as above, using lattice-0.1 rules.
Notice the different scales used on the left and on the right.
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(both increases and decreases) of the MSE with RQMC, almost always within
10 % of its value at θ = θ0 for ρ = 0.1, and within 30 % for ρ = 0.3, regardless
of s and Tq. This gives an idea of the robustness with respect to this type of
variation.

The distribution of the ANOVA terms σ2
q,u among the different projections

varies significantly across individuals, as can be seen from Figure 4, which gives
the total variance per projection order for selected individuals, for the indepen-
dent case with s = 5 and Tq = 1. (More detailed illustrations are given in the
appendix.) For example, the proportion of variance contributed by the projections
of order 3 and higher is less than 2% for individual q = 1 and more than 9% for
individual q = 4. We thus expect RQMC to be more effective for the first indi-
vidual than for the fourth one. Figure 5 confirms this; it shows the variance of the
log-likelihood estimator for these two individuals, with a specialized lattice for
each individual (lattice-γu) and for other RQMC point sets, in logarithmic scale.
The behavior for each individual is similar to that of the average given in Figure 2,
although somewhat more erratic than the average. Further experiments reported in
the appendix agree with these observations, but also show that using a specialized
lattice for each individual (lattice-γu) is hardly better than using the same rule for
all individuals, with well-chosen weights.

0 0.2 0.4 0.6 0.8 1

q = 1
q = 2
q = 3
q = 4
q = 5

avg. rel.

fraction of total variance

Order 1
Order 2
Order 3
Order 4
Order 5

Figure 4: Fraction of relative variance per projection order, for selected individuals, and on average
over individuals, for the independent case with s = 5 and Tq = 1.

Besides the MSE, another important aspect in comparing the performances of
RQMC estimators is the CPU time required for their computation. These CPU
times depend on the computing platform, compiler, and software implementation.
With our Java implementation, on Intel R© Xeon R© E5462 processors clocked at
2.8 GHz, the simulation times per randomization at n = 8191, for s = 5 and
Tq = 1, are approximately 2.9 seconds with MC and with Sobol nets, 4.3 seconds
with lattice rules and Faure nets, and 5.5 and 16.6 seconds with Halton-shift and
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Figure 5: Estimated variance of the MC and RQMC estimators of the log-likelihood of a single
individual for the independent case with s = 5 and Tq = 1, for individuals q = 1 (left) and
4 (right), using MC ( ), lattice-γu ( ), lattice-0.1 ( ), lattice-M32 ( ), Sobol’ nets
( ), Halton-shift points ( ), and Halton-FL points ( ). For lattice-order and lattice-0.5,
the variances are very similar to those of lattice-γu and lattice-0.1, and we do not show them to
reduce the number of curve superpositions. The dotted line indicates the n−2 slope, for reference.

Halton-FL points. For s = 10 and Tq = 10, these values increase to approxi-
mately 17 seconds with MC and with Sobol nets, 21 seconds with lattice rules,
Faure nets, and Halton-shift points, and 37 seconds with Halton-FL. Thus, while
performing better than Halton-shift points in terms of MSE, the Halton-FL points
have a computational disadvantage, so the overall performance of both variants of
Halton points is inferior to that of the other RQMC methods, for which the small
increase in CPU time is more than compensated by the MSE reduction. Note that
precomputing and storing the (unrandomized) points once for all, and retrieving
them when needed, does not help in general, because the time for memory access
and randomization dominates the time to compute the points.

4.3. An example with real-life data
For our second example, we consider behavioral data collected in April 2008

on airport ground access with automated vehicle technology (called cybercars)
(Cirillo and Xu, 2010). The respondents were intercepted in the waiting area of
the airport and the responses recorded during a face-to-face interview. The final
sample contains information from 274 respondents. Both Revealed Preference
(RP) data and Stated Preferences (SP) information were collected. The SP ex-
periment includes 2 parts: a between-mode experiment (SP game 1) and a within
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mode experiment (SP game 2). In this paper we only use data from SP game 2,
which proposes two different cybercar services over which the respondents are
called to express their preferences. Each respondent was presented with 9 scenar-
ios (i.e. Tq = 9), giving a total of 2466 observations. Attribute levels are based
upon the respondents real trip to the airport as reported in the RP questionnaire.
The attributes and their levels are described in Table 2.

attribute possible levels
1. waiting time 5, 10, 15, 20 (in minutes)
2. travel cost 70% of taxi, 85% of taxi, same as taxi
3. dropping area terminal building, parking lot
4. maneuvering system fully automated, human driver with ITS, human driver
5. track structure guideway, grade with rubber tire

Table 2: The variables and their admissible levels, for SP game 2

A number of parametric models for the distributions were estimated and com-
pared. The retained model assumes one constant factor associated to each possi-
ble level of waiting time, except the level 5 minutes, taken as reference. The cost
factor follows a lognormal, and the remaining service-level factors are normally
distributed, with moreover one factor for automated maneuvering system and one
factor for human driver maneuvering system attribute (using ITS or not). These
distributions of the components of βq are given in Table 3, where N(µ, σ2) and
lnN(µ, σ2) refer the the normal and lognormal distributions, respectively, with
parameters µ and σ2. The first three components of βq have constant values, so
we simulate only the last five, to which we assign the indices 1 through 5. Thus,
s = 5, and the vector θ here has 13 dimensions.

factor coordinate index distribution
Waiting time 10 minutes constant = −0.6141158
Waiting time 15 minutes constant = −1.0036583
Waiting time 20 minutes constant = −1.7356732

Cost 1 lnN(−1.9953313, 1.8167162)
Passenger dropped 2 N(1.7088261, 1.5988351)

Automated cybercar 3 N(−0.23137212, 1.1745619)
Human driven cybercar 4 N(0.13015642, 0.71851975)
Guided way cybercar 5 N(−0.10063324, 1.042506)

Table 3: Distributions of the components of βq in the simulation experiments with the real data.
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An examination of the relative ANOVA variances averaged over individuals
(see Figure C.16 of the appendix) reveals that, unlike in the example with synthetic
data, the variances are not uniform across projections of the same order and do not
consistently decrease with projection order. This suggests that order-dependent or
geometric weights are not ideal in this case, but we find that they nevertheless
perform well empirically. The fractions of relative variance σ2

r/σ
2 per projection

order r, for r = 1, . . . , 5, are 0.34, 0.37, 0.22, 0.061, and 0.0052. If we insist on
exponentially-decreasing weights, the best fit for γ is γ = 0.24.

The variance, bias, and MSE on the log-likelihood function are plotted in Fig-
ure 6 for selected RQMC point sets. Lattice-order and lattice-γ rules, although
less suited for this example than for the previous example with synthetic data,
perform comparably to lattice-γu rules. Figure 7 shows plots of the fitted MSE
reduction factors with respect to MC, as a function of n, for several RQMC point
sets. These results point to the robustness of lattice rules constructed with criterion
(15) with weights of a simple form, such as lattice-0.1 or lattice-0.5 rules.

Like for the example of Subsection 4.2, the distribution of the ANOVA vari-
ances among the different projections varies across individuals. For individual
q = 116, less than 10 % of the total variance goes in projections of order r ≥ 3,
whereas this percentage is more than 45% for individual q = 79. Detailed results
on the ANOVA variances can be found in the appendix. Figure 8 shows the vari-
ance of the log-likelihood estimator for the constructed lattices and other RQMC
point sets for these two individuals. As expected, RQMC is more effective for
individual q = 116 than for q = 79. The respective performances of the different
point sets follow the same pattern as in the example with synthetic data, and here
too, no choice of weights for lattices clearly stands out for all values of n. For
example, the ratio of variances for lattice-0.1 to those for lattice-γu is larger than
1 on average but ranges from 0.5 to 2.3 for the different values of n, and is not
monotone in n.

4.4. Optimization with RQMC for the real-life data
While our main target in this paper was to develop a better understanding

of RQMC methods for the evaluation of choice probabilities, the ultimate goal
is to improve parameters estimation. As an empirical test of the improvement
provided by our randomized lattice rules for this estimation, we generated 50
independent realizations of the log-likelihood function estimator (6), using n =
1021 independent draws per individuals (standard MC) for each realization. Then
we maximized each of those functions with respect to θ, using a modified version
of AMLET (Bastin et al., 2006), and we computed the sample mean and variance
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Figure 6: Estimated variance (top left), bias (top right), MSE (bottom left), and fraction of the
MSE contributed by the square bias (bottom right) of the MC and RQMC estimators of the log-
likelihood function for the example with real-life data, using MC ( ), lattice-γu ( ), lattice-
0.1 ( ), lattice-M32 ( ), Sobol’ nets ( ) Halton-shift points ( ), and Halton-FL points
( ). The results for the lattice-order and lattice-0.5 rules are very similar to those of lattice-γu
and lattice-0.1 rules and Sobol’ nets.

of these 50 optimizers. We repeated the same experiment using Halton sequence
and the lattice-0.5 rule with n = 1021 points for each individual, with independent
random shifts across individuals and across the 50 runs in both cases. Table 4
reports the empirical means of the 13 parameter estimates for MC, Halton points,
and lattice-0.5 (they agree quite well), and the variance reduction factor (VRF),
defined as the MC variance divided by the RQMC variance. It also reports the
means and the VRF for the 50 estimates of the log-likelihood maximum value
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Figure 7: MSE reduction factors based on the fitted MSE, for the example with real-life data,
using lattice-γu ( ), lattice-0.1 ( ), lattice-0.5 ( ), Sobol’ nets ( ), Halton-shift points
( ), and Halton-FL points ( ). The curve for lattice-γ, not shown here, almost coincides
with that for lattice-0.1.

25 27 29 211 213

10−7

10−5

10−3

10−1

n

va
ri

an
ce

q = 79

25 27 29 211 213

10−7

10−5

10−3

10−1

n

va
ri

an
ce

q = 116

Figure 8: Estimated variance of the MC and RQMC estimators of the log-likelihood of a single
individual for the example with real-life data, for individuals q = 79 (left) and 116 (right), using
MC ( ), lattice-γu ( ), lattice-0.1 ( ), lattice-M32 ( ), Sobol’ nets ( ), and Halton
and Halton-FL points ( and ). The dotted line indicates the n−2 slope for reference.

returned by the algorithm, for comparison. This VRF is not the same as in the
results of Figure 6, where θ is fixed instead of being optimized. We see that
the VRF for the parameter estimates is more modest than for the log-likelihood
estimate, but it is still significant, with a slight advantage for the lattice rule. We
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obtained similar results with other lattice rules, so we do not report them. Here
we have no good way of estimating the overall bias on the parameter estimates,
because various sources of bias (from the simulation and from the optimization)
can interfere, as observed by Bastin and Cirillo (2010).

Parameter MC mean Halton-shift mean Lattice-0.5 mean
Waiting time 10 minutes -0.614 -0.615 (2.8) -0.618 (3.7)
Waiting time 15 minutes -1.003 -1.006 (2.3) -1.010 (3.6)
Waiting time 20 minutes -1.736 -1.739 (2.6) -1.744 (3.3)

Cost (µ) -2.013 -2.012 (2.4) -2.008 (3.1)
Cost (σ) 1.815 1.815 (1.6) 1.811 (2.1)

Passenger dropped (µ) 1.704 1.704 (2.7) 1.714 (4.0)
Passenger dropped (σ) 1.594 1.567 (3.1) 1.604 (2.6)

Automated cybercar (µ) -0.230 -0.230 (4.2) -0.231 (4.1)
Automated cybercar (σ) 1.168 1.174 (3.9) 1.179 (3.0)

Human driven cybercar (µ) 0.134 0.133 (1.4) 0.134 (1.7)
Human driven cybercar (σ) 0.715 0.721 (1.7) 0.731 (3.2)
Guided way cybercar (µ) -0.098 -0.100 (1.8) -0.099 (2.1)
Guided way cybercar (σ) 1.042 1.044 (2.6) 1.048 (3.2)

Loglikelihood -4.413 -4.411 (4.9) -4.410 (18.9)

Table 4: Parameter estimates with MC, Halton points, and lattice-0.5. for the example with real
data; variance reduction factors (VRF) for Halton and lattice-0.5, compared with MC, are given in
brackets next to the estimates.

5. Conclusion

We studied the application of RQMC methods to reduce both the bias and the
variance when estimating the mixed-logit log-likelihood function. We showed that
RQMC improves the convergence of the bias in exactly the same way as for the
variance, compared with MC, and the reduction of the squared bias can dominate
the MSE reduction when n is small. Our main emphasis was on randomly-shifted
lattice rules, for which we studied how the parameters should be selected based
on measures of discrepancy that take into account the class of integrands consid-
ered and give weights to the projections. Previous parameter selections for these
rules (based on the M32,24,16,12 criterion) performed very poorly for our examples,
which means that the choice of parameters is very important.

We also found that our lattice rules constructed with CBC with the weighted
P2α criterion are quite robust to the choice of weights among those we proposed,
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which is very encouraging, because there is then no need to spend a huge effort
to estimate the appropriate weights, and that there is no need to select different
parameters for the different individuals.

The randomized Sobol’ and Faure nets provided improvements comparable to
the lattice rules, although for the Faure nets there are strong limitations on the
number of points that can be selected. The randomly-shifted Halton points were
not competitive, although using a random starting point in the Halton sequence
improved their performance significantly. But they still remained slightly inferior
to the other point sets and are also more expensive computationally.

As expected, the observed efficiency improvement of RQMC compared to
MC decreased when we increased the dimension s of the integrals. It also de-
creased rapidly when we increased Tq, the number of selections per individual,
even though this does not change the dimension s of the integral. Presumably,
increasing Tq increases the variability of the function and/or pushes a larger pro-
portion of the variance into higher-order projections.

In one example with real data, we found that RQMC also reduces the variance
of the parameter estimates obtained by maximizing the sample log-likelihood.
This improvement is less spectacular than for estimating the log-likelihood at a
single point, but is still significant.
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