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Abstract: When a keyword-based search query is received by a search engine (SE), a classified ads website,
or an online retailer site, the platform has exponentially many choices in how to sort the output to the
query. Two extreme rules are (a) to return a ranking based on relevance only, which attracts more requests
(customers) in the long run because of perceived quality, and (b) to return a ranking based only on the
expected revenue to be generated by immediate conversions, which maximizes short-term revenue. Typically,
these two objectives (and the corresponding rankings) differ. A key question then is what middle ground
between them should be chosen. We introduce stochastic models that yield elegant solutions for this situation,
and we propose effective solution methods to compute a ranking strategy that optimizes long-term revenues.
This strategy has a very simple form, which provides valuable insight. A key feature of our model is that
customers are quality-sensitive and are attracted to the platform or driven away depending on the average
relevance of the output. The proposed methods are of crucial importance in e-business and encompass: (i)
SEs that can reorder their organic output and place their own content in more prominent positions than that
provided by third-parties, to attract more traffic to their content and increase their expected earnings as a
result; (ii) classified ad websites which can favor paid ads by ranking them higher; and (iii) online retailers
which can rank products they sell according to buyers’ interests and also the margins these products have.
This goes in detriment of just offering rankings based on relevance only and is directly linked to the current
search neutrality debate.
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an Inria International Chair, a Canada Research Chair, an NSERC Discovery Grant to P. L’Ecuyer and by
CONICET Argentina Grant PIP 112-201201-00450CO and FONCYT Argentina Grant PICT 2012-1324.



Les Cahiers du GERAD G–2015–73 1

1 Introduction

Electronic commerce via the Internet has increased and evolved tremendously in recent years. Marketplaces

in which participants can conveniently buy, sell, or rent a huge variety of objects and services are now

common. The Internet has evolved into a complex ecosystem of companies for which various business models

have proved profitable. Among them, we find search engines (SEs) such as Google, that allow users to find

content of their interest on the web, and use these transactions as a chance to sell advertisement; online

retailers such as Amazon.com that act as intermediaries between producers and consumers; and classified ad

websites such as eBay that allow sellers or service-providers, and buyers or service-consumers, respectively,

to meet and conduct transactions. To be profitable, those marketplaces typically rely on one or more of the

following revenue streams. In some cases, they charge a commission equal to a percentage of the agreed price-

tag (e.g., eBay or Airbnb). Some marketplaces provide a basic service for free but charge sellers to display

their classified ads in premium locations or for additional time (e.g., leboncoin.fr in France, or Mercado

Libre in Latin America). They may also offer additional services such as insurance or delivery for a fee.

Finally, revenue also comes from third-party advertisers that display text or banners within the pages of the

marketplace in exchange for payment.

A common feature in all those platforms is that when a user connects to them and enters a query, the site

provides a list of relevant items that may match what the user wants. To provide the best value to users, the

platform would ideally present the relevant items by decreasing order of (expected) relevance, so the user is

more likely to find the most appropriate ones. By doing this, the site can increase its reputation and attract

more users. Measures of relevance can be based on various criteria, which are sometimes selected by the

user. For example eBay provides relevance-based rankings that can account for the time until the end of the

auction, the distance, the price, etc. The details on how to assign a relevance value to each item for a query

depend on the intrinsic details of the platform. For example, eBay may use the distance between the query

string and the item description as well as the rating of the seller, Amazon may use the number of conversions

for a product and its quality, and Google may use PageRanks as input (Google 2011). Methods to define

and compute relevance indices have been the subject of several studies, especially for SEs. Examples include

Avrachenkov and Litvak (2004), Austin (2006), Auction Insights (2008), Williams (2010). In this paper, we

are not concerned with how to define and compute these measures of relevance (this is outside our scope);

we assume that they are given as part of the input.

The matching items (or links) for a query also have different values of expected revenue that could be

obtained directly or indirectly by the platform owner when the user visits the item, and the owner may have

interest in taking this expected revenue into account when ranking the items, by placing highly-profitable

ones in prominent positions, to increase its revenue. However, a myopic approach that ranks the items only in

terms of expected revenue and not on relevance would decrease its reputation in the long run, and eventually

decrease the arrival rate of requests and the future revenues. A compromise must be made that accounts for

both relevance and expected revenue.

A request is abstracted out in our model as a random vector that contains a relevance index and an

expected revenue for each matching page. For the purpose of this study, the distribution of this random

vector is assumed to be known and time-stationnary. Estimating (or learning) this distribution from actual

data is of course important for practical implementations, but is outside the scope of this paper.

In addition to the regular output (the list of matching items, usually referred to as organic links), most

platforms also display paid ads (also named sponsored links). Our study here focuses on the ordering of the

organic links only. We assume that the average arrival rate of search requests is influenced by the average

relevance of organic links, and not by the choice and ordering of the sponsored links. This makes sense

because the latter ordering is much less likely to impact the future arrival rate of requests than the ranking

of organic links. On the other hand, the total expected revenue from sponsored search depends on the arrival

rate of requests. Our model accounts for this, e.g., via a coefficient that represents the expected ad revenue

per request, which we multiply by the arrival rate. There is an extensive literature on pricing and ranking

sponsored links (ads). For details, we refer the reader to Varian (2007), Edelman et al. (2007), Lahaie et al.
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(2007), Athey and Ellison (2011), Maillé et al. (2012), and the references therein. However, the impact of

using alternative rankings to classify organic links has not yet received a similar level of attention.

The purpose of our work is to study the best compromise that can be made by the platform to account

for both relevance and expected revenue when ranking the items for a query, to maximize the long-term

expected revenue per unit of time. Our aim is to find an optimal ordering strategy that takes both effects

into account. We want a model whose solution has a simple and elegant form, which can provide insight, as

opposed to a detailed and complicated model whose solution has no simple form. Our results provide optimal

ranking conditions and policies for long-term revenue maximization. Our model and algorithms also permit

one to compare the optimal policy to other possible rankings—such as those based on relevance only or those

based on short-term revenue only—in terms of expected revenue for the platform, expected revenue for the

various content providers, and consumer welfare (captured by the expected quality).

To capture the impact of long-term reputation on the rate of visits, we assume that the (average) arrival

rate of requests is an increasing function of the average relevance of displayed links, and that the objective (or

utility) function of the platform is a smooth increasing function of the average relevance and of the average

income per request. It can be the product of the arrival rate by the average revenue per request, for example,

but a more general utility function is also allowed.

These expected relevance and income per request depend on the ranking policy used to select a permutation

of matching pages for each request. The ranking can be based on both the relevance and the expected revenue

of each matching page. We consider a rich class of randomized ranking policies which to each request assign

a probability distribution on the set of permutations of all matching pages. Whenever a request arrives,

the platform selects a ranking using the probabilities specified by the policy for this request. Of course,

such randomized policies can be very complicated to optimize and implement in general. For this reason,

we are interested in situations in which an optimal policy (provably) has a simpler form, and is easier to

implement. A deterministic ranking policy assigns to each request a single permutation. This already gives

a much smaller decision space, but such a policy can still be very complicated to specify and implement in

general, given that the number of possible requests is typically huge. Our aim is to study and provide insight

on how an optimal policy looks like, and to develop a model for which (under certain conditions) the optimal

policy has a simple form. For this reason, we focus on time-stationary models and policies.

Our main contribution is the characterization of such an optimal ranking policy. Even in our stylized and

simplified setting, finding an optimal policy is not obvious a priori, in part because the objective function

is non-additive and classical dynamic programming tools cannot be used directly. We propose an algorithm

that exploits our characterization of the optimal policy and computes a parameter that allows the platform to

assign a figure of merit (a scalar number) to each matching item. When these figures of merit are all distinct

for any request with probability 1, the optimal ranking is found simply by sorting them. This provides a very

simple deterministic optimal ranking policy. When equality occurs with positive probability, only randomized

policies can be optimal in general. An optimal policy would still sort the matching items by order of figure

of merit, but it must randomize the order of those having the same value, with specific optimal probabilities.

In practice, when the probability of an equality is small, to avoid computing the optimal probabilities for

randomization, one may opt to forget the randomization and use an arbitrary ordering in case of equality,

as an approximation. We propose a more robust strategy: add a small random perturbation (uniform over a

small interval centered at 0) to the expected revenue of each page, so the figures of merit are all distinct with

probability 1. The impact of this perturbation on the expected long-term revenue can be made arbitrarily

small by taking the size of the interval small enough. The modified model admits a deterministic optimal

policy and one can just use this policy. This can also be viewed as just a different way of randomizing the

policy.

Our model can be seen as an infinite-horizon time-stationary sequential decision process that fits the

general framework of stochastic dynamic programming (DP), so one could think of using DP methodology to

characterize and compute an optimal ranking policy. In this paper, we restrict ourselves to time-stationary

policies. In a dynamic setting we could also consider a time-dependent model, with an arrival rate and

request distribution that varies randomly with time. This would be more complicated and is beyond our

scope. Our model is not an ordinary discrete-time or discrete-event DP model because the arrival rate
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depends on the policy that is used: the objective function is not additive and classical DP tools do not

readily apply. Despite this, our characterization of optimal policies was initially inspired by the derivation

of optimal ranking conditions via an interchange argument in Bertsekas (2005, Section 4.5), in a DP setting.

However, our solution is more involved, because of the impact of the policy on future arrivals.

Balancing between immediate revenue and long-term impact on future arrivals, when choosing a policy,

in not a novel idea; see, e.g., Mendelson and Whang (1990), Maglaras and Zeevi (2003), Besbes and Maglaras

(2009). In those articles, one selects the price of a service (or the prices for different classes) to maximize

the long-term revenue given that each arriving customer has a random price threshold under which he takes

the service. The systems have capacity constraints and there can be congestion, which degrades the service

quality. The strategy corresponds to the selected prices, which can be time-dependent. The derivations in

those papers differ from what we do here in many aspects. The authors use approximations, e.g, by heavy-

traffic limits, to select the prices. Aflaki and Popescu (2014) also compute a continuous policy (for the service

level of a single customer) in a dynamic context, using DP methods. Their solutions are algorithmic.

The model considered here obviously simplifies reality, as do virtually all models whose solution has a

simple form, such as the Erlang models in queueing theory, the Black-Scholes model in finance, inventory

models with (S, s) policies, etc. Despite not being fully realistic, these models are extremely helpful and

insightful, and are widely used everyday. The model proposed here is in that spirit. In our case, reputation

is built over a large time horizon and one can argue that a stationary model is a reasonable way to capture

that market dynamic. While there are many other “simple” heuristics that platforms may use to factor in

profitability in their algorithms, the one we obtain here is not only clear and simple, but is also proved to be

optimal for a reasonable model. We think this is a nice insight that can inform platforms on how to better

position their results to tradeoff relevance with profits.

A major motivation of our work is related to the search neutrality debate. In recent years, some SEs

have been under scrutiny by individuals and organizations that oversee the Internet as well as by regulators

in various countries because some believe that the organic search ranking is not based only on objective

measures of relevance, but also account for some revenue-making ingredients (Crowcroft 2007). For example,

it has been said that Google may favor YouTube and other of its own content because of the extra revenue

it generates. This was discussed by the Federal Trade Commission in the US (Brill 2013) and in a Senate

hearing (Rushe 2012). Search bias been amply documented in experiments (Edelman and Lockwood 2011,

Wright 2012, Maillé and Tuffin 2014). Data indicate that a search for a video in Google is likely to generate

more organic links to YouTube pages, which contain ads that directly benefit Google, than in another SE.

Since videos in competitors’ platforms do not generate additional revenue, Google has a financial interest for

the user to click on YouTube content. Similarly, Google’s expected revenue may increase if a link to a Google

map is included in the output instead of a link to MapQuest, Yahoo Maps, etc. There are many other similar

situations, including weather reports, movies and showtimes, product search, news articles, and so forth.

Heterogenous characteristics, including different ownership, can be captured by explicitly associating each

link within the organic output to the expected revenue attained when somebody clicks on it, and using those

expected revenues as input to find the optimal ordering. The debate about whether SEs should or should not

be allowed to enter into these considerations has ignited public interest (Crowcroft 2007, Inria 2012). It relates

to other policy debates regarding whether and how to regulate the Internet; the most prominent example

being network neutrality; see, e.g., Odlyzko (2009) for a discussion of both issues. A neutral SE should only

use relevance to construct its rankings, and ignore the revenue parameter mentioned earlier. This would

allow new entrants that perform well (i.e., that are commonly clicked) to be listed near the top of the list

of organic search results. The risk of a non-neutral ranking is that it may slow down innovation by favoring

the incumbents that are known to generate profits, thereby preventing new applications/content from being

shown, and hence to become known and successful. Motivated by the fact that many of these platforms belong

to public companies that strive to maximize returns to stakeholders, and considering the search neutrality

debate, it is important to study the impact of ranking policies on platforms’ revenue, as well as on social

welfare. The framework we introduce can also be of high interest to regulators who study the impact of

search neutrality on users and on overall social welfare. It can help regulators determine if intervention is

warranted, study the consequences of doing so, and provide arguments for or against non-neutral SEs.
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The rest of the article is organized as follows. In Section 2, we present our modeling framework, state the

optimization problem in terms of randomized policies, and derive a general characterization of the optimal

solution. In Section 3, we obtain optimality conditions for the two situations where the requests have a

discrete and a continuous distribution. For the continuous case, in which the requests have a density and

all the matching pages for each request have different figures of merit with probability 1, we show that

the optimal policy is completely specified by a unique scalar number, and consists in sorting the items in

terms of a linear combination of relevance and revenue, with slope equal to this scalar. This policy is very

easy to implement: one does not need to consider the exponentially-many possible orderings. We provide

numerical illustrations. In Section 4, we present some algorithms to compute or estimate this appropriate

scalar number. Section 5 gives further numerical examples, to illustrate what could be done with the model

and tools proposed here. Finally, Section 6 gives a conclusion.

2 Model formulation

We now define the model considered in this paper. We describe it in the context of a SE that receives

keyword-based queries and generates a list of organic results using links to relevant and/or profitable web

pages. By changing the interpretation, this model also applies to other marketplaces such as electronic

retailers and classified-ad websites, for example.

For each arriving request (i.e., a query sent to the SE by a user), different content providers (CPs) host

pages that can be relevant to that request. Let M ≥ 0 be the (random and finite) number of pages that match

the arriving request, i.e., deemed worthy of consideration for this particular request, out of the universe of

all pages available online. We assume that M has a global deterministic upper bound m0 <∞, independent

of the request. When M > 0, each page i = 1, . . . ,M has a relevance value Ri ∈ [0, 1], and an expected

revenue per click for the SE of Gi ∈ [0,K], where K is a positive constant. Thus, a request can be encoded

as a random vector Y = (M,R1, G1, . . . , RM , GM ) whose components satisfy the conditions just given. If

M = 0, then Y = (0). We assume that Y has a probability distribution over a subspace Ω (discrete or

continuous) of the space of vectors Y that satisfy these conditions. The variable Ri is a measure of how the

SE thinks finding page i would please the author of the request. The variable Gi contains the total expected

revenue that the SE might receive, directly or indirectly, from third-party advertisement displayed on page i,

for this request, if the user clicks on the link to page i. In particular, if the CP of page i receives an expected

revenue per click for page i, and a fixed fraction of this revenue is transmitted to the SE, then Gi contains

this expected revenue transferred to the SE. If the SE is also the CP for some pages, then the fraction is 1

for those pages. We will denote a fixed realization of the random vector Y by y = (m, r1, g1, . . . , rm, gm).

After receiving a request Y , the SE selects a permutation π = (π(1), . . . , π(M)) ∈ ΠM of the M matching

pages, where ΠM is the set of permutations of {1, . . . ,M}, and displays the links in the corresponding order.

The link to page i is presented in position j = π(i).

The click-through-rate (CTR) of a link that points to a page is defined as the probability that the user

clicks on that link (Hanson and Kalyanam 2007, Chapter 8). This probability generally depends on the

relevance of the link and its position of display. For a given request y = (m, r1, g1, . . . , rm, gm) ∈ Ω, we

denote the CTR of page i placed in position j by ci,j(y). This ci,j(y) is assumed to be non-decreasing in

ri and non-increasing in j: A higher relevance or better position cannot decrease the CTR. If we select

permutation π for this request, the corresponding expected relevance (the local relevance) is defined by

r(π, y) :=

m∑
i=1

ci,π(i)(y)ri. (1)

It captures the attractiveness of this ordering π for this particular y, from the consumer’s perspective. The

expected revenue to the SE from the organic links for this request is

g(π, y) :=

m∑
i=1

ci,π(i)(y)gi. (2)
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A (deterministic) stationary ranking policy µ is a function that assigns a permutation π = µ(y) to each

possible realization y ∈ Ω. (We skip the technical issues of measurability of policies in this paper; this can

be handled as in Bertsekas and Shreve (1978), for example.) By taking the expectation E with respect to

the distribution of input requests Y , we obtain the long-term value induced by a stationary ranking policy µ.

The expected relevance per request (which we also call the reputation of the SE) is

r := r(µ) = E[r(µ(Y ), Y )] (3)

and the expected revenue per request from the organic links for the SE is

g := g(µ) = E[g(µ(Y ), Y )]. (4)

We also consider randomized policies, motivated by the fact that in some situations they can do better

than the best deterministic policy. A randomized stationary ranking policy is a function µ̃ that assigns,

to each y = (m, r1, g1, . . . , rm, gm) ∈ Ω, a probability distribution over the set of permutations Πm. One

has µ̃(y) = {q(π, y) : π ∈ Πm}, where q(π, y) is the probability of selecting π. The m! probabilities q(π, y)

determine in turn the probability zi,j(y) that page i ends up in position j, for each (i, j). This gives an m×m
matrix of probabilities zi,j(y) ≥ 0, 1 ≤ i, j ≤ m, for which each row sums to 1 and each column sums to 1 (a

doubly stochastic matrix). Note that the correspondence between those two sets of probabilities is not one

to one, because one has m!− 1 degrees of freedom for choosing µ̃(y) (we subtract 1 because the probabilities

must sum to 1), and only (m− 1)2 degrees of freedom for choosing the matrix. That is, whenever m > 2, an

infinite number of distinct distributions over Πm give the same matrix of probabilities zi,j(y).

However, the expected relevance and revenue for a request y in our model depend on π only via r(π, y)

and g(π, y), which are sums over i in which each term depends only on the position π(i). Therefore, the

expected relevance r per request (the reputation) and the expected SE revenue g per request from the organic

links for a given randomized policy µ̃ can be written equivalently by taking (for each y) the expectation either

with respect to the probabilities q(π, y) or with respect to the probabilities zi,j(y), in addition to taking the

expectation over Y . That is, we have

r := r(µ̃) = E

[ ∑
π∈ΠM

q(π, Y )

M∑
i=1

ci,π(i)(Y )Ri

]
= E

 M∑
i=1

M∑
j=1

zi,j(Y )ci,j(Y )Ri

 (5)

and

g := g(µ̃) = E

[ ∑
π∈ΠM

q(π, Y )

M∑
i=1

ci,π(i)(Y )Gi

]
= E

 M∑
i=1

M∑
j=1

zi,j(Y )ci,j(Y )Gi

 . (6)

In view of this equivalence, with a slight abuse of notation, a randomized policy µ̃ can be defined equivalently

as a rule that assigns, for each y ∈ Ω, an m ×m doubly stochastic matrix µ̃(y) =z(y) = {zi,j(y) ≥ 0 : 1 ≤
i, j ≤ m}. We adopt this definition for the rest of this paper. Let Ũ be the class of such randomized policies.

A deterministic policy µ is just a special case of this for which the entries of each matrix are all 0 or 1, with

a single 1 in each row and each column (such a matrix defines a permutation). For a given request y and

a matrix of probabilities z(y), one can generate a random permutation that satisfies these probabilities by

first generating the page at position 1, then for each position j = 2, . . . ,m in succession, select the page at

position j using the conditional probabilities given the selections made at positions < j.

Each randomized policy µ̃ has a corresponding pair (r, g) = (r(µ̃), g(µ̃)). Let C be the set of all points

(r, g) that correspond to some µ̃ ∈ Ũ .

Lemma 1 The set C is a convex set.

Proof. If the two pairs (r1, g1) and (r2, g2) are in C, they must correspond to two randomized policies µ̃1

and µ̃2 in Ũ . Suppose µ̃1(y) = z1(y) = {z1
i,j(y) : 1 ≤ i, j ≤ m} and µ̃2(y) = z2(y) = {z2

i,j(y) : 1 ≤ i, j ≤ m}
for each y ∈ Ω. For any given α ∈ (0, 1), let µ̃ = αµ̃1 + (1 − α)µ̃2 be the policy defined via µ̃(y) = z(y) =
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{zi,j(y) : 1 ≤ i, j ≤ m} where zi,j(y) = αz1
i,j(y) + (1 − α)z2

i,j(y), for all i, j and y ∈ Ω. This policy provides

a feasible solution that corresponds to the pair (r, g) = α(r1, g1) + (1 − α)(r2, g2), so this pair must belong

to C.

The objective for the SE is to maximize a long-term utility function of the form ϕ(r, g) where ϕ is a

strictly increasing function of r and g with bounded second derivatives over [0, 1] × [0,K]. An optimal

policy from the perspective of the SE is a stationary ranking policy µ in the deterministic case, or µ̃ in

the randomized case, that maximizes ϕ(r, g). Always ranking the pages by decreasing order of Ri would

maximize r, whereas ranking them by decreasing order of Gi would maximize g. An optimal policy must

usually make a compromise in between these two extremes. Typically, ϕ(r, g) would represent the expected

average revenue per unit of time in the long run, which can be written as the (time-average) arrival rate of

requests multiplied by an expected revenue per request. For example, we can assume that requests arrive

according to a point process whose average arrival rate (per unit of time) is λ(r), where λ : [0, 1] → [0,∞)

is an increasing, positive, smooth (continuously differentiable), and bounded function, and r is the average

relevance corresponding to the policy in use, as defined in (3) or (5). In addition to the expected gains

Gi from organic links, the SE can also place adds and other sponsored links on the page that provides the

organic links. We can assume that the expected gain from those adds and sponsored links is β per request,

on average. We then have

ϕ(r, g) = λ(r)(β + g). (7)

A key assumption here (for this special case) is that the average arrival rate is a function of the reputation,

which depends only on the relevance and ordering of the proposed organic links, and not on the ordering

of other (sponsored) links. That is, paid search is not going to drive users significantly to the website in

the long term. Equation (7) also assumes that the expected gain β does not depend on the ordering of the

organic links. Note that the arrival rate does not have to be constant; it can be periodic for example, with a

time average of λ(r).

Other important simplifying assumptions in our model are that the distribution of Y is stationary and

does not depend on the ranking policy, and that the average arrival rate depends only on the single global

relevance measure r. Those assumptions permit us to obtain simple-form results, which provide a first-order

approximation to an optimal policy. In real life, the distribution of Y changes with time, but our model may

be a good approximation over a period in which it does not change too much. One could also think of a

model in which the distribution of Y would change with time, and ρ∗ would be a function of time, but this

is beyond the scope of this paper. We also do not model or distinguish individual “customers”, but only

consider a global distribution for Y . The measures r and g are averages across all queries. One relevant

issue is whether it is reasonable to assume, as we do, that this distribution remains (approximately) the same

when we change the ordering policy. In real life, the choice of policy can have an impact on the distribution

of Y , e.g., by attracting more queries of certain types. To address this situation, one can segment (partition

by user type, topic, etc.) the space of queries and apply the model to each segment. Then each segment can

have its own distribution of Y and triple (r, g, ρ). This can be useful if ρ∗ differs markedly across segments.

Developing effective ways of making this segmentation can be a topic for further research. In principle, one

could have a very large number of small segments, even a single IP address or user for a segment, but in

practice one must also have enough data to estimate the distribution of Y in each segment. So there would

be a tradeoff between the accuracy of the model (more segments) and the ability to estimate the parameters

(more data per segment).

With all these ingredients, the optimization problem for the SE can be formulated as

OP: max
µ̃∈Ũ

ϕ(r, g)

subject to

r = E

 M∑
i=1

M∑
j=1

zi,j(Y )ci,j(Y )Ri


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g = E

 M∑
i=1

M∑
j=1

zi,j(Y )ci,j(Y )Gi


µ̃(y) = z(y) = {zi,j(y) : 1 ≤ i, j ≤ m} for all y ∈ Ω.

This nonlinear optimization problem is not easy to solve in this general form.

Given that C is convex and ϕ(r, g) is increasing in both r and g, if (r∗, g∗) is an optimal solution, with

optimal value ϕ∗ = ϕ(r∗, g∗), there must be a line of negative slope passing through the point (r∗, g∗) and

for which C is completely on the lower left side of the line. Let ϕr and ϕg denote the partial derivatives of ϕ

with respect to r and g, so ∇ϕ(r, g) = (ϕr(r, g), ϕg(r, g)) is the gradient of ϕ at (r, g). We define

h(r, g) := ϕg(r, g)/ϕr(r, g) (8)

for all (r, g) ∈ C. Consider now the line with equation

ϕr(r
∗, g∗)(r − r∗) + ϕg(r

∗, g∗)(g − g∗) = 0, (9)

which passes through (r∗, g∗) and is orthogonal to the gradient of ϕ at that point, and define

ρ∗ = h(r∗, g∗). (10)

Proposition 1 No point (r, c) ∈ C can be strictly above this line defined by (9). Moreover, if we replace the

objective ϕ(r, g) by the linear function r+ ρ∗g in the optimization problem OP, the point (r∗, g∗) remains an

optimal solution to the modified problem. It is the unique solution to the modified problem if and only if the

line (9) touches C at a single point.

Proof. If the point (r, c) ∈ C is strictly above the line (9), one must have

(r − r∗, g − g∗) · ∇ϕ(r∗, g∗) > 0,

and the point (r∗, g∗) + ε(r − r∗, g − g∗) also belongs to C for any ε > 0. By taking a Taylor expansion and

ε small enough, this implies that the value of ϕ at this point must be strictly larger that ϕ(r∗, g∗), which is

a contradiction. This proves the first part. From this, it follows that if we replace the objective ϕ(r, g) by

the linear function ϕr(r
∗, g∗)r + ϕg(r

∗, g∗)g in the optimization problem, the set of optimal solutions to the

modified problem must contains the point (r∗, g∗). Because ϕr(r
∗, g∗) > 0, we can divide this objective by

ϕr(r
∗, g∗) to obtain the equivalent linear objective function r + ρ∗g.

One nice feature of this proposition is that the condition involves only a single positive real number ρ∗ > 0.

It is true that when solving the optimization problem, this ρ∗ is unknown, but we can replace the objective

ϕ(r, g) by the linear form r + ρg in which ρ ≥ 0 is treated as another real-valued decision variable in the

problem. Given the distribution of Y , one may think of estimating the value of the objective function for

any fixed value of ρ by simulation, for example. This could be done at several values of ρ and a search could

be done to estimate the best ρ. We will return to this in Section 4. One problem, however, is that knowing

ρ∗ is not enough in general to known the optimal strategy, as we will see later.

Note that (r∗, g∗) and ρ∗ are not necessarily unique in general. For example, given the convex set C, one

can define the function ϕ in a way that ϕ(r, g) is constant along the upper right boundary of C (i.e., so that

this boundary is a contour line for ϕ). Then, (r∗, g∗) can be taken as any point on that upper right boundary,

and the corresponding ρ∗ would satisfy the proposition. Although having multiple optimal solutions with

distinct values of ρ∗ would not be a problem, it is unlikely to happen in large real-life applications. The next

proposition gives a sufficient condition for uniqueness.

Proposition 2 Consider the contour line defined by ϕ(r, g) = ϕ∗. If this line represents the graph of g as a

strictly convex function of r, then (r∗, g∗) and ρ∗ are unique.
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Proof. We know that no point of C can be strictly above this contour line, by definition of ϕ∗, and the point

(r∗, g∗) is on it. Since the contour line is strictly convex and the upper right boundary of C defines a concave

function, there can be no other point of intersection.

As an example, if ϕ(r, g) = λ(r)(β + g) where λ(r) = rα with α > 0, then the contour line obeys the

equation g = g(r) = ϕ∗r−α − β. Differentiating twice, we find that g′′(r) = ϕ∗α(α + 1)r−α−2 > 0, so the

contour line is strictly convex for 0 < r ≤ 1.

3 Optimality conditions for ranking policies

In this section, we characterize optimal ranking rules for slightly more specific models, in which the CTR has

a separable form. We show that when Y has a discrete distribution, the optimal policy must be randomized in

general. But in a model where Y has a continuous distribution, we show that there is an optimal deterministic

policy that has a nice and simple form. Later, we propose algorithms to compute or approximate it.

3.1 Necessary optimality conditions under a discrete distribution for Y

Here we consider the situation in which Y has a discrete distribution over a finite set Ω, with p(y) = P[Y = y]

for all y = (m, r1, g1, . . . , rm, gm) ∈ Ω. In this case, the optimization problem OP can be rewritten in terms

of a finite number of decision variables, as follows:

OP-D: max ϕ(r, g)

subject to

r =
∑
y∈Ω

p(y)

M∑
i=1

M∑
j=1

zi,j(y)ci,j(y)ri

g =
∑
y∈Ω

p(y)

M∑
i=1

M∑
j=1

zi,j(y)ci,j(y)gi

M∑
j=1

zi,j(y) = 1 for all y ∈ Ω, 1 ≤ i ≤M

M∑
i=1

zi,j(y) = 1 for all y ∈ Ω, 1 ≤ j ≤M

0 ≤ zi,j(y) ≤ 1 for all y ∈ Ω, 1 ≤ i, j ≤M

in which the zi,j(y) are the decision variables. Since Ω is typically very large, this is in general a hard-to-solve

large-scale nonlinear optimization problem.

Suppose that the current solution µ̃ is optimal for the linear objective r + ρg for a given ρ > 0. Then

we should not be able to increase r + ρg by changing the probabilities zi,j(y) in this optimal solution, for

any given request y with p(y) > 0. In particular, if δ := min(zi,j(y), zi′,j′(y)) > 0, decreasing those two

probabilities by δ and increasing the two probabilities zi,j′(y) and zi′,j(y) by δ gives another feasible solution

(or policy) µ̃′. In view of the expressions for r and g in problem OP-D, this probability swap would change

r and g by

∆r = δp(y) [(ci,j′(y)− ci,j(y))ri + (ci′,j(y)− ci′,j′(y))ri′ ]

and

∆g = δp(y) [(ci,j′(y)− ci,j(y))gi + (ci′,j(y)− ci′,j′(y))gi′ ] ,

respectively. Since the current solution is optimal for the objective r + ρg, it cannot increase this objective,

so we must have ∆r + ρ∆g ≤ 0. This translates into the conditions
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ci,j(y)ri + ci′,j′(y)ri′ + ρ[ci,j(y)gi + ci′,j′(y)gi′ ]

≥ ci,j′(y)ri + ci′,j(y)ri′ + ρ[ci,j′(y)gi + ci′,j(y)gi′ ]

whenever min(zi,j(y), zi′,j′(y)) > 0, for all i, j, i′, j′, y. Computing an optimal solution by using these general

conditions is not easy because: (i) it must be done with ρ = ρ∗, which is unknown; (ii) even if we can

approximate ρ∗ (e.g., via a line search), finding a permutation that satisfies these conditions, for each y, is

time-consuming; (iii) as we shall see later, there are often an infinite number of solutions that satisfy those

conditions, and only one (or a few) of them are optimal. That is, these conditions are necessary for optimality,

but they are not sufficient in general, so even if we knew ρ∗ exactly this may not be sufficient. Next, we find

simpler forms of these conditions, for a more specific model of CTR function, then we introduce a model in

which those simplified conditions are necessary and sufficient.

3.2 Optimality conditions for a separable CTR function

In the rest of this article we assume that the CTR function has the separable form

ci,j(y) = θj ψ(ri), (11)

where 1 ≥ θ1 ≥ θ2 ≥ · · · ≥ θm0
> 0 is a non-increasing sequence of fixed positive constants that describe the

importance of each position in the ranking, and ψ : [0, 1]→ [0, 1] is a non-decreasing function that maps the

relevance ri to a position-independent (base) click probability for the page. This separability assumption of

the CTR is pervasive in the e-Commerce literature (Varian 2007, Maillé et al. 2012). We will rely on it to

derive simple and convenient optimality conditions. We define R̃i := ψ(Ri)Ri and G̃i := ψ(Ri)Gi, so that

we can write ci,j(Y )Ri = θjR̃i and ci,j(Y )Gi = θjG̃i, and similarly for the realization y, ri, and gi.

In the case where Y has a discrete distribution, with the separable form of the CTR, when p(y) > 0 the

expressions for ∆r and ∆g given earlier become

∆r = δp(y)(θj′ − θj)(r̃i − r̃i′),
∆g = δp(y)(θj′ − θj)(g̃i − g̃i′),

and the conditions (11) simplify to

(θj′ − θj) [(r̃i − r̃i′) + ρ(g̃i − g̃i′)] ≤ 0 (12)

whenever min(zi,j(y), zi′,j′(y)) > 0, for all i, j, i′, j′, y with p(y) > 0. Without loss of generality, suppose that

j′ > j, so we know that θj′ ≤ θj . If θj′ = θj , the condition is always trivially satisfied. If θj′ < θj , one must

have

r̃i + ρg̃i ≥ r̃i′ + ρg̃i′ . (13)

That is, if there is a positive probability that page i is ranked at a strictly better position j than the position

j′ of page i′, then Condition (13) must hold. This means that we have the following:

Proposition 3 Any optimal randomized policy must rank the pages by decreasing order of their value of r̃i+ρg̃i
whenever p(y) > 0, with the exception that the order at positions j′ > j with θj′ = θj does not matter.

We call a ranking policy that satisfies this condition for a given ρ > 0 a linear ordering (LO) policy with

ratio ρ (or LO-ρ policy, for short). When ρ = 0, the ordering is based only on r̃i, whereas in the limit as

ρ→∞, the ordering is based only on g̃i.

We emphasize that specifying ρ is not enough to uniquely characterize an optimal policy in the case

where, with positive probability, two or more pages have the same value of R̃i + ρG̃i. If the way we order

those pages when this happens would not matter, then we could obtain an optimal deterministic ranking

policy simply by choosing an arbitrary deterministic rule to order them. Given ρ, this would be very easy to

implement, just by sorting the M matching pages by decreasing order of R̃i + ρG̃i, for each y. However, the

ordering in case of equality does matter, as illustrated by the following tiny example.
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Example 1 We consider an instance with a unique request type and two matching pages, Y = y = (m, r1, g1,

r2, g2) = (2, 1, 0, 1/5, 2) with probability 1. We take ψ(ri) = 1 for all ri, λ(r) = r, (θ1, θ2) = (1, 1/2), and

ϕ(r, g) = r(1 + g). At each request we select a ranking, either (1, 2) or (2, 1). With a randomized policy, we

select (1, 2) with probability z1,1(y) = p and (2, 1) with probability 1− p. In this simple case, one can write

r, g, and ϕ(r, g) as functions of p, and optimize. We have

r = p(θ1r1 + θ2r2) + (1− p)(θ1r2 + θ2r1) = (7 + 4p)/10,

g = p(θ1g1 + θ2g2) + (1− p)(θ1g2 + θ2g1) = 2− p,
ϕ(r, g) = r(1 + g) = (7 + 4p)(3− p)/10 = (21 + 5p− 4p2)/10.

This objective function is quadratic and has its maximum at p∗ = 5/8. Evaluating, we obtain r∗ = 19/20,

g∗ = 11/8, and ϕ(r∗, g∗) = 361/160. Note that by taking p = 0 we get (r, g) = (7/10, 2) and ϕ(r, g) =

21/10 = 336/160, whereas by taking p = 1 we get (r, g) = (11/10, 1) and ϕ(r, g) = 22/10 = 352/160. Thus,

the optimal randomized policy does strictly better than any deterministic one. The feasible set C here is the

line segment that goes from (7/10, 2) to (11/10, 1). See Figure 1.

With the optimal p∗ = 5/8, we also obtain ρ∗ = r∗/(1 + g∗) = 2/5, and it turn out that r̃1 + ρ∗g̃1 =

r̃2 + ρ∗g̃2 = 1. Thus, any ordering (and any randomized policy) satisfies the LO-ρ∗ rule! That is, in this

simple example, the LO-ρ∗ rule (and knowing ρ∗) tells us nothing about the optimal policy. Note that the

entire segment C belongs to the line r+ρ∗g = 1, so maximizing the linear objective is not sufficient to obtain

an optimal solution. �

3.3 A model with a continuous distribution for Y

In this section, we extend the discussion to a model in which the requests Y have a continuous distri-

bution, defined by a probability measure ν over the class B of Borel subsets of the space Ω of vectors

y = (m, r1, g1, . . . , rm, gm) where m ∈ {1, . . . ,m0} and (ri, gi) ∈ [0, 1]× [0,K) for each i. We assume that Y

has a (finite) density function f over Ω, so that for each B ∈ B, ν(B) =
∫
B
f(y)dy.

Lemma 1 and Proposition 1 still apply in this case. However, the argument that led to (13) no longer

applies, because p(y) = 0 for all y ∈ Ω. We now prove a variant of this result by adapting the argument.

Let µ̃ be an optimal randomized policy, with corresponding r∗ and g∗, and let B ∈ B be a set with

ν(B) > 0 and such that

δ := sup
y∈B

min(zi,j(y), zi′,j′(y)) > 0

for some pages i 6= i′ and positions j 6= j′, for this policy µ̃. Suppose we change µ̃ into µ̃′ by decreasing the

probabilities zi,j(y) and zi′,j′(y) by δ, and increasing the probabilities zi,j′(y) and zi′,j(y) by δ, for all y ∈ B.

This gives another admissible randomized policy. The changes on r and g coming from this probability switch

are

∆r = δ

∫
B

(θj′ − θj)(r̃i − r̃i′)f(y)dy,

∆g = δ

∫
B

(θj′ − θj)(g̃i − g̃i′)f(y)dy,

and we must have

0 ≥ ∆r + ρ∆g = (θj′ − θj)δ
∫
B

[(r̃i − r̃i′) + ρ(g̃i − g̃i′)] f(y)dy. (14)

We now define a notion of LO-ρ policy in the setting of a density, and we establish that any optimal

randomized policy must be of that form, for ρ = ρ∗.

Definition 1 A randomized policy µ̃ is called an LO-ρ policy if for almost all Y (with respect to the measure

ν), µ̃ sorts the pages by decreasing order of R̃i + ρG̃i, except perhaps at positions j and j′ where θj = θj′ , at

which the order can be arbitrary.
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Proposition 4 If the tuple (r∗, g∗) corresponds to an optimal policy, then this policy must be an LO-ρ policy

with ρ = ρ∗ = h(r∗, g∗).

Proof. The proof is by contradiction. Take j′ > j such that θj − θj′ > 0. Suppose that there exists ε > 0,

δ > 0, and B ∈ B such that ν(B) > 0, for which for all y ∈ B,

r̃i + ρ∗g̃i ≤ r̃i′ + ρ∗g̃i′ − ε (15)

and min(zi,j(y), zi′,j′(y)) ≥ δ under policy µ̃. That is, there is a set of positive probability on which the two

pages i and i′ are not placed by decreasing order of R̃i+ρG̃i. We can modify policy µ̃ to a policy µ̃′ that first

orders the pages according to policy µ̃, and then if y ∈ B, page i is at position j, and page i′ is at position j′,

the pages i and i′ are swapped positions. This swapping occurs with probability at least ν(B)δ2, and when

it occurs it improves

(θj′ − θj) [(r̃i − r̃i′) + ρ(g̃i − g̃i′)] (16)

by at least (θj′−θj)ε. The modification therefore improves the linear objective r+ρ∗g by at least ν(B)δ2(θj′−
θj)ε > 0, which contradicts the assumption that µ̃ is optimal.

Proposition 4 tells us that any optimal policy must satisfy the LO-ρ conditions for ρ∗ with probability

1. But we need further assumptions to make sure that this specifies an optimal policy. In the rest of this

section, we make the following assumption.

Assumption 1 For any ρ ≥ 0, and any j > i > 0, P[M ≥ j and R̃i + ρG̃i = R̃j + ρG̃j ] = 0. �

Proposition 5 Under Assumption 1, for any fixed ρ ≥ 0, there is a deterministic LO-ρ policy µ = µ(ρ) that

sorts almost any Y ∈ Ω (i.e., there is a unique order with probability 1). If ρ = ρ∗ = h(r∗, g∗) for an optimal

solution (r∗, g∗), this deterministic policy is optimal.

The LO-ρ ranking policy in Proposition 5 has corresponding values of (r, g) = (r(µ), g(µ)) and of h(r, g)

that are uniquely defined. To refer to h(r, g) as a function of ρ, we write h̃(ρ). From Proposition 4, if µ is an

optimal policy, then one must have ρ = ρ∗ = h(r(µ(ρ∗)), g(µ(ρ∗))) = h̃(ρ∗). The next proposition says that

under certain conditions such a fixed point exists and is unique.

Proposition 6 (i) If h(r, g) is bounded over [0, 1]× [0,K], then the fixed-point equation

h̃(ρ) = ρ (17)

has at least one solution in [0,∞).

(ii) If the derivative h̃′(ρ) < 1 for all ρ > 0, then the solution is unique.

Proof. (i) If h̃(0) = 0, then ρ = 0 is already a solution. Otherwise, we have h̃(0) > 0 and h̃(ρ) ≤ K ′ for all

ρ ≥ 0 for some constant K ′. In particular, h̃(K ′) ≤ K ′. Since h̃ is a continuous function, there must be at

least one point ρ ∈ [0,K ′] at which h̃(ρ) = ρ.

(ii) The slope of the function h̃(ρ) is always less than 1, so it cannot cross the line f(ρ) = ρ more than

once.

Going back to the special case of our running examples where ϕ(r, g) = λ(r)(β+g), Proposition 6 becomes:

Proposition 7 Suppose ϕ(r, g) = λ(r)(β + g).

(i) If λ(r)/λ′(r) is bounded for r ∈ [0, 1] and g(ρ(0)) > 0, then (17) has at least one solution in [0,∞).

(ii) If λ(r)/λ′(r) is also non-decreasing in r, then the solution is unique.

Proof. (i) In this case, we have

h̃(ρ) =
λ(r(µ(ρ)))

λ′(r(µ(ρ)))g(µ(ρ))
.
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Note that g(µ(ρ)) ≥ g(µ(0)) for all ρ ≥ 0. Therefore, the conditions in (i) imply that h̃(ρ) is bounded and

we can apply Proposition 6 (i).

(ii) If λ(r)/λ′(r) is non-decreasing in r, then it is non-increasing in ρ since r(µ(ρ)) is non-increasing in ρ.

Additionally, since we know that g(µ(ρ)) is non-decreasing in ρ, it follows that h̃(ρ) is non-increasing in ρ,

so h̃′(ρ) ≤ 0 and we can apply Proposition 6 (ii).

The condition in (ii) that λ(r)/λ′(r) is non-decreasing is a bit stronger than what we need to satisfy the

condition of Proposition 6 (ii). To illustrate when this condition is satisfied, take λ(r) = a0 + b0 ln(c0 + r)

for some constants a0 ≥ 0, b0 > 0, and c0 ≥ 1. Then, λ′(r) = b0/(c0 + r), and therefore λ(r)/λ′(r) =

[a0 + b0 ln(c0 + r)](c0 + r)/b0, which is bounded and increasing in r ∈ [0, 1]. Other simple cases where the

condition holds are the monomial forms λ(r) = a0r
b0 for any positive values a0 and b0; which includes the case

λ(r) = r considered in several examples in this paper. We see that the uniqueness condition in Proposition 7

(ii) is quite reasonable.

When Gi = 0 for all i, or G̃i is equal to the same constant for all i, the choice of ρ does not matter

for the ordering, and the pages are always sorted by decreasing order of R̃i. If we assume that ψ(ri) is a

non-decreasing function of ri, which is natural, then the pages should always be sorted by order of relevance

Ri. Then, the SE has the incentive to conform to search neutrality. The value of r obtained under this

ordering, say r0, is the maximal possible value, so we always have r ∈ [0, r0].

The next example establishes that having a density for Y is not sufficient for the optimal policy to be

deterministic and uniquely defined by ρ∗.

Example 2 Starting from Example 1, we add a third page with relevance R3 uniformly distributed over [0, ε]

for some small ε > 0, and revenue G3 = 0. We assume that θ3 = 1/4. Since R3 has a density, p(y) = 0 for

all y ∈ Ω. For any ρ > 0, if ε is small enough, this third page will always be ranked last, and its impact on

h(r, g) is very small. Then the problem of ranking the first two pages becomes the same as Example 1, so

the optimal policy must be randomized. �

One might thing that if no R̃i or G̃i has a probability mass at a given point, then Assumption 1 must

hold, but this is also not sufficient, because (unless we assume independence) one may construct an example

in which with positive probability, one has R̃i = R̃j and G̃i = G̃j and then R̃i + ρG̃i = R̃j + ρG̃j .

Example 3 Starting again from Example 1, suppose that G2 now has the uniform distribution over the

interval (2− ε, 2 + ε). The expectation of G2 is the same as before, but now we obtain slightly more accurate

information on the revenue G2 before making the ranking decision. This modified (perturbed) model satisfies

Assumption 1, so finding ρ∗ = ρ∗(ε) is sufficient to completely specify an optimal policy for the modified

model. Since the perturbed G2 is observed before making the ranking decision and can be used for making

the decision, we anticipate that the perturbed model will provide a larger ϕ∗ than the original one with its

optimal randomized policy, and that ϕ∗ increases with ε. Figure 1 will confirm this. However, this gain on

ϕ∗ is negligible when ε is small enough.

We can write G2 = 2 + (2V − 1)ε where V ∼ U(0, 1). The LO-ρ policy then selects the order (1, 2) if

and only if R1 + ρG1 > R2 + ρG2, if and only if V < p = p(ε)
def
= 2/(5ρε) − 1/ε + 1/2, which occurs with

probability p. We have r = (7 + 4p)/10 as before and

g = 2− p+ ε

∫ p

0

(v − 1/2)dv + ε

∫ 1

p

(2v − 1)dv = 2− p+ εp(1− p)/2,

ϕ(r, g) = r(1 + g) =
7 + 4p

10
(3− p+ εp(1− p)/2),

∂

∂p
ϕ(r, g) = [5− 8p+ ε(7/2− 3p(1 + 2p))]/10.

We can find the optimal p, say p∗ = p∗(ε), as a root of this equation and we have

ρ = ρ(p) =
2

5(1 + ε(p− 1/2))
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Figure 1: The reachable pairs (r, g) for Example 1 (black line), and for Example 3 with an LO-ρ policy for
ε = 0.5 (red line) and ε = 0.1 (green line)

from the definition of p. We see that when ε → 0, p∗ = p∗(ε) → 5/8 = 0.625 and ρ∗ → 2/5 = 0.4. Table 1
gives the optimal values as a function of ε. When ε is small enough, ρ∗ and ϕ∗ for the perturbed problem

are almost identical to the optimal values for the original problem with a randomized policy.

Table 1: Optimal values for Example 3 as a function of ε

ε p∗ ρ∗ r∗ g∗ ϕ∗

0.0 0.625 0.4 0.95 1.375 2.25625
0.001 0.62491 0.39995 0.94996 1.37521 2.25636
0.01 0.62411 0.39950 0.94964 1.37006 2.25736
0.1 0.61705 0.39537 0.94682 1.39476 2.26741
0.5 0.59771 0.38137 0.93908 1.46240 2.31240

For a fixed ε > 0, an alternative way of finding p∗(ε) numerically (instead of solving the quadratic

equation) is to start say with p = 5/8, which is the optimal probability when ε = 0, compute ρ = ρ(p), and

iterate the contraction mapping ρ← h̃(ρ) = r(ρ)/g(ρ) until ρ has converged to ρ∗(ε) with sufficient accuracy

(see Section 4). This iterative method will also work for large models.

Figure 1 pictures the reachable values of (r, g) for this example, for some large values of ε. The upper

curve (in red) represents the pairs (r, g) for LO-ρ policies for all values of ρ ∈ [0,∞] (or 0 ≤ p ≤ 1), for

ε = 0.5. The optimal point (r∗, g∗) is shown by an x in red. The corresponding curve and point for ε = 0.1

are in green (the middle curve). The lower line (a straight line) represents the pairs (r, g) for the policies

that select the ranking (1, 2) with probability p independently of G2. Those are the randomized policies of

Example 1. For any given ε, the region delimited by the lower line and the curve is the set C. For smaller

values of ε, this region becomes very thin and the optimal LO-ρ policy gives almost the same value as the

optimal randomized policy of Example 1. That is, the optimal randomized policy for the discrete case can

be approximated arbitrarily closely by a deterministic LO-ρ policy after adding a small random perturbation

to Y so its distribution satisfies Assumption 1.

3.4 Continuous approximation to the discrete case

Motivated by Example 3, when Y has a discrete distribution, instead of solving OP-D, we can approximate

the problem by a continuous one by adding a random perturbation to each Gi for each Y . The perturbations

are all independent and uniform over the interval (−ε, ε) for a very small ε. We know that the optimal

ranking policy for the perturbed problem is an LO-ρ policy for some ρ = ρ∗ = ρ∗(ε) and that ρ∗ completely
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determines the policy (with probability 1). Note that the optimal value ϕ∗(ε) for the perturbed problem is

always at least as large as the optimal value ϕ∗ of the original problem, because its decisions are based on more

information. In fact, any given (fixed) randomized policy µ̃ for the original problem, say with corresponding

pair (r(µ̃), g(µ̃)), can be applied to the perturbed problem by ignoring the realized perturbation before

making the decision. This cannot beat the optimal policy for the perturbed problem. On the other hand,

the optimal policy for the perturbed problem, which is an LO-ρ policy for ρ = ρ∗(ε), can be applied to the

original problem as follows: whenever a request arrives, generate artificial random perturbations on the Gi’s

and use the rule with ρ∗(ε) to determine the ranking. This policy cannot beat the optimal randomized policy

for the original problem, but at the same time its corresponding value of g for the original and perturbed

problems cannot differ by more than ε(θ1 + · · ·+ θm0
) and its corresponding value of r is the same for both

problems. Therefore, the optimal values ϕ∗ of the original and perturbed problems cannot differ by more

than ε(θ1 + · · ·+θm0
) supr,g ϕg(r, g) and, since ϕg(r, g) is bounded, this difference converges to 0 when ε→ 0.

Thus, in practice, one can estimate ρ∗(ε) for some very small ε, such as 10−10 for example, then add the

random perturbations for each request Y , and use the perturbed values to rank the pages. In fact, it suffices

to generate the perturbations only for the pages for which there is an equality.

3.5 Two illustrative examples

This section provides two examples that, although very simple and stylized, capture some features of the

search market in the real world. The first example can model an SE that has content that competes with

third-party CPs. Imagine that Google receives a video-search request and there are two pages that match

the search; the first is from YouTube, owned by Google, while the second belongs to a competitor such as

Dailymotion. Google’s revenue generated by the YouTube page is positively correlated with the page relevance

because of higher advertisement revenue and higher YouTube perception. Instead, Google’s revenue generated

by the Dailymotion page is negatively correlated with the page relevance because the more relevant, the more

it diverts traffic from YouTube.

To simplify the exposition, we assume in all our illustrative examples here and in the rest of the paper that

λ(r) = r, ϕ(r, g) = λ(r)(β + g) for some constant β ≥ 0, and ψ(Ri) = 1. The latter means that ci,j(y) = θj ,

so the CTR depends only on the position of the page. These assumptions are by no means necessary or

realistic, but they simplify the examples.

Example 4 Consider an instance with two pages where R1 and R2 are independent and uniformly distributed

over [0, 1], G1 = αR1 and G2 = α(1 − R2) where 0 ≤ α ≤ 1, θ1 = 1, and θ2 = 0. Here, Y has a continuous

distribution and Assumption A is satisfied.

For any given ρ, with probability 1, an LO-ρ policy places Page 1 before Page 2 if and only if R1 +ρG1 >

R2 + ρG2; i.e., when (1 + αρ)R1 > ρ− (1− αρ)R2; i.e., on the domain

D =

{
(R1, R2) : R1 >

ρ̃

1 + ρ̃
+R2

1− ρ̃
1 + ρ̃

}
,

where ρ̃ := αρ. Let D̄ := [0, 1]2 \D. By straightforward computations, we find that the LO-ρ policy gives

r =

∫
D

r1dr1dr2 +

∫
D̄

r2dr1dr2 =
2

3
− ρ̃2

6(1 + ρ̃)2

and
g

α
=

∫
D

r1dr1dr2 +

∫
D̄

(1− r2)dr1dr2 =
2

3
− 1

6(1 + ρ̃)2
.

The SE revenue is thus

ϕ(r, g) = r(β + g) =

(
2

3
− ρ̃2

6(1 + ρ̃)2

)(
β +

2α

3
− α

6(1 + ρ̃)2

)
=

αρ̃2/36− (3β + 2α)ρ̃2(1 + ρ̃)2/18− α(1 + ρ̃)2/9

(1 + ρ̃)4
,
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which we want to maximize with respect to ρ̃ ≥ 0. Taking the derivative with respect to ρ̃ and setting it to

0, we get the following equation, to which αρ∗ is a positive root (unless ρ∗ = 0):

(3β + 2α)ρ̃3 + (6β + 5α/2)ρ̃2 + (3β − 5α/2)ρ̃− 2α = 0.

It follows from Proposition 7 (ii) that ρ∗ is unique. Moreover, Assumption 1 is satisfied, so ρ∗ defines the

order uniquely with probability 1.

For a complete numerical illustration, let us take α = β = 1. Then, ρ∗ is the unique positive root

of 5ρ3 + 17ρ2/2 + ρ/2 − 2, which is ρ∗ ≈ 0.412149553. Figure 2 shows the expected SE revenue as a

function of ρ. One can also verify that for ρ = ρ∗, we have r = 0.6524696521, g = 0.583089554, and then

h(r, g) = r/(1 + g) = 0.412149553 = ρ∗, as expected. �

0 0.2 0.4 0.6 0.8 1

1

1.01

1.02

1.03

ρ

ϕ
(r

(ρ
),
g
(ρ

))

Figure 2: Expected SE Revenue in terms of ρ when α = β = 1

In the next example, we consider a situation where the SE has a positive expected revenue Gi for a page

when it is also the CP for that page, and Gi = 0 otherwise. An alternative interpretation is that all the

content is served by other CPs, and some of those CPs agree to pay the SE a fixed price, normalized to 1,

for each click to their pages served from the SE’s output. This price does not depend on the ranking of the

link; it just gives an incentive for the SE to favor links with Gi = 1 in its ranking.

Example 5 Suppose there are two matching pages (M = 2). For i = 1, 2, Ri has a uniform distribution over

[0, 1], the revenue Gi is a Bernoulli random variable with parameter p = P[Gi = 1] = 1 − P[Gi = 0], and

these four random variables are independent. The density of Y is a mixture of two uniform densities, and

Assumption 1 holds. Let (θ1, θ2) = (1, 0), which amounts to assuming that the SE displays only one page.

Focusing on LO-ρ policies, we derive explicit formulas for r = r(ρ), g = g(ρ), and ϕ(r(ρ), g(ρ)). The fixed

point ρ∗ can then be computed from these formulas.

We first derive the formula for r = r(ρ). We distinguish two cases for (G1, G2):

1. If G1 = G2, only the most relevant link is displayed, resulting in conditional expected relevance

E[max(R1, R2) | G1 = G2] = 2/3.

2. If G1 6= G2, we can assume (possibly by swapping the pages) that G1 = 1 and G2 = 0. If R1 + ρ ≥ R2,

link 1 is displayed and the relevance is R1; otherwise, the relevance is R2. If ρ > 1, link 1 is always

shown, leading to an expected observed relevance of 1/2. If ρ ≤ 1, the expected relevance conditional

on (G1, G2) = (1, 0) is∫ 1

r1=0

∫ 1

r2=0

r11l{r1+ρ>r2} + r21l{r1+ρ≤r2}dr2dr1 =
2

3
− ρ2

2
+
ρ3

3
.
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Combining the four possibilities for (G1, G2), the overall expected relevance for the LO-ρ policy is

r = r(ρ) =
2

3
+ p(1− p)ρ̄2

(
2ρ̄

3
− 1

)
, (18)

where ρ̄ := min(1, ρ).

Similarly, to compute the expected revenue g = g(ρ) per request, we consider the same two cases:

1. If G1 = G2, the expected revenue is 0 if G1 = 0, and 1 otherwise.

2. If G1 6= G2, we can assume again that G1 = 1 and G2 = 0. If ρ > 1, link 1 is always shown and the

revenue is 1. If ρ ≤ 1, the expected revenue conditional on (G1, G2) = (1, 0) is∫ 1

r1=0

∫ 1

r2=0

1l{r1+ρ>r2}dr2dr1 = 1− (1− ρ)2

2
.

Regrouping all cases, we obtain

g = g(ρ) = p2 + p(1− p)
(
1− (2− ρ̄)2

)
. (19)

Both r(ρ) and g(ρ) are constant for ρ ≥ 1, so we can reduce the search for an optimal ρ to the interval

[0, 1], and we have ρ̄ = ρ in that interval. With λ(r) = r, the expected revenue per unit of time is

ϕ(r(ρ), g(ρ)) = r(ρ) · (β + g(ρ)) =

(
2

3
+ p(1− p)ρ2

(
2ρ

3
− 1

))
·
(
β +

(
p2 + p(1− p)

(
2− (1− ρ)2

)))
.

Figure 3 depicts the expected revenue as a function of ρ, along with r(ρ) and g(ρ), for β = 1 and p = 1/2.

While g(ρ) increases and r(ρ) decreases with ρ, the maximal revenue is obtained by taking ρ around 0.4.

This optimal ρ uniquely determines the optimal policy (with probability 1). �

This illustrates that to optimize the tradeoff between short-term revenue coming from immediate payments

and long-term revenue coming from more exposure due to higher relevance, one must place the appropriate

relative weights on relevance and on short-term revenues (1 and ρ, respectively).

0 0.2 0.4 0.6 0.8 1

0.6

0.8
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ρ

Revenue ϕ(r(ρ), g(ρ))

Relevance r(ρ)

Gain g(ρ)

Figure 3: Expected SE revenue per unit time for β = 1 and p = 1/2

4 Finding optimal rankings by computing ρ∗

In this section, we discuss how to find ρ∗, the optimal ρ for the LO-ρ policy. Proposition 4 tells us that to

maximize his revenue, the SE must follow an LO-ρ policy for a properly chosen ρ = h(r, g). But this h(r, g)
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depends on r and g, which in turn depend on the selected policy µ and are unknown a-priori. Moreover,

typically, this dependence is not expressed in a closed-form formula. In the examples of Section 3.5, we

were able to derive explicit analytical expressions for r(ρ) and g(ρ), and use them to find the optimal ρ.

Unfortunately, instances of real size do not admit such closed-form derivations and they would usually have

to be estimated through simulation. Here we formulate the search for ρ∗ as a stochastic root-finding problem:

estimate a root of h̃(ρ)−ρ = 0 when only noisy estimates of h̃ can be obtained, via simulation. The methods

discussed here assume that a root exists and is unique. Proposition 7 gives sufficient conditions for this to

hold. Several algorithms have been designed and studied for this type of problem; see, e.g., Pasupathy and

Kim (2011) and the references therein. We explain how to adapt and use this technology in our setting and

we end up recommending a simplified approach that turns out to be a contraction mapping in most cases.

An estimator ĥn(ρ) of h̃(ρ) at any given value of ρ can be defined and computed as follows. We generate n

independent realizations Y1, . . . , Yn of Y , with Yk = (Mk, Rk,1, Gk,1, . . . , Rk,Mk
, Gk,Mk

). For each k, we order

the Mk pairs (Rk,i, Gk,i) by decreasing order of R̃k,i + ρG̃k,i, and let πk be the corresponding permutation.

We then compute the following unbiased estimators of r(ρ) and g(ρ):

r̂n(ρ) =
1

n

n∑
k=1

Mk∑
i=1

θπ(i)R̃k,i,

ĝn(ρ) =
1

n

n∑
k=1

Mk∑
i=1

θπ(i)G̃k,i.

They lead to the estimator

ĥn(ρ) = ϕ(r̂n(ρ), ĝn(ρ)) (20)

for h(ρ), which is generally biased when ϕ is nonlinear, but is consistent, and the bias typically decreases as

O(1/n) (Asmussen and Glynn 2007). A confidence interval for h̃(ρ) can be computed via the Delta method

(Asmussen and Glynn 2007), under the assumption that r̂n(ρ) and ĝn(ρ) have (approximately) a normal

distribution and ϕ is smooth enough. For the special case where ϕ(r, g) = λ(r)(β + g), the estimator is

ĥn(ρ) = λ(r̂n(ρ))(β + ĝn(ρ)).

When searching for a root of h̃(ρ) − ρ, or if we want to estimate the function h̃ over some interval, we

need to compute ĥn(ρ) at many values of ρ. This can be done using common random numbers (CRN), which

means that we use exactly the same n realizations Y1, . . . , Yn at all values of ρ at which we perform a function

evaluation, or using independent random numbers (IRN), in which case we draw a fresh independent sample

Y1, . . . , Yn at each ρ where we estimate h̃(ρ). In the CRN case, ĥn(ρ) becomes a deterministic function of ρ
and this function typically varies much less than in the IRN case. The sample average optimization method

consists in optimizing this sample function ĥn(ρ) defined with CRNs. However, for any fixed n, this sample

function is piecewise-constant in ρ, because it depends on ρ only via the selected permutation for each i, and

therefore only takes a finite number of values as a function of ρ. As a result, its derivative is zero almost

everywhere and (in general) ĥn(ρ) − ρ has no exact root. Therefore, the best we can do for fixed n is to

compute an approximate root ρ̂∗n of ĥn(ρ) − ρ, and for this, any method that relies on the derivative of

ĥn(ρ) must be ruled out. We can approximate the root either by a method that does not rely on derivatives

(such as binary search), or by a derivative-based method (e.g., a Newton-type method) by approximating

the derivative with finite differences. Thus, we can compute ρ̂∗n such that εn = |ĥn(ρ̂∗n)− ρ̂∗n| is small, and do

this for an increasing sequence of values of n, in a way that εn → 0 when n→∞. This is possible under the

assumption that ĥn → h̃ uniformly when n→∞, which usually occurs with CRNs (under mild conditions).

For each considered sample size n, we would use the approximate root ρ̂∗n as a starting point when finding

the approximate root for the next (larger) value of n.

Another approach is a Robbins-Monro-type stochastic approximation (SA) iterative method; see Pasupa-

thy and Kim (2011) for an overview and convergence results. For the situation where h̃(ρ)− ρ is decreasing

in ρ, SA starts from some ρ0 and generates iterates of the form

ρj+1 = ρj + aj(ĥnj
(ρj)− ρj), (21)
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where ĥnj (ρj) is an estimate of h̃(ρj) based on sample size nj . These estimates are independent across values

of j, and {aj , j ≥ 0} is a slowly-decreasing sequence such that
∑∞
j=0 aj = ∞ and

∑∞
j=0 a

2
j < ∞. Note that

there is no need to have nj → ∞; one can take nj as a small constant independent of j. If we replace aj
by the inverse derivative 1/(h̃′(ρj) − 1) and the estimate of h̃(ρj) by its exact value, we obtain the Newton

method, which usually converges much faster, but requires knowledge of the function and of its derivative

(or accurate estimators and nj → ∞), in contrast to SA. On the other hand, without a good choice of the

aj ’s, SA might converge extremely slowly.

If we replace aj by 1 in (21), we obtain

ρj+1 = ρj + (ĥnj (ρj)− ρj) = ĥnj (ρj). (22)

If nj →∞, this iteration becomes equivalent in the limit to the mapping ρ→ h̃(ρ). Recall that ρ→ h̃(ρ) is

a contraction mapping if there is a constant γ ∈ [0, 1) such that

|h̃(ρ)− h̃(ρ′)| ≤ γ|ρ− ρ′|

for all ρ, ρ′ ≥ 0. A sufficient condition for this to hold is that |h̃′(ρ)| ≤ γ for all ρ (in the region of interest).

When this holds, we can start from some ρ0 > 0 and iterate: ρj+1 = h̃(ρj), for j = 1, 2, . . . . Then, the

fixed-point theorem for contraction mappings (Bertsekas and Shreve 1978) guarantees that ρj → ρ∗ at a

geometric rate: |ρj − ρ∗| ≤ γj |ρ0 − ρ∗|, which provides very fast convergence when γ � 1. In practice, we

can replace h̃(ρj) by ĥnj
(ρj), and convergence to ρ∗ will occur if nj →∞ when j →∞. On the other hand,

if nj does not increase with j, ρj will generally not converge to θ∗. If nj is fixed to some large constant n

and we use IRN, ρj will never converge but wander around in a small neighborhood of θ∗. If we use CRNs,

it will converge to a value close to θ∗, but generally different.

It is very common in our model that ρ → h̃(ρ) is a contraction mapping. In particular, this holds in all

the examples considered in this paper. Generating iterates of (22), we verified that in all cases it converged

very quickly to a very good approximation of ρ∗.

To illustrate our discussion of stochastic root finding methods to estimate ρ∗ in our setting, we use them

to solve numerically the two examples given in Section 3.5.

Example 6 We revisit Example 4 and estimate r(ρ), g(ρ), and ϕ(r(ρ), g(ρ)) over a range of values of ρ. We

take a sample of size n = 107, and ρ from 0 to 1 with a step size of 0.001. The plot on the left of Figure 4
shows the estimate of ϕ(r(ρ), g(ρ)) as a function of ρ, when using IRN. This functional estimator suffers from
high-frequency noise. The true maximum is at ρ∗ = 0.41214955 whereas the sample function (the estimate)

has its maximum at ρ = 0.437. We see that, even with this large sample size, the noise is significant compared

with the variation of ϕ(r(ρ), g(ρ)) around ρ∗. This illustrates the fact that sample-average optimization with

IRN is a poor method to estimate the optimizer, because of the large noise.

We also applied the mapping (22) iteratively, starting at ρ0 = 0, with a fixed sample size of nj = 107

for all j, and IRN across iterations. This gave ρ1 = 0.44446 at the first iteration and ρ4 = 0.4121, already

accurate to four digits after only four iterations. Thus, this method gets close to the optimum very quickly.

For comparison, we ran the same method with CRN. The values of ρj with both methods are shown in

Table 2, for j = 1, . . . , 6. With both methods, ρj provides a good approximation of ρ∗ very quickly. With

CRN, it converges to 0.4121425 for j ≥ 7, which is not the exact value but is accurate to five digits.

Table 2: Values of ρj at the first six iterations of (22) for Example 6, with IRN and CRN

Method ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

IRN 0.4444478 0.4102066 0.4122955 0.4121269 0.4121527 0.4121252
CRN 0.4444478 0.4101850 0.4122638 0.4121351 0.4121428 0.4121424
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Figure 4: Estimate of expected SE revenue per unit time in terms of ρ for α = β = 1 in Example 4 (left),
and for β = 1 and p = 1/2 in Example 5 (right)

To prove that we indeed have a contraction mapping for this example, recall that λ(r) = r, r = 2/3 −
ρ2/(6(1 + ρ)2), and g = 2/3− 1/(6(1 + ρ)2). This gives

h̃(ρ) =
2/3− ρ2

6(1+ρ)2

β + 2/3− 1
6(1+ρ)2

and h̃′(ρ) = − 2(4ρ2 + 6βρ2 + 6βρ+ 7ρ+ 4)

(6β + 12βρ+ 6βρ2 + 3 + 8ρ+ 4ρ2)2
.

For β = 1, one can verify that h̃′(ρ) is negative and increasing, with |h̃′(ρ)| ≤ |h̃′(0)| = 8/81 < 1. Therefore

the mapping ρ→ h̃(ρ) is contracting with γ = 8/81. �

Example 7 We also revisit Example 5 and solve the problem numerically. The plot on the right of Figure 4
shows the estimates of r(ρ), g(ρ), and ϕ(r(ρ), g(ρ)), computed with IRN with n = 105. We also superimpose

the corresponding exact curves. Again, we applied (22) for six iterations, starting with ρ0 = 0, and a fixed

sample size of nj = 107 for all j. The results are in Table 3. We find that ρ∗ ≈ 0.3859.

Table 3: Values of ρj at the first six iterations of (22) for Example 7, with IRN and CRN

Method ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

IRN 0.4444471 0.377720 0.387115 0.3857771 0.3860725 0.3859246
CRN 0.4444471 0.377670 0.387079 0.3857318 0.3859223 0.3858940

For this example, with the expressions previously derived for r and g, we get

h̃(ρ) =
2/3 + p(1− p)ρ̄2(2ρ̄/3− 1)

β + p2 + 2p(1− p)(1− (1− ρ̄)2/2)

and

h̃′(ρ) = −2

3
p(1− p)(1− ρ̄)

(3ρ̄β + 3pρ̄+ 3pρ̄2 − pρ̄3 − 3p2ρ̄2 + p2ρ̄3 + 2)

(β + p+ 2pρ̄− pρ̄2 − 2p2ρ̄+ p2ρ̄2)2
.

For β = 1 and p = 1/2, one can verify numerically that for 0 ≤ ρ ≤ 1, h̃′(ρ) is negative and achieves a

maximum absolute value of approximately 0.15 < 1 (although the derivative is not monotone). Hence, we

have a contraction mapping with γ ≈ 0.15 in that area. �

As illustrated by these examples, when (22) is a contraction mapping (which is typical), applying this

mapping for just a few iterations provides a quick and efficient way of approximating ρ∗. The mapping is

easy to apply when Y has a density and Assumption A holds. It converged very quickly in all the examples

we tried. This is therefore the method we recommend to try first.
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5 Comparing neutral and non-neutral ranking policies

In this section, we give further numerical examples to illustrate how the theory developed earlier could be

used to study the impact of different ranking policies on various performance indicators such as consumer

welfare (captured by expected relevance), SE, and CP revenue. In particular, we compare neutral ranking

policies, where ρ = 0, with non-neutral ones, in which the SE chooses the optimal ρ∗. As in the previous

examples, we take λ(r) = r, ϕ(r, g) = λ(r)(β + g), and ψ(Ri) = 1.

5.1 A vertically integrated SE with a CP

Example 8 Here we focus on a specific type of request which can be served by either third-party CPs or

by the SE itself. This is typical for many search categories where the SE also provides content (e.g., video,

weather, finance, news, maps, flight information, and so on). In this case, a limited number of CPs compete

with the SE, and the parameters r, g, and λ(r) for the instance correspond to just this type of request. We

assume that each request has M = 10 matching pages, that one of them (say Page 1) is served directly by the

SE, while the other nine are served by third-party CPs. In addition to the revenue coming from Page 1, the

SE receives an expected revenue of β = 1 per request from sponsored links. We assume that R1, . . . , R10, G1

are independent random variables, all uniformly distributed over (0, 1), whereas G2 = · · · = G10 = 0. The

CTRs θj , in Table 4, are proportional to the observed relative numbers of clicks as a function of position

j, given in the first table of Dejarnette (2012). The multiplicative proportionality constant has no impact

on our derivations, so we take it equal to 1. Each third-party CP also receives an expected revenue Ci,

for i = 2, . . . , 10, where the Ci are independent and uniform over (0, 1). Those Ci have no impact on the

optimization.

Table 4: CTR values θj used in Example 8

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

0.364 0.125 0.095 0.079 0.061 0.041 0.038 0.035 0.03 0.022

The M = 10 pages are ranked by the SE by decreasing value of R̃i + ρG̃i, for some ρ ≥ 0. Figure 5 shows

the SE revenue, the relevance r(ρ), the revenue and the visit rate for CP 1 and for each other (third-party)

CP, all as a function of ρ. The revenues are per unit of time. When ρ increases, the SE favors CP 1 more,

which decreases the overall relevance and increases the visit rate to CP 1. The optimal tradeoff for the

SE is attained with ρ∗ ≈ 0.55. The ranking bias from choosing ρ > 0 only affects Page 1. The relative

positions of the other pages remain the same as in the neutral ranking. Consequently, the relevance r(ρ) is

only marginally affected by ρ in this case. If R1 was stochastically much smaller than the other Ri’s (e.g.,

uniform over [0, ε] for a small ε), then the impact of ρ on r would be larger. When ρ→∞, Page 1 is always

ranked first, and the relevance r(ρ) becomes

r(∞) =

(
θ1

2
+

9∑
i=1

θi+1E[U(10−i)]

)
=
θ1

2
+

9∑
i=1

θi+1
(10− i)

10
≈ 0.517,

where U(1), . . . , U(9) are independent random variables uniformly distributed over [0, 1] sorted by increasing

order (the order statistics), and the visit rate to Page 1 is θ1r(∞) ≈ 0.188.

To assess the sensitivity of the SE strategy to advertising, we now examine how the results depend

on β. This shows the tradeoff that the SE faces for different types of requests. For requests related to,

e.g., airline tickets, hotel reservations, or retailer products, the SE could make more profit by showing its

own content among organic links rather than through sponsored search, because requests of this kind may

produce conversions, whereas for requests that are appealing in the sponsored search market, the SE may try

to offer the most relevant links, to boost that revenue stream. Figure 6(a) plots ρ∗ as a function of β, while

Figure 6(b) plots the ensuing revenue for CP 1 and for each third-party CP. Those functions were estimated

by simulation, using the iterative fixed-point method to find ρ∗, with a fixed sample size of n = 107 at each

step. When β grows, ρ∗ tends to zero, because the revenue from sponsored links dominates, making it more
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Figure 5: Performance measures as a function of ρ (simulation results)
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Figure 6: Optimal ρ for the ranking, and corresponding CP revenue per unit of time, as functions of β
(simulation results)

rewarding for the SE to improve its reputation to attract more users. The impact of non-neutrality is small

in this example because biasing the ranking only attracts limited additional revenue. When β is small, in

contrast, sponsored links do not pay much and it becomes worthwhile for the SE to sacrifice relevance to

some extent for immediate profits. In the extreme case when β = 0, we have ρ∗ = ∞, so Page 1 is always

placed at the top, and the other pages are sorted by decreasing order of relevance. This gives an average

revenue of 0.09619 for CP 1 and of 0.01695 for each other CP. Although not shown in the figure, the expected

SE revenue ϕ(r∗, g∗) grow almost linearly with β, which means that the increasing revenues of sponsored

search dominate the additional revenue to the SE coming from Page 1.

To illustrate the impact of non-neutrality, Table 5 reports the variations of the most relevant performance

metrics when using ρ = ρ∗ instead of ρ = 0 (neutral ranking), for different values of β. We see that while the

variation of the perceived quality (relevance) remains small (around 10%), the impact on the visibility and

the revenues of the SE-owned CP is substantial: by being non-neutral, the SE can multiply the revenues of

its CP by a factor of 2.8 and its visit rate by a factor larger than 3. On the other hand, the other CPs see

their revenues and visit rates reduced by 14% to 32%, a significant decrease that may impact their long-term

profitability.
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Table 5: Impacts of a non-neutral ranking for the scenario of Section 5.1

CP 1 other CP CP 1 other CP
Relevance revenue revenue visit rate visit rate

Neutral, ρ = 0
(reference case
optimal for β =∞)

0.635 0.028 0.0283 0.057 0.057

Non-neutral, ρ = 0.559 0.618 0.066 0.0243 0.112 0.049
(optimal for β = 1) (-3%) (+136%) (-14%) (+96%) (-14%)

Non-neutral, ρ = 0.924 0.592 0.084 0.0215 0.140 0.043
(optimal for β = .5) (-7%) (+200%) (-24%) (+146%) (-25%)

Non-neutral, ρ = 1.374 0.568 0.093 0.0193 0.158 0.039
(optimal for β = .25) (-11%) (+232%) (-32%) (+177%) (-32%)

Finally, we explore the sensitivity of outcomes to the number M of matching pages. Figure 7 plots ρ∗ and

the CP revenues as functions of M , for both the neutral (ρ = 0) and non-neutral (ρ = ρ∗) regimes. As before,

ρ∗ was estimated via the fixed-point algorithm with n = 107 at each step. As M increases, ρ∗ increases: The

SE can give more weight to CP 1 and increase its revenue while making less damage to the relevance, because

placing CP 1 higher has less impact on the overall relevance when M is larger. As a result, the revenue of

CP 1 when ρ = ρ∗ increases with M , and so does the advantage of CP 1 over the other CPs. The loss of

revenue for the other CPs becomes almost constant as a function of M when M is large.
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Figure 7: Optimal ρ for the ranking, and corresponding CP revenues per unit of time, as functions of M
(simulation results)

5.2 Vertical integration and investment

Example 9 Continuing with the previous example of vertical integration, we now assume that one of the

nine third-party CPs, say CP 2, invests in quality and manages to improve its relevance distribution. More

specifically, we assume that when it invests z > 0, the relevance of CP 2 becomes uniformly distributed over

[0, 1 + 20z] (instead of over [0, 1]). The other parameters and distributions, including the distribution of G2,

are unchanged. Figures 8(a) and 8(b) show simulation results when the SE ranks CPs according to R̃i+ρG̃i,

for varying values of ρ, and when z = 2. For a neutral ranking (ρ = 0), CP 2 logically makes more revenue

than the other CPs, since it regularly gets higher ranking. However, when ρ increases and exceeds about 0.8,

CP 1 becomes the one with highest revenue, despite its (stochastically) lower relevance.
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Figure 8: Average relevance, revenues and number of visits per unit of time for the case of vertical integration
with investment

We now take the perspective of CP 2, and compute its optimal decision. CP 2 invests z in quality to

modify its relevance distribution to [0, 1 + 20z], anticipating that the SE is going to rank requests according

to ρ∗. To simplify the example, we assume that an estimate of the distribution of Y is always immediately

available to the SE (in real life there will be a delay to update the estimate when the distribution changes,

which is fine if the distribution changes only slowly). The profit of CP 2 is the revenue from the search

market, minus z. To optimize z, we simulated the outcomes for z ∈ [0, 0.45]. Figures 9(a) and 9(b) plot

the resulting curves. In both figures, we find that the difference between neutral and non-neutral revenues is

small, except for CP 1. This is particularly true for CP 2. Thus, at least in this example, non-neutrality does

not deter innovation. Actually, the optimal investment level z under both regimes coincide and is equal to
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(a) CP revenues
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Figure 9: Revenues and visit rates to various CPs as a function of the investment from CP 2
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Figure 10: Profit per unit of time as a function of CP 2 investment

z∗ = 0.025. Optimal profits, though, vary. They are 0.037 for the neutral case and 0.0296 for the non-neutral

one; see Figure 10, which displays the profits of CP 2 as a function of z.

6 Conclusion

We have introduced a new modeling framework that allows online platforms to rank items in a way that

maximizes long-term revenues. The long-term impact is captured by the arrival rate of requests, which is an

increasing function of the average relevance of the displayed clicked by the users. We proved that although

we have to choose an ordering among a large number of possibilities for each request and the objective

function is nonlinear, an optimal ranking must satisfy some simple conditions: the items must be sorted by

order of a figure of merit that is a linear combination between relevance and short-term profits. This sorting

depends only on the slope of the linear combination, a single real number. Under further assumptions, with

probability 1, this provides a unique ordering for each request. Then, the whole problem reduces to finding

the appropriate constant used in the linear combination. We provided algorithms to find this constant.

Our model and results might prove useful to platform owners (search engines, classified ads websites,

online retailers) to navigate the tradeoff between short-term and long-term effects when defining their ranking

strategies. They can also be of interest to regulators, seeking to understand the behavior of revenue-oriented

platforms and to anticipate the impact of regulatory interventions, which is of particular importance with

regard to the current search neutrality debate.

Topics that would deserve further investigation include: (i) perform case studies with real data; (ii) based

on real data, study the implications of profit-maximizing platforms on the online economy to shed light on

the search-neutrality debate.
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