
Random Numbers for Parallel Computers:

Requirements and Methods,

With Emphasis on GPUs

Pierre L’Ecuyera,b, David Mungera, Boris Oreshkina, Richard Simarda

aDIRO, Pavillon Aisenstadt, Université de Montréal, C.P.6128, Succ. Centre-Ville,
Montréal (QC), Canada, H3C 3J7

bInria Rennes Bretagne Atlantique, Campus Universitaire de Beaulieu,
35042 Rennes Cedex, France

Abstract

We examine the requirements and the available methods and software to
provide (or imitate) uniform random numbers in parallel computing environ-
ments. In this context, for the great majority of applications, independent
streams of random numbers are required, each being computed on a single
processing element at a time. Sometimes, thousands or even millions of such
streams are needed. We explain how they can be produced and managed.
We devote particular attention to multiple streams for GPU devices.

Keywords: random number generators, random number streams, multiple
streams, parallel computing, supercomputers, simulation, Monte Carlo,
GPU

1. Introduction

Random number generators (RNGs) are fundamental ingredients for sto-
chastic simulation and for the application of Monte Carlo methods in general.
Conceptually, these RNGs are designed to produce sequences of real num-
bers that behave approximately as the realizations of independent random
variables uniformly distributed over the interval (0, 1), or i.i.d. U(0, 1) for
short [23, 24, 26, 34, 60]. These numbers are then transformed to simulate
random variables from other distributions, stochastic processes, and other
types of random objects [12, 20].

In this review paper, we examine the design and implementation of RNG
facilities for parallel processing, with a special attention to discrete graphical

Preprint submitted to Mathematics and Computers in Simulation April 17, 2015

processing units (GPU) devices. Such facilities are increasingly important,
because computing power now improves by increasing the number of process-
ing elements (PEs), that can operate in parallel in a computer, rather than
by increasing clock speeds of the PEs [5, 56], mainly because faster clock
speeds produce too much heat.

Parallel computers are generally organized in a hierarchic fashion, both
in terms of PEs and memory. A single chip may contain several PEs (or
cores) that execute instructions in parallel. In many cases, several PEs can
execute different instructions in parallel, almost independently, with only
sparse communication between them. In some cases, certain groups of PEs
on the chip work in the single instruction multiple data (SIMD) mode, which
means that they must all execute the same instructions at each time step,
usually with different data. This happens in array processors and GPU
devices, for example, which are used as accelerators to perform the same
instructions in parallel on an array (or vector) of different data. The purpose
of this restriction is to speed up the processing by reducing the work required
for task scheduling. On the other hand, it puts important constraints on the
design of algorithms that run on such hardware.

Most often, there is a mixture of these two cases. The largest supercom-
puters in 2015 have over a million PEs. The PEs execute threads, where a
thread can be seen as a sequence of instructions that can execute on a sin-
gle PE (although the notions of thread and PE can have various meanings
that differ in the scientific and commercial literature). The memory has a
matching hierarchical organization, in which each PE can have access to a
small amount of very fast-access memory, then groups of PEs share a larger
memory that is slower to access, and there can be many levels of that. There
is a large variety of such hierarchic organizations. On some common chips,
all the PEs have fast access to a large shared memory (with a single address
space) of several Gbytes. On others, such as discrete GPU chips, each PE
has a fast read-write access only to a small private memory for its data,
fast read-only access to a larger shared memory, and much slower access to
the shared read-write memory. The read and write access times depend on
the type of memory and on how it is physically connected to the PEs or to
the host (on the same chip, on the same board, in the same machine, in a
different machine from a same cluster, etc.).

In recent years, there has been a strong interest and much published ar-
ticles on RNGs for GPU devices. Those devices were originally designed
for fast high-quality image rendering on computer screens and video-game

2

consoles, but are now widely used as low-cost alternatives to accelerate com-
putations in several other areas such as statistics, computational finance,
and simulation in general, and have been extended to general-purpose GPUs
(GPGPUs). This special interest for RNGs that run on GPU devices comes
from the strong restrictions (mentioned earlier) that one faces when com-
puting on those devices, and which are not present on other common types
of processors such as ordinary CPUs (single-core or multi-core) and parallel
processors typically found in the largest supercomputers. Our review gives
special emphasis to GPUs for this reason. A traditional GPU board (named
discrete GPU) contains specialized chips, each one containing multiple copies
of a hardware unit with PEs that can execute a warp (or wavefront) of (typi-
cally 32 or 64) threads (also called work items) in parallel, in a SIMD fashion.
The actual number of physical PEs is typically less than 32 (e.g., it can be
16, with one instruction per thread every two or four clock cycles). There are
several variations in the architectural design, and explaining this is beyond
the scope of the present article. The important aspects for our purposes are
the SIMD restriction for groups of threads and the limited size of fast access
private memory per thread, mentioned earlier.

To take advantage of new parallel-computing architectures, and account
for their specificity and constraints, algorithms and software in general, and
for RNGs in particular, must be adapted and sometimes radically redesigned.
Feeding all the PEs with a single source of random numbers is generally un-
acceptable, first because it would create too much overhead and a large bot-
tleneck. In highly-parallel systems, one may need thousands or even millions
of virtual RNGs. They can be either different RNGs or copies of the same
RNG starting from different states, that run in parallel without exchanging
data between one another, and behave from the user’s viewpoint just like
independent RNGs. These virtual RNGs are often called streams of random
numbers.

Another important requirement is reproducibility of the results : it is of-
ten required that simulations must be exactly replicable and produce exactly
the same results on different computers and architectures, either parallel or
purely sequential, and when running the program again on the same com-
puter. The latter is important for debugging and in the (frequent) situation
where we want to simulate a complex system with slightly different configu-
rations or decision making rules (e.g., to optimize these rules), while making
sure that exactly the same random numbers are used at exactly the same
places in all configurations of the system, and repeat this n times indepen-

3

dently. To reduce the variance in the comparisons, it is important to use
well-synchonized common random numbers (CRNs) [24, 32, 33, 36, 45, 41];
that is, to ensure that the same random numbers are used for the same
purpose across configurations. To achieve this, one would use a separate
stream for each required source of random numbers in the system, and use
one substream for each of the n independent runs [24, 32, 33, 36, 41].

Reliable software facilities that provide RNGs with multiple “indepen-
dent” streams and substreams have been available for some time for that
purpose [33, 37, 45, 38]. Most were initially designed primarily for simula-
tions over a single processor, for synchronizing CRNs, but they can be used
as well to provide multiple streams for parallel processing. In particular, the
RngStreams package of [45] has been incorporated in the parallel package
which supports parallel programming in R [70]. RngStreams can also be
used directly in OpenMP, which is the most standard interface for parallel
programming in shared-memory environments, and in MPI, a popular par-
allel programming interface based on message passing. Examples are given
in [22].

In these software tools, all the new streams are created and managed by a
single central monitor. The streams are defined so they are all distinct, long
enough to make sure they cannot overlap, and they behave as statistically
independent. For reproducibility, the user must make sure that they are
created in the same order and used for the same purpose in different config-
urations. This single-monitor design means that all streams must be passed
or copied from the single location where they are created to all other places
where they are to be used. For most parallel applications, this is acceptable
and sufficient.

This setting can be extended to multiple monitors (or creators) that create
the streams. Each creator will create exactly the same sequence of streams
in exactly the same order, provided that the creators are created themselves
in the same order. Once created, the creators no longer have to interact with
each other and can be distributed in loosely connected groups of nodes.

The streams and substreams are most often constructed by partitioning
the long period of a single base RNG into pieces of equal length, as in [33,
45, 41]. Other approaches such as using counter-based RNGs with different
initial values for the counter, or different hashing keys, or using different
RNGs from the same family (with different parameters), are also used to
define streams. We will return to this later on.

There are situations where using one or more central monitor(s) to create

4

the streams is not acceptable, e.g., because new streams have to be created
dynamically and randomly within threads as a simulation goes on, without
resorting to external information, and with a guarantee that the results are
exactly reproducible [15, 53]. In this setting, we want each stream to be
able to create children streams by itself at any time, using a deterministic
mechanism. The possibility of collisions or overlap between streams is hard to
rule out in this case, but the probability that it occurs can be made extremely
small, as we shall see.

Most good RNGs proposed over the past decades have been designed for
single-processor environments with plenty of memory. Some popular ones
have a very large state (e.g., [11, 54, 63]), which makes them inappropriate for
computations on a single PE having limited fast memory, such as the PEs on
discrete GPUs, and adds overhead when storing and restoring stream states,
which is required, e.g., to checkpoint programs and restart them from a saved
checkpoint, an essential activity in highly-parallel computations. In those
types of setting, several PEs can be used simultaneously to advance the RNG
state by one step, so these PEs all work on the same stream. But this often
does not match the need of users, e.g., if one wishes to run one simulation
thread per PE. RNG frameworks and implementations specifically adapted
to GPUs, and other parallel processing environments such as programmable
arrays, have also been proposed in recent years; see for example [6, 19, 49,
58, 65, 64, 73, 74, 75, 80]. Parallel processing accelerators can be exploited
in different ways in a simulation. On a GPU, for example, one can either
run a piece of simulation on each PE, using one or more random stream per
PE, or one can just use the GPU to rapidly fill up a large buffer of random
numbers to be used on the host computer or elsewhere.

The rest of this paper provides a (brief) survey of the main issues, require-
ments, and recent proposals, for RNGs on parallel computing environments.
In Section 2, we provide some background on algorithmic RNGs and their
(classical) quality criteria. Section 3 quickly summarizes the main classes of
RNGs used for simulation. In Section 4, we outline a set of requirements and
ideas to provide multiple streams for parallel computing, and discuss what
we think application programming interfaces (APIs) should contain. In Sec-
tion 5, we describe various efforts made to adapt existing RNGs to parallel
settings, and to define new ones that can be more appropriate.

5

2. Background

One way to generate (approximately) U(0, 1) random numbers is to gen-
erate random bits from physical devices and use these bits to construct real
numbers represented in floating-point with finite precision. Those random
bits can be obtained from thermal noise in semiconductors, photon counters,
photon trajectory detectors, etc. With such devices, there is generally no
mathematical proof or guarantee that the successive bits are statistically in-
dependent and that each bit is 0 or 1 with probability 1/2 each, but some of
them appear reliable enough so we can make this assumption, based on em-
pirical statistical tests that check for detectable bias or dependence. However,
they are cumbersome to install and use (particularly on parallel processing
elements) and, more importantly, they cannot reproduce exactly the same
sequence twice. This reproducibility is a key requirement for simulation ap-
plications, e.g., for program verification and for comparing similar systems
with common random numbers [24, 32, 33, 41, 65].

Algorithmic generators, often called pseudorandom, are more appropriate
and much more popular than physical devices for simulation and Monte Carlo
methods. They are in fact deterministic finite automata that produce a
periodic sequence of numbers which behave like typical i.i.d. U(0, 1) when
viewed externally [26]. In the rest of this paper, the term RNG will always
refer to an algorithmic generator. An RNG has a finite set of states S, a
transition function f : S → S, an output function g : S → (0, 1), and an
initial state (or seed) s0. Sometimes, the seed s0 is chosen randomly (via
an external mechanism) from some probability distribution on S. The state
evolves according to si = f(si−1) and the output value returned at step i is
ui = g(si) ∈ (0, 1), for i ≥ 0.

Because S is a finite set, there are always finite integers l ≥ 0 and 0 <
j ≤ |S| such that sl+j = sl. Then, si+j = si and ui+j = ui for all i ≥ l.
The smallest j > 0 for which this holds is the period ρ of the RNG. Note
that ρ ≤ |S| ≤ 2k, where k is the number of bits used to represent the state.
Well-designed RNGs typically have l = 0 and ρ near 2k.

Basic requirements for good RNGs include high running speed, long pe-
riod (e.g., 2200 or more), exact repeatability on various computing platforms,
ease of implementation, preferably in a platform-independent way, and effi-
cient ways of splitting the sequence into long disjoint streams and of jumping
quickly between them. On top of these basic properties, we also want the
successive output values to have an i.i.d. U(0, 1) behavior, which can be cap-

6

tured by the following: for any dimension s > 0, if we select the seed s0 at
random uniformly over S, the vector u0,s = (u0, . . . , us−1) should have (ap-
proximately) the uniform distribution over the unit hypercube (0, 1)s. This
vector cannot have exactly the uniform distribution over (0, 1)s, because S
is a finite set, but it has a uniform distribution over the set

Ψs = {(u0, . . . , us−1) = (g(s0), . . . , g(ss−1)) : s0 ∈ S}.

The best we can ask for is that Ψs covers the unit hypercube (0, 1)s very
evenly, in some sense, so that the uniform distribution over Ψs is a good
approximation of that over (0, 1)s. Good RNGs must be constructed based
on a mathematical analysis of this uniformity, which is measured by fig-
ures of merit that must be easily computable without generating the points
explicitly. These measures generally depend on the structure of the RNG
[17, 23, 34, 42]. With a larger Ψs (i.e., larger S), one can potentially cover
(0, 1)s more uniformly, and this is the main motivation for having a larger
state (more than trying to increase the period). On the other hand, a larger
state and longer period does not necessarily imply a better RNG. A large
state also has many drawbacks: it requires more memory to store the states,
and more overhead to compute the seeds of the multiple streams and to store
and restore the states when needed.

After selecting an RNG based on proper mathematical analysis, one
submits it to empirical statistical tests, to try to detect observable non-
uniformity or dependence [23, 43]. A test takes a stream of successive output
values, computes the value t taken by a test statistic T , then computes the
p-value of the test, defined as the probability p that T ≥ t under the hypoth-
esis H0 that the output values are independent U(0, 1) random variables. A
p very close to 0 usually indicates strong departure from uniformity, whereas
p very close to 1 indicates excessive uniformity, which also represents depar-
ture from randomness. For poor RNGs, p-values smaller than 10−15 (and
often much smaller) are often returned [43], and it is then very clear that the
RNG fails the tests. Collections of statistical tests for RNGs can be found
in [23, 43, 52], for example. The most extensive collection and software is
TestU01 [43]. Among other things, it includes predefined batteries of tests
called SmallCrush, Crush, and BigCrush, which have become very popular.
RNGs that pass all tests in those batteries are called Crush-resistant [74].
However, it is only possible to apply a finite (small) number of statistical
tests in practice, and this can never prove that a RNG is flawless. For this

7

reason, theoretical tests that measure the uniformity by studying the mathe-
matical structure are deemed more important and convincing than empirical
tests, when they can be applied.

3. Main classes of RNGs for simulation

The most popular classes of RNGs used for simulation are based on linear
recurrences modulo m, either for m = 2 (which amounts to doing linear
operations in the finite field F2) or for a large integer m. A large class of
F2-linear RNGs can be represented as:

xi = Axi−1 mod 2, (1)

yi = Bxi mod 2, (2)

ui =
w∑
`=1

yi,`−12
−` (3)

where xi is the k-bit state vector at step i, yi = (yi,0, . . . , yi,w−1)
T is the w-bit

output vector, k and w are positive integers, A and B are binary matrices of
appropriate sizes, and ui ∈ [0, 1) is the output at step i. In practice, the out-
put function is modified slightly to avoid returning 0. Several fast RNGs such
as the linear feedback shift register (LFSR) generator, generalized feedback
shift register (GFSR), twisted GFSR, Mersenne twister (MT), WELL, xor-
shift, shift registers in lookup tables (LUT-SR), and combinations of these,
belong to this class [31, 34, 42, 54, 63, 77]. The maximal period for the state
is 2k − 1 and is reached when the characteristic polynomial of A is primitive
in F2. The matrices A and B usually represent simple binary operations that
are fast to execute on binary computers, such as or, exclusive-or, shift, and
rotation, on blocks of bits. The matrices should also be selected in a way that
the point sets Ψs have good uniformity, which can be assessed by exploiting
the linear structure to compute measures of equidistribution of the points in
dyadic rectangular boxes [31, 42]. Empirically, all these RNGs fail statistical
tests designed to detect linearity in the bits, such as tests that compute the
linear complexity of successive bits at a given position, {yi,j, i ≥ 0}, or the
rank of “random” binary matrices constructed by the RNGs, so they are not
Crush-resistant, but they are still appropriate for applications in which the
bits of the ui’s are used nonlinearly. Some of the most popular ones use a
very large k, which make them not so convenient for GPUs, because the state
occupies too much memory. For example, the most popular MT instance,

8

named MT19937, has k = 19937, whereas the WELL uses the same k and
even larger ones [63].

Linear recurrences modulo a large integer m are usually written as

xi = (a1xi−1 + · · ·+ akxi−k) mod m, (4)

for some coefficients a1, . . . , ak in {−m+ 1, . . . , 0, 1, . . . ,m− 1}, with ak 6= 0,
and k is the order of the recurrence. This can be written equivalently as
(1) with 2 replaced by m, xi = (xi−k+1, . . . , xi)

T, and the appropriate k × k
matrix A. Typically, m is a prime number slightly smaller than 231 or 232 or
263, and the coefficients are selected so that the period is mk−1 and the sets
Ψs have good uniformity, measured again by exploiting the linearity (via the
spectral test, which measures the quality of the lattice structure) [23, 30, 34].
The output can be defined as ui = xi/m, or by ui = (xi + 1)/(m + 1) or
ui = (xi + 1/2)/m to avoid returning 0, for example. This is known as a
multiple recursive generator (MRG). For k = 1, it gives a linear congruential
generator (LCG), now considered obsolete because its period is much too
small and its lattice structure is much too coarse (the point sets Ψs are too
small). Taking k too large, on the other hand, makes the state too large for
convenient use on traditional GPUs.

The multipliers aj are usually selected in a way that (4) is very fast to
compute, which could mean taking many of them equal to 0, the other ones
equal to ±1 or to the same constant a, etc. But doing this can lead to bad
generators [29, 34, 44]. For example, the lagged-Fibonacci RNGs, as well
as the add-with-carry and subtract-with-borrow (which are slightly modified
variants of the MRG) employ only two nonzero coefficients, say ar and ak,
both equal to ±1, and all their output vectors the form (ui, ui−r, ui−k) lie in
only two parallel planes in the unit cube [0, 1)3 [29]. These generators give
wrong results in certain simulations and they fail several statistical tests [43].

For all these linear RNGs, one can jump ahead directly by ν steps for
an arbitrarily large ν by computing xi+ν = (Aν mod m)xi mod m, where
Aν mod m can be precomputed in advance [25, 34, 45], provided that k is
not too large. This is useful for computing the initial states for separate
streams of random numbers whose starting points are very far apart.

Two or more small F2-linear RNGs can be combined via a bitwise xor of
their outputs and it gives another F2-linear RNG with much larger period and
better quality point sets Ψs than its components [42], and whose uniformity
measures can still be computed. This can also be done for MRGs with

9

different moduli, where the combination is via addition modulo 1, for example
[27]. See [30, 35, 47, 43] for specific constructions of this type. They include
MRG32k3a and MRG31k3p, which come with multiple streams and substreams
[30, 33, 45, 41]. If we combine MRGs with F2-linear RNGs, the structure
becomes nonlinear and the uniformity becomes harder to measure other than
by empirical statistical tests; but see [39] for some theoretical results.

Besides the linear ones, there are also various classes of RNGs for which
either f or g is nonlinear. For example, the multiplicative lagged Fibonacci
generators proposed by [51] replace the additions in (4) by multiplications
and use only two nonzero coefficients aj, both equal to 1. They perform well
empirically in statistical tests [43].

As a general rule, there should be no easily detectable dependence be-
tween successive output values, and in particular for any given bits in those
values. To achieve this, either f or g or both must perform a sufficient
amount of work to transform the bits of the state at each step. For the
conventional RNGs discussed so far, almost all of this work is done by the
transition function f , and g does very little. But it is also possible to do the
opposite, or to balance the work in a different way.

In counter-based RNGs [18, 43, 74, 78, 80], f simply increments a counter.
The state at step i is just i, so f(i) = i + 1, and all the hard work is
performed by g, which can be taken as a bijective block cipher encryption
algorithm such as MD5, the tiny encryption algorithm (TEA), the secure
hash algorithm (SHA), the advanced encryption standard (AES), ChaCha,
Threefish, etc. [8, 43, 59, 69, 74, 78, 80]. An important advantage is that the
output value ui at an arbitrary position (or step) i can be generated directly
and quickly regardless of i. These values can then be generated in any order,
they are easy to replicate, and it is easy to split the entire sequence into long
disjoint streams. Since g is a bijection, the period is 2k where k is the number
of bits used to represent the counter. This k will usually be a multiple of
32, say in the range from 128 to 1024. Good encryption algorithms satisfy
the avalanche criterion, which says that changing a single bit in the counter
changes approximately half the bits in the output, on average. One drawback
is that they are typically slower than popular RNGs when implemented in
software. But they can be simplified and still remain good enough for many
simulation applications. Salmon et al. [74] propose counter-based RNGs that
use simplifications of the AES and Threefish algorithms, named ARS and
Threefry, which trade security for speed, and a new counter-based method
called Philox. These new proposals are Crush-resistant and this was a prime

10

criterion in their design. One important limitation of all these counter-based
RNGs is that there is no theoretical analysis of uniformity for their point sets
Ψs. For image rendering in computer graphics, Crush-resistant may be too
strong a requirement; one would prefer a faster RNG as long as it produces
acceptable visual effects. A fast counter-based RNG for GPUs is proposed
for that using MD5 in [78] and faster ones using TEA in [80]. Other ones
that can fit in one thread in a traditional (discrete) GPU can be found in
[8, 49, 59, 69].

4. How to produce parallel streams and substreams

There are various ways of providing random numbers for parallel proces-
sors. We discuss and compare the main ones. The effective methods use
multiple streams of random numbers. Those streams can be obtained in
many ways, for instance by using a different RNG (e.g., different parameters
in the definition), or by a leap-frog technique with a single RNG, or by split-
ting the sequence into long disjoint blocks of equal length, or by splitting
it using random starting points for the streams. Using a single stream for
everything is not a solution, as we shall see.

The easiest and cleanest way to create the streams is via a central monitor,
which creates the streams in a specific order and passes them to the threads
or other software entities that need them. As an indirect but equivalent way
of doing this, the monitor can provide only an ID number for each stream
instead of creating it explicitly, and there can be a well-defined mechanism
that allow any entity to reconstruct the stream (and its initial state) from
its ID number. A totally different setting is if streams can be created in a
distributed fashion, e.g., for example, if we want to allow each stream to have
children streams.

A single source of random numbers (single stream). A naive setting would
be to have all random numbers generated on demand by a single RNG, or
produced in advance and stored in global memory or in a file. The generation
could be done either on a host CPU or on a parallel device to speed up the
production. The methods that return the random numbers to the threads
must be thread-safe, so that things work properly when several threads invoke
them simultaneously. This involves overhead, especially when the random
numbers are consumed by a large number of PEs. Data exchange between
the different memories would also involve overhead and create a bottleneck,

11

which would be unsustainable on highly parallel systems. Finally, this scheme
is unacceptable because the way the random numbers are consumed would
vary between runs, depending on how the different parallel threads execute
on the PEs, and therefore the results would not be reproducible [19, 64].

A different generator for each stream. This usually means using the same
type of RNG, but with different parameters. For example, one can use LCGs
or MRGs with the same modulus but different multipliers [13, 25]. Finding
many different good parameter sets is usually feasible, but this approach is
not very convenient to manage, because finding those good parameters on the
fly or precomputing and storing them adds overhead either way, in time or
space. Moreover, different parameters give different streams but it does not
necessarily imply that the streams can be considered as independent [4, 8],
so this independence must be tested in some way [17, 45, 74]. Some have
suggested to choose parameters at random among those that give a maximal
period, but this is dangerous, because maximal period does not suffice, as we
saw earlier; some parameters may still give point sets Ψs that are far from
uniform.

As an example of this approach, the dynamic creator program [55] permits
one to create dynamically new instances of good-quality MT generators. It is
used in [73] to obtain parallel streams based on different parameterizations.
SPRNG [14, 48, 53] also uses a parameterization approach to create new
streams during execution. With counter-based RNGs from block ciphers
which require an encoding key in addition to the counter, a simple and elegant
parameterization is just to select a different key for each stream, among the
huge set of admissible keys [50, 59, 69, 74, 78, 80]. There is no need to
search for good keys or precompute tables of keys. For example, to assign
a different stream to each thread (or software entity), one can just take its
ID number (or a bijective function of it) as the key [59]. If we assume that
block ciphers are perfectly safe, this implies that the streams produced with
different keys are statistically independent. However, this assumption is not
formally proved.

Leap-frogging with a single RNG. Given p processors and a single RNG with
transition function f , the leapfrog approach produces p streams as follows.
For j = 0, . . . , p−1, stream j outputs the subsequence {uip+j, i = 0, 1, 2, . . .}
from the original RNG. The values uip, . . . , uip+p−1 can be computed in paral-
lel at each time step i. This is how the vectorized implementations in [58, 73]

12

operate. However, these implementations work only for specific values of p
and the p streams do not evolve independently. The p values must be up-
dated together for each i and must be shared by all processors, and each
stream must consume one value at each time step, which is not always con-
venient. More generally, one could think of using the recurrence based on fp

for an arbitrary p and run it separately for each stream, e.g., in independent
threads. But most RNGs are designed so that f (not fp) can be computed
quickly. In popular linear generators, jumping ahead by p values typically
takes significantly more time than advancing by one step.

Splitting a single RNG into equally-spaced blocks (streams). The most com-
mon approach to produce multiple streams from a single RNG is to split the
sequence into long subsequences of equal length, by starting the streams at
different seeds. To compute those seeds, spaced say ν steps apart for a very
large ν, we must be able to compute quickly the ν-step transition function
f ν . For linear RNGs, this can be achieved as we saw earlier; see also [46, 45].
Although jumping ahead is generally slower than generating one value, it is
normally used more sparingly and it is fast enough unless k is large [6, 33].
When k is large, e.g., for F2-linear RNGs such as MT19937 and the WELL
RNGs [54, 63], the matrix A is huge and squaring it repeatedly to precom-
pute Aν mod 2 becomes impractical. By standard matrix multiplication, this
requiresO(k3 log ν) time. A more efficient method for that situation has been
developed in [16], based on a polynomial representation. But this method is
still slow when k is in the thousands, such as for MT19937 [6]. We think this
is one of the good reasons for staying away from such large values of k. If one
insists on a very large period (large k) and still wants fast jump ahead, a good
way to achieve it is to use a combined generator, for which the jump ahead
is done by jumping ahead for each (smaller) component separately. This is
done in [33, 41] for various combined RNGs. For a counter-based generator
with a fixed key, jumping ahead is trivial: just add ν to the counter.

In most software with multiple streams, the length ν of the streams is
fixed to a very large constant (e.g., ν = 2127 in the RngStream package
of [45], based on MRG32k3a). If we want to allow the user to choose any
ν, Aν mod m (for linear RNGs) cannot be precomputed in advance. But
when streams are used for parallelization, some users may want to have the
flexibility to decide on the exact length of the streams, i.e., the distance
between their starting points. This is useful for example to ensure that in a
parallel version of a program, the streams can be defined in a manner that

13

the random numbers are used in exactly the same way (and the results are
exactly the same) as in a sequential version of the same program with a single
stream. To do this, one needs to know how many random numbers are used
from each stream, and in what order they are used in both the parallel and
the sequential versions. (Another (easier) way to obtain the same results on
the sequential and parallel computers, is to run the program with the same
streams and substreams on both computers, with standard spacings.)

To offer efficient jump-ahead facilities by an arbitrary ν with MRG32k3a,
Bradley et al. [6] precompute and store Ap for all p of the form p = ibe

for some base b, i = 1, . . . , b − 1, and e = 0, . . . , emax, and for p = bemax .
They choose b = 8 and emax = 20 in their code. Whenever one needs Aνx
for some ν ≤ b20 and x, one writes ν in base b, i.e., as a sum of terms of
the form ibe, which effectively writes Aν as a product of matrices that have
been precomputed. The vector x is then multiplied by those matrices, in
succession. This technique applies more generally to all generators based on
a linear recurrence.

In [33, 45, 41], each stream is also divided into substreams, and when
comparing similar systems (using a single processor), each simulation run (or
replication) uses a new substream. After each run, we advance all streams
to their next substream. This is convenient in a single-processor setting.

In a situation where each simulation run uses multiple processors and
requires an unknown number of independent streams, it may be more conve-
nient to assign the streams to the runs, and the substreams to the different
parallel threads or tasks that need them, because it may seem easier to pro-
vide the seeds of the successive substreams of a given stream than to provide
a specific substream number for many streams when making a simulation
run. But the latter is also possible: To get the seed of substream number j
for successive streams of length ν, start with the seed of substream number
j for the first stream, and jump ahead repeatedly by ν steps at a time.

One potential concern with splitting is the dependence between the dif-
ferent streams. For example, for LCGs for which both the modulus m and
the spacing ν are powers of 2, the streams are strongly dependent [10, 13, 25].
In general, one should measure or test the uniformity of vectors of the
form (ui, . . . , ui+d−1, ui+ν , . . . , ui+ν+d−1, ui+2ν , . . . , ui+2ν+d−1, . . .), for various
choices of d ≥ 1. This was done in [45] with the spectral test to select good
values of ν. It is advocated (and easy) to apply statistical tests to vectors of
this form, using TestU01 [43, 74]. This recommendation holds more gener-
ally, to test the dependence across streams regardless of how they are defined

14

(e.g., by using different parameters for the different streams).

A single RNG with a “random” seed for each stream. When jumping ahead
is too expensive and the RNG has a huge period, it can be reasonable to
just select a (pseudo)random seed for each stream, using another RNG if we
want reproducibility. There is a possibility of overlap, but the probability is
often negligible. If the RNG has period ρ and we take s different streams of
length `, with random starting points in the sequence, the probability that
none of those streams overlap anywhere is approximately p = (1− s`/ρ)s−1;
see [13]. This gives ln p = (s − 1) ln(1 − x) where x = s`/ρ. When x is
very small, we have ln p ≈ −(s − 1)x and then the probability that there is
overlap somewhere is 1− p ≈ − ln p ≈ (s− 1)x ≈ s2`/ρ. As an illustration,
if s = ` = 220, then 1− p ≈ 260/ρ is near 2−68 for ρ = 2128 and near 2−964 for
ρ = 21024. For counter-based RNGs parameterized by a random key, with
s streams and ρ possible keys, the probability 1− p that the s random keys
are not all distinct is 1 − p ≈ s2/ρ (this corresponds to ` = 1 in the above
formula). For example, if s = 230 (about one billion) random 128-bit keys
are selected, the probability that they are not all distinct is approximately
260/2128 = 2−68, which is really negligible.

Another important situation where “random seeds” are useful is when
the streams must split during execution, so that new streams are created
dynamically. This evolution can be represented as a random tree of streams.
Any given stream may have to split in two streams (or perhaps more) at
any given step. This splitting is not fully predictable (it depends on the evo-
lution of the simulation) and the new streams must behave independently
after the split. This type of splitting occurs in nuclear particle simulations
in high-energy physics, where a stream is assigned to each particle, and the
particles can split when they collide [15, 53]. It occurs in a similar way in
computer graphics, where the particles are replaced by rays of light, which
can split when they hit a surface (some light is absorbed, some is reflected,
and some may be refracted) [80]. Relying on a central provider to manage
the streams is not convenient or acceptable for these applications, at least
if we insist on reproducibility, because the calls to the central manager are
likely to change order across replications. The SPRNG software [14, 53] was
designed for this type of setting. Conceptually, it contains a binary tree of
distinct streams, numbered according to their position in the tree. When a
stream splits, its two children in the tree are uniquely determined, regard-
less of the time at which the split occurs. The number of levels in the tree

15

depends on the number of bits used to number the nodes. In SPRNG, the
different streams are defined by the parameterization method: to each node
number corresponds a set of RNG parameters. With the RNGs and imple-
mentation proposed in [53], certain parameter choices may give rise to poorly
behaved streams, and some of the proposed RNGs are poorly behaved (e.g.,
the additive lagged-Fibonacci and some simple LCGs). Splittable streams
are also proposed in [8], using a hash function to determine the new streams
when splitting occurs, and a 256-bit version of the Threefish block cipher to
produce the random numbers in the streams.

How to assign streams. In parallel processing, to generate the random num-
bers locally on each PE, it suffices to have at least one stream on each PE. In
some multithread programming models, a large number of threads run on a
collection of physical PEs, any given thread can run sequentially on different
PEs, and a physical PE executes various threads in succession, in a time-slice
fashion. These threads can be created dynamically during execution, or a
large pool of threads can be created at the beginning and used by the dif-
ferent programming subtasks, as is the case in Java JDK 7, for example. In
this context, since each thread has its own private data (not each core), the
threads can be seen as (logical) PEs [64, 67], and it appears more relevant to
have one stream per thread rather than one stream per physical PE. This is
done for example in JAPARA [9], in which a synchronized method in a cen-
tral monitor computes (sequentially) the seeds of the different streams and
assigns them to the threads, using a splitting technique as in [45, 46]. Once
the thread gets its seed, it can evolves independently; there is no further need
for the central monitor. The one-stream-per-thread strategy is also discussed
and implemented in [50, 64, 66].

However, with one stream per PE or per thread (when the threads act as
logical PEs), the simulation results may depend on how the hardware is or-
ganized and on how the computations are assigned to the PEs or the threads,
which may vary from one execution to the next, even on the same hardware.
To ensure reproducibility, one should assign streams at a higher level, in
terms of computing tasks (or subtasks) that are executed on threads, and
the specific usages of random numbers in the simulation model. For example,
when simulating a large service system with waiting queues, one stream can
be devoted to generate the arrivals of each specific type of customer, another
stream for the service times of each type, etc., so the random numbers re-
main well synchronized when comparing similar systems with CRNs. These

16

assignments and the simulation results should not depend on the hardware
in any way, neither on how the tasks are assigned to threads.

Passerat-Palmbach [64] points that out and proposes a Java class named
TaskLocalRandom [67], based on the RngStream package of [45], and designed
for parallel simulation programming in Java. In this class, each task is created
with a unique ID number and a stream number is assigned to each ID number.
Precomputed tables in global memory permit one to quickly find the seed
for any stream number. When performing multiple independent simulation
runs, the different runs should use different streams (or substreams), but this
can be easily achieved even with one stream per task (and no substreams)
by defining different task numbers for the different runs.

This way of assigning one stream per task can achieve reproducibility,
since each task always gets the same stream regardless of the hardware.
However, in many cases this is not sufficient, because it does not permit one
to have more than one stream per task, which is often required to facilitate
CRN synchronization [24, 32, 36], as we saw earlier. One should be able
to assign multiple independent streams to any given task. The streams can
be created by a central monitor and passed to the tasks in the same way
as any other data or objects used by those tasks. For reproducibility and
good synchronization, one must make sure that they are always created in
the same order, regardless of how the tasks are executed. This is done in
[41], for example. See also Section 5.1.

5. RNGs adapted to parallel-processing hardware

We distinguish here two main schemes (or models) for exploiting parallel
computing for random number generation and simulation, and discuss spe-
cific methods and software that have been proposed for each. In the first
scheme, several streams can evolve in parallel, each stream running on a sin-
gle PE at a time. In this model, each stream evolves in the same way as on
an ordinary sequential computer, even though it may switch its execution
from one PE to another, sequentially. In the second scheme, the goal is to
produce random numbers, from either a single stream or many streams at
a time, at a faster rate than on a single PE, by running a vectorized im-
plementation on a group of several PEs. We name them vectorized RNGs.
Which scheme is more appropriate depends on the type of hardware and
the intended application. In the first scheme, the random numbers are often
consumed locally on the PE where they are generated, whereas in the second

17

scheme they are usually copied to a global memory and consumed elsewhere
or stored for later use. In many RNG libraries, the two schemes are offered
and can be mixed.

5.1. Each stream running on a single PE at a time

Most of the best currently available RNGs have been designed for con-
ventional CPUs with “standard” instruction sets and plenty of fast-access
memory. To use them on a parallel computer whose PEs have these char-
acteristics and can execute their instructions independently of each other at
any given time step, it suffices to make multiple streams as explained ear-
lier. There is no need to change their implementation. The PEs (cores) in
recent multi-core CPUs and APUs share a large common fast-access memory
in addition to their separate registers, so they can accommodate the same
RNGs as in traditional CPUs. The hundreds of thousands of PEs in largest
supercomputers today also behave much like traditional CPUs. In this type
of setting, a standard multi-stream package such as RngStream can be used
directly [22].

However, on certain types of widely-used parallel-compute devices, most
notably discrete GPUs, but also others such as vectorized (array) processors,
there are various types of limitations such as a very small fast-access private
memory for each PE, limited instruction sets, and the SIMD constraint that
groups of PEs or threads must execute the same instructions simultaneously,
in parallel. The smaller fast-access (private) memory and also (more gen-
erally) the cost of communication between PEs, especially when there are
many of them, should discourage the use of RNGs with a very large state,
such as those in [43, 44, 54, 63] for example. The type of hardware may
also impact what functions f and g are appropriate by favoring or ruling out
certain types of instructions, due to the different architectural design of the
processors [75]. We discuss those issues in the rest of this section.

Different instruction sets and hardware constraints. On discrete GPUs, warps
(or wavefronts) of 32 or 64 threads must execute the same instructions simul-
taneously, in parallel. At each step, some of the threads can be deactivated,
so they do nothing at that step. But doing too much of this would waste
clock cycles. Each PE has only a limited amount of fast-access memory, so if
we decide to run a stream in a single PE (or thread) at a time, the RNG state
must be small, say no more than about six to eight 32-bit words. Instruction

18

sets on traditional GPUs are also limited and RNGs must be chosen in accor-
dance with those constraints. For example, double precision floating point
arithmetic was either slow or nonexistent until recently. Recent GPGPUs
and APUs do not have these limitations, however.

RNGs with a small state. Examples of recommendable RNGs with a small
state, that can run easily on a single PE in a discrete GPU and have been im-
plemented for that, are LFSR113 [4, 31, 41], MRG31k3p [47, 41], MRG32k3a
[4, 6, 30, 41], a hybrid Tausworthe-LCG [21] which combines the taus88 gen-
erator of [28] with an LCG, LFSR113 combined with an LCG [57], and a
xorshift with a running sum modulo 1 as output (to break the linearity) [75,
Section 7]. There are other good RNGs whose state is small enough so they
can be implemented in a single thread; see [43] for example.

Counter-based RNGs. Recently, counter-based RNG have been advocated
as an easy and attractive solution to provide millions of streams, each one
having a small state [8, 50, 69, 74]. Some say that the state should fit in 128
bits, for example [50, 69]. With such a small state, it is possible to have more
than one stream in a thread. In computer graphics, it sometimes happens
that the same stream (at specific positions) must be accessed by different
threads running on different cores. Counter-based RNGs are very handy for
this situation [80]. Neves and Araujo [59] propose the Tyche RNG, which uses
the ChaCha encoding algorithm over 128 bits and can provide one stream
per thread. Phillips [69] propose one stream per thread per kernel call, based
on a hash function, which uses a global seed broadcast to all threads, the
thread id, and a counter, and hashes all this information to get the output.
Block cipher encoding with a different key for each stream is used in [59, 74].
Note that both the key and the counter use memory; the state can be seen
as their juxtaposition.

Some available libraries. We now briefly discuss a small selection of avail-
able RNG libraries that offer multiple streams for parallel simulation, with
emphasis on those that support GPUs.

The CUDA programming language offered by NVIDIA for their GPUs
comes with the CURAND library [61], which currently implements five types
of RNGs: Xorwow (not recommended; see [72]), MRG32k3a from [30], MT19937
from [54], MTGP from [73], and PHILOX-4×32-10 from [74]. Multiple
streams (they are called “generators”) can be created from each type, but

19

only a limited number of them can be created. The random numbers can be
generated and consumed either on the host computer or on the GPU device.

For OpenCL, a more general C-like programming environment for parallel
processing, but which targets primarily GPUs for general computations, the
recently-proposed clRNG library [40, 41] offers various types of RNGs, with
arbitrary numbers of streams and substreams. The streams can be created
in practically unlimited number. They are created on the host computer by
a central monitor. They can generate and consume random numbers either
on the host or on a device (such as a GPU). Each stream also has multiple
substreams, and one can skip ahead to the next substream or rewind to the
beginning of the current substream or the beginning of the stream, as in [45].
It currently implements four RNGs: MRG31k3p from [47], MRG32k3a from
[30], LFSR113 from [31], and PHILOX-4×32-10 from [74].

Barash and Shchur [4] propose a library called PRAND, with selected
RNGs implemented for both CPU and GPU usage, in Fortran, Cuda, and
C with streaming SIMD extensions (SSE) for improved performance. It in-
cludes MGR32k3a [30], LFSR113 [31], MT19937 [54], and a series of RNGs
named GL and GQ, based on linear recurrences in the two-dimensional unit
torus, all with good statistical behavior. The GL and GQ are generally
slower and also have shorter periods than the first three. The authors pro-
vide facilities for jumping ahead in the sequence, to obtain starting points for
multiple streams, using essentially the same algorithms as in [45, 33]. One
can produce random numbers with one or more streams per PE. In their
tests and comparisons, the authors are mainly interested in how fast one can
fill a large array of random numbers on a GPU, using multiple threads and
multiple streams. The array is divided into contiguous sections and each
section is filled by a group of threads that run one stream.

Bradley et al. [6] implement MGR32k3a and MT19937 in a CUDA envi-
ronment, with jump-ahead facilities to provide multiple streams, in a setting
where the users can decide on the exact length of each stream. In other soft-
ware, such as in [45, 33, 41], this length is usually fixed. To provide efficient
facilities to jump ahead by an arbitrary number of steps, for MGR32k3a
they pre-compute and store several matrices, as explained in Section 4. For
MT19937, they have groups of 224 threads working on each stream in a sim-
ilar way as in [73], and they use the method of [16] to jump ahead. For
MRG32k3a, each stream can run in a single thread. In speed benchmark
tests, to generate 225 random numbers in multiple streams on GPUs with
CUDA, the MRG32k3a turned out to be faster than MT19937, due to its

20

faster jumping ahead. Their software is included in the NAG library.

5.2. Multiple PEs for a single stream and vectorized RNGs

Several authors propose and implement methods that exploit parallel pro-
cessing to generate random numbers at a faster rate, mostly to speed up the
generation for a single stream of random numbers. Note that methods that
return an array of random numbers are useful even in a single-processor
setting, to amortize the function call, which often takes more time than com-
puting the next random number.

RNG libraries using vectorized instructions. In the Intel Math Kernel Li-
brary, the Vector Statistical Library (VSL) [1, Chapter 9] offers tools to
generate vectors of random numbers via the vectorized functions found in
C with streaming SIMD extensions (SSE), optimized to take advantage of
SIMD instructions available in recent Intel processors. One can create and
use multiple streams of random numbers, each one from a base RNG. Eight
specific RNGs are available: MCG31m1, R250, MCG59, MRG32k3a, WH,
MT2203, MT19937, and SFMT19937. The first three fail several tests and
should not be used; see [43]. The last one is a version of MT19937 running
on several PEs [73] in parallel. As a downside, the user must provide the seed
explicitly for each stream, by providing either a single 32-bit integer or an
array of 32-bit integers, used to construct the seed. This gives no guarantee
of sufficient spacing between the streams. For 6 RNGs out of 8, a function
is available to jump ahead by ν steps, where ν is a 32-bit integer specified
by the user. That is, ν must be less than 232, which is quite small for the
maximum length of a stream.

Barash and Shchur have proposed RNGSSELIB [3], which resembles their
PRAND library and offers the same RNGs, also with multiple streams, but
was targeted at vectorized operations and programming via SSE, whereas
PRAND is also for GPU programming.

Vectorized RNGs for GPUs. The following methods and software have been
developed for the setting in which a CPU host uses a block of threads on a
discrete GPU to produce a large array of random numbers.

Saito and Matsumoto [71, 73] have done that for MTs. In [71], they pro-
pose a fast implementation of MT19937 for a specific single-instruction mul-
tiple data (SIMD) architecture that offers fast operations on 128-bit integers.
The tight connection with the specific hardware is an important limitation.

21

In [73], they propose a class of MTs for graphic processors (MTGP) adapted
to the architecture of GPUs. It exploits the fact that their MT recurrence
can be written as

xi = f0(xi−k, . . . , xi−k+r) (5)

where the RNG state at step i is written xi = (xi−k+1, . . . , xi) and each xi is a
block of 32 bits. The idea is to set up a circular buffer of length ` ≥ 2k−r that
will contain vectors of successive values (xi−k+1, . . . , xi, xi+1, . . . , xi+k−r). At
any step, a portion of the vector contains xi = (xi−k+1, . . . , xi), and the next
values xi+1, . . . , xi+k−r, which depend only on xi, are computed in parallel
with k − r threads. The table is circular in the sense that the indices i are
always computed modulo `, so xi can actually be at any k successive positions
(modulo `) in the table. This idea applies more generally to parallelize RNGs
whose recurrence has the form (5); see [2]. One would usually choose ` as a
power of 2 and k− r no larger than the number of PEs that can share a fast-
access memory in a chip. They propose specific MTs for k = 11213, 23209,
and 44497. They also include a dynamic creator tool that can create new
ones at will, and encode their ID number in the recurrence. This is useful to
produce multiple streams, with different ID numbers. However, several PEs
are needed to run each stream. This RNG is intended to be called from a
host CPU to obtain a large array of random numbers using a GPU device. It
can also be invoked from a program running in the same block. It is available
in CUDA in 32-bit and 64-bit versions.

Nandapalan et al. [58] propose parallel implementations of xorgen gen-
erators [7], which combine an F2-linear xorshift generator [7, 62] with an ad-
ditive Weyl sequence to break the F2-linearity, and obtain a Crush-resistant
RNG. They use a circular buffer as in [73]. The speed on discrete GPUs is
comparable to that of MTGP.

Other software, such as PRAND and clRNG for example, also offer facil-
ities to fill up an array of random numbers using several PEs in parallel on
a GPU device, with one or more streams.

Special RNGs for array processors. Massively parallel processor arrays (MP-
PAs) offer an architecture in which small cores (or PEs) are arranged in a
two-dimensional rectangular grid, with communication between neighbors,
and limited local memories. Instruction sets are limited (e.g., there can be
no floating-point, no division, etc.). For example, [75] describe a device that
allows shifts of bits by one position at a time, fast permutations of blocks of
bits, but no multiplicator. They design an F2-linear RNG that exploits these

22

features to produce a block of 32 bits at each step. To break the linearity,
they add the successive 32-bit blocks modulo 232 and return as output the
running sum divided by 232.

Field programmable gate arrays (FPGAs) are another class of parallel
computing devices, more flexible than those previously discussed: instead of
having a fixed instruction set as in conventional devices, they can be pro-
grammed at the circuit level, in terms of bitwise operations. They allow
extremely fast implementations of F2-linear RNGs with general matrices A
in (1). Tian and Benkrid [79] propose an FPGA implementation of the
MT19937 that runs 25 times faster than a multi-core CPU implementation
and 9 times faster than a GPU implementation they had. It is also faster
than previous RNGs available on FPGAs [68]. Thomas, Howes, and Luk
[76, 75, 77] propose faster F2-linear RNGs in which A is constructed so that
the RNG has maximal period, good uniformity (measured in terms of equidis-
tribution), and where very efficient FPGA implementations are constructed
using lookup tables to implement shift registers, and other variations. Con-
crete constructions are given for k up to 19, 937. These RNGs can produce
over a thousand bits per clock cycle. For the situation where such devices are
available, they seem to be the fastest generators. An FPGA implementation
of the SPRNG library [53] is proposed in [48], for the Cray XD1 and for
Xilinx XUP.

6. Summary and conclusion

Parallel computers are used in at least two very different ways to provide
random numbers, and appropriate software facilities are needed for each. In
one scheme, a host computer invokes a function that uses several PEs to fill
up a large array of random numbers that are returned or stored in a buffer
for further usage. In the other scheme, several (up to millions or more)
independent streams of random numbers are produced in parallel. One some
type of hardware such as discrete GPUs, if we want each stream to run on
a single PE at a time, its state must be small. Streams should be assigned
preferably not to PEs or threads, but at a higher software level, e.g., to
tasks and other software entities, and with the possibility of having multiple
streams in a task or in a thread. There are also applications where one
may want to create (and seed) the streams dynamically, because the need
for new streams depends on events that occur in the simulation. In some
of those applications, seeding the new streams by a central monitor is not

23

acceptable because it would not meet the reproducibility requirement, and
one needs a method that produces a tree of streams created dynamically as
the simulation goes on, and where each stream can create its children by
itself, without resorting to external information. Work remains to be done
to construct efficient and reliable software that provides all these facilities.

7. Acknowledgments

This work has been supported by an NSERC-Canada Discovery Grant
and a Canada Research Chair to the first author. It was written while
the first author was at Inria-Rennes, France, under an Inria International
Chair, and during invited visits to Université de Savoie, in Chambéry, France,
and the University of New South Wales, in Sydney, Australia. We thank
the following people for their comments and corrections: David Hill and
Jonathan Passerat-Palmbach from Blaise Pascal University in Clermont-
Ferrand; Natarajan Bragadeesh, Chip Freitag, Ken Knox, Timmy Liu, and
Brian Sumner, from Advanced Micro Devices; AbdelAlim Farag and Nabil
Kemerchou from Université de Montréal.

References

[1] Intel math kernel library reference manual, MKL 11.2, Intel Corpo-
ration, 2015. URL: https://software.intel.com/en-us/mkl_11.2_

ref_pdf, document Number 630813-065US.

[2] S.L. Anderson, Random number generators on vector supercomputers
and other advanced architecture, SIAM Review 32 (1990) 221–251.

[3] L.Y. Barash, L.N. Shchur, RNGSSELIB: Program library for random
number generation: More generators, parallel streams of random num-
bers, and Fortran compatibility, Computer Physics Communications 184
(2013) 2367–2369.

[4] L.Y. Barash, L.N. Shchur, PRAND: GPU accelerated parallel random
number generation library: Using most reliable algorithms and applying
parallelism of modern GPUs and CPUs, 2014.

[5] B. Barney, Introduction to parallel computing, 2014. https://

computing.llnl.gov/tutorials/parallel_comp/.

24

[6] T. Bradley, J. du Toit, R. Tong, M. Giles, P. Woodhams, Parallelization
techniques for random number generations, in: GPU Computing Gems
Emerald Edition, Morgan Kaufmann, 2011, pp. 231–246. Chapter 16.

[7] R.P. Brent, Some long-period random number generators using shifts
and xors, ANZIAM Journal 48 (2007) C188–C202.

[8] K. Claessen, M.H. Pa lka, Splittable pseudorandom number generators
using cryptographic hashing, in: Proceedings of the 2013 ACM SIG-
PLAN symposium on Haskell, Haskell ’13, ACM, 2013, pp. 47–58.

[9] P.D. Coddington, A.J. Newell, Japara—a java parallel random number
generator library for high-performance computing, in: Proceedings of
the 18th International Parallel and Distributed Processing Symposium
(IPDPS04), IEEE Computing Society, 2004, p. Article 156.

[10] A. De Matteis, S. Pagnutti, Parallelization of random number generators
and long-range correlations, Numerische Mathematik 53 (1988) 595–608.

[11] L.Y. Deng, J.J.H. Shiau, H.H.S. Lu, Large-order multiple recursive gen-
erators with modulus 231 − 1, INFORMS Journal on Computing 24
(2012) 636–647.

[12] L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag,
New York, NY, 1986.

[13] M.J. Durst, Using linear congruential generators for parallel random
number generation, in: Proceedings of the 1989 Winter Simulation Con-
ference, IEEE Press, 1989, pp. 462–466.

[14] S. Gao, G.D. Peterson, GASPRNG: GPU accelerated scalable parallel
random number generator library, Computer Physics Communications
184 (2013) 1241–1249.

[15] J.H. Halton, Pseudo-random trees: Multiple independent sequence gen-
erators for parallel and branching computations, Journal of Computa-
tional Physics 84 (1989) 1–56.

[16] H. Haramoto, M. Matsumoto, T. Nishimura, F. Panneton, P. L’Ecuyer,
Efficient jump ahead for F2-linear random number generators, IN-
FORMS Journal on Computing 20 (2008) 385–390.

25

[17] P. Hellekalek, Good random number generators are (not so) easy to find,
Mathematics and Computers in Simulation 46 (1998) 485–505.

[18] P. Hellekalek, S. Wegenkittl, Empirical evidence concerning AES, ACM
Transactions on Modeling and Computer Simulation 13 (2003) 322–333.

[19] D.R.C. Hill, C. Mazel, J. Passerat-Palmbach, M.K. Traore, Distribu-
tion of random streams for simulation practitioners, Concurrency and
Computation: Practice and Experience 25 (2013) 1427–1442.

[20] W. Hörmann, J. Leydold, G. Derflinger, Automatic Nonuniform Ran-
dom Variate Generation, Springer-Verlag, Berlin, 2004.

[21] L. Howes, D. Thomas, GPU gems 3: Efficient random number genera-
tion and applications using CUDA, Addison-Wesley, 2007. Chapter 37.

[22] A.T. Karl, R. Eubank, J. Milovanovic, M. Reiser, D. Young, Using
RngStreams for parallel random number generation in C++ and R,
Computational Statistics 29 (2014) 1301–1320.

[23] D.E. Knuth, The Art of Computer Programming, Volume 2: Seminu-
merical Algorithms, third ed., Addison-Wesley, Reading, MA, 1998.

[24] A.M. Law, Simulation Modeling and Analysis, fifth ed., McGraw-Hill,
New York, 2014.

[25] P. L’Ecuyer, Random numbers for simulation, Communications of the
ACM 33 (1990) 85–97.

[26] P. L’Ecuyer, Uniform random number generation, Annals of Operations
Research 53 (1994) 77–120.

[27] P. L’Ecuyer, Combined multiple recursive random number generators,
Operations Research 44 (1996) 816–822.

[28] P. L’Ecuyer, Maximally equidistributed combined Tausworthe genera-
tors, Mathematics of Computation 65 (1996) 203–213.

[29] P. L’Ecuyer, Bad lattice structures for vectors of non-successive values
produced by some linear recurrences, INFORMS Journal on Computing
9 (1997) 57–60.

26

[30] P. L’Ecuyer, Good parameters and implementations for combined multi-
ple recursive random number generators, Operations Research 47 (1999)
159–164.

[31] P. L’Ecuyer, Tables of maximally equidistributed combined LFSR gen-
erators, Mathematics of Computation 68 (1999) 261–269.

[32] P. L’Ecuyer, Variance reduction’s greatest hits, in: Proceedings of the
2007 European Simulation and Modeling Conference, EUROSIS, Ghent,
Belgium, pp. 5–12.

[33] P. L’Ecuyer, SSJ: A Java Library for Stochastic Simulation, 2008.
Software user’s guide, available at http://www.iro.umontreal.ca/

~lecuyer.

[34] P. L’Ecuyer, Random number generation, in: J.E. Gentle, W. Haer-
dle, Y. Mori (Eds.), Handbook of Computational Statistics, second ed.,
Springer-Verlag, Berlin, 2012, pp. 35–71.

[35] P. L’Ecuyer, T.H. Andres, A random number generator based on the
combination of four LCGs, Mathematics and Computers in Simulation
44 (1997) 99–107.

[36] P. L’Ecuyer, E. Buist, Variance reduction in the simulation of call cen-
ters, in: Proceedings of the 2006 Winter Simulation Conference, IEEE
Press, 2006, pp. 604–613.

[37] P. L’Ecuyer, S. Côté, Implementing a random number package with
splitting facilities, ACM Transactions on Mathematical Software 17
(1991) 98–111.

[38] P. L’Ecuyer, N. Giroux, A process-oriented simulation package based on
Modula-2, in: 1987 Winter Simulation Proceedings, pp. 165–174.

[39] P. L’Ecuyer, J. Granger-Piché, Combined generators with components
from different families, Mathematics and Computers in Simulation 62
(2003) 395–404.

[40] P. L’Ecuyer, D. Munger, N. Kemerchou, clRNG: A library for uniform
random number generation in OpenCL, 2015.

27

[41] P. L’Ecuyer, D. Munger, N. Kemerchou, clRNG: A random number API
with multiple streams for OpenCL, 2015. http://www.iro.umontreal.
ca/~lecuyer/myftp/papers/clrng-api.pdf.

[42] P. L’Ecuyer, F. Panneton, F2-linear random number generators, in:
C. Alexopoulos, D. Goldsman, J.R. Wilson (Eds.), Advancing the Fron-
tiers of Simulation: A Festschrift in Honor of George Samuel Fishman,
Springer-Verlag, New York, 2009, pp. 169–193.

[43] P. L’Ecuyer, R. Simard, TestU01: A C library for empirical testing of
random number generators, ACM Transactions on Mathematical Soft-
ware 33 (2007) Article 22.

[44] P. L’Ecuyer, R. Simard, On the lattice structure of a special class of
multiple recursive random number generators, INFORMS Journal on
Computing 26 (2014) 449–460.

[45] P. L’Ecuyer, R. Simard, E.J. Chen, W.D. Kelton, An object-oriented
random-number package with many long streams and substreams, Op-
erations Research 50 (2002) 1073–1075.

[46] P. L’Ecuyer, S. Tezuka, Structural properties for two classes of combined
random number generators, Mathematics of Computation 57 (1991)
735–746.

[47] P. L’Ecuyer, R. Touzin, Fast combined multiple recursive generators
with multipliers of the form a = ±2q ± 2r, in: Proceedings of the 2000
Winter Simulation Conference, IEEE Press, Piscataway, NJ, 2000, pp.
683–689.

[48] J. Lee, Y. Bi, G.D. Peterson, R.J. Hinde, R.J. Harrison, HASPRNG:
Hardware accelerated scalable parallel random number generators, Com-
puter Physics Communications 180 (2009) 2574–2581.

[49] C.E. Leiserson, T.B. Schardl, J. Sukha, Deterministic parallel random-
number generation for dynamic-multithreading platforms, in: 17th
ACM SIGPLAN symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’12, ACM, 2012, pp. 193–204.

28

[50] M. Manssen, M. Weigel, A.K. Hartmann, Random number generators
for massively parallel simulations on GPU, The European Physical Jour-
nal Special Topics 210 (2012) 53–71.

[51] G. Marsaglia, A current view of random number generators, in: L. Bil-
lard (Ed.), Computer Science and Statistics, Sixteenth Symposium on
the Interface, Elsevier Science Publishers, North-Holland, Amsterdam,
1985, pp. 3–10.

[52] G. Marsaglia, DIEHARD: a battery of tests of randomness, 1996. See
http://www.stat.fsu.edu/pub/diehard.

[53] M. Mascagni, A. Srinivasan, Algorithm 806: SPRNG: A scalable library
for pseudorandom number generation, ACM Transactions on Mathe-
matical Software 26 (2000) 436–461.

[54] M. Matsumoto, T. Nishimura, Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator, ACM Trans-
actions on Modeling and Computer Simulation 8 (1998) 3–30.

[55] M. Matsumoto, T. Nishimura, Dynamic Creation of Pseudorandom
Number Generators, in: H. Niederreiter, J. Spanier (Eds.), Monte Carlo
and Quasi-Monte Carlo Methods 1998, Springer, Berlin, 2000, pp. 56–
69.

[56] S. McIntosh-Smith, The GPU computing revolution: From
multi-core CPUs to many-core graphics processors, 2011. URL:
http://www.lms.ac.uk/sites/default/files/files/reports/

GPU-KT-report-screen.pdf.

[57] S. Mohanty, A.K. Mohanty, F. Carminati, Efficient pseudo-random num-
ber generation for Monte-Carlo simulations using graphic processors,
Journal of Physics: Conference Series 368 (2012) 012024.

[58] N. Nandapalan, R. Brent, L. Murray, A. Rendell, High-performance
pseudo-random number generation on graphics processing units, in: Par-
allel Processing and Applied Mathematics, volume 7203 of Lecture Notes
in Computer Science, Springer Berlin / Heidelberg, 2012, pp. 609–618.

29

[59] S. Neves, F. Araujo, Fast and small nonlinear pseudorandom number
generators for computer simulation, in: Parallel Processing and Ap-
plied Mathematics, volume 7203 of Lecture Notes in Computer Science,
Springer, 2012, pp. 92–101.

[60] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo
Methods, volume 63 of SIAM CBMS-NSF Regional Conference Series
in Applied Mathematics, SIAM, Philadelphia, PA, 1992.

[61] NVIDIA, CURAND Library: Programming Guide, Version 7.0,
NVIDIA, 2015. URL: http://docs.nvidia.com/cuda/curand.

[62] F. Panneton, P. L’Ecuyer, On the xorshift random number generators,
ACM Transactions on Modeling and Computer Simulation 15 (2005)
346–361.

[63] F. Panneton, P. L’Ecuyer, M. Matsumoto, Improved long-period gen-
erators based on linear recurrences modulo 2, ACM Transactions on
Mathematical Software 32 (2006) 1–16.

[64] J. Passerat-Palmbach, Contributions to Parallel Stochastic Simulation:
Applications of Good Software Engineering Practices to the Distribu-
tion of Pseudorandom Streams in Hybrid Monte Carlo Simulations,
Ph.D. thesis, Graduate School of Enginerring Sciences, Blaise Pascal
University, Clermont-Ferrand, 2013. http://tel.archives-ouvertes.
fr/tel-00858735.

[65] J. Passerat-Palmbach, C. Mazel, D.R.C. Hill, Pseudo-random streams
for distributed and parallel stochastic simulations on GP-GPU, Journal
of Simulation 6 (2012) 141–151.

[66] J. Passerat-Palmbach, C. Mazel, D.R.C. Hill, ThreadLocalMRG32k3a:
A statistically sound substitute to pseudorandom number generation in
parallel Java applications, in: International Conference on High Perfor-
mance Computing and Simulation, pp. 543–550.

[67] J. Passerat-Palmbach, C. Mazel, D.R.C. Hill, TaskLocalRandom: A sta-
tistically sound substitute to pseudorandom number generation in par-
allel Java tasks frameworks, Concurrency and Computation: Practice
and Experience (2014). To appear, doi:10.1002/cpe.3214.

30

[68] D. Pellerin, E. Trexel, M. Xu, FPGA-based hardware acceleration of
C/C++ based applications, 2007. URL: http://www.pldesignline.

com/howto/201800344.

[69] C.L. Phillips, J.A. Anderson, S.C. Glotzer, Pseudo-random number gen-
eration for brownian dynamics and dissipative particle dynamics simu-
lations on GPU devices, Journal of Computational Physics 230 (2011)
7191–7201.

[70] R Core Team, R: A Language and Environment for Statistical
Computing, Reference Index, R Foundation for Statistical Comput-
ing, Vienna, Austria, 2015. URL: http://cran.r-project.org/doc/
manuals/r-release/fullrefman.pdf.

[71] M. Saito, M. Matsumoto, SIMD-oriented fast Mersenne twister: A
128-bit pseudorandom number generator, in: A. Keller, S. Heinrich,
H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods
2006, Springer-Verlag, Berlin, 2008, pp. 607–622.

[72] M. Saito, M. Matsumoto, A deviation of CURAND: standard pseu-
dorandom number generator in CUDA for GPGPU, 2012. http:

//www.mcqmc2012.unsw.edu.au/slides/MCQMC2012_Matsumoto.pdf,
Presented at MCQMC’2012.

[73] M. Saito, M. Matsumoto, Variants of Mersenne twister suitable for
graphic processors, ACM Transactions on Mathematical Software 39
(2013) 12:1–12:20.

[74] J.K. Salmon, M.A. Moraes, R.O. Dror, D.E. Shaw, Parallel random
numbers: as easy as 1, 2, 3, in: Proceedings of the 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, ACM, New York, 2011, pp. 16:1–16:12.

[75] D.B. Thomas, L. Howes, W. Luk, A comparison of CPUs, GPUs, FP-
GAs, and massively parallel processor arrays for random number gener-
ation, in: Proceedings of the ACM/SIGDA international symposium on
Field programmable gate arrays, ACM, New York, 2009, pp. 63–72.

[76] D.B. Thomas, W. Luk, High quality uniform random number generation
using LUT optimised state-transition matrices, Journal of VLSI Signal
Processing Systems 47 (2007) 77–92.

31

[77] D.B. Thomas, W. Luk, The LUT-SR family of uniform random number
generators for FPGA architectures, IEEE Transactions on Very Large
Scale Integration Systems 21 (2013) 761–770.

[78] S. Tzeng, L.Y. Wei, Parallel white noise generation on a GPU via cryp-
tographic hash, in: Proceedings of the 2008 symposium on Interactive
3D graphics and games, pp. 79–87.

[79] T. Xiang, K. Benkrid, Mersenne twister random number generation on
FPGA, CPU and GPU, in: NASA/ESA Conference on Adaptive Hard-
ware and Systems, AHS 2009, pp. 460–464.

[80] F. Zafar, M. Olano, A. Curtis, GPU random numbers via the tiny en-
cryption algorithm, in: Proceedings of the Conference on High Perfor-
mance Graphics, HPG ’10, pp. 133–141.

32

