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SUMMARY 

This paper is concerned with a repair vs. replacement problem for a system observed in continuous time 
and subject to random failure. When the system fails, a decision is taken, based on the observed values 
of the (random) repair cost and the system’s age, to either perform a minimal repair or to replace the 
system by a new one. At any time, the system may also be replaced preventively, and the aim of the 
decision maker is to minimize the total expected discounted cost. A dynamic programming approach is 
proposed to solve this problem. Sufficient conditions under which a repair-limit rule is optimal are given. 
An efficient algorithm is devised for the computation of such an optimal policy, and a numerical 
illustration is worked out. 

KEY WORDS Dynamic programming Stochastic control Optimal replacement Repair limit 

1. INTRODUCTION 

The aim of this paper is to  propose a very general formulation of the so-called repair vs. 
replacement problem for a system observed in continuous time, to develop a dynamic 
programming approach for its solution, to find conditions under which a repair-limit rule is 
optimal and, finally, to  devise an efficient algorithm for the computation of such an optimal 
policy. 

The repair vs. replacement problem is a variant of the classical preventive replacement 
problem for an age-dependent failure-prone system’ - 4  where, at failure time, there is a 
possibility either to perform a minimal repair or to replace the system by a new one. The model 
presented in Sections 2 and 3 generalizes earlier studies’-’ along several lines: (i) a very general 
cost structure is assumed; (ii) no apriori assumptions on the form of the optimal policy are 
made; (iii) the problem is formulated in the general framework of discrete-event dynamic 
programming with continuous state variables. In Section 4, we explore the conditions under 
which a repair-limit rule is an optimal policy. In a repair-limit rule, a decision to replace the 
system is taken either at a predetermined age limit, or at failure time, provided that the cost 
of a minimal repair is higher than a predetermined limit which is generally dependent on the 
age of the system. In Section 5 ,  we propose an efficient algorithm to compute an c-optimal 
policy, for the case where a repair-limit rule is optimal. In Section 6, the algorithm is illustrated 
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on a numerical example. The Appendix contains the mathematical developments involved in 
establishing the results of the paper. 

This application is based on recent theoretical developments in dynamic programming for 
discrete-event systems with state variables in Bore1 spaces, * - I 1  and on an advanced 
implementation of a successive approximations algorithm in such a general framework. l 2  This 
approach has already permitted a complete solution of a continuous-time group preventive 
replacement problem, l2 and the present paper gives another example of its usefulness for the 
treatment of complex maintenance problems. In this general modern framework, discrete event 
stochastic systems can be modelled without an arbitrary a priori time and state discretization, 
as was often the case in previous stochastic dynamic programming implementations for 
maintenance applications. 3,  1 3 3  l4  

2. MODELLING THE REPAIR vs. REPLACEMENT PROBLEM 

Consider a failure-prone system with an operating cost rate co(s) and a failure rate X(s) at age 
s. At any instant, the system is either operating or has failed. If it fails at age s, a failure cost 
c&) is incurred, and the system is either replaced at a cost c,(s), or repaired at a cost r ,  which 
is the sample value of a random variable whose probability law is defined by the conditional 
probability measure R ( *  I s). We assume that the decision to replace or repair is taken after 
having observed the actual value of r.  A (minimal) repair brings the system back to an 
operational state without changing its age s, whereas a replacement brings the age of the system 
back to 0. At any age s, one may preventively replace the system, at a cost cI(s), in order to 
avoid possible failure costs. The system operates on an infinite time horizon, and the costs are 
discounted at a rate p > 0. 

The state of the system at time 1 is, by convention, its age at time t'; i.e. at any intervention 
time (replacement or repair) the state s represents the age of the system immediately after the 
intervention. An intervention is triggered either by a failure or by a planned preventive 
replacement. The state space is thus S = [ 0 ,  00). A controller action can be represented by a 
pair a = ( d ,  y), where d E [0 ,  00) is the time delay till the next planned preventive replacement, 
and y: S x [0 ,  CD) + (0,1] is a (measurable) binary function, called the repair vs. replacement 
rule, such that if a failure occurs at age s and the observed repair cost is r, a replacement is 
decided if y(s, r )  = 1, and a repair is decided if y(s, r )  = 0. Let A denote the set of all possible 
controller actions. 

The evolution of the system is then described as follows. Call stage n the occurrence of the 
nth intervention. At the initial stage 0, the system is in state 0. Entering stage n at time T,,, n 2 0, 
the controller observes the age s,, of the system and then chooses an action a n  = (d,,, y,,). Given 
the failure process, the state s,, and the chosen action, a random transition defines (i) the next 
intervention time r,,+l, which corresponds to stage n + 1 and is the minimum between the time 
7,, + c of the next failure and the time 7" + dn of the next planned preventive replacement; and 
(ii) the state s,,+l of the system at stage n + 1, which is zero if the system is replaced or s,, + r 
if the system is repaired. 

This system is thus modelled as a Markov renewal decision p r o c e s ~ ~ - ~ ' ~ ~ ~  with continuous 
state and action sets. In order to complete the definition of this process, we introduce the 
survival function 

the conditional survival function given state s, 
(1) p(c)  = ,-I$U)df 



REPAIR vs. REPLACEMENT PROBLEM 

and the conditional probability density function of the age of failure 

a -  
f ( s  + t I s) = - - m + t I s) = x@ + {)& + t I s), m) = At a t  

One can then define the expected one-stage transition cost given state s and acti 

22 1 

0) (3) 

n a = ( d ,  y) as 

g(s, d ,  y) = r[ sr e-P'c,(s + t )  dt 
0 0  

where 

+ t ) ,  if y(s + {, r )  = 1 
, otherwise 

w(s  + {, r )  = 

A (stationary) policy is a map p : S + A which associates with a state s an action a = p(s). 
For the ease of exposition, we omit all mathematical details relating to the measurability 
questions and refer the reader to the Appendix, where these questions are addressed. The term 
admissible will always refer to the minimum measurability properties needed for the existence 
of the integrals (including those defining the mathematical expectations). An admissible policy 
p generates a Markov renewal stochastic process with value in S x A ,  with an expected total 
discounted cost, given initial state SO = s: 

The problem is to find an optimal policy p* ,  such that 

V,*(s)= V , ( S ) ~ $  inf v,(s) 
P 

or an &-optimal policy p, such that for a given r > 0, 

V,(s) < V*(s) + E 

for all s in S. 

Remark 

An equivalent model could be defined with the pair (s, r )  taken as the state variable, s being 
the age of the system at t- ,  i.e. just before the intervention, and r being the observed repair 
cost at failure time. This would simplify the action space, but increase the dimension of the 
state set (from one-dimensional to two-dimensional); two-dimensional cost-to-go functions 
(instead of one-dimensional) would have to be computed and approximated at each iteration 
of the dynamic programming algorithm, thus squaring the amount of work. The increase in 
complexity of the action space has no significant impact on the amount of computation, since 
as we will see later (equation (18)), the optimizing y at each iteration always has a trivial form 
and does not need to be computed explicitly. Our choice also makes easier the theoretical 
developments of the following sections. 
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3. THE DYNAMIC PROGRAMMING FORMALISM 

When the state set is countable, it is well known that under some regularity conditions, a 
dynamic programming approach can be used for the solution of an infinite horizon discounted 
Markov renewal decision process (or semi-Markov decision process). 3 ~ 1 5  For the problem 
defined in Section 2, one has two additional difficulties, namely a continuous state space and 
absence of the classical regularity conditions, ',15 which ask for the expected time between any 
two successive transitions to be bounded away from zero. A dynamic programming formalism 
adapted to this situation has been developed recentlys- l1 and is mathematically more intricate 
because of delicate measurability problems. In this section, we use a dynamic programming 
approach in operator form and provide conditions under which successive applications of the 
operator converge to  its fixed point. 

For a given action a = (d ,  y), define the operator H ( V ) ( * ,  d, y) which transforms any 
admissible cost-to-go function V: S + [ 0, 00) into another admissible cost-to-go function: 

+ V(0)e-pd& + d 1 s) (9) 

T,(V)(s )  = H ( V ) ( s ,  d s ) )  (10) 

T( V )  (s) = inf T, ( V )  (s) (1 1) 

Value iteration (also called successive approximations) consists in applying the operator T 
repeatedly on an approximation of the true cost-to-go function. Starting from a bounded and 
admissible initial cost-to-go function, the value iteration algorithm converges to V* under 
adequate regularity conditions. We will see in Proposition 1 that Condition 1 below is sufficient 
for T"( VO) to converge uniformly to  V ,  as n tends to infinity, where VO denotes an initial cost- 
to-go function and T" is the n-fold composition of the operator T. 

With any admissible policy p,  we associate the operator T, defined by 

Finally, we define the dynamic programming operator T by 

Condition 1 

(i) There is a constant L > 0 such that, for all s in S, 

(12) ) 
m 

min c,(s), [c,,(s)/~(s)l + cf(s) + j min(r, c r ( s ) ) ~ ( d r  1 s) 2 L ( 0 

(ii) There exists an admissible policy p1 and two constants U 2 0 and 0 < b < 1 such that 
for all s 2 0, 

g(s, PI (s)) < U and &,p1 6)) < b (13) 

where 
d 

0 
a(s, d, y) = 1 e-Pcf(s + f Is) d{ + e-OdP(s + d I s) 

denotes the one-stage expected discount factor when one chooses action (d,  y) in state 
S. rn 
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By a straightfoward calculation (see the Appendix), the one-stage cost can be rewritten 
differently as 

e-PrF(s + { I s )d l  + cr(s + d)e-pd& + d 1 s). (15) 

which may facilitate the interpretation of Condition 1. Equation (1 3) states that for some policy 
pl ,  the one-stage cost is bounded and the expected duration between any two stages is bounded 
away from zero. Equation (12) implies that the one-stage expected cost divided by the one-stage 
expected discount factor is bounded away from zero. More specifically, for each (s, d, y) in 
S x  A ,  we have 

(16) g(s, d, 7 )  2 a@, d, Y)L 

This shows that Condition 1 also implies that this model is a so-called version LC of the 
Markov renewal decision process model introduced in References 9-1 1 for which the following 
result holds: 

Proposition I 

0 < V <  U/(1 - b). Then 
Under Condition 1, let B be the set of admissible cost-to-go functions V such that 

(i) 
(ii) 

(iii) A policy p is optimal iff T,(V,) = V,. 

V ,  is in B, and T ( V ) =  Viff V =  V, .  
lim sup I T"(V) ( s )  - V,(s)l = 0 for all V in B. 

n - m  sCS 

Proof. See References 10 and 11. 

The repair vs. replacement problem has thus been modelled in such a way that it lends itself 
to a value iteration dynamic programming approach for its solution. Clearly this modelling 
approach considers an a priori very large action space. In the next section, it is shown that, 
for an interesting class of systems, the policy space can be reduced to a much smaller class of 
decision rules, namely the repair-limit rules. For these forthcoming developments, it will be 
convenient to define for each d in [O ,oo)  the operator J(V)(.,d) by 

(17) J ( V ) ( s ,  d) = H W s ,  d, Y V )  = iyf H(V) ( s ,  d, Y) 

where 
1, i f r+V(s+{)ac , ( s+{)+V(O)  
0, otherwise yv(s + r, r) = 

One thus has 

T( V )  (s) = inf J (  V )  (s, d )  
O < d < m  

4. OPTIMALITY CONDITIONS FOR REPAIR-LIMIT POLICES 

A repair-limit policy is a rule under which the decision maker replaces the component either 
at a predetermined age d, or when it fails at age s and the repair cost is greater than a predeter- 
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mined age-dependent limit L,(s); any other failure is corrected by a minimal repair. More 
formally, a repair-limit policy is a policy p such that 

where 

1, if r > L,(s)  or s 2 d ,  
0, otherwise 

and where d ,  is a fixed non-negative real number and L,: [0, d , ]  -+ [0, 00) is a given 
measurable function. This definition generalizes the one introduced by Drinkwater and 
Hastings. ' In this section, we characterize a class of repair vs. replacement problems for which 
an optimal policy is of the repair-limit type. 

Condition 2 

Assume that c,( .) and A (  .) are non-decreasing functions of the age s, that the derivative c: ( a )  

of cr(*) exists and that, for any non-decreasing function q: [O, 0 0 )  -+ [O, a), bounded above by 
c,( .), the following functionals: 

Ai(s, q ( s ) )  = co(s) + C d s )  + [ q ( s )  + r -  cr(s)lR(drI s) ] (22)  [ r"-"'" 
(23) 

are non-decreasing in s. 
We claim that the systems for which Condition 2 holds admit optimal policies which are 

repair-limit. More precisely, if one calls B ,  the class of non-decreasing cost-to-go functions 
V( a )  in B, and if one defines the operators GI : B+ + B+ and G2 : B+ -+ B ,  by 

A2(s, q(s)) = A1 6, q ( s ) )  + C: (s) - P C ~ ( S )  

and the functional 

l ( V ) = i n f ( s ~ O ~ G ~ z ( V ) ( s ) > O ]  (26) 

then the following result, whose proof is given in the Appendix, holds. 

Proposition 2 

Under Condition 2, one has 

(i) for each V in B + ,  T ( V )  is in B,  and 

(ii) V ,  is in B ,  and the policy p ,  defined by 
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where d ,  = I( V , )  and 

is optimal. 

This result expresses the optimal maintenance policy as a repair-limit rule. Of course, both 
the age limit d ,  and the repair limit function L,(s) depend on the optimal cost-to-go function 
V,( -). Therefore, the above theorem does not specify completely the optimal policy; it only 
gives information on the form of the optimal policy. This information will be exploited in the 
algorithm proposed in Section 4. V ,  E B+ means that the optimal expected cost-to-go is higher 
for an older system (which is quite reasonable intuitively). 

Before leaving this section, we can show that the class of systems which satisfy Condition 
2 encompasses the Drinkwater and Hastings model’ as well as the classical age replacement 
model. 

Example 1 

For the model considered in Reference 7, one has cf = co = 0, cr is a constant, X(s )  is non- 
decreasing in s, and R ( *  1 s) is an exponential distribution with mean m(s), where m(s) is non- 
decreasing in s. Equation (22) then becomes 

A1(s,q(s))= X(s)[g(s)-c,+m(s)(l  -e-(*(s)-cr)’m(s) 11 (30) 
and Condition 2 is easily seen to hold. rn 

Example 2 

Consider a model where minimal repair is not allowed, or where the repair cost is always 
(with probability 1) larger than the replacement cost; that is R (  [ 0, c,(s)] I s) = 0 for all s. The 
integral in equation (22) then vanishes for all s and q, and one obtains 

AI(s,  q(s)) = c o ( ~ )  + X(s)cf(s). 

The optimal policy in that case, under Condition 2, is age 

5 .  COMPUTING AN OPTIMAL REPAIR-LIMIT POLICY 

We now provide an efficient computational algorithm for the case where Conditions 1 and 2 
are satisfied. It is an adaptation of the more general algorithm proposed in Reference 12, and 
it operates as follows. 

Algorithm 

1. Compute U, L and b satisfying Condition 1, and h := U/ (1 - b ) .  
2. Choose E > 0 and V in B, .  
3. Let V - ( * )  :=O, V + ( . )  :=h.  

repeat 
4. Compute I ( V )  satisfying (26). 
5 .  Compute T ( V ) ( s )  = J(V)(s ,  l ( V )  -s )  at a finite number of points in the interval 

[O,I(V)] ,  including 0 and 1(V).  
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6. Define W ( . )  in B+ as an approximation to T ( V ) ( . )  on [0,1(V)] and equal to 

7. Compute (or estimate) non-negative real values 6-, 6+, y- and y+ such that for all s, 
cr(*) + V(0) on ( I (V) ,  a). 

-6 -  < T ( V ) ( s )  - W(s)  < 6+ 

-7 -  < W s )  - V(s) < y i  

8.  Let 

V - ( * )  :=max ( V - ( . ) ,  W ( * ) - ( 6 -  +y-)4h/L)  

V + ( . )  :=min ( V + ( * ) ,  W ( - ) + ( 6 +  + 7 + ) 4 h / L ) .  

9. Let V ( - )  := W(*) .  
10. Display any desired values. 

until V+ ( s )  - V -  (s) c E for all s. 

11. Display / ( V ) ( - ) ,  W ( - )  and any other desired statistics. 
12. Stop. M 

Proposition 3 

After any iteration of the algorithm, one has V -  (.) < V,(*)  < V+ (*). Further, if the error 
in the approximation of T ( V )  converges to 0, that is if the successive values of 6- and 6' 
converge to 0, then V+ (.) - V -  ( a )  converges to 0 uniformly and the algorithm terminates after 
a finite number of iterations. 

Proof. It follows from Theorem 3.3 in Reference 12. 8 

Some remarks should be made concerning this algorithm. First, the choice of the policy p1 
is somewhat arbitrary, but in order to obtain tighter bounds for V*, one should choose it to 
minimize h.  Secondly, any method of interpolation or approximation may be used to obtain 
W ( . )  in step 6 ,  and the method can also vary between iterations. Interpolation could be used 
if T( V ) ( s )  is computed with good precision; otherwise, approximation (e.g. least squares) is 
recommended. Thirdly, as explained in Reference 12, the bounds in step 7 can be exact and 
conservative, derived by using the monotonicity properties of V ( * ) ,  T ( V ) ( . )  and W ( - ) ,  or can 
be estimations. For instance, when T ( V )  is reasonably smooth (which is usually the case), one 
can perform step 7 by recomputing T( V )  on a much finer regular mesh, computing the actual 
error of approximation at these new points, and taking the smallest and largest of these errors 
as estimates of 6- and 6 + ,  respectively. 

6 .  A NUMERICAL ILLUSTRATION 

Let p = 0.1,cr(s) = 20, cf(s) = 5 ,  ~ ( s )  = min(0.02s,0.2 J, co(s) = min(s+  e-', 10+ e - " ~  (a 
system of age greater than 10 is assumed to be equivalent to a system of age lo), and the 
distribution function of the repair cost be defined by R( [0, r ]  I s) = 1 - e-r'2 for all s 2 0 and 
r 2 0. The failure rate X(s) corresponds (for s ,< 10) to a Weibull distribution, and the repair 
cost has an exponential distribution with mean 2. Consider the policy p1 defined by 

Fl(S) = (dl,?l) 

where dl = 10 and T I ( - )  = 1. Equation (13) is verified for b = 0-6833, U =  48.5, and one has 
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0 . 0  1 I I I I I 

0 1 2 3 4 6 6 7 

age s 
Figure 1. The optimal repair-limit function 

h = U/(1 - 6 )  = 153.14, whereas equation (12) is verified for L = 20. Condition 2 is easily 
verified, and the algorithm proposed in the previous section can be used. 

A computer implementation has been done, in FORTRAN, and the program allows changing 
the evaluation points of T( V) or the method of approximation after any iteration. The initial 
V(  .) is set to zero in step 2. In step 4, a sequential search is used to localize I (  V )  approximately; 
then binary search is used to find its exact position. In step 5 ,  T(V)  is computed at n points, 
evenly spaced on the interval [ 0, I (  V ) ]  . The integrals are evaluated using Simpson’s rule with 
an integration step small enough to obtain a negligible quadrature error. W ( . )  is defined on 
[0, I (  V ) ]  by spline interpolation for splines of arbitrary order where the knots are chosen 
according to equation (10) on p .  219 of Reference 16. 

After 30 iterations with n = 10 evaluation points and splines of order k = 2 (i.e. piecewise- 
linear interpolation), one obtains I (V)  = 6.7047 and V(0) = 56-35. After five more iterations 
with k = 2 and n = 25, one obtains 1(V) = 6.7056; and five more iterations with k = 4 (cubic 
splines) and n = 25 yield I( V )  = 6.7058 and V(0) = 56.365. Finally, after 10 more iterations with 
cubic splines and n = 50, one still has the same values. T( V )  can then be recomputed on a much 
finer grid (500 uniformly spaced points) to estimate 6- and 6 + , which yields the estimate 
bounds on V,: 

W(.)-0*00023= V - ( . ) , <  V * ( . ) , <  V + ( * ) =  W(*)+0.00009 

The relative error on V, is thus negligible. The repair-limit at age s is L,(s) = cr(s) - V,(s) + 
V,(O), and this function is displayed in Figure 1 .  Here, the repair-limit is decreasing in s, but 
notice that this is not true in general when cr(*) is not constant. 
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APPENDIX 

In this Appendix, we state the measurability conditions sufficient for the dynamic programming 
formalism to be well defined and for Proposition 1 to hold. We also derive equation (15), and 
we prove Proposition 2. 

Measurability conditions 

Assume cf(*), cr( - ) ,  co( . )  and A ( * )  to be four Borel measurable functions from [O, a) to 
[ 0, m). R is assumed to  be a continuous Borel measurable stochastic kernelEv9 on [ 0 , m )  given 
[0, m) ,  i.e. a family ( R ( .  I s ) , s >  0)  of probability measures on [O,m)  such that for every 
Borel set B E [0, m) ,  R(B 1 a )  is a continuous (and Borel measurable) function. The state space 
is S = [0, 00) and the action space is A = [0, m ]  x Z where 2 is the class of Borel measurable 
binary functions y : S x [0, 00) -+ ( 0 , l )  . An admissible policy is a universally m e a ~ u r a b l e ~ . ~  
mapping p : S --+ A. An admissible cost-to-go function is a bounded lower semi-analytic 
function V :  S -+ [0, 00). For any such function, the expressions in (9)-(11) are well 

Notice that more general kinds of policies could have been considered where p is random and 
may depend on all past history. However, it could be that such an extension provides 
no additional gain in the optimal cost function. m 

Derivation of Equation (15) 

Using Fubini’s theorem, one has 
n d  n t  n d  n d  

e-O‘c0(s + t )  dtf(s + { I s)d{ = ] 1 e-O‘c0(s + t )  f ( s  + C I s) dC d t  
J O J O  O f  

d 

e-”‘co(s + t )  [F(s + t I s) - F(s + d I s)] d t  
= so  

and from (4), using the fact that f ( s  + C 1 s) = X(s + {)& + p I s), one obtains (15). m 

Proof of Proposition 2 

Let VE B , .  One has 

a 
- J (  V ) ( s ,  d )  = e-pf& + d I s )  co(s + d )  + X(s + d )  
ad 

nao 1 

+ 1 min( r + V(s + d ) ,  cr(s + d )  + V(O))R(dr I s + d )  
0 

(31) 

From equation (23) in Condition 2, Gz(V) ( s )  is non-decreasing in s. It is thus negative for 

I + c: (s+ d )  - [cr(s+ d )  + V(0)l [ X ( S +  d )  + P I  

= e-OdP(s + d I s)G2( V ) ( s  + d ) .  
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s c f (  V ) ,  non-negative for s > /( V ) ,  and one has 

J (  V)(s,  d )  is thus decreasing in d on the interval [ 0, max(0, I (  V )  - s)] , non-decreasing 
thereafter, and the infimum in (19) is attained for d = max(0, /( V )  - s). Notice that d = 00 if 
I (V)  = 00. 

It remains to show that T ( V )  is non-decreasing on (O,f(V)).  Let 0 < SI < s2 c f ( V )  and 
d2 = f (  V )  - s2. One has 

T(V)(s2) = J(V(s2, d2) 

For each s in [SZ, I( V)] , let Q(s) be the value in [SI, s) satisfying 

[ x ( f ) + ~ l  d t =  j '  [ X ( f ) + p I  dt  
Q ( s )  

S I  s1 [ (33) 

3' 

Such a value uniquely exists, since 5 [ X(t) + p ]  dt is continuous and strictly increasing in s ' ,  

and 
51 

S I  

SI 52 S ,  

j 5  [ X ( t ) + p ]  d r >  js [ X ( t ) + p ]  d t 2 O =  1 [ X ( t ) + p ]  dt 

One then has 

Let dl = Q(l (V) )  -s1. From (32), (341, and (351, since G I ( V ) ( * ) ,  A(.) and C r ( * )  are non- 
decreasing on [ O,l(V)l ,  and with'the change of variable f = Q(s),  one obtains 
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2 n V ) ( s l ) .  (36) 
Thus, for each V in B + ,  T ( V )  is in B + ,  and since B+ is closed, V , ( . )  = lim T “ ( V ) ( - )  is 
also in B + .  Taking d,  = 1( V,) ,  one then has n -rm 

J (  Y*)(s, max(0, d, - s)) = inf J (  V , ) ( S ,  d )  

for all s in S, and from Proposition 1 (iii), this completes the proof. 
O ( d < m  

(37) 
H 

REFERENCES 
1. Ansell, J., A. Bendell and S .  Humble, ‘Age replacement under alternative cost criteria’, Management Science, 30, 

2 .  Barlow, R. and F. Proschan, Mathematical Theory of Reliability, SIAM Series in Applied Mathematics, Wiley, 

3. Getsbakh, I. B., Models of Preventive Maintenance, North-Holland, 1977. 
4. Nummelin, E., ‘A general failure model: optimal replacement with state-dependent replacement and failure costs’, 

5 .  Beichelt, F. and K .  Fisher, ‘General failure model applied to preventive maintenance policies’, IEEE Trans. 

6 .  Cleroux, R., S. Dubuc and C.  Tilquin, ‘The age replacement problem with minimal repair and random repair 

7. Drinkwater, R. and N. Hastings, ‘An economic replacement model’, Operations Research Quarterly, 18, (2), 

8. Bertsekas, D. P. and S.  E. Shreve, Stochastic Optimal Control: The Discrete Time Case, Academic Press, 1978. 
9. L’Ecuyer, P., ‘Processus de decision markoviens a &apes discretes: application a des problemes de remplacement 

d’equipement’, Ph.D. Thesis, published in Les Cahiers du GERAD, Report no. G-83-06, Ecole des H. E. C., 
Montreal, 1983. 

10. L’Ecuyer, P.  and A. Haurie, ‘Discrete event dynamic programming in Bore1 spaces with state dependent dis- 
counting’, Report no. DIUL-RR-8309, Dept. d’informatique, Universitk Laval, 1983. 

11. L’Ecuyer, P. and A. Haurie, ‘Discrete event dynamic programming with simulaneous events’, Report no. DIUL- 
RR-8503, Dept. d’informatique, Universite Laval, 1985 (to appear in Math. of Oper. Res. ). 

12. Haurie, A. and P. L’Ecuyer, ‘Approximation and bounds in discrete event dynamic programming’, IEEE Trans. 
Automatic Control, AC-31, (3), 227-235 (1986). 

13. Bertsekas, D. P., Dynamic Programming and Stochastic Control, Academic Press, 1976. 
14. Haurie, A. and P. L’Ecuyer, ‘A stochastic control approach to group preventive replacement in a multicomponent 

15. Denardo, E. V., ‘Contractions mappings in the theory underlying dynamic programming’, SIAM Review, 9, 

16. de Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978. 

(3), 358-367 (1984). 

1965. 

Math. of Oper. Rex, 5 ,  (3). 381-387 (1980). 

Reliability, R-29, ( I ) ,  39-41 (1980). 

costs’, Operations Research, 27, (6), 1158-1 167 (1979). 

121-138 (1967). 

system’, IEEE Trans. on Automatic Control, AC-27, (2), 387-393 (1982). 

165-177 (1967). 


