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The asymptotic robustness of estimators as a function of a rarity parameter, in the context of

rare-event simulation, is often qualified by properties such as bounded relative error (BRE) and
logarithmic efficiency (LE), also called asymptotic optimality. However, these properties do not
suffice to ensure that moments of order higher than one are well estimated. For example, they do
not guarantee that the variance of the empirical variance remains under control as a function of

the rarity parameter. We study generalizations of the BRE and LE properties that take care of
this limitation. They are named bounded relative moment of order k (BRM-k) and logarithmic
efficiency of order k (LE-k), where k ≥ 1 is an arbitrary real number. We also introduce and

examine a stronger notion called vanishing relative centered moment of order k, and exhibit
examples where it holds. These properties are of interest for various estimators, including the
empirical mean and the empirical variance. We develop (sufficient) Lyapunov-type conditions for
these properties in a setting where state-dependent importance sampling (IS) is used to estimate

first-passage time probabilities. We show how these conditions can guide us in the design of good IS
schemes, that enjoy convenient asymptotic robustness properties, in the context of random walks
with light-tailed and heavy-tailed increments. As another illustration, we study the hierarchy
between these robustness properties (and a few others) for a model of highly-reliable Markovian

system (HRMS) where the goal is to estimate the failure probability of the system. In this setting,
for a popular class of IS schemes, we show that BRM-k and LE-k are equivalent and that these
properties become strictly stronger when k increases. We also obtain a necessary and sufficient

condition for BRM-k in terms of quantities that can be readily verified from the parameters of
the model.
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1. INTRODUCTION

Rare-event simulation refers to the situation where a set of events that occur very
rarely in a simulation model are important and must be taken into account because
their occurrence have high consequences. It is a key tool for decision making in
several areas such as reliability, telecommunications, finance, insurance, and com-
putational chemistry and physics, among others [Bolhuis et al. 2002; Bucklew 2004;
Heidelberger 1995; Juneja and Shahabuddin 2006; Kalos and Whitlock 1986]. The
important rare events may correspond, for example, to huge financial losses, or en-
vironmental disasters, or loss of lives, or other types of accidents. Before we decide
on how much money we want to spend (or what additional measures we want to
take) to avoid these rare events, we need to have an idea of their probability of
occurrence and of the effect of additional spending on this probability.

In typical rare-event settings, the Monte Carlo method is not viable unless spe-
cial “acceleration” techniques are used to make the important rare events occur
frequently enough for moderate sample sizes. The two main families of techniques
for doing that are splitting [Ermakov and Melas 1995; Glasserman et al. 1998;
L’Ecuyer et al. 2007; Villén-Altamirano and Villén-Altamirano 2006] and impor-
tance sampling (IS) [Bucklew 2004; Glynn and Iglehart 1989; Heidelberger 1995;
Juneja and Shahabuddin 2006].

Suppose we want to estimate a positive quantity γ = γ(ε) that depends on a
rarity parameter ε > 0. We assume that limε→0+ γ(ε) = 0. We have a family of
estimators Y = Y (ε) taking their values in [0,∞), such that E[Y (ε)] = γ(ε) > 0
for each ε > 0. In applications, γ(ε) can be a performance measure defined as a
mathematical expectation, and some model parameters are defined as functions of
ε in a convenient way. Note that this parameterization by ε is introduced only for
the asymptotic analysis of estimators. Different parameterizations may correspond
to different asymptotic regimes. For example, in a queuing system for which we are
interested in the probability that the queue length exceeds a given (large) threshold
B, we may take ε = 1/B to study what happens when B gets larger and larger. If
we are interested in the behavior of the queue for a large number s of servers, we may
take ε = 1/s. In other settings, the service time and inter-arrival time distributions
might depend on ε. In Markovian reliability models, the failure rates and repair
rates might be functions of ε. For example, when studying a highly-reliable system
where the failure rates are very small, the failure rates are often taken as polynomial
functions of ε for the purpose of asymptotic analysis [Nakayama 1996; Shahabuddin
1994].

The convergence speed of γ(ε) toward 0 may depend on how the model is param-
eterized, but the robustness properties introduced in this paper do not depend on
this speed; they depend only on the magnitude of certain moments of Y (ε) relative
to the corresponding powers of γ(ε).

A special case of this setting arises when Y (ε) is an indicator function: Y (ε) =
1 with probability γ(ε) and Y (ε) = 0 with probability 1 − γ(ε). In this case,
Var[Y (ε)] = γ(ε)(1−γ(ε)) ≈ γ(ε), so the squared relative error (or relative variance)
Var[Y (ε)]/γ2(ε) ≈ 1/γ(ε) grows without bound when ε → 0. If we estimate γ(ε)
by the average of n = n(ε) independent copies of Y (ε), we have an estimator with
relative variance 1/(n(ε)γ(ε)). This estimator does not have bounded relative error
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(BRE) unless the sample size n(ε) grows at least at the same rate as 1/γ(ε) when
ε → 0 [Heidelberger 1995], which means that the computing budget would have
to increase without bound. Viewed from another angle, if we fix the computing
budget to a constant, so n(ε) is not allowed to grow indefinitely when ε → 0, then
the relative error is unbounded.

In this type of situation, splitting and IS are often used to design better estima-
tors, which may have the BRE property with a fixed computing budget. There are
many cases (e.g., in queueing and finance) where the best available estimators do
not have the BRE property, but enjoy the slightly weaker property of logarithmic
efficiency (LE), also called asymptotic optimality. This often happens when the
estimators are constructed by exploiting the theory of large deviations [Asmussen
2002; Glasserman 2004; Heidelberger 1995; Juneja and Shahabuddin 2006; Sieg-
mund 1976]. LE has the intuitive interpretation that when γ2(ε) → 0 exponentially
fast in 1/ǫ, Var[Y (ε)] → 0 at the same exponential rate.

To see why the BRE or LE properties are often not sufficient, suppose we want
to compute a confidence interval on γ(ε) based again on independent replicates of
Y (ε). To do this via the classical central limit theorem (CLT), we need reliable
estimators for both the mean γ(ε) and the variance σ2(ε) = E[(Y (ε) − γ(ε))2].
We want these estimators to remain robust in the sense that their relative error
remains bounded (or grows only very slowly) when ǫ → 0. Under the assumption
that one uses a confidence interval with a half-width proportional to the exact
(theoretical) variance, the relative half-width remains bounded if the estimator has
BRE [Heidelberger 1995]. But to realistically implement such a confidence interval
procedure, one needs to estimate the variance from the simulated i.i.d. runs of the
model. To obtain such a confidence interval, in which the relative half-width is
estimated properly, one typically needs an estimator of σ2(ε) that is accurate to
order γ2(ε) × o(1) as n → ∞, uniformly in ε. Obtaining a variance estimator with
such a level of relative accuracy (relative to γ2(ε)) requires control over the (2+δ)th
moment of Y (ε) for some δ > 0. In rare-event settings, reliable (relative) mean and
variance estimators are typically difficult to obtain. In fact, the relative variance is
often more difficult to estimate than the mean (relative to the mean).

A similar problem arises in empirically comparing the efficiencies of two different
estimators for the quantity γ(ε), as ε → 0. In particular, the efficiency is typically
assessed by comparing the variances of the associated estimators. Since the exact
(theoretical) variances are not available analytically, they must be computed from
the sample variance, as obtained from the simulation runs used to estimate γ(ε).
Even if all the estimators to be compared enjoy the BRE property, a potentially
huge number of simulation runs may be required to compute the ratio of efficiencies
between the available estimators, unless the fourth moment of the estimator scales
in proportion to γ4(ε).

This motivates our introduction, in this paper, of asymptotic characterizations
that generalize BRE and LE, namely bounded relative moment of order k (BRM-
k) and logarithmic efficiency of order k (LE-k), where k ∈ [1,∞). The relative
moment of order k is the expectation of [Y (ε)/γ(ε)]k. An estimator has the BRM-
k property if its relative moment of order k remains bounded when ε → 0. The
LE-k property roughly means that when γk(ε) → 0 at an exponential rate, the
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kth moment converges to zero at the same exponential rate. BRE-2 and LE-2
are equivalent to BRE and LE, respectively. We also introduce and discuss a much
stronger property than BRM-k, named vanishing relative centered moment of order
k (VRCM-k), which means that the relative centered moment of order k converges
to 0 when ε → 0. As it turns out, this property implies that the sampling scheme
converges to a zero-variance sampling scheme when ε → 0. We give examples where
this property holds.

These concepts apply to any estimator that depends on some rarity parameter ε;
it does not have to involve splitting or IS. This includes for instance the empirical
variance and higher empirical moments taken as estimators of the exact variance
and of higher moments of the estimator of interest. For example, saying that the
empirical variance has the BRM-2 property means that the variance of the empirical
variance, divided by the squared variance, is bounded when ε → 0. This is bounded
relative error of the empirical variance (as a variance estimator). Saying that the
empirical mean has the BRM-4 property, on the other hand, means that its fourth
moment divided by the fourth power of the mean is bounded. These two properties
are not equivalent in general.

Lesser-known asymptotic robustness properties than BRE and LE have also been
studied in the literature. For instance, Sadowsky [1993] examines a generalization
of LE for central empirical moments of high-order, in a specific large-deviations
context where the goal is to estimate the probability that the average of n = ⌊1/ε⌋
i.i.d. random variables exceeds a given constant. Boots and Shahabuddin [2000]
define a weaker criterion than LE, motivated by the observation that the large vari-
ance sometimes comes from a set of events with “small” probability relative to the
probability of the rare event itself, uniformly in ε. If the restriction of the estimator
to the large set (defined as the complement of this set of small probability) is LE,
they say that the estimator has large set asymptotic optimality. Other properties
include bounded normal approximation (BNA), and asymptotic good estimation of
the mean (AGEM) and of the variance (AGEV) (also called probability and vari-
ance well-estimation) [Tuffin 1999; 2004]. BNA, as defined in Tuffin [1999], implies
that if we approximate the distribution of the average of n i.i.d. copies of Y by the
normal distribution (e.g., to compute a confidence interval), the approximation is
accurate to order O(n−1/2) uniformly in ε when ε → 0. AGEM and AGEV have
been defined in the context of estimating a probability in a highly reliable Marko-
vian system (HRMS), and basically mean that the sample paths that contribute
the most to the estimator and its second moment, respectively, are not rare under
the sampling scheme that is examined.

It is important to underline that all notions mentioned so far completely dis-
regard the computational work (CPU time) required to obtain the estimator. In
general, this computational cost can be random, and its mean or higher moments,
which often depends on ε, can be unbounded when ε → 0. This motivates the
need for work-normalized versions of the BRM-k, LE-k, and VRCM-k properties.
For k = 2, the standard practice for taking the work into account when com-
paring estimators is to multiply the variance by the expected computational cost
[Hammersley and Handscomb 1964; Glynn and Whitt 1992], based on the idea
that doubling the computing budget typically permits one (roughly) to halve the

ACM Journal Name, Vol. V, No. N, Month 20YY.



Asymptotic Robustness in Rare-Event Simulation · 5

variance. This has motivated the introduction of concepts such as bounded work-
normalized relative error (also called bounded relative efficiency) in Cancela et al.
[2005] and work-normalized logarithmic efficiency (or asymptotic optimality) in
Boots and Shahabuddin [2000] and Glasserman et al. [1999], simply by multiplying
the variance by the expected computing time in the definitions of BRE and LE.
One could think of straightforward generalizations to any k ≥ 1: just multiply
the centered moments by the expected computing time. But this normalization
is not necessarily appropriate, for a number of reasons. For example, if we have
an estimator defined as an average over n independent replications, doubling the
number of replications does not divide the kth centered moment by 2 in general,
for k 6= 2. Even for k = 2, a concept that considers only the expected computing
time would not guarantee that we can compute a reliable confidence interval for
γ(ε) uniformly over ε, for a given large computing budget that does not depend on
ε. If the (random) computing time has unbounded moments of order larger than 1
when ε → 0, then for any fixed computing budget c, the probability of completing
at least one replication within the budget limit may go to zero when ε → 0, for
example. Thus, just multiplying by the expected computing time does not neces-
sarily provide the desired notion of boundedness; it could even be misleading to
some extent. For these reasons, we end our discussion of work-normalization here
and leave this important topic for another paper.

It is important to recognize that estimators with a higher level of robustness do
not necessarily require a larger computational effort. A well-designed IS scheme
often reduces the simulation time by pushing the system faster toward the rare
event, while decreasing higher moments at the same time, so we may win on both
fronts: smaller moments and a smaller computing time. For instance, as we shall
discuss in Section 4.1, importance sampling estimators designed to have either the
LE-2 or the BRE property often satisfy the corresponding improved measures of
robustness such as LE-k and BRM-k for k > 2 as well. In Section 5, the more
robust estimators are not really more expensive to compute either.

After defining and discussing the robustness properties, we examine some specific
rare-event settings in which we study the relationships between these properties and
provide easily verifiable conditions for these properties to hold.

Our basic setting is a discrete-time Markov chain (DTMC) model for which we
want to estimate the probability γ(x, ε) of reaching B before A in finite time,
where A and B are two disjoint subsets of the state space, and the chain starts
in state x 6∈ A ∪ B. Either B, or the transition kernel of the DTMC, or both,
may depend on ε. We focus on a general class of state-dependent IS schemes that
attempt to approximate the zero-variance IS scheme for this model. The zero-
variance IS scheme simply multiplies the transition probability (or density) from a
state x to another state y by the product γ(y, ε)/γ(x, ε). In practice, the function
γ(·) is unknown (otherwise there would be no need to simulate in the first place),
but if we replace its use in the construction of the zero-variance IS scheme by
an approximation of good quality as ε → 0, a significant accuracy improvement
can often be achieved. The chain is simulated under the modified probability laws
obtained from the approximation, and the original estimator is multiplied (as usual)
by an appropriate weight called the likelihood ratio, to counter-balance the bias
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caused by the change of measure. This type of state-dependent IS has been the
focus of substantial research in both heavy-tailed and light-tailed settings during
recent years (see, for instance, Dupuis and Wang [2004], Dupuis and Wang [2005]
and Blanchet and Glynn [2007]). The approximation of γ(·) is usually obtained
via large deviations theory or heavy-tailed approximation. One has to be careful,
though: even with a good approximation in most of the state space, the likelihood
ratio may sometimes exhibit a poor behavior due to the contributions corresponding
to areas where the asymptotic description is not good enough.

In our DTMC setting, we establish general sufficient conditions for the BRM-
k, LE-k, and VRCM-k properties. These conditions can be verified in terms of a
simple Lyapunov inequality that involves the approximation of γ(·) together with
some appropriate Lyapunov function. We apply these conditions for the design of
IS estimators that exhibit BRM-k or LE-k, for random walks with both light-tailed
and heavy-tailed increments. We also make the connection with other results found
in the literature, e.g., by Sadowsky [1993] and Dupuis and Wang [2004], and we
extend the results of the latter authors.

We then examine the robustness properties for an HRMS model studied by sev-
eral authors [Cancela et al. 2002; Goyal et al. 1992; Heidelberger 1995; Lewis and
Böhm 1984; Nakayama 1996; Shahabuddin 1994; Tuffin 1999; 2004], and used for
reliability analysis of computer and telecommunication systems. In this model, a
smaller value of the rarity parameter ε implies a smaller failure rate for the sys-
tem’s components, and we want to estimate the probability that the system reaches
a “failed” state before it returns to a state where all the components are opera-
tional. This probability converges to 0 when ε → 0. The model fits the DTMC
setting mentioned earlier. For this HRMS model, specific conditions on the model
parameters and on the IS probabilities have been obtained for the BRE property
[Nakayama 1996], for BNA [Tuffin 1999; 2004], and for AGEM and AGEV [Tuffin
2004]. It is also shown by Tuffin [2004] that BNA implies AGEV, which implies
BRE, which implies AGEM, which implies BRE, and that for each implication the
converse is not true. In this paper we extend this hierarchy to incorporate BRM-k
and LE-k, showing that for these models, these properties are all equivalent for any
given k. We also obtain a necessary and sufficient condition on the model param-
eters for these properties to hold, for a given class of IS measures that covers all
interesting IS schemes developed in the literature for these HRMS models. These
conditions turn out to be of strictly increasing strength as a function of k. That is,
if they hold for k +1 then they hold for k, but the converse is false for all k. We do
this not only for the mean estimator, but for the estimators of all higher moments
as well.

The remainder of the paper is organized as follows. In Section 2, we give formal
definitions of the asymptotic characterizations discussed so far, along with simple
examples. The main results of that section are Propositions 2.19 and 2.21; they
prove the equivalence between two definitions of VRCM-k and the fact that VRCM-
k implies convergence toward a zero-variance sampling scheme.

In Section 3, we define the Markov chain setting in which we want to estimate the
probability of reaching B before A. We discuss the zero-variance approximation,
we prove an upper bound on the kth moment under an IS scheme based on this
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approximation and assuming a Lyapunov condition (Proposition 3.1), and we use
this bound to derive sufficient conditions for BRM-k and for LE-k in this setting
(Theorem 3.2). In Section 4, we use these conditions to study state-dependent IS
estimators in random walks with light and heavy-tailed increments. Sections 4.1
and 4.2 introduce the model and recall what is known for state-independent IS
when estimating the probability that the average of n = ⌊1/ε⌋ i.i.d. light-tailed
random variables exceeds a given threshold. One can obtain LE-k but not BRM-k.
In Section 4.3, we define a state-dependent IS scheme and prove in Proposition 4.5
that it has the BRM-k property. In Section 4.4, Theorem 4.6 extends a result of
Dupuis and Wang [2004] and provides a sufficient condition for LE-k in the context
of multidimensional random walks. In Section 4.5, we develop an IS scheme for the
case of heavy-tailed distributions and show in Theorem 4.8 that it has the BRM-k
property. In Section 5, we describe the HRMS model and we study the asymptotic
robustness properties for a class of IS estimators applied to this model. For a
large class of IS schemes, Theorem 5.2 gives necessary and sufficient conditions for
BRM-k for the empirical moment of any order g ≥ 1, and Proposition 5.6 shows the
equivalence between LE-k and BRM-k. Proposition 5.5 also shows that this class
of IS schemes cannot provide VRCM-k estimators. For a slightly different class of
IS estimators, we prove in Proposition 5.7 that BRM-2 for the empirical variance
implies BNA, then we provide a counterexample showing that the converse is not
true.

We use the following notation. For a function f : (0,∞) → R, we say that
f(ε) = o(εd) if f(ε)/εd → 0 as ε → 0; f(ε) = O(εd) if |f(ε)| ≤ c1ε

d for some
constant c1 > 0 for all ε sufficiently small; f(ε) = O(εd) if |f(ε)| ≥ c2ε

d for some
constant c2 > 0 for all ε sufficiently small; and f(ε) = Θ(εd) if f(ε) = O(εd)
and f(ε) = O(εd). We use the shorthand notation Y (ε) to refer to the family of
estimators {Y (ε), ε > 0}. We also write “→ 0” to mean “→ 0+.”

2. ASYMPTOTIC ROBUSTNESS PROPERTIES

This section collects all the definitions, together with simple examples and coun-
terexamples. The main novel results are in Section 2.6.

2.1 Bounded relative moments

Definition 2.1. For k ∈ [1,∞), the relative moment of order k of the estimator
Y (ε) is defined as

mk(ε) = E[Y k(ε)]/γk(ε). (1)

The variance is

σ2(ε) = Var[Y (ε)] = E[(Y (ε) − γ(ε))2],

the relative variance is σ2(ε)/γ2(ε), and the relative error is σ(ε)/γ(ε).

Definition 2.2. The estimator Y (ε) has a bounded relative moment of order k
(BRM-k) if

lim sup
ε→0

mk(ε) < ∞. (2)

It has bounded relative variance, or equivalently bounded relative error (BRE) [Hei-
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delberger 1995], if

lim sup
ε→0

σ(ε)/γ(ε) < ∞. (3)

Example 2.3. Suppose Y (ε) has a Pareto distribution with density f(y) =
a(ε)/ya(ε)+1 for y > 1, and a(ε) = k0 − ε for some integer k0 ≥ 2. In this case, for
k < k0 − ε, E[Y k(ε)] = a(ε)/(a(ε) − k). Then, if k < k0 and ε is small enough,

E[Y k(ε)]

γk(ε)
=

(k0 − 1 − ε)k

(k0 − k − ε)(k0 − ε)k−1
,

so Y (ε) is BRM-k.

Example 2.4. It is shown in Bourin and Bondon [1998] that if Yj = Xj/µj

where µj = E[Xj ], j is a positive integer, and X is a non-negative random vari-
able, then the variance of Yj is non-decreasing in j. This implies that if Yj(ε) =
Xj(ε)/µj(ε) has the BRM-2 property, then Yj′(ε) also has it for all j′ < j.

When computing a confidence interval on γ(ε) based on the average of n i.i.d.
replications of Y (ε) and the (classical) central-limit theorem, for a fixed confidence
level, the width of the confidence interval is (approximately) proportional to the
standard deviation σ(ε) divided by

√
n. Usually, the confidence interval has the

form (Y (ε) ± z1−α/2σ̂(ε)n−1/2), where 1 − α is the confidence level, z1−α/2 is the
(1−α/2)-quantile of the standard normal distribution, and σ̂(ε) is the square root of
the empirical variance of Y (ε). The BRE property means that this width decreases
at least as fast as γ(ε) when ε → 0.

It would perhaps seem natural to replace “lim supε→0” in this definition by
“sup0<ε≤1” for example. The definition would then be a bit stronger, so VRCM-k
would no longer imply BRM-k, for example. We think that the difference is just a
technicality that is not important in typical applications.

Proposition 2.5. BRE is equivalent to BRM-2.

Proof. This follows from the fact that m2(ε) = E[Y 2(ε)]/γ2(ε) = 1+σ2(ε)/γ2(ε).

More generally, an equivalent definition of BRM-k is obtained if we replace mk(ε)
in (2) by the relative centered moment ck(ε), defined by

ck(ε) =
E[|Y (ε) − γ(ε)|k]

γk(ε)
= E

[

∣

∣

∣

∣

Y (ε)

γ(ε)
− 1

∣

∣

∣

∣

k
]

. (4)

The equivalence follows from the following proposition:

Proposition 2.6. For any k ≥ 1,

lim sup
ε→0

ck(ε) < ∞ if and only if lim sup
ε→0

mk(ε) < ∞. (5)

Proof. We have

|Y (ε) − γ(ε)|k ≤ [max(Y (ε), γ(ε))]k ≤ Y k(ε) + γk(ε)

and

Y k(ε) ≤ [2max(|Y (ε) − γ(ε)|, γ(ε))]k ≤ 2k[|Y (ε) − γ(ε)|k + γk(ε)],
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from which

|Y (ε) − γ(ε)|k ≥ 2−kY k(ε) − γk(ε).

Combining these inequalities, we obtain that

2−kmk(ε) − 1 ≤ ck(ε) ≤ mk(ε) + 1

and the result follows.

Proposition 2.7. For any fixed ε and k ≥ 1, mk(ε) is nondecreasing in k.

Proof. Since Y (ε) ≥ 0, this follows from Jensen’s inequality: if 1 ≤ k′ < k,
then

mk′(ε) =
E[Y k′

(ε)]

γk′(ε)
≤ (E[(Y k(ε))])k′/k

γk′(ε)
=

E[Y k(ε)]

γk(ε)

γk−k′

(ε)

(E[(Y k(ε))])(k−k′)/k
≤ mk(ε).

Corollary 2.8. BRM-k implies BRM-k′ for 1 ≤ k′ < k.

Note that Proposition 2.7 would not hold if BRM-k was defined using the centered
moment E[(Y (ε) − γ(ε))k] instead of the non-centered moment E[Y k(ε)] or the
absolute centered moment E[|Y (ε) − γ(ε)|k]. This is illustrated by the following
example.

Example 2.9. Suppose Y (ε) has the normal distribution with mean and vari-
ance γ(ε) = σ2(ε) = ε. Then, E[(Y (ε)−γ(ε))2]/γ2(ε) = σ2(ε)/γ2(ε) = 1/ε, whereas
E[(Y (ε) − γ(ε))3]/γ3(ε) = 0.

The following property is sometimes useful.

Proposition 2.10. For any positive real numbers k, ℓ, m, and any non-negative
random variable X(ε), if Y (ε) = Xℓ(ε) is BRM-mk, then Y ′(ε) = Xmℓ(ε) is BRM-
k.

Proof. From Jensen’s inequality, (E[Xℓ(ε)])mk ≤ (E[Xmℓ(ε)])k. Then,

E[(Xmℓ(ε))k]

(E[Xmℓ(ε)])k
≤ E[Xmkℓ(ε)]

(E[Xℓ(ε)])mk
=

E[(Xℓ(ε))mk]

(E[Xℓ(ε)])mk
. (6)

2.2 Logarithmic efficiency

There are several rare-event applications where practical BRE estimators are not
readily available (e.g., in queueing and finance), but where estimators with the
(weaker) LE property have been constructed by exploiting the theory of large devi-
ations [Asmussen 2002; Glasserman 2004; Heidelberger 1995; Juneja and Shahabud-
din 2006; Siegmund 1976]. Often, these estimators turn out to have the following
LE-k property for all k.

Definition 2.11. The estimator Y (ε) is LE-k if

lim
ε→0

ln E[Y k(ε)]

k ln γ(ε)
= 1. (7)
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LE-k means that when γk(ε) converges to zero exponentially fast, E[Y k(ε)] also
converges exponentially fast and at the same exponential rate. This is the best
possible rate; it cannot converge at a faster rate because from Jensen’s inequality,
we always have E[Y k(ε)]−γk(ε) ≥ 0. LE-2 is the usual definition of LE, also known
under the names of asymptotic efficiency and asymptotic optimality. In general,
LE-k is weaker than BRM-k. But there are situations where the two are equivalent;
this will happen in our HRMS setup in Section 5. The following examples illustrate
the two possibilities. They correspond to the two types of parameterizations most
often used in rare-event asymptotic analysis: The probability of the rare event
decreases exponentially with ε in one case and polynomially in the other case. The
exponential case typically occurs in situations where γ(ε) satisfies a large deviations
principle. The polynomial case is standard in HRMS models, for example, where
the γ(ε) → 0 because the transitions leading to the rare event have probabilities
that decrease polynomially when ε → 0, while their number remains fixed. We will
return to this type of situation in Example 2.23 and in Section 5.

Example 2.12. Suppose that γ(ε) = q(ε) exp[−η/ε] for some polynomial func-
tion q and some constant η > 0, and that our estimator has σ2(ε) = exp[−2η/ε].
Then, the LE property is easily verified, whereas BRE does not hold because
m2(ε) = 1/q(ε) + 1 → ∞ when ε → 0. We will see concrete examples of this
situation in Section 4.

Example 2.13. Suppose that γk(ε) = q1(ε) = εt1 + o(εt1) and E[Y k(ε)] =
q2(ε) = εt2 + o(εt2). That is, both converge to 0 as a polynomial in ε. Clearly,
t2 ≤ t1, because E[Y k(ε)]−γk(ε) ≥ 0. We have BRM-k if and only if (iff) q2(ε)/q1(ε)
remains bounded when ε → 0, iff t2 = t1. On the other hand, − ln q1(ε) =
− ln(εt1(1 + o(1))) = −t1 ln(ε) − ln(1 + o(1)) and similarly for q2(ε) and t2. Then,

lim
ε→0

ln E[Y k(ε)]

k ln γ(ε)
= lim

ε→0

t2 ln ε

t1 ln ε
=

t2
t1

.

Thus, LE-k holds iff t2 = t1, which means that BRM-k and LE-k are equivalent in
this case.

2.3 Bounded Normal Approximation

We mentioned earlier the computation of a confidence interval on γ(ε) based on
the central-limit theorem. This type of confidence interval is reliable if the sample
average has approximately the normal distribution, so it is relevant to examine the
quality of this normal approximation when ε → 0. An error bound for this approx-
imation is provided by the following generalization of the Berry-Esseen inequality
[Bentkus and Götze 1996], first proved by Katz [1963]

Theorem 2.14. (Berry-Esseen) Let Y1, . . . , Yn be i.i.d. random variables with
mean 0, variance σ2, and third absolute moment β3 = E[|Y1|3]. Let Ȳn and S2

n be
the empirical mean and variance of Y1, . . . , Yn, and let Fn denote the distribution
function of the standardized sum (or Student statistic)

S∗
n =

√
nȲn/Sn.
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Then, there is an absolute constant a < ∞ such that for all x ∈ R and all n ≥ 2,

|Fn(x) − Φ(x)| ≤ aβ3

σ3
√

n
,

where Φ is the standard normal distribution function.

Note that the classical result usually has σ in place of Sn in the definition of
S∗

n [Feller 1971]. Theorem 2.14 motivated the introduction by Tuffin [1999] of the
BNA property, which requires that the Berry-Esseen bound remains O(n−1/2) when
ε → 0.

Definition 2.15. The estimator Y (ε) has the bounded normal approximation
(BNA) property if

lim sup
ε→0

E
[

|Y (ε) − γ(ε)|3
]

σ3(ε)
< ∞. (8)

This BNA property implies that
√

n|Fn(x)−Φ(x)| remains bounded as a function
of ε, i.e., that the approximation of Fn by the normal distribution remains accurate
up to order O(n−1/2), uniformly in ε. The reverse is not necessarily true, however.
It may seem more natural to define the BNA property as meaning that

√
n|Fn(x)−

Φ(x)| remains bounded, but Definition 2.15 has already been adopted in other
papers mainly because it is often easier to obtain necessary and sufficient conditions
for BNA with this definition.

If a confidence interval of level 1 − α is obtained using the normal distribution
while the true distribution is Fn, the error of coverage of the computed confidence
interval does not exceed 2 supx∈R

|Fn(x) − Φ(x)|. If that confidence interval is
computed from an i.i.d. sample Y1(ε), . . . , Yn(ε) of Y (ε), BNA implies that the
coverage error remains in O(n−1/2) when ε → 0, with a hidden constant that does
not depend on ε.

BNA is not equivalent to BRM-3, because we divide by σ3(ε) in the definition
of BNA and by γ3(ε) for BRM-3. One can have BNA and not BRM-3 (or BRM-
3 and not BNA) if γ(ε) converges to zero faster than σ(ε) (or the opposite). If
σ(ε) = Θ(γ(ε)), then the two properties are equivalent.

Note that there are more general versions of the Berry-Esseen inequality that
require only a bounded moment of order 2+ δ for any δ ∈ (0, 1] instead of the third
moment β3; see Petrov [1995, Theorem 5.7]. However, the bound on |Fn(x)−Φ(x)|
in that case converges only as O(n−δ/2) instead of O(n−1/2).

2.4 Asymptotic good estimation of the mean and of the variance

AGEM and AGEV are two additional robustness properties introduced by Tuffin
[2004], under the name of “well estimated mean and variance,” in the context of the
application of IS to an HRMS model. Here we provide more general definitions of
these properties. We assume that Y (ε) is a discrete random variable, which takes
value y with probability p(ε, y) = P[Y (ε) = y], for y ∈ R. We also assume that its
mean and variance are polynomial functions of ε: γ(ε) = Θ(εt1) and σ2(ε) = Θ(εt2)
for some constants t1 ≥ 0 and t2 ≥ 0. AGEM and AGEV state that the sample
paths that contribute to the highest-order terms in these polynomial functions are
not rare.
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Definition 2.16. (AGEM and AGEV) The estimator Y (ε) has the AGEM
property if yp(ε, y) = Θ(εt1) implies that p(ε, y) = Θ(1) (or equivalently, that
y = Θ(εt1)). It has the AGEV property if [y − γ(ε)]2p(ε, y) = Θ(εt2) implies that
p(ε, y) = Θ(1) (or equivalently, that [y − γ(ε)]2 = Θ(εt2)).

These properties mean that for the realizations y of Y that provide the leading
contributions to the estimator, the contributions decrease only because of decreasing
values of y, and not because of decreasing probabilities. In a setting where IS is
applied and Y is the product of an indicator function by a likelihood ratio (this
will be the case in Sections 5.2 and 5.3), this means that the value of the likelihood
ratio when yp(ε, y) contributes to the leading term must converge at the same rate
at this leading term when ε → 0.

2.5 Robustness of the empirical variance

An important special case that we now examine is the stability of the empirical
variance as an estimator of the true variance σ2(ε). Let X1(ε), . . . ,Xn(ε) be an
i.i.d. sample of X(ε), where n ≥ 2. The empirical mean and empirical variance are
X̄n(ε) = (X1(ε) + · · · + Xn(ε))/n and

S2
n(ε) =

1

n − 1

n
∑

i=1

(Xi(ε) − X̄n(ε))2.

If we take Y (ε) = S2
n(ε) in our framework of the previous subsections, we obtain

definitions of the robustness properties for S2
n(ε) as an estimator of σ2(ε). Let

γ(ε) = E[X(ε)] (not E[Y (ε)] for now).

Proposition 2.17. If σ2(ε) = Θ(γ2(ε)), then BRM-2k for X(ε) implies BRM-k
for S2

n(ε), for any k ≥ 1.

Proof. Under the given assumption,

E[S2k
n (ε)]

σ2k(ε)
≤ E[X2k(ε)]

σ2k(ε)
= Θ

(

E[X2k(ε)]

γ2k(ε)

)

.

The BRM-4 property for a given estimator X(ε) and the BRE property for its
corresponding empirical variance S2

n(ε) are both linked to its fourth moment, so
we might think that they are equivalent. In fact, we know (e.g., [Wilks 1962, page
200] or [Kendall and Stuart 1977, Exercise 10.13]) that

Var[S2
n(ε)] =

1

n

(

E[(Y (ε) − E[Y (ε)])4] − n − 3

n − 1
σ4(ε)

)

. (9)

Therefore,

Var[S2
n(ε)]

σ4(ε)
= Θ

(

E[(X(ε) − γ(ε))4]

σ4(ε)

)

which differs in general from

Θ

(

E[X4(ε)]

γ4(ε)

)

.
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Thus, BRM-4 for X(ε) and BRE for S2
n(ε); they are not equivalent in general. For

example, σ2(ε) may converge to zero either at a faster rate or at a slower rate than
γ2(ε). If σ2(ε) = Θ(γ2(ε)) and E[(Y (ε) − γ(ε))4] = Θ(E[Y 4(ε)]), then they are
equivalent. A similar observation applies to the equivalence between LE-4 for X(ε)
and LE for S2

n(ε) are not equivalent in general.

2.6 Vanishing relative centered moments

There are situations where not only the relative moment of order k is bounded, but
its centered version also converges to zero when ε → 0. We will give examples of
that. It turns out that when this happens for any moment of order larger than 1,
we are sampling asymptotically (as ε → 0) from a zero-variance distribution.

Definition 2.18. The estimator Y (ε) has vanishing relative centered moment
of order k (VRCM-k) if

lim sup
ε→0

ck(ε) = 0. (10)

It has vanishing relative variance, or equivalently vanishing relative error (VRE),
if

lim sup
ε→0

σ(ε)

γ(ε)
= 0. (11)

Obviously, VRCM-k implies VRCM-k′ for 1 ≤ k′ ≤ k, and similarly for the work-
normalized versions. The following gives an equivalent definition of VRCM-k:

Proposition 2.19. For any k ≥ 1,

lim sup
ε→0

mk(ε) = 1 if and only if lim sup
ε→0

ck(ε) = 0. (12)

To prove this result we will use the following lemma:

Lemma 2.20. For any k > 1 and δ ∈ (0, k − 1), there is a constant A (δ) > 0
such that for all x ≥ 0,

δ |x − 1| ≤ xk − kx + (k − 1) + A (δ) . (13)

Moreover, A (δ) can be chosen so that A (δ) = Θ
(

δ2
)

as δ → 0.

Proof. Fix δ > 0 and suppose first that x ≥ 1. Consider the function

f+ (x) = xk − (k + δ) x + (k − 1) + δ.

Note that f ′
+ (x+ (δ)) = 0 implies x+ (δ) = ((k + δ) /k)

1/(k−1)
> 0. Since f+ is

strictly convex, we conclude that f+ (x+ (δ)) < 0 is the global minimum of f+.
Therefore, we conclude that for all x ≥ 1

δ (x − 1) ≤ xk − kx + (k − 1) − f+ (x+ (δ)) .

Now, observe that

f+ (x+ (δ)) =

(

1 +
δ

k

)k/(k−1)

− (k + δ)

(

1 +
δ

k

)1/(k−1)

+ (k − 1) + δ

= 1 +
δ

(k − 1)
+ Θ

(

δ2
)

− (k + δ)

(

1 +
δ

k (k − 1)

)

+ (k − 1) + δ
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= Θ
(

δ2
)

as δ → 0. A completely analogous strategy can be applied to the function

f− (x) = xk − (k − δ) x + (k − 1) − δ

for x ∈ [0, 1), in which case we have that the minimizer is x− (δ) = ((k − δ) /k)
1/(k−1)

with Θ
(

δ2
)

= f− (x− (δ)) < 0. We can then conclude that (13) holds with

A (δ) = −[f− (x− (δ)) + f+ (x+ (δ))] = Θ
(

δ2
)

.

Proof of Proposition 2.19. First we show that lim supε→0 mk(ε) = 1 must
imply that lim supε→0 ck(ε) = 0. Applying Lemma 2.20 with x = Y (ε) /γ (ε),
taking expectations and ε → 0, we find that

lim sup
ε→0

E [|Y (ε) /γ (ε) − 1|] ≤ A (δ) /δ.

Then we let δ → 0 and conclude that Y (ε) /γ (ε) → 1 in the L1 norm and,
in particular, in probability. Since, the random variables Y k (ε) /γk (ε) are non-
negative and their expectation converges to unity as ε → 0, then we must have
uniform integrability and therefore convergence of Y (ε) /γ (ε) in the Lk norm as
ε → 0 [Durrett 1996, page 260]. For the converse implication, the assumption that
lim supε→0 ck(ε) = 0 for k > 1 implies both convergence in probability to unity and
uniform integrability of the random variables Y k (ε) /γk (ε). This implies in turn
that lim supε→0 mk(ε) = 1.

Suppose we want to estimate

γ(ε) = EPε
[Y (ε)] =

∫

Ω

Y (ε, ω)dPǫ(ω)

for some probability measure Pǫ that depends on ε and some non-negative random
variable Y (ε), where Ω is the sample space. We may think of Pε as the probability
law that we are using to simulate our model. It could be the law of a Markov
chain, for example, and it may include some variance reduction strategies such as
importance sampling, splitting, and so on. In this context, we have a zero-variance
change of measure with the new measure Q∗

ε defined by

dQ∗
ε

dPε
(ω) =

Y (ε, ω)

γ(ε)
.

Recall that the total variation distance between two measures P and Q is defined
by |P − Q|∞ = supA |P (A) − Q(A)|, where the sup is over all measurable sets.

Proposition 2.21. If Y (ε) is VRCM-(1+δ) for some δ > 0, then |Pε−Q∗
ε|∞ =

o(1).

Proof. Assuming that A runs over all measurable subsets of Ω, we have

sup
A

|Pε(A) − Q∗
ε(A)| ≤ sup

A
|EPε

[(dQ∗
ε/dPε) I(A)] − EPε

[I(A)]|

≤ EPε
|dQ∗

ε/dPε − 1|
≤ E

1/(1+δ)
Pε

[

|dQ∗
ε/dPε − 1|(1+δ)

]
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≤ E
1/(1+δ)
Pε

[

|Y (ε)/γ(ε) − 1|(1+δ)
]

= o(1). �

In Proposition 2.21, we may have that only Pε is a function of ε and not Y , or
only Y and not Pε ≡ P , or both are functions of ε. This proposition indicates
that a VRCM-k estimator (with k > 1) based on importance sampling induces
a distribution that is close (in total variation) to the zero-variance sampler, and
even converges to it when ε → 0. This might suggest that the design of such
an estimator in situations of practical interest is hopeless. However, simulation
schemes have recently been shown to achieve VRCM-k for k > 1 in some situations
where a zero-variance IS scheme is used in which the exact function γ is replaced
by an approximation v that converges to γ uniformly when ε → 0 [L’Ecuyer and
Tuffin 2008a; 2008b]. This happens for instance in the general Markov chain model
examined in Example 2.23 below, which can be encountered in various situations,
including reliability settings such as the HRMS models discussed in Section 5 and in
L’Ecuyer and Tuffin [2008b]. The class of sampling schemes examined in Section 5
do not satisfy conditions (14) and (15), but it is possible to design a sampling
scheme that does satisfy these conditions, along the lines of Example 2.23, and the
corresponding estimator will then be VRCM-k. Other examples where a VRCM-k
property holds in queueing and insurance problems can be found in Blanchet and
Glynn [2007] and Juneja [2007].

Note that in a Markov chain setting, the probability of reaching a given set
of states B (where the rare event occurs) can be small either because reaching
B requires a large number of “upstream” transitions (and that number increases
when ε → 0), or because all sample paths leading to B have transitions whose
probabilities are very small (and converge to 0 when ε → 0) while the number
of transitions may remain bounded. The following two examples illustrate how
VRCM-k can be achieved (or not) in this second case. We start with a small
concrete illustration; then we show in Example 2.23 how the results can be extended
to a general class of Markov chain models.

Example 2.22. This small example gives a concrete illustration where a simple
change of the transition probabilities can provide VRCM-k. Consider a system
with two types of components and two components of each type. It evolves as a

DTMC {Xj , j ≥ 0} whose state Xj = (X
(1)
j ,X

(2)
j ) at step j gives the number

of failed components of each type. The system is down (in failure state) when
the two components of any given type are down, i.e., when its state belongs to
the set B = {(0, 2), (1, 2), (2, 2), (2, 1), (2, 0)}. We want to estimate the probability
γ(ε) that a system starting in state x0 = (0, 0) reaches B before it returns to
state x0. For this, we simulate this chain using IS by replacing the transition
probabilities p(x, y, ε) = P[Xj = y | Xj−1 = x] by new probabilities q(x, y, ε). The
probabilities p(x, y, ε) and q(x, y, ε) are given in Table I, in which the five states of
B are aggregated in a single state called B.

Let ΠB be the set of sample paths π = (x0, x1, . . . , xτ ) going from x0 to B, where
τ = min{j : xj ∈ B}. Each path π has probability p(π, ε) =

∏τ
j=1 p(xj−1, xj , ε).

The most likely path leading to B is π1 = ((0, 0), (1, 0), B) and its probability is
(1−ε12)ε6 = ε6+O(ε18). It is not difficult to see that we also have γ(ε) = ε6+o(ε6)
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Table I. Transition probabilities for Example 2.22; the entry in row x and column y gives the
original transition probability p(x, y, ε) from state x to state y (top) and the modified probability
q(x, y, ε) (bottom).

(0,0) (0,1) (1,0) (1,1) B

(0,0) ε12 1 − ε12

ε12 1 − ε12

(0,1) 1 − ε2 − ε4 ε4 ε2

0 ε2 1 − ε2

(1,0) 1 − ε6 − ε8 ε8 ε6

0 ε2 1 − ε2

(1,1) 1/2 − ε4 1/2 − ε4 2ε4

1/4 1/4 1/2

Table II. Values of b(π), c(π), and δ(k, π) (for k = 2, 3, 4), for each acyclic path in ΠB .

Path π b(π) c(π) δ(2, π) δ(3, π) δ(4, π)

((0, 0), (0, 1), B) 14 12 4 0 -4
((0, 0), (0, 1), (1, 1), B) 20 14 14 14 14
((0, 0), (0, 1), (1, 1), (1, 0), B) 20 14 14 14 14

((0, 0), (1, 0), B) 6 0 0 0 0
((0, 0), (0, 1), (1, 1), B) 12 2 10 14 18
((0, 0), (0, 1), (1, 1), (1, 0), B) 12 2 10 14 18

(the next example gives a proof in a more general setting). When we reach B via
some path π ∈ ΠB , the estimator Y (ε) takes the value p(π, ε)/q(π, ε), which is the
corresponding likelihood ratio, and this happens with probability q(π, ε). Note that
p(π, ε) = a(π)εb(π) +o(εb(π)) and q(π, ε) = Θ(εc(π)) for some integers b(π) and c(π),
and a real number a(π) > 0. Then the kth relative moment can be written as

mk(ε) =
∑

π∈ΠB

q(π, ε)

[

p(π, ε)

q(π, ε)γ(ε)

]k

and the contribution of path π ∈ ΠB to mk(ε) is

q(π, ε)

[

p(π, ε)

q(π, ε)γ(ε)

]k

= εδ(k,π) + o(εδ(k,π)),

where δ(k, π) = k(b(π) − 6) − (k − 1)c(π). This contribution vanishes when ε → 0
if and only if δ(k, π) > 0. For the most likely path π1, we have δ(k, π1) = −(k −
1)c(π1) ≤ 0 and its contribution to mk(ε) is 1+o(1) if and only if q(π, ε) = ε6+o(ε6).
These two conditions are necessary and sufficient for having mk(ε) = 1 + o(1), i.e.,
for VRCM-k. To prove it formally, we actually have one more detail to check: the
number of paths that contain cycles is infinite and we must make sure that their
total contribution remains negligible. This is done for the general case in the next
example. Note that in the present case, all cycles have probability O(ε2), so the
probability of having c cycles or more decreases as O(ε2c). Similarly, BRM-k holds
if and only if δ(k, π) ≥ 0 for all acyclic paths π ∈ ΠB .

Table II enumerates all acyclic paths π ∈ ΠB , and gives the values of b(π), c(π),

ACM Journal Name, Vol. V, No. N, Month 20YY.



Asymptotic Robustness in Rare-Event Simulation · 17

and δ(k, π) for k = 2, 3, and 4, for those paths. We can see that VRCM-k holds for
all k < 3 but not for k ≥ 3. The problem comes from the path π = ((0, 0), (0, 1), B),
whose probability has not been increased sufficiently by the IS scheme. When this
path is selected, the likelihood ratio is ε2/(1 − ε2), which decreases too slowly
relative to the mean γ(ε) when ε → 0. The contribution of this path to the relative
kth centered moment is

Θ(ε12|ε2 − ε6)/ε6|k) = Θ(ε12|ε−4 − 1|k) = Θ(ε−4(k−3)),

which does not vanish as ε → 0 for k ≥ 3. For k > 3, this contribution actually
increases with ε, so the estimator is not even BRM-k for k > 3. For k = 3, this
contribution is Θ(1).

To improve this IS estimator and make it VRCM-k for all k, it suffices to change
q((0, 0), (0, 1), ε), say from ε12 to ε8. Then, c(π) decreases by 4 for the first three
paths in Table II, and we have δ(k, π) > 0 for all paths π ∈ ΠB \ {π1} and all k.
The resulting estimator is VRCM-k for all k. We can also observe that changing
from ε12 to ε8 gives a better approximation of the zero-variance IS.

Example 2.23. We now develop the ideas of the previous example in a more
general Markov chain setting. Consider a Markov chain {Xj , j ≥ 0} with finite
state space and with transition probabilities

p(x, y, ε) = P[Xj = y | Xj−1 = x] = a(x, y)εb(x,y),

where a(x, y) and b(x, y) are non-negative constants (independent of ε) for all pairs
of states (x, y). Let B be a given set of states and suppose that the chain starts
from some fixed state x0 6∈ B. We want to estimate the probability γ(ε) of reaching
B before returning to x0.

Let ΠB be the set of all sample paths π = (x0, x1, . . . , xτ ) going from x0 to B,
where xτ ∈ B and xj 6∈ B for all j < τ . Suppose that among all the paths π ∈ ΠB ,
there is a set Π1 of paths π having probability

p(π, ε) =
τ
∏

j=1

p(xj−1, xj , ε) = a(π)εb + o(εb)

where a(π) > 0 and b > 0, and all other paths have probability p(π, ε) = o(εb).
Suppose also that all cycles (paths going from one state to the same state) that
belong to some path π ∈ ΠB have probability O(εδ), for some constant δ > 0.
Then, Π1 cannot contain paths having a cycle, so it must be finite. It is easy to see
that the paths π ∈ Π1 are the dominant paths within ΠB when ε → 0, in the sense
that

lim
ε→0

1

γ(ε)

∑

π∈Π1

p(π, ε) = lim
ε→0

aεb + o(εb)

γ(ε)
= 1,

where a =
∑

π∈Π1
a(π).

Suppose now that we simulate this chain using importance sampling by replacing
the probabilities p(x, y, ε) by new probabilities q(x, y, ε) such that for any path
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π ∈ Π1, the new probability of that path satisfies

q(π, ε) =

τ
∏

j=1

q(xj−1, xj , ε) =
a(π)

a
+ o(1) (14)

when ε → 0. This implies that the sum of probabilities of all paths in ΠB \ Π1 is
o(1) under these new probabilities. The IS estimator of γ(ε) is the likelihood ratio
Y (ε) = p(π, ε)/q(π, ε) if we reach B via some path π, and 0 if we do not reach B.
When we reach B via a path π ∈ Π1, we have

Y (ε) = p(π, ε)/q(π, ε) =
a(π)εb

a(π)/a + o(1)
= aεb + o(εb),

and this happens with probability 1 + o(1). The set of all other paths leading to B
has total probability o(1). We nevertheless need to bound the contribution of those
paths to the moments of order k > 1, and this is a bit tricky because these paths
could contain an unlimited number of cycles, so their number is generally infinite.

To bound the contribution of those paths π ∈ ΠB \ Π1, we assume that for
each such path having original probability p(π, ε) = Θ(εb(π)) for b(π) > b, the new
probability satisfies q(π, ε) = Θ(εc(π)), for some constant c(π) > 0, and that these
constants satisfy

δ(k, π) = k[b(π) − b] − (k − 1)c(π) > 0 (15)

if we are interested in the kth moment. Finally, we assume that for any state
x 6= x0, x 6∈ B, and that belongs to a path π ∈ ΠB , the probability of returning
to x (i.e., making a cycle) before hitting B or x0 is never equal to 1 under the
new probabilities, and the likelihood ratio associated with any such cycle does not
exceed 1, at least for ε small enough. Since the number of possible cycles is finite,
this assumption implies that there is a constant ρ < 1 such that the probability

that there are j cycles or more does not exceed ρj . Let Π
(0)
B be the set of paths in

ΠB that contain no cycle. For any path π ∈ ΠB that has cycles, let φ(π) ∈ Π
(0)
B the

path obtained from π by removing all cycles. Under our assumptions, given that

we have a path π for which φ(π) = π0 ∈ Π
(0)
B , the probability that this path has j

cycles does not exceed ρj . Therefore, the set φ−1(π0) of all paths π that map to
π0 has total probability at most q(π0, ε)(1 + ρ + ρ2 + · · · ) = q(π0, ε)/(1 − ρ). And
the likelihood ratio associated with any path in φ−1(π0) does not exceed that of π0

(for ε small enough). For the paths π for which π0 = φ(π) ∈ Π1, the probability of
a cycle must be o(1), because q(π, ε) = Θ(1) if and only if π ∈ Π1. We can then
replace ρ by o(1) in the above and the set of paths in φ−1(π0) that contain at least
one cycle has total probability q(π, ε)o(1)/(1 − o(1)).

With these ingredients in hand, we can bound the kth relative centered moment
of the IS estimator as follows:

E

[

∣

∣

∣

∣

Y (ε)

γ(ε)
− 1

∣

∣

∣

∣

k
]

=
∑

π∈ΠB

q(π, ε)

∣

∣

∣

∣

p(π, ε)

q(π, ε)γ(ε)
− 1

∣

∣

∣

∣

k
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≤
∑

π∈Π1

q(π, ε)

∣

∣

∣

∣

aεb + o(εb)

γ(ε)
− 1

∣

∣

∣

∣

k

+
∑

π∈Π1

q(π, ε)o(1)

1 − o(1)

∣

∣

∣

∣

p(π, ε)

q(π, ε)γ(ε)
− 1

∣

∣

∣

∣

k

+
∑

π∈Π
(0)
B

\Π1

q(π, ε)

1 − ρ

∣

∣

∣

∣

p(π, ε)

q(π, ε)γ(ε)
− 1

∣

∣

∣

∣

k

= (1 + o(1)) |1 + o(1) − 1|k +
∑

π∈Π1

o(1) +
∑

π∈Π
(0)
B

\Π1

O
(

εc(π) + εk[b(π)−b]−(k−1)c(π)
)

= o(1)

when ε → 0. So we have VRCM-k. From Proposition 2.21, this implies that
q(π, ε) − q∗(π, ε) → 0 for any sample path π, where q∗(π, ε) denote the path prob-
abilities under the zero-variance IS.

Condition (14) turns out to be also necessary for VRCM-k, since if q(π, ε) =
a(π)/a + δ(π) + o(1) for some δ(π) 6= 0 and π ∈ Π1, then Y (ε) = a(π)εb/[a(π)/a +
δ(π)+o(1)] = aεb/[1+aδ(π)/a(π)]+o(εb), and the contribution of this path to the
kth relative centered moment is no longer o(1).

Example 2.22 does satisfy all the assumptions made here.

In the following sections, we examine the robustness concepts discussed so far in
some settings that fit under the umbrella of estimating a first-passage probability
for a Markov chain.

3. ESTIMATORS BASED ON ZERO-VARIANCE APPROXIMATION FOR FIRST-

PASSAGE PROBABILITIES IN A MARKOV CHAIN

In this section, we adopt a framework where a rare event occurs when some discrete-
time Markov chain hits a given set of states B before hitting some other set A, and
we want to estimate the probability of that rare event. In some of these settings,
the Markov chain is a random walk on the real line, with i.i.d. increments, and the
rare event occurs when the walks exceeds some fixed level. We look at situations
where the increments have light-tail and heavy-tail distributions, and we consider
both state-independent and state-dependent IS schemes. Our purpose is to study,
in these settings, the different robustness properties defined earlier, and to illustrate
the differences between these properties.

The model is a Markov chain X = {Xj , j ≥ 0} living on a state space S equipped
with a sigma-field F , with transition kernel K = {K (x,C) : x ∈ S, C ∈ F}. We use
the notation Px (·) for the probability measure generated by X given that X0 = x.
For C ⊂ S, define τC = inf{j ≥ 0 : Xj ∈ C}. Given A and B, two disjoint subsets

of S, and some fixed initial state x0 ∈ (A ∪ B)c def
= S \ A ∪ B, we are interested in

estimating γ(x0), where

γ(x) = γ(x, ε) = Px[τB < τA]

is the probability of reaching B before A (in finite time) when starting from x ∈ S.
(We implicitly assume all along that τB < τA implies that τB < ∞.) In particular,
γ(x) = 1 for x ∈ B and γ(x) = 0 for x ∈ A. In this model, K, A, and B may
depend on ε.
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An importance sampling scheme here consists in replacing the kernel K by an-
other kernel, and multiplying the original estimator by the appropriate likelihood
ratio [Glynn and Iglehart 1989; Juneja and Shahabuddin 2006]. It is well-known
that in this setting, a kernel K∗ defined by

K∗ (x, dy) = K (x, dy)
γ(y)

γ(x)

for all x such that γ(x) > 0, and (say) K∗(x,A) = 1 when γ(x) = 0, gives a zero-
variance IS estimator [Juneja and Shahabuddin 2006]. This kernel K∗ describes
the conditional behavior of the chain given the event {τB < τA}; see Blanchet
and Glynn [2007], Theorem 1. Unfortunately, one cannot use it in practice to
simulate the chain (in general), because this would require perfect knowledge of
the function γ(·). But in view of this characterization of the optimal change-of-
measure, a natural strategy in developing a state-dependent importance sampling
for estimating γ(x0) is to use as a change-of-measure a transition kernel of the form

Kv (x, dy) = K (x, dy)
v (y)

w (x)
,

where v : S → [0,∞) is a good approximation (in some sense) of the function γ(·),
and

w (x) =

∫

S

K (x, dy) v (y)

is the appropriate normalizing constant to make sure that Kv(x, ·) integrates to 1.
This w(x) is assumed to be finite for every x ∈ (A ∪ B)

c
. We shall use P

v
x(·) to

denote the probability measure generated by the chain X under the kernel Kv (·),
with initial state x, and E

v
x(·) for the corresponding expectation. The corresponding

IS estimator of γ(x0) is the indicator of the event multiplied by the likelihood ratio
associated with the change of measure and the realized sample path:

Y = Y (ε) = I[τB < τA]

τB
∏

j=1

w(Xj−1)

v(Xj)
= I[τB < τA]

v(X0)

v(XτB
)

τB−1
∏

j=0

w(Xj)

v(Xj)
. (16)

Since we know that γ(x) = 1 for x ∈ B, we can take v(x) = 1 for all x ∈ B. Note
that when v = γ, we have w = v and the last product in (16) equals 1. Ideally, we
want v to be a good enough approximation to γ for this product to always remain
close to 1; in that case Y will always take a value close to γ(x0) when τB < τA,
which implies that most of the time the event {τB < τA} will occur. Then, the
variance of Y will be very small.

To rigorously prove robustness properties such as LE-k, BRM-k, and VRCM-k,
we may use an asymptotic lower bound on γ(x0, ε) and an asymptotic upper bound
on the kth moment of Y under the measure P

v
x0

(·), for ε → 0. The lower bound may
come from a known asymptotic approximation of γ(x0, ε), while the upper bound
can be obtained via a Lyapunov inequality as indicated in Proposition 3.1. This
proposition generalizes a result of Blanchet and Glynn [2007], that corresponds to
the case of k = 2, and which the authors have used to establish the BRE property
of a state-dependent estimator.
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Proposition 3.1. Suppose that there are two positive finite constants κ1 and
κ2 and a function hk : S → [0,∞) such that v(x) ≥ κ1 and hk(x) ≥ κ2 for each
x ∈ B, and

(

w(x)

v(x)

)k

E
v
x [hk(X1)] ≤ hk(x) (17)

for all x ∈ (A ∪ B)c. Then, for all x ∈ (A ∪ B)c,

E
v
x[Y k] ≤ vk(x)hk(x)

κk
1κ2

. (18)

Proof. Let M = {Mn, n ≥ 0} be defined via

Mn = hk (XτB∧n)

τB∧(n−1)
∏

j=0

(

w (Xj)

v (Xj)

)k

I (τB ∧ n < τA) ,

where a ∧ b means min(a, b). We first show that under P
v
x (·), M is a non-negative

supermartingale adapted to the filtration G = {Gn = σ (X0, ...,Xn) , n ≥ 0} gener-
ated by the chain X. Let τ = min(τA, τB) = τA∪B and note that τ is a stopping
time with respect to G, i.e., {τ > n} ∈ Gn for all n.

We decompose

E
v
x[Mn+1 | Gn] = E

v
x [Mn+1 · I(τ > n) | Gn] + E

v
x [Mn+1 · I(τ ≤ n) | Gn]

and bound each of the two terms. We have

E
v
x [Mn+1 · I(τ > n) | Gn]

= I (τ > n, τB ∧ n < τA)

n−1
∏

j=0

(

w (Xj)

v (Xj)

)k

· E
v
x

[

hk (Xn+1)

(

w (Xn)

v (Xn)

)k
∣

∣

∣

∣

∣

Gn

]

≤ I (τ > n, τB ∧ n < τA) hk (Xn)

n−1
∏

j=0

(

w (Xj)

v (Xj)

)k

,

where the last inequality follows from (17). On the other hand,

E
v
x0

[Mn+1 · I (τ ≤ n) | Gn] = hk (XτB
)

τB−1
∏

j=0

(

w (Xj)

v (Xj)

)k

I (τB < τA, τ ≤ n) .

Combining these two inequalities, we obtain

E
v
x0

[Mn+1 | Gn] ≤ Mn.

It then follows from the supermartingale convergence theorem that

lim
n→∞

Mn = hk (XτB
)

τB−1
∏

j=0

(

w (Xj)

v (Xj)

)k

I (τB < τA)

almost surely. The supermartingale property further implies that

E
v
x0

[Mn] ≤ M0 = hk (x) .
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Fatou’s lemma and the fact that hk (x) ≥ κ2 for x ∈ B imply that

κ2E
v
x





τB−1
∏

j=0

(

w (Xj)

v (Xj)

)k

I (τB < τA)



 ≤ hk(x).

From this, we obtain that

E
v
x

[

Y k
]

= E
v
x






I[τB < τA]





v(x)

v(XτB
)

τB−1
∏

j=0

w(Xj)

v(Xj)





k





≤
(

v(x)

κ1

)k
hk(x)

κ2
,

which yields the result.

As a consequence of the previous proposition, we obtain

Theorem 3.2. Assume that the conditions of Proposition 3.1 are satisfied.

(i) If

lim
ε→0

ln[v(x0, ε)] + k−1 ln[hk(x0, ε)]

ln[γ(x0, ε)]
= 1,

then Y (ε) is LE-k.

(ii) If

lim
ε→0

[

v(x0, ε)

γ(x0, ε)

]k

hk(x0, ε) < ∞,

then Y (ε) is BRM-k.

(iii) If

lim
ε→0

[

v(x0, ε)

γ(x0, ε)

]k
hk(x0, ε)

κk
1κ2

= 1,

then Y (ε) is VRCM-k.

Proof. The three assertions follow immediately from the corresponding defini-
tions; for (iii), we use the equivalence given in Proposition 2.19.

These sufficient conditions are often convenient to verify the BRM-k, LE-k, and
VRCM-k properties of a given estimator. We will use the first two in the next
section. It is clear that condition (iii) is much stronger than (ii), which is in turn
stronger that (i). Dupuis and Wang [2004] have a similar condition for LE-2, and
they interpret the Lyapunov function hk as a subsolution to the recurrence equation
of a stochastic game in which we select a change of measure (for IS) and then a
devil picks a set of sample paths with the worst possible variance contribution.

4. LARGE DEVIATION PROBABILITIES IN RANDOM WALKS

4.1 The Random Walk

Let D1,D2, . . . be i.i.d. random variables, Sj = D1 + · · ·+Dj (the jth partial sum),
for j ≥ 0. Note that {Sj , j ≥ 0} is a random walk over the real line. Take a
constant ℓ > E[Dj ], put n = n(ε) = ⌈1/ε⌉, and let

γ(ε) = γ(ε, ℓ) = P[Sn/n ≥ ℓ].
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The weak law of large numbers guarantees that γ(ε) → 0 when ε → 0. The
indicator function Y (ε) = I[Sn ≥ nℓ] is an unbiased estimator of γ(ε) with kth
moment E[Y k(ε)] = γ(ε), so its relative kth moment is

γ(ε)/γk(ε) = 1/γk−1(ε)

for all k ≥ 1. Thus, this estimator is not LE-k whenever k > 1.

4.2 State-Independent Exponential Twisting Based on Large Deviation Theory

For this situation, it is well known that an LE-2 estimator can be obtained via IS
with exponential twisting, under the assumption that Dj has a light tail distribution
[Siegmund 1976; Bucklew et al. 1990; Bucklew 2004], as we now outline.

Suppose Dj has density π over R, with finite moment generating function

M(θ) =

∫ ∞

−∞

eθxπ(x)dx = E
[

eθDj
]

for θ in a neighborhood of 0 (this is equivalent to assuming that Dj has finite mo-
ments of all orders). Let Ψ(θ) = lnM(θ) denote the cumulant generating function.
Exponential twisting means inflating the density π(x) by a factor that increases
exponentially with x, and normalizing so that the new density integrates to 1. This
new density is

πθ(x) = eθxπ(x)/M(θ) = eθx−Ψ(θ)π(x), x ∈ R,

where θ > 0 is a parameter to be determined and M(θ) turns out to be the appropri-
ate normalization constant. Let Eθ denote the mathematical expectation associated
with the new density πθ. It is easily seen that Eθ[Dj ] = Ψ′(θ) = M ′(θ)/M(θ) and
Ψ′(0) = M ′(0) = µ. The IS estimator of γ(ε) under this density is

Y (θ, ε) = I[Sn ≥ nℓ]L(θ, Sn),

where

L(θ, Sn) = exp[−θSn] Mn(θ) = exp[nΦ(θ) − θSn].

We now assume that there exists a real number θ∗ℓ > 0 such that Ψ′(θ∗ℓ ) = ℓ.
This is typically the case because frequently, Ψ′(θ) is continuous in θ, Ψ′(θ) → ∞
when θ → θ0 for some θ0 > 0 (i.e. Ψ′(θ) is what is called steep) and we know
that Ψ′(0) = µ < ℓ. Under steepness, the three propositions that follow are direct
consequences of the results of Sadowsky [1993]. They imply that for all k ≥ 2,
Y (θ∗ℓ , ε) is LE-k but is not BRM-k. Sadowsky states his results only for integer k,
but his proofs work for any real k > 1. Let I(ℓ) = ℓθ∗ℓ − Ψ(θ∗ℓ ); this function I is
known as the large deviation rate function.

Proposition 4.1. For any k > 1 and any θ the estimator Y (θ, ε) is not BRM-k.
It is LE-k if and only if θ = θ∗ℓ . In the latter case,

lim
ε→0

ln γ(ε)

n(ε)
= lim

ε→0

ln E[Y k(ε)]

kn(ε)
= I(ℓ).

Suppose now that we make m(ε) i.i.d. copies of Y (θ, ε), take their average µ̃(ε)
as an estimator of µ and take their sample variance σ̃2(ε) as an estimator of the
variance of Y (θ, ε).

ACM Journal Name, Vol. V, No. N, Month 20YY.



24 · Pierre L’Ecuyer, Jose H. Blanchet, Bruno Tuffin, and Peter W. Glynn

Proposition 4.2. Suppose that m(ε) ≡ m (a fixed constant). Then, for any
k ≥ 1, σ̃2(ε) is not BRM-k, and it is LE-k if and only if θ = θ∗ℓ .

Proposition 4.3. Suppose that θ = θ∗ℓ . Then, for all k > 1, µ̃(ε) is BRM-k if
and only if m(ε) = O(ε−1/2), and similarly for σ̃2(ε). On the other hand, these
estimators have a computational cost proportional to m(ε)n(ε) = O(ε−3/2). Since
their relative moments are Θ(1) when m(ε) = Θ(ε−1/2), their work-normalized
relative variance is unbounded.

4.3 A State-Dependent IS Scheme for Light-tailed Sums

BRM-k for k > 1 cannot be obtained with a state-independent IS scheme as in the
previous section, but it can be achieved with a state-dependent IS scheme, as we
now explain. As a key ingredient, we use the following (asymptotic) approximation
of γ(ε, ℓ) = P[Sn ≥ nℓ], taken from Asmussen [2003], page 355:

Proposition 4.4. Assume that D1 has a density with respect to the Lebesgue
measure. Then, for fixed ℓ and n → ∞,

P[Sn ≥ nℓ] =
exp[−nI(ℓ)]

[2πnΨ′′(θ∗ℓ )]1/2θ∗ℓ
[1 + o(1)]. (19)

The random walk model considered here fits the framework of Section 3 if we
define the state of the Markov chain at step j as Xj = (n − j, Lj) where n − j
is the number of steps that remain and (n − j)Lj = nℓ − Sj is the distance that
remains to be covered for Sn to reach nℓ. We start in state x0 = (0, 0), the set B
is {(0, ℓn) : ℓn ≤ 0}, and we have

γ(n − j, ℓj) = P[Sn − Sj ≥ ℓ − (n − j)ℓj ] = P[Sn−j/(n − j) ≥ ℓj ].

In view of (19), we can think of approximating γ(n − j, ℓj) by

v(n − j, ℓj) =
exp[−(n − j)I(ℓj)]

[2π(n − j)Ψ′′(θ∗ℓj
)]1/2

(20)

for j < n and ℓj > 0, and v(0, ℓn) = I[ℓn ≤ 0]. The latter ensures that we hit B
with probability 1 under this IS scheme, because the last transition is made under
the distribution conditional on hitting B. When ℓj ≤ 0 for j < n, IS is turned off
for step j. For j < n − 1 and x = (n − j, ℓj) with ℓj > 0, the normalizing constant
w(n − j, ℓj) is

w(n − j, ℓj) = E
v
x

[

exp[−(n − j − 1)I(Lj+1)]

[2π(n − j − 1)Ψ′′(θ∗Lj+1
)]1/2

| Lj = ℓj

]

where Lj+1 = [(n − j)Lj − Dj+1)]/(n − j − 1). For j = n − 1, it is w(1, ℓn−1) =
P[Dn > ℓn−1] = γ(1, ℓn−1). We have

max
n>j

[v(n − j, ℓj)/γ(n − j, ℓj)] < ∞

for any fixed j and ℓj . In our expression for v, we dropped the θ∗ℓ that appears in
the denominator of (19) because it typically leads to a simpler density and does
not play a key role for the BRM-k property. If D1 has the normal distribution, for
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example, then the IS scheme without the θ∗ℓ in the denominator just changes the
parameters of the normal distribution.

Under the assumption that D1 has the normal distribution, it is shown by
Blanchet and Glynn [2006] that w(n − j, ℓj)/v(n − j, ℓj) ≤ 1 + (n − j)−2 for all
j < n. In that case, to establish the BRM-k property, we can define

hk(n − j, ℓj) =

n−j
∏

i=1

(1 + i−2)k

for j ≤ n, where an empty product equals 1 by convention. Then,
(

w(n − j, ℓj)

v(n − j, ℓj)

)k

E
v
x

[

hk(n − j − 1, Lj+1)

hk(n − j, Lj)
| Lj = ℓj

]

=

(

w(n − j, ℓj)

v(n − j, ℓj)

)k

(1 + (n − j)−2)−k ≤ 1,

so the conditions of Proposition 3.1 are satisfied with κ1 = κ2 = 1. Since the
function hk is bounded by K =

∏∞
i=1(1 + i−2)k < ∞, the BRM-k property for

all k ≥ 1 then follows from Part (ii) of Theorem 3.2; this gives the following
generalization of a result proved by Blanchet and Glynn [2006] for k = 2:

Proposition 4.5. Suppose that D1 has a normal distribution. Then the IS
scheme that approximates the zero-variance estimator as in Section 3 by using the
function v defined in (20) as described above has the BRM-k property.

Under the change-of-measure adopted for the previous result, the Gaussian prop-
erty is preserved. That is, if the original (nominal) distribution of the D′

is is a
standard normal, then, given Sk = s for k < n − 1, Dk+1 is normally distributed
with mean (nℓ−s)/(n−k−1) and variance 1+1/(n−k−1). This explicit descrip-
tion indicates why the estimator enjoys BRM-k. In particular, the twisting of the
increment’s mean is adjusted at each time-step to direct the process in the right
direction and is turned off as the boundary nℓ is approached. Although the variance
is twisted incrementally, it is the contribution of the drift that drives the overshoot
over the boundary in the standard (blind, or open loop) i.i.d. exponential tilting.
In fact, in Blanchet et al. [2008], it is shown that it is possible to achieve BRM-k
by tilting the mean only (not the variance), so the tilting applied to the variance,
although convenient for the analysis because it comes from the asymptotic approx-
imation (19), is not crucial. The zero-variance change-of-measure can be shown
to yield an overshoot that remains bounded (in distribution) as n → ∞ [Blanchet
and Glynn 2006]. In contrast, because of the CLT, under the blind i.i.d. tilting
the overshoot is of order O(n1/2). Under the state-dependent importance sampling
discussed here, the growth of the overshoot is controlled and its contribution when
computing relative moments is well behaved. To get VRCM-k via Part (iii) of
Theorem 3.2, we would need hk(x0) = 1 + o(1), which is not the case here. In fact,
most of the contribution to the kth relative moment comes from the last few steps
of the walk, and this contribution remains bounded away from 0 when n → ∞.

A similar development can be made for the non-Gaussian case, where D1 has a
general distribution with finite moment generating function [Blanchet et al. 2008].
In fact, it turns out that BRM-k can be obtained by exponential twisting alone
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if the twisting parameter is recomputed at each step. This is usually easier to
implement than the zero-variance approximation based on (19).

4.4 A Criterion for Multidimensional Random Walks

Dupuis and Wang [2004] have developed a criterion that allows to design state-
dependent IS estimators that are LE, in the context of a d-dimensional random walk
with light-tailed increments. They restrict their change of measure to exponential
twisting, but allow the twisting parameter to depend on the current state of the
walk. The techniques can be extended to cover more general Markov processes
[Dupuis and Wang 2005]. Here we summarize their results and argue that the
resulting estimators are LE-k for all k ≥ 1. Let Sj = D1 + · · · + Dj , where the
Dj ’s are i.i.d. random variables with mean zero, taking their values in R

d, and with
cumulant generating function Ψ (θ) = ln E [exp (θ · D1)] for θ ∈ R

d. For simplicity,
we assume that Ψ (·) is finite throughout R

d.
We are interested in estimating P0 (Sn/n ∈ B), for a set B ⊂ R

d that does not
contain 0. We assume as in Dupuis and Wang [2004] that the Legendre transform
of Ψ, L(β) = supθ∈Rd(θ · β − Ψ(θ)) satisfies

inf
β∈B̊

L(β) = inf
β∈B

L(β) = inf
β∈B̄

L(β)

where B̊ and B̄ are the interior and closure of B, respectively. Note that the one-
dimensional setting of Sections 4.1 and 4.2 is a special case of this with B = [ℓ,∞);
things are generally more complicated in the multidimensional case because we
can reach B from many possible directions, whence the parameter β. We further
assume that it is possible to find a function

I =
{

I (x, t) : x ∈ R
d, 0 ≤ t ≤ 1

}

,

that solves (in the classical sense) the nonlinear partial differential equation (PDE)

∂tI (x, t) = Ψ (−∇xI (x, t)) (21)

subject to I(x, 1) = 0 for x ∈ B and I(x, 1) = ∞ for x 6∈ B. The algorithm
suggested by Dupuis and Wang [2004] proceeds as follows. Let x = Sj/n for some
j < n; then let t = j/n and define

θ (x, t) = −∇xI (x, t) .

Sample the increment Dj+1 according to the twisted distribution Pθ(x,t) defined via

Pθ(x,t) (Dj+1 ∈ dy) = P (Dj+1 ∈ dy) exp [θ (x, t) y − Ψ(θ (x, t))] .

The estimator takes the form

Y = exp





n−1
∑

j=0

[−θ (Sj , j/n) Dj+1 + Ψ(θ(Sj , j/n))]



 I (Sn/n ∈ B) .

Theorem 4.6. (Extends Dupuis and Wang [2004]). Suppose that (21), with the
boundary conditions given above, has a solution I in the classical sense. Let P

∗
0(·) be

the probability measure generated by the previous state-dependent IS strategy, given
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S0 = 0. Then,

lim
n→∞

− 1

n
ln P0 (Sn/n ∈ B) = lim

n→∞
− 1

nk
ln E

∗
0[Y

k] = I(0, 0),

so this estimator is LE-k for any k ≥ 1.

Proof. We have written the description of the algorithm and the characteriza-
tion of the solution to the Bellman equation derived by Dupuis and Wang [2004]
in a slightly different way. Our description corresponds basically to the PDE ap-
proach derived in Section “Further remarks” of Dupuis and Wang [2004], pages
495–496. The Isaacs equation displayed on their page 495 can be solved and yields
(21), which corresponds exactly to their equation (4.5), with our function I being
denoted U in that paper. The proof that the algorithm verifies LE-k follows the
same sequence of arguments as the proof of their Theorem 3.1 for LE-2, assuming
that the Isaacs equation is satisfied in a classical sense. This equation holds if the
solution to (21) is satisfied in the classical sense. The modifications to the proof are
as follows (in their notation). Replace 2 by k in the definition of their function V n,
in the theorem’s statement, and everywhere in the proof, including in the exponen-
tial that replaces the indicator in the middle of their page 490. We also multiply
−〈α, y〉 + H(α) and the function L by k − 1 wherever they appear from the last
line of page 490 up to Equation (3.8). To obtain the modification of (3.6), we apply
their Lemma 7.1 with f(y) = nWn

F (x + y/n, i + 1) + (k − 2)[〈α, y〉 − H(α)].

The previous result indicates that state-dependent samplers based on the solution
of the Isaacs equation, proposed in Dupuis and Wang [2004] to design estimators
that are asymptotically optimal, also achieve LE-k for k > 2. However, as pointed
out in Section 3 of Dupuis and Wang [2004], in typical circumstances it is difficult
(or impossible) to find a classical solution to the PDE (21). However, one often can
introduce a mollification procedure, applied to a solution of this PDE in the weak
sense (i.e., a solution for which the gradients are not strictly defined at every single
point in time and space). Examples of such implementation schemes are described
by Dupuis and Wang [2004] and also, in the case of a path-dependent simulation
example, by Blanchet et al. [2006], both for k = 2. Similar techniques could be
used for k > 2.

4.5 Heavy-Tailed Increments

We revisit the estimator proposed by Blanchet and Glynn [2007] for the steady-
state delay in a single-server queue, and show that it can be designed to achieve
BRM-k for all k ≥ 1. The model is again a random walk over the real line.

We have Xj = x0 +D1 + · · ·+Dj where the Dj ’s are i.i.d. with mean E[Dj ] < 0,
and x0 is some fixed constant. Let B = B(ε) = [1/ε,∞) and A = {∞}, so
τB = inf{j ≥ 1 : Xj > 1/ε} and τA = ∞. We want to estimate γ(ε) = γ(0, ε),
where

γ(x, ε) = Px[τB < ∞]

and Px represents the probability when x0 = x. This γ(x, ε) may represent the
probability of eventual ruin of an insurance company with initial reserve −x + 1/ε,
using an appropriate interpretation of the Dj ’s in terms of i.i.d. claim sizes and
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inter-arrival times. It can also be interpreted as the tail of the steady-state delay in
a single-server queue [Asmussen 2003, page 260]. This model has other applications
as well. Note that when εx < 1, we have

γ(x, ε) = γ(0, ε/(1 − εx)). (22)

To keep the discussion simple, we shall assume that Dj possesses a regularly
varying tail; that is, for each b > 0,

lim
t→∞

P (Dj > bt)

P (Dj > t)
= b−α

for some α > 1. The discussion that follows holds in greater generality, for instance
including Weibull or lognormal tails; see Blanchet and Glynn [2007], Section 3, for
a more general framework.

In Blanchet and Glynn [2007], the authors propose to approximate γ(·) in the
zero-variance change of measure by some function v(·) such that limε→0 v(x, ε)/γ(x, ε) =
1, and suggest a specific selection of v(·) that is later proved to yield an IS estimator
with BRE. More specifically, they introduce a non-negative random variable Z such
that

P[Z > t] = min

(

1,
1

E[−Dj ]

∫ ∞

t

P[Dj > s]ds

)

. (23)

Motivated by a classical result stating that

lim
ε→0

P[Z > 1/ε]

γ(0, ε)
= 1, (24)

(see, Asmussen [2003], page 296), and based on the discussion leading to Eq. (16),
Blanchet and Glynn [2007] suggest using

v(x, ε) = va∗(x, ε) = P[Z > a∗ + 1/ε − x],

with corresponding normalization constant

w(x, ε) = wa∗(x, ε) = P[Z + Dj > a∗ + 1/ε − x],

for some constant a∗ > 0 chosen to satisfy the Lyapunov inequality of Proposition
3.1 for k = 2.

As we now show, for each k ≥ 1, it is possible (and not difficult) to find a constant
a∗

k > 0 that can be proved to yield the BRM-k property via Proposition 3.1. For
this, we will use the following result, which follows directly from Proposition 3 of
Blanchet and Glynn [2007].

Proposition 4.7. For each k > 1 and δ ∈ (0, 1), there is a real number a∗
k > 0

such that

−δ ≤
vk

a∗

k
(x, ε) − wk

a∗

k
(x, ε)

P[Dj > x + a∗
k]wk−1

a∗

k
(x, ε)

(25)

for all x ≤ 1/ε.

The constant a∗
k can be computed numerically, and the pair (δ, a∗

k) could even-
tually be selected to minimize the upper bound on the relative moment of order k
given by the next theorem. This upper bound implies the BRM-k property.
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Theorem 4.8. Fix δ ∈ (0, 1), select a∗
k > 0 that satisfies (25), and let κ(a∗

k) =
infx∈B va∗

k
(x, ε) = P[Z > a∗

k]. Then,

E
v
x[Y k] ≤

vk
a∗

k
(x, ε)

(1 − δ)(κ (a∗
k))k

and consequently

lim sup
ε→0

E
v
0

[

Y k
]

γk(0, ε)
≤ 1

(1 − δ)(κ (a∗
k))k

< ∞.

Proof. Define

hk(x) = I (x − a∗
k ≤ 1/ε) + (1 − δ)I (x − a∗

k > 1/ε) .

For x ≤ 1/ε, the Lyapunov condition in Proposition 3.1 takes the form

(

wa∗

k
(x, ε)

va∗

k
(x, ε)

)k−1
E
[

va∗

k
(D1 + x, ε) hk (D1 + x)

]

va∗

k
(x, ε)

≤ 1.

This is equivalent to

E
[

va∗

k
(D1 + x, ε) hk (D1 + x)

]

wa∗

k
(x, ε)

≤
(

wa∗

k
(x, ε)

va∗

k
(x, ε)

)k

. (26)

Using the interpretation of va∗

k
(·, ε) as a tail probability, we have

E
[

va∗

k
(D1 + x, ε) (hk (D1 + x) − 1)

]

wa∗

k
(x, ε)

= −δ
E [P (Z + D1 > a∗

k + 1/ε − x | D1) · I (D1 > a∗
k + 1/ε − x)]

P (Z + D1 > a∗
k + 1/ε − x)

= −δ P (D1 > a∗
k + 1/ε − x | Z + D1 > a∗

k + 1/ε − x) .

Therefore, showing (26) is equivalent to establishing that

−δ P (D1 > a∗
k + 1/ε − x | Z + D1 > a∗

k + 1/ε − x) ≤
vk

a∗

k
(x, ε) − wk

a∗

k
(x, ε)

wk
a∗

k
(x, ε)

.

Since Z ≥ 0, this in turn is equivalent to the inequality

−δ ≤
vk

a∗

k
(x, ε) − wk

a∗

k
(x, ε)

P (D1 > a∗
k + 1/ε − x)wk−1

a∗

k
(x, ε)

,

which holds by definition of a∗
k. The conclusion then follows directly from Propo-

sition 3.1 and the fact that limε→0 v(0, ε)/γ(0, ε) = 1.

The next example underlines the fact that finding an approximation v that pro-
vides BRM-k is not so obvious, and that the approximation must be good over
a very wide range of states. In particular, it shows that even if v(x, ε) = γ(x, ε)
whenever ε is small enough, for any given x, one can still obtain an estimator that
fails to achieve BRM-k or LE-k.
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Example 4.9. Suppose we take

v(x, ε) = γ(x, ε)I (x ≤ cε) + I (x > cε) .

This gives

v(x, ε) ≤ γ(cε, ε)I (x ≤ cε) + I (x > cε) ;

w(x, ε) ≥ P (D1 + x > cε) .

We will choose cε as a function of ε so that cε → ∞. Then, for any fixed x,
v(x, ε) = γ(x, ε) when ε is small enough, which means that the function v(·) con-
verges pointwise to γ(·) when ε → 0. A natural question is if such approximation
would be enough for BRM-k? We are interested in the kth moment

E
v
0

[

Y k
]

= E
v
0











τB−1
∏

j=0

w(Xk, ε)

v(Xk, ε)





k

I (τB < ∞)







= E0











τB−1
∏

j=0

w(Xk, ε)

v(Xk, ε)





k−1

I (τB < ∞)

v(0, ε)






.

Our bounds on w(x, ε) and v(x, ε) imply that

w(x, ε)

v(x, ε)
≥ P (D1 + x > cε)

γ(cε, ε)I (x ≤ cε) + I (x > cε)
≥ P (D1 + x > cε)

γ(cε, ε)
I (x ≤ cε) .

Therefore,

E0











τB−1
∏

j=0

w(Xk, ε)

v(Xk, ε)





k−1

I (τB < ∞)

v(0, ε)






≥
(

P (D1 > cε)

γ(cε, ε)

)k−1
P0 (τB = 1)

v(0, ε)
.

For simplicity, let us assume that D1 has Pareto-type tails with index α > 1. In
particular, P (D1 > t) tα → c > 0 as t → ∞ and, because of (22), (23, and (24),

γ(cǫ, ǫ) = γ(0, ǫ/(1 − ǫcǫ)) = Θ (P[Z > (1 − ǫcǫ)/ǫ])

= Θ

(

∫ ∞

(1−ǫcǫ)/ǫ

ct−αdt

)

= Θ((1 − ǫcǫ)/ǫ)1−α = Θ
(

ǫα−1
)

as ε → 0 whenever εcε = o(1) as ε → 0. Suppose we take cε = ε−β for some β ∈
(0, 1). Then, the right hand side of the previous inequality is Θ

(

εβα(k−1)/εk(α−1)
)

,
which blows up for ε → 0 whenever β < k(α − 1)/(α(k − 1)) .

The problem here is the contribution of the likelihood ratio corresponding to
the interval (cε, 1/ε] in the state space, due to a bad approximation of the zero-
variance importance sampler in that region of the state space. The contribution
of the likelihood ratio corresponding to this bad approximation is captured, most
importantly, by the normalizing constant w(x, ε), which involves a first transition
expectation. This expectation must account for the possibility that the process
jumps to the bad region and this possibility is quantified and added to the likelihood
ratio. The accumulation of all these contributions induces a poor behavior of the
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overall importance sampling strategy by inflating the moments of the likelihood
ratio. This problem could be cured by increasing cε at a faster speed.

5. HIGHLY RELIABLE MARKOVIAN SYSTEMS

5.1 The Model

We consider an HRMS with c types of components and ni components of type i,
for i = 1, . . . , c. Each component is either in a failed state or an operational state.
The state of the system is represented by a vector x = (x(1), . . . , x(c)), where x(i) is
the number of failed components of type i. Thus, we have a finite state space S of
cardinality (n1 + 1) · · · (nc + 1). We suppose that S is partitioned in two subsets U
and F , where U is a decreasing set (i.e., if x ∈ U and x ≥ y ∈ S, then y ∈ U) that
contains the state 0 = (0, . . . , 0) in which all the components are operational. We
say that y ≺ x when y ≤ x and y 6= x.

Following Shahabuddin [1994], we assume that the times to failure and times to
repair of the individual components are independent exponential random variables
with respective rates

λi(x) = ai(x)εbi(x) and µi(x) = Θ(1) (27)

for type-i components when the current state is x, where ai(x) > 0 and bi(x) ≥ 1 are
real numbers for each i. The parameter ε ≪ 1 represents the rarity of failures; the
failure rates tend to zero when ε → 0. The choice of parameterization determines
in what asymptotic regime the system is studied. Failure propagation is allowed:
from state x, there is a probability pi(x, y) (which may depend on ε) that the failure
of a type-i component directly drives the system to state y, in which there could
be additional component failures. Thus, the net jump rate from x to y is

λ(x, y) =

c
∑

i=1

λi(x)pi(x, y) = O(ε).

Similarly, the repair rate from state x to state y is µ(x, y) (with possible grouped
repairs), where µ(x, y) does not depend on ε (i.e., repairs are not rare events when
they are possible). The system starts in state 0 and we want to estimate the
probability γ(ε) that it reaches the set F before returning to state 0. Estimating
this probability is relevant in many practical situations [Heidelberger 1995; Juneja
and Shahabuddin 2006].

This model evolves as a continuous-time Markov chain (CTMC) (Z(t), t ≥ 0},
where Z(t) is the system’s state at time t. Its canonically embedded discrete time
Markov chain (DTMC) is {Xj , j ≥ 0}, defined by Xj = Z(ξj) for j = 0, 1, 2, . . . ,
where ξ0 = 0 and 0 < ξ1 < ξ2 < · · · are the jump times of the CTMC. Since the
quantity of interest here, γ(ε), does not depend on the jump times of the CTMC, it
suffices to simulate the DTMC. This chain {Xj , j ≥ 0} has transition probability
matrix P with elements

P(x, y) = P[Xj = y | Xj−1 = x] = λ(x, y)/q(x)

if the transition from x to y corresponds to a failure and

P(x, y) = µ(x, y)/q(x)
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if it corresponds to a repair, where

q(x) =
∑

y∈S

(λ(x, y) + µ(x, y))

is the total jump rate out of x, for all x, y in S. We will use P to denote the
corresponding measure on the sample paths of the DTMC.

To fit the framework of Section 3, we must distinguish two cases for state 0: (1)
when we are in the initial state X0 = 0 and (2) if we return to that state later on.
We consider them as two different states; in the second case, we will call the state 0

′

to make the distinction. Then, we have A = {0′}, B = F , and γ(ε) = P[τB < τA].
Let Γ denote the set of pairs (x, y) ∈ S2 for which P(x, y) > 0. Our final

assumptions are that the DTMC is irreducible on S and that for every state x ∈ S,
x 6= 0, there exists a state y ≺ x such that (x, y) ∈ Γ (that is, at least one repairman
is active whenever a component is failed). We further assume that from state 0,
the failures with probability in Θ(1) do not directly lead to F , since otherwise
γ(ε) = Θ(1) is not a rare event probability. Shahabuddin [1994] shows that for this
model, there is a real number r > 0 such that γ(ε) = Θ(εr), i.e., the probability
of interest decreases at a polynomial rate when ε → 0. Nakayama [1996] makes
the additional assumption that the bi(x) are positive integers; in that case, r is
always an integer. We also make this assumption for the remainder of the paper,
to simplify the analysis.

5.2 IS for the HRMS Model

Several IS schemes have been proposed in the literature for this HRMS model; see,
e.g., Cancela et al. [2002], Nakayama [1996], Shahabuddin [1994]. Here we first limit
ourselves to the so-called simple failure biasing (SFB), also named Bias1, and then
consider more general classes of changes of measures determined by certain sets of
conditions. Our aim is to analyze the robustness properties under that scheme,
and not to try approaching the zero-variance IS as in Example 2.23. We do not
claim that SFB is a good IS scheme. SFB changes the matrix P to a new matrix
P

∗ defined as follows. For states x ∈ F ∪{0}∪{0′}, we have P
∗(x, y) = P(x, y) for

all y ∈ S, i.e., the transition probabilities are unchanged. For any other state x, a
fixed probability ρ is assigned to the set of all failure transitions, and a probability
1 − ρ is assigned to the set of all repair transitions. In each of these two subsets,
the individual probabilities are taken proportionally to the original ones. Note that
the IS does not depend on the parameterization by ε; it depends only on the actual
rates. Under certain additional assumptions, this change of measure increases the
probability of failure when the system is up, in a way that failure transitions are
no longer rare events, i.e., P

∗[τB < τA] = Θ(1).
For a given sample path ending at step τ = min(τA, τB), the likelihood ratio for

this change of measure can be written as

L = L(X0, . . . ,Xτ ) =
P[(X0, . . . ,Xτ )]

P∗[(X0, . . . ,Xτ )]
=

τ
∏

j=1

P(Xj−1,Xj)

P∗(Xj−1,Xj)

and the corresponding (unbiased) IS estimator of γ(ε) is given by

Y (ε) = L(X0, . . . ,Xτ ) I [τB < τA] . (28)
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We will now examine the robustness properties of this estimator under the SFB
sampling.

5.3 Asymptotic Robustness for the HRMS Model Under IS

For this HRMS model, a characterization of the IS schemes that satisfy the BRE
property was obtained by Nakayama [1996] and the equivalence between BRE and
LE for this model was mentioned without proof in Heidelberger [1995]. Our first
result generalizes this, for SFB. Note that under a static change of measure such
as SFB, the expected computing time is Θ(1).

Proposition 5.1. In the HRMS framework adopted here, with SFB, the two
properties BRM-k and LE-k are equivalent. These two properties are also equivalent
for the g-th empirical moment of Y (ε) and for its empirical variance.

Proof. Recall that Shahabuddin [1994] proves that γ(ε) = Θ(εr) for some in-
teger r ≥ 0. Following the same argument, just replacing the likelihood ratio L by
Lg, we can show (as done by Tuffin [1999] for the second moment) that there is a
constant sg ≤ gr such that

E[Y g(ε)] = Θ(εsg ), (29)

where Y (ε) is defined in (28). Note that s1 = r. From Jensen’s inequality, we also
have skg ≤ ksg. The equivalence between LE-k and BRM-k for the g-th empirical
moment then follows from Example 2.13. The case of the empirical variance is
handled by replacing Y (ε) by S2

n(ε); one can see that each moment of S2
n(ε) is

Θ(εν) for some ν ≥ 0 and the result follows easily from that and Example 2.13.

Our next result characterizes BRM-k for the g-th empirical moment in the HRMS
framework. In particular, it gives characterizations of BRM-k for Y (ε), as well as
BRM-k and LE-k for S2

n(ε). It requires additional notation. We no longer limit
our change of measure for IS to SFB, but we restrict it to a class I of measures P

∗

defined by a transition probability matrix P
∗ with the following property: whenever

(x, y) ∈ Γ and P(x, y) = Θ(εd), then P
∗(x, y) = Θ(εℓ) for ℓ ≤ d. This means that

the probability of a transition under the new probability transition matrix is never
significantly smaller than under the original one. From now on, we assume that P

∗

satisfies this property. Note that SFB and all other IS schemes developed in the
literature belong to this class.

We define the following sets of sample paths:

∆m = {(x0, · · · , xn) : n ≥ 1, x0 = 0, xn ∈ F ,

xj 6∈ {0′,F} and (xj−1, xj) ∈ Γ for 1 ≤ j ≤ n,

and P [(X0, · · · ,Xτ ) = (x0, · · · , xn)] = Θ(εm)};

∆ =

∞
⋃

m=r

∆m;

this ∆ is the set of all paths that lead to the rare event.
We now derive a necessary and sufficient condition on P

∗ for BRM-k of the g-th
moment. This result means that a path cannot be too rare under the IS measure
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P
∗ to verify BRM-k for the g-th moment. Special cases of this result were obtained

under the same conditions in Nakayama [1996] for BRE (k = 2 and g = 1), where
it was shown that ℓ ≤ 2m − r is needed, and in Tuffin [1999] and [Tuffin 2004]
for BNA, where the necessary and sufficient condition is ℓ ≤ 3m/2 − 3s/4, where
s is the real number such that σ2(ε) = Θ(εs). Note that s = s2 if and only if
σ2(ε) = Θ(Y 2(ε)), where sg is defined via (29).

Theorem 5.2. For an IS measure P
∗ ∈ I, we have BRM-k for the g-th empirical

moment if and only if for all integers m such that r ≤ m < ksg and all paths
(x0, · · · , xn) ∈ ∆m,

P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(εℓ)

for some ℓ ≤ k(mg − sg)/(kg − 1).

Proof. For k = g = 1, the interval for m is empty and we always have BRM-1
for the first moment, so the result holds. We now suppose that kg > 1.

(a) Necessary condition. Suppose that there exist m ∈ N and (x0, · · · , xn) ∈ ∆m

such that P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(εk(mg−sg)/(kg−1)+ℓ′) with ℓ′ > 0

and m < ksg. Then we have

E[(Y (ε))kg] ≥ L(x0, · · · , xn)kg
P
∗ [(X0, · · · ,Xτ ) = (x0, · · · , xn)]

= Θ(εkg(m−k(mg−sg)/(kg−1)−ℓ′)+k(mg−sg)/(kg−1)+ℓ′)

= Θ(εksg−(kg−1)ℓ′).

Thus E[(Y (ε))kg]/E[(Y (ε))g]k = O(ε−(kg−1)ℓ′), which is unbounded when ε → 0.
(b) Sufficient condition. Let (x0, · · · , xn) ∈ ∆m such that m < ksg. Under the

given condition, we have

P
∗ [(X0, · · · ,Xτ ) = (x0, · · · , xn)] = Θ(εℓ)

for some ℓ ≤ k(mg − sg)/(kg − 1). Then,

(L(x0, · · · , xn))kg
P
∗ [(X0, · · · ,Xτ ) = (x0, · · · , xn)] =

Θ(εkgm)

Θ(εkgℓ)
Θ(εℓ) = O(εksg ).

Using the fact that |∆m| < ∞ from the first part of Lemma 1 ii) of Nakayama
[1996], we have
∑

r≤m<ksg

∑

(x0,··· ,xn)∈∆m

(L(x0, · · · , xn))kg
P
∗ [(X0, · · · ,XτF

) = (x0, · · · , xn)] = O(εksg ).

(30)
Also, using again Lemma 1 of Nakayama [1996] (with N the total number of com-
ponents, and α, β and δ constant),

∞
∑

m=ksg

∑

(x0,··· ,xn)∈∆m

[L(x0, · · · , xn)]
kg

P
∗ [(X0, · · · ,Xτ ) = (x0, · · · , xn)]

≤
∞
∑

m=ksg

∑

(x0,··· ,xn)∈∆m

δm+1αβmεm
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≤
∞
∑

m=ksg

|S|(m+1)Nδm+1αβmεm

= αδ|S|N
∞
∑

m=ksg

(

|S|(m+1)δβε
)m

= Θ(εksg ). (31)

Combining (30) and (31) gives E[(Y (ε))kg] = O(εksg ), meaning that we have
BRM-k of the g-th moment.

In Tuffin [1999], a different class J of measures P
∗ defined by a transition prob-

ability matrix P
∗ is used, motivated by the fact that absolute centered moments

were considered. This class is more restrictive: for such a P
∗, whenever (x, y) ∈ Γ

and P(x, y) = Θ(εd), if y ≻ x 6= 0, then P
∗(x, y) = Θ(εℓ) with ℓ < d, whereas

if x ≻ y or if y ≻ x = 0, then P
∗(x, y) = Θ(εℓ) with ℓ ≤ d. Using this class

of measures, we could show, by similar arguments to those above and in Tuffin
[1999] and Tuffin [2004], that we have BRM-k for the g-th moment if and only
if for all integers ℓ and m such that m − ℓ < r, and all (x0, · · · , xn) ∈ ∆m with
P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(εℓ), we have ℓ ≤ k(mg − sg)/(kg − 1). The

difference in the characterization is then in terms of the set of paths. Note that the
set here is more restrictive (because the class of functions is more restrictive too).
Indeed, if m − ℓ < r = s1, then m < ℓ + s1 ≤ ksg for all g ≥ 2.

In the specific case of the empirical mean and variance, we have the following:

Corollary 5.3. For an IS measure P
∗ ∈ I, we have BRM-k for Y (ε) if and

only if for all integers m such that r ≤ m < kr and all (x0, · · · , xn) ∈ ∆m,

P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(εℓ)

for ℓ ≤ k(m − r)/(k − 1). We also have BRM-k for Y 2(ε) if and only if the same
condition holds with ℓ ≤ k(2m − s2)/(2k − 1) . We have BRM-k for the empirical
variance if and only if ℓ ≤ k(2m − s)/(2k − 1).

The following additional relationships between measures of robustness were proved
in Tuffin [2004]:

Proposition 5.4. In our HRMS framework with an IS sampling scheme in J ,
BNA implies AGEV, which implies BRE, which implies AGEM. For each of these
implications, the converse is not true.

The next result implies that IS sampling schemes in I cannot provide VRMC-k.

Proposition 5.5. In our HRMS setting, with an IS measure in I, we have
E[(Y (ε) − γ(ε))k] = O(γk(ε)) for all k ≥ 1. In particular, σ2(ε) = O(γ2(ε)).

Proof. From our assumptions, there is a path π = (0, x, . . . ,0′) that does not hit
F , such that the initial failure leading to the transition from 0 to x has probability
Θ(1) (because no repair is possible from state 0), and thereafter has only repairs
until we return to 0

′. (We must have x 6∈ F because otherwise γ(ε) = Θ(1).) This
path has probability Θ(1) under IS. Since

E[(Y (ε) − γ(ε))k] = E

[

(L I(τB < τA) − γ(ε))
k
]
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≥ γk(ε) P [(X0, · · · ,Xτ ) = π]

= Θ(γk(ε)),

we get that E[(Y (ε) − γ(ε))k] = O(γk(ε)).

Our necessary and sufficient conditions in Theorem 5.2 lead to the following
results.

Proposition 5.6. For an IS scheme in I, BRM-k and LE-k for the g-th mo-
ment are equivalent. Similarly, for S2

n(ε), BRE and LE, are equivalent.

Proof. The first part follows again directly from Example 2.13, using the fact
that E[(Y (ε))g] = Θ(εsg ) and E[(Y (ε))kg] = Θ(εskg ) with skg ≤ ksg from Jensen’s
inequality. For the empirical variance, we use the arguments of the same examples,
combined with the fact that σ2(ε) = Θ(εs) and E[S4

n(ε)] = Θ(εt) with t ≤ 2s.

Next we show that BRM-2 and LE-2 for S2
n(ε) are stronger than BNA when

using the class of measures J .

Proposition 5.7. Under an importance measure in J , BRM-2 for S2
n(ε) im-

plies BNA.

Proof. This is a direct consequence of the necessary and sufficient conditions
over the paths for the BNA and BRM-2 properties. These conditions are that for
all ℓ and m such that m − ℓ < r, and such that there is a path (x0, · · · , xn) ∈
∆ for which P{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(εm) and P

∗{(X0, · · · ,Xτ ) =
(x0, · · · , xn)} = Θ(εℓ), we must have ℓ ≤ 4m/3 − 2s/3 for BRM-2 for S2

n(ε) and
ℓ ≤ 3m/2 − 3s/4 for BNA. But 4m/3 − 2s/3 = 8/9(3m/2 − 3s/4), so the theorem
is proved if we always have 3m/2 − 3s/4 ≥ 0, i.e., 2m ≥ s, which is true since
2m ≥ 2r ≥ s.

The following counter-example shows that the converse is not true: there are
systems and IS measures P

∗ for which BNA is verified but not BRM-2 for S2
n(ε).

≈ 1/2

2,2

2,1

1,1

0,1

1,2

≈ 1

ǫ8

≈ 1/2

≈ 1

ǫ

1,0

2,0 0,2

ǫ12

ǫ2 ǫ4
ǫ6

ǫ4

≈ 1

ǫ4

≈ 1

Fig. 1. A two-dimensional model with its transition probabilities.
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ρ0/2

2,2

2,1

1,1

0,1

1,2
≈ ρ0ǫ2

1,0

2,0 0,2

ǫ12

≈ ρ0

1 − ρ0

≈ 1

≈ ρ0

≈ ρ0ǫ2

(1 − ρ0)/2

ρ0/2

1 − ρ0

(1 − ρ0)/2

Fig. 2. A two-dimensional example with SFB transition probabilities.

Example 5.8. We consider the same system as in Example 2.22, with two com-
ponent types and two components of each type. The original transition probabilities
are shown in Figure 1, and those using SFB failure biasing can be seen in Figure 2.
The states in F are colored in gray. For this model, as can be easily seen in Figure
1, r = 6 and ∆6 is comprised of the single path ((2, 2), (1, 2), (0, 2)). Moreover,
s = s2 = 12 and the sole path in ∆ such that

P
2{(X0, · · · ,Xτ ) = (x0, · · · , xn)}

P∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(ε12)

is the path in ∆6 for which Figure 2 shows that it is Θ(1) under probability measure
P
∗. If ℓ is the integer such that P{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(εm) and

P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(εℓ), it can also be readily checked that

ℓ ≤ 3m/2 − 3s/4 for all paths, meaning that BNA is verified. However, the path
((2, 2), (2, 1), (2, 0)) is such that m = 14 and ℓ = 12. Then 12 = ℓ > 4m/3− 2s/3 =
32/3, so the necessary and sufficient condition of Theorem 5.2 for k = g = 2 is not
verified. So we have BNA but not BRM-2 for S2

n(ε). It is also easy to verify that
for this example, we have BRM-3 but not BRM-4.

6. CONCLUSION

We have introduced and studied several new characterizations of the asymptotic
robustness of estimators in the context of rare-event simulation. For k > 2, the
new properties of BRM-k and LE-k are relevant whenever we estimate higher mo-
ments than the mean. The new concept of VRCM-k is much stronger than the
standard concepts of BRE and LE, which have been the usual targets when defin-
ing IS schemes over the last decade. The design of estimators with the VRCM-k
property is a quite interesting challenge for the coming years. For certain classes of
applications, this could lead to much more efficient estimators than those currently
available. In fact, such estimators have already started to appear very recently.
Another important topic for further research is the development of an appropri-
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ate framework to analyze work-normalized versions of the asymptotic robustness
properties examined here. It would have to address the difficulties discussed in the
introduction.
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