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Abstract We consider a multistage stochastic discrete program in which constraints
on any stage might involve expectations that cannot be computed easily and are
approximated by simulation. We study a sample average approximation (SAA) ap-
proach that uses nested sampling, in which at each stage, a number of scenarios are
examined and a number of simulation replications are performed for each scenario to
estimate the next stage constraints. This approach provides an approximate solution
to the multistage problem. To establish the consistency of the SAA approach, we first
consider a two-stage problem and show that in the second-stage problem, given a
scenario, the optimal values and solutions of the SAA converge to those of the true
problem with probability one when the sample sizes go to infinity. These convergence
results do not hold uniformly over all possible scenarios for the second stage prob-
lem. We are nevertheless able to prove that the optimal values and solutions of the
SAA converge to the true ones with probability one when the sample sizes at both
stages increase to infinity. We also prove exponential convergence of the probability
of a large deviation for the optimal value of the SAA, the true value of an optimal
solution of the SAA, and the probability that any optimal solution to the SAA is an
optimal solution of the true problem. All of these results can be extended to a mul-
tistage setting and we explain how to do it. Our framework and SAA results cover
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a large variety of resource allocation problems for which at each stage after the first
one, new information becomes available and the allocation can be readjusted, under
constraints that involve expectations estimated by Monte Carlo. As an illustration, we
apply this SAA method to a staffing problem in a call center, in which the goal is to
optimize the numbers of agents of each type under some constraints on the quality
of service (QoS). The staffing allocation has to be decided under an uncertain arrival
rate with a prior distribution in the first stage, and can be adjusted at some additional
cost when better information on the arrival rate becomes available in later stages.

Keywords Sample average approximation · multistage stochastic program ·
expected value constraints · convergence rate · staffing optimization

1 Introduction

1.1 Motivation and Problem Formulation

We examine a class of dynamic stochastic optimization problems in which at each
stage, a decision must be taken among a finite set of possibilities, under uncertainty,
with constraints on expectations that have to be estimated by simulation. These types
of problems are common in resource allocation settings with probabilistic constraints
on the quality of service, and uncertain demand for which more accurate forecasts
become available in later stages of the process. An initial resource allocation must
be made in the first stage, but this allocation may have to be modified at some cost
in one or more later stage(s) to meet the constraints that correspond to the updated
demand forecast.

As an illustration, consider the staffing of a telephone call center in which agents
with different skill sets answer different types of calls (Gans et al., 2003; Cez̧ik and
L’Ecuyer, 2008; Mehrotra et al., 2010). Typically, an initial staffing and work sched-
ules must be decided and announced to the employees a couple of weeks ahead, based
on long-term forecasts of call volumes. Closer to the target period, like in the evening
before the target day, or even at lunch time for the afternoon hours, more accurate
forecasts of the arrival volumes are often available, and the staffing must be modified
(at a cost) to meet the constraints for the new forecasts. Examples of such constraints
could be that 80% of the calls must be answered within 20 seconds in the long run,
or that with probability at least 0.90, 95% or more of the calls during the day are
answered within 6 seconds (e.g., for an emergency call center). These constraints are
highly nonlinear in the decision variables and can only be estimated by simulation,
due to the complexity of the system. The cost to modify the staffing will generally
depend on the current staffing and is not necessarily linear.

Similar resource allocation problems occur for other types of service systems,
such as staffing employees in retail stores, servers and cooks in restaurants, nurses
and other employees in hospitals, police agents in a city, etc. Our setting covers these
types of situations and many more.

We define the model in the general framework of a multistage stochastic program,
with T stages numbered from 1 to T . For typical practical applications of our results,
one can think of two or three stages. At the beginning, a first-stage decision x1 is
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selected from a finite set X1 and a cost that depends on x1 is paid. Then at each stage
t ≥ 2, new information is revealed and a decision xt is selected from the finite set
X t , by taking into account the previous decision xt−1 and all the information revealed
to date, under a set of constraints defined by mathematical expectations. We let ξ t

denote the cumulative information revealed to date up to stage t, when decision xt is
taken, for t ≥ 2. Thus, the sequence ξ2,ξ3, . . . can be seen as a filtration. A cost must
also be paid for changing the decision from xt−1 to xt . It can be interpreted as the cost
for changing the resource allocation.

A first goal is to find an optimal decision for the first stage, to minimize the ex-
pected total cost, under the assumption that we will be able to make optimal decisions
in the next stages. Then, given a first-stage optimal solution and the information in
ξ 2, the next goals are to select optimal solutions xt for stage t ≥ 2 given revealed
information ξ t . We formulate the problem formally as follows:

(P0)



min
x1∈X1

f (x1) = f 1(x1)+Eξ 2 [Q2(x1,ξ 2)]

subject to g1(x1) := Ew1
[
G1(x1,w1)

]
≥ 0,

where Qt(xt−1,ξ t)

= min
xt∈X t

f t(xt−1,xt ,ξ t)+Eξ t+1|ξt

[
Qt+1(xt ,ξ t+1)

]
subject to gt(xt ,ξ t) := Ewt

[
Gt(xt ,ξ t ,wt)

]
≥ 0,

for t = 2, . . . ,T,

and QT+1(·) ≡ 0. For t = 1, . . . ,T , xt ∈ X t is the vector of decision variables, f t is
measurable cost function (for changing the decision), Gt(·) is a random vector, wt

and ξ t+1 are random vectors whose distributions may depend on (xt ,ξ t), and Ewt

and Eξ t+1|ξt
denote the mathematical expectations with respect to these variables.

We assume that these mathematical expectations cannot be computed exactly and are
estimated by (Monte Carlo) simulation. All the random variables are defined on a
common probability space.

Our motivation for this problem formulation came from the call center staffing op-
timization application mentioned earlier. The staffing consists in deciding how many
agents of each type to have in the center for each time period of the day, to minimize
the operating cost while satisfying quality of service (QoS) constraints, under un-
certainty in the arrival rate process. Here, ξ t represents the accumulated information
that can be used to make the forecasts on the demand distributions, and xt represents
the selected staffing, at stage t. The function f 1 gives the cost of the initial staffing,
while for t ≥ 2, f t gives the cost of changing the staffing from xt−1 to xt at stage t.
This change usually means reducing or increasing the number of certain agent types
in some periods, or changing the tasks of some agents, etc., to better match the up-
dated forecasts. The new staffing xt ∈ X t may have to satisfy some QoS constraints
expressed as expectations, Ewt [G(xt ,ξ t ,wt)] ≥ 0, where wt represents all the uncer-
tainty that remains after xt ,ξ t are known (e.g., the arrival times and service times of
all calls, the abandons, etc.). In practice, these QoS constraints will often appear only
for the last stage. But staffing decisions could nevertheless be changed before that,
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when it costs less, to avoid higher costs at the last stage. The choice of the chance
constraints should reflect the decision maker’s risk preferences. They could be con-
straints on certain probabilities, as suggested earlier in the second paragraph, but
could also be constraints on quantiles, or on conditional-value-at-risk, for instance.
Instead or representing just the staffing, the decisions xt can also contain the work
schedules of all the agents, as in Avramidis et al. (2010).

For more details on this call center application, see Cez̧ik and L’Ecuyer (2008);
Chan et al. (2014, 2016); Gans et al. (2015); Koole (2013); Mehrotra et al. (2010);
Pichitlamken et al. (2003); Ta et al. (2016). Evidence that arrival rates are random
and that they can be better predicted with more recent information, based on real
call center data and with proper modeling, can be found for example in Avramidis
et al. (2004); Ibrahim et al. (2012, 2016); Jaoua et al. (2013); L’Ecuyer et al. (2018);
Matteson et al. (2011); Oreshkin et al. (2016).

Several other types of dynamic resource allocation problems fit our framework
and can benefit from the theory developed in this paper. Similar staffing and schedul-
ing problems occur for example if we replace the agents in a call center by the em-
ployees on the floor and at the pay stations in retail stores or in restaurants, employ-
ees in healthcare facilities, number and location of police agents and ambulances,
number of trucks and drivers on the road for various types of pick-up and delivery
systems, etc. See Defraeye and Van Nieuwenhuyse (2016) for a partial survey. For
example, a two-stage stochastic staffing and scheduling problem for nurses are con-
sidered in Kim and Mehrotra (2015) and Punnakitikashem et al. (2008, 2013). Two-
stage stochastic integer programming applications in energy planning (Haneveld and
van der Vlerk, 2001), manufacturing (Dempster et al., 1981), and logistics (Laporte
et al., 1992; Pillac et al., 2013), for example, can fit our framework. In all these prob-
lems, the demand is stochastic and the forecasts can be improved when we get closer
to the target periods, and we want to minimize costs under stochastic constraints. The
operational benefit of taking into account the randomness (and distribution) of the
forecasts for making the first-stage decision clearly depends on the cost structures
and the parameters of the distributions in the target applications.

Note that all of these problems also fit the general framework of stochastic dy-
namic programming in general state spaces (Bertsekas, 2017) and a solution approach
could be based in principle on approximate dynamic programming, in which a value
function that represents the expected future cost conditional on the current state, could
be approximated in some way at each stage (Bertsekas, 2012). In this paper, we fol-
low a different type of approach, designed for when the number of stages is small,
say two or three. The approximate dynamic programming approach would be more
appropriate than nested sampling when the number of stages is large.

1.2 The Two-Stage Setting

Even though our analysis applies to the multistage setting, to reduce the complexity of
the notation and proofs, we will give the detailed proofs in the two-stage setting. After
that, we will discuss how to extend the results (and proofs) to the multistage program,
by induction. We thus consider the following two-stage discrete stochastic program,
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in which the notation was modified slightly to avoid carrying too many superscript in-
dices: x1,X1,x2,X2,ξ 2,w1,w2,g1,G1,g2,G2 are now x,X ,y,Y,ξ ,ω,w,h,H,g,G, re-
spectively.

(P1)



min
x∈X

f (x) = f 1(x)+Eξ [Q(x,ξ )]

subject to h(x) = Eω [H(x,ω)]≥ 0,

where Q(x,ξ ) = min
y∈Y

f 2(x,y,ξ )

subject to g(y,ξ ) = Ew[G(y,ξ ,w)]≥ 0.

(1)

(2)

(3)

In the applications we have in mind, ξ , w and ω can be taken as independent.
In particular, ξ and w and ω can be viewed as infinite sequences of independent
random variables uniformly distributed over (0,1) and the required randomness is
extracted from them (in a Monte Carlo context, these will be the random numbers
that drive the simulation), but this interpretation is not essential. Let Ξ and W de-
note the sets in which ξ and w take their values. The first-stage decision x must be
taken from the finite set X , before any of ξ , w, and ω can be observed. In the sec-
ond stage, ξ is observed and then the recourse decision y must be taken from the
finite set Y . We also define Y (ξ ) as the set of second-stage feasible solutions given
ξ , i.e., Y (ξ ) = {y ∈ Y | g(y,ξ ) ≥ 0}. The functions f 1 : X → R and f 2 : X ×Y ×
Ξ → R are measurable, while H(x,ω) = (H1(x,ω), . . . ,HJ(x,ω)) and G(y,ξ ,w) =
(G1(y,ξ ,w), . . . ,GK(y,ξ ,w)) are random vectors for which Eω [|H(x,ω)|]< ∞ for all
x ∈ X and Ew[|G(y,ξ ,w)|] < ∞ for all (y,ξ ) ∈ Y ×Ξ . Note that w is not observed
before selecting y (in fact, ω and w may never be observed).

The stochastic optimization problem (P1) considered here is similar to the two-
stage problem discussed in Birge and Louveaux (2011), Section 3.5, except that the
first- and second-stage decisions belong to finite sets, and the second-stage constraint
itself involves the expectation of a second-stage random variable w whose realiza-
tion is never observed. We are interested in the situation in which the expected value
functions Eξ [Q(x,ξ )], Eω [H(x,ω)] and Ew[G(y,ξ ,w)] cannot be written in a closed
form or computed numerically, and are estimated by Monte Carlo. The lack of ana-
lytical expression for Ew[G(y,ξ ,w)] implies that the second-stage problem can only
be approximated, in contrast to classical two-stage stochastic problems in which it is
assumed to be computable exactly.

1.3 SAA Approach and Connection with Related Literature

In this paper, we study a sample average approximation (SAA) approach to solve
the stochastic problem. The general idea of SAA is to use Monte Carlo sampling to
construct sample average functions that approximate the expectations Eξ [Q(x,ξ )],
Eω [H(x,ω)] and Ew[G(y,ξ ,w)] as functions of x and of (y,ξ ), respectively. In the
SAA version of Problem (P1), the expectations are replaced by sample averages, or
equivalently, the exact distributions of ξ , ω and w are approximated by empirical
distributions. This permits one to compute the expectations as functions of x and y in
the SAA problem, and then solve this SAA problem.
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One could perhaps think of using stochastic approximation (SA) as an alternative
to the SAA method. However, since the decision set is discrete, SA does not apply
to solve (P1). SA can work well in situations where the decision set is continuous
and the objective function is smooth and well-behaved around the optimum. It was
originally proposed by Robbins and Monro (1951) to find a zero of a function, and
can be applied to find a zero of the gradient of the objective function. For more de-
tails on simulation-based optimization via SA, see for example Kushner and Clark
(1978); Polyak and Juditsky (1992); L’Ecuyer and Yin (1998). When the objective
function is continuous and convex, the approach can be generalized to the use of sub-
gradients Ruszczyński and Syski (1986); Nedic and Bertsekas (2001); Nemirovski
et al. (2009). Constraints in expectation are considered in Lan and Zhou (2016). An
algorithm that combines SA and SAA is studied in Dussault et al. (1997).

The SAA approach itself is not new; see, e.g., Rubinstein and Shapiro (1993);
Robinson (1996); Shapiro (2003); Bastin et al. (2006); Ahmed and Shapiro (2008);
Shapiro et al. (2014). It is widely used and has been studied at length for solving
various types of stochastic optimization problems. A common simple setting is a
stochastic programming problem of the form

(P2) min
x∈X
{ f (x) := Eω [F(x,ω)]} (4)

where F(x,ω) is a random variable defined over a probability space (Ω ,F ,P), the
expectation over ω is with respect to the measure P, and X is a set of admissible
decisions, often a subset of Rn. The corresponding SAA program is

min
x∈X

{
f̂N(x) :=

1
N

N

∑
i=1

F(x,ωi)

}
(5)

where ω1, . . . ,ωN is an independent random sample from P. This independence as-
sumption is relaxed in some papers (not here), e.g., to allow randomized quasi-Monte
Carlo sampling (Kim et al., 2015). We refer to (4) and (5) as the true and SAA prob-
lems, respectively. An optimal solution x̂N ∈ argminx∈X f̂N(x) for (5) and the cor-
responding optimal value v̂N = f̂N(x̂N) are approximations of an optimal solution x∗

and of the optimal value v∗ for the true problem (4). Typically, one has E[v̂N ]< v∗; see
Shapiro (2003). Another important quantity (perhaps the most relevant) is f (x̂N), the
exact value of a solution x̂N obtained from the SAA. The difference f (x̂N)− v∗ ≥ 0
represents the gap between the value of the retained solution and the optimal value. In
general there could be multiple optimal solutions x∗ and x̂N . We denote by X∗ and X∗N
the sets of optimal solutions to (4) and (5), respectively. In the following, x∗ and x̂N
denote any of those solutions, in the respective sets. We assume that X∗ is not empty
and that a finite minimum is attained.

In settings where the space X of solutions is infinite (which is not the case for
our problem (P1)), it is typically assumed that X has a norm ‖ · ‖ (e.g., the Euclidean
norm if X is in the real space), so that the distance between two solutions is well
defined, and then one can define the distance from a given solution x to optimality as
dist(x,X∗) = infx∗∈X∗ ‖x− x∗‖. .

Convergence to zero with probability one (w.p.1) for the three error measures
dist(x̂N ,X∗), f (x̂N)− v∗, and v̂N − v∗ when the sample size N → ∞ has been proved



Multistage discrete stochastic programs with stochastic constraints and nested sampling 7

under different sets of (mild) conditions; see Dupacová and Wets (1988); Robinson
(1996); Shapiro (2003); Shapiro et al. (2014), for instance. This holds for example
if X∗ is contained in a compact set C ⊂ Rn, f is bounded and continuous on C,
supx∈C | f̂N(x)− f (x)| → 0 when N → ∞, and /0 6= X∗N ⊂ C for N large enough, also
w.p.1; see (Shapiro, 2003, Theorem 4). There are also other sets of sufficient condi-
tions.

Knowing that we have convergence w.p.1 is good, but knowing how fast it occurs
is better. The speed of convergence of x̂N to X∗ can be measured and studied in
various ways. Central limit theorems give estimates of order Op(N−1/2) for the three
error measures mentioned above when x∗ is unique, X ⊂Rn contains a neighborhood
of x∗, and F(·,ω) is a sufficiently smooth function with bounded variance (Shapiro,
1993).

For ε ≥ 0, a solution x ∈ X is said to be ε-optimal for the true problem if f (x)≤
v∗+ ε , and ε-optimal for the SAA if f̂N(x) ≤ v∗N + ε . Let Xε and Xε

N denote the sets
of ε-optimal solutions to the true problem and the SAA problem, respectively. Under
appropriate conditions, by using large-deviations theory (Dai et al., 2000; Kleywegt
et al., 2002; Shapiro and de Mello, 2000; Shapiro, 2003; Kaniovski et al., 1995), one
can prove exponential convergence to zero for the probability of selecting a solution
with an optimality gap that exceeds a given value. For example, let F(x,ω) have a
finite moment generating function in a neighborhood of 0, and let ε > δ > 0. If X is
finite, or if X is a bounded subset of Rn and f is Lipschitz-continuous over X with
Lipschitz constant L, then there are positive constants K and η = η(δ ,ε) such that

P[Xδ
N ⊆ Xε ]≥ 1−K exp[−ηN]. (6)

In particular, if the true problem has a unique optimal solution x∗ and X is finite, then
P[x̂N 6= x∗] converges to 0 exponentially fast in N. The constant K can be (at worst)
proportional to |X | when X is finite and to L otherwise.

Consider now a two-stage problem like (P1), but without the probabilistic con-
straints (3), and suppose that the second-stage optimization in (2) is easy to solve
for any (x,ξ ). It could be a deterministic linear program, for example. Then, since
Q(x,ξ ) can be computed exactly, by taking F(x,ξ ) = f 1(x)+Q(x,ξ ) we are back to
the setting of (P2) and we can apply the corresponding results. See Shapiro (2003)
and Shapiro et al. (2014) for further discussion.

Another setting studied earlier (e.g., in Vogel (1994) for a general case and in
Atlason et al. (2008) and Cez̧ik and L’Ecuyer (2008) in the context of call center
staffing) is that of an optimization problem with stochastic constraints:

min
x∈X

f (x) subject to h(x) := Eω [H(x,ω)]≥ 0, (7)

where f (x) is easy to evaluate exactly for all x ∈ X , whereas the expectations in the
constraints are estimated by Monte Carlo. In the SAA, one replaces h(x) by ĥN(x),
the Monte Carlo average of N i.i.d. samples of H(x,ω). Under the assumption that
X is finite, that ĥN(x)→ h(x) w.p.1 when N → ∞, and there is x∗ ∈ X∗ such that
h(x∗) > 0, we have w.p.1 that there is N0 > 0 such that x̂N ∈ X∗ for all N ≥ N0.
Under the additional assumption that H(x,ω) satisfies a large-deviation principle,
which implies that P[|ĥN(x)− h(x)| > ε]→ 0 exponentially fast as a function of N
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for any ε > 0, we also have that P[x̂N 6∈ X∗] ≤ K exp[−ηN] for some constants K
and η > 0, i.e., the probability of not selecting an optimal decision converges to 0
exponentially fast as a function of N. Wang and Ahmed (2008) derived similar results
in the more general setting where X is only assumed to be a nonempty feasible set.
In Atlason et al. (2008) and Cez̧ik and L’Ecuyer (2008), the constraints (7) are on
QoS measures which are defined as expectations and x represents a staffing decision
(number of agents of each type in each time period). In Avramidis et al. (2010), a
similar problem is considered in which x represents the work schedules of all agents.

1.4 Our SAA Formulation and Results

In this paper, we first study the convergence of a SAA approximation for the two-
stage stochastic program (P1), in which an expectation is estimated by Monte Carlo at
each of the two stages. This gives rise to nested (or embedded) Monte Carlo sampling:
for each of the N first-stage realizations of ξ (or scenarios), say ξ1, . . . ,ξN , we must
sample several (say Mn = Mn(ξn) for scenario n) second-stage realizations of w to
estimate the expectations in the second-stage constraints, because the distribution of
G in the second stage depends on ξ . The SAA counterpart of (P1) can be written as

(P3)



min
x∈X

f̂N,Mn(x) = f 1(x)+
1
N

N

∑
n=1

Q̂n,Mn(x,ξn)

subject to ĥL(x)≥ 0,

where Q̂n,Mn(x,ξn) = min
yn∈Y

f 2(x,yn,ξn)

subject to ĝn,Mn(yn,ξn)≥ 0,

(8)

(9)

(10)

where

ĥL(x) :=
1
L

L

∑
l=1

H(x,ωl),

(ω1, . . . ,ωL) are L i.i.d. realizations of ω , {ξ1, . . . ,ξN} are i.i.d realizations of ξ , and
for each n,

ĝn,Mn(yn,ξn) :=
1

Mn

Mn

∑
m=1

G(yn,ξn,wn,m)

where {wn,1, . . . ,wn,Mn} are i.i.d realizations of w. The latter can be independent
across values of n, i.e., ∑

N
n=1 Mn independent realizations of w, or they can be de-

pendent. In particular, one could have Mn = M for all n and w1,m = · · ·= wN,m for all
m.

The SAA version of the multistage problem can be formulated in a similar way.
That is, at stage t = 1, . . . ,T , given the current state, we generate several realizations
of wt to estimate gt and several realizations of ξ t+1 to estimate the expectation of Qt+1

if t < T . This can be done recursively until all the expectations are replaced by their
SAA versions. Note that for a direct implementation of this, the computational effort
increases exponentially with the number of stages, which means that it is practical
only for a small number of stages.
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To the best of our knowledge, convergence of the SAA approach has not been
studied for this setting. Under appropriate conditions, we prove that w.p.1, the optimal
decisions for the SAA (P3) converge to the optimal decisions for the true problem
when N, L and the Mn increase toward infinity, in the sense that there are constants
N0, L0 and M0 such that if N ≥ N0, L ≥ L0 and min(M1, . . . ,MN) ≥M0, the optimal
decision at the first stage is the same for the SAA and the true problem. Moreover,
for almost all ξ ∈ Ξ , w.p.1 there is an M0 = M0(ξ ) such that for M ≥M0, the optimal
decision at the second stage is the same for the SAA and the true problem. This
proof does not follow from standard results due to the nested nature of the sampling.
Similarly, the issue of exponential convergence to 1 of the probability of making an
optimal decision is trickier in our setting than in Problem (P2). We show that this
exponential convergence holds at the second stage conditionally on ξ , for almost any
fixed ξ , but it does not hold for the unconditional probability. This is related to the fact
that the M0(ξ ) in the convergence w.p.1 is not uniformly bounded in ξ in general.

We also show that, by using the same techniques used to prove the convergence
results for the two-stage case, it is possible to extend the results for the multistage
program by induction. More precisely, we show that, w.p.1, the optimal decisions
for the SAA converge to the optimal decisions for the true multistage problem when
the sample sizes grow to infinity. Moreover, the large deviation probabilities can be
bounded from above by functions that converge to 0 exponentially fast when the
sample sizes increase. We employ induction techniques to prove such convergence
results, noting that we also face the issue that some convergence results may not
hold uniformly in the support sets of the corresponding random variables, making
the transfer between a stage to its previous stage difficult. We resolve this issue via
the same proof techniques as for the two-stage problem.

The rest of the paper is organized as follows. In Section 2 we state our results
on the consistency of SAA when N and the Mn go to infinity together. In Section
3 we establish the convergence rates of large-deviation probabilities with respect to
N and the Mn. The extension to a multistage setting is done in Section 4. Section 5
illustrates our convergence results for SAA with a call center staffing optimization
example in which arrival rates are uncertain, as discussed earlier. Section 6 provides
a conclusion.

2 Consistency of the SAA estimators

Let X∗ and X∗N,Mn,L denote the sets of first-stage optimal solutions for the true and
SAA problem, respectively. Let v∗ and v̂N,Mn,L be the optimal values for the true and
SAA counterpart problems. To support the proofs, we also denote by ṽ∗L the optimal
value of the problem

(P4) min
x∈X

{
f (x)| ĥL(x)≥ 0

}
and note that (P3) and (P4) have the same set of first-stage feasible solutions, i.e.,
{x ∈ X | ĥL(x) ≥ 0}. We also denote by Y ∗(x,ξ ) the set of optimal solutions for the
true second-stage problem given (x,ξ ), while Y ∗M(x,ξ ) denotes its SAA counterpart
when using sample size M at the second stage. For j = 1, . . . ,J, let h j(·) and ĥ j,L(·)
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denote the j-th elements of h(·) and ĥL(·) in (8), respectively. For k = 1, . . . ,K, let
gk(·) and ĝk,M(·) denote the k-th elements of g(·) and ĝM(·) in (10), respectively.

We first assume that the recourse is relatively complete; see for instance Birge
and Louveaux (2011) for the definition. Along with the assumption that Y is finite,
this implies that the recourse program has at least one optimal solution for every x
and P-almost every ξ . Moreover, we assume that the second-stage objective function
is almost surely uniformly bounded.

Assumption 1 X and Y are finite, and for P-almost every ξ ∈ Ξ , Y (ξ ) 6= /0. More-
over, f 2 is bounded uniformly for P-almost every (x,ξ ) ∈ X×Ξ .

We next assume that for P-almost every scenario ξ , the SAA of the second-stage
constraint asymptotically coincides with the true second-stage constraint, and that the
true constraint is not active at any true second-stage solution, as otherwise the SAA
constraint could be violated at this solution with a strictly positive probability for any
arbitrary large second-stage sample. In the continuous case, this assumption could be
relaxed by assuming that the true and SAA active sets are the same with probability
one when the sample size is large enough (Bastin et al., 2006; Shapiro, 2003).

Assumption 2 For all x ∈ X, ĥL(x)→ h(x) w.p.1 when L→ ∞, and for P-almost all
ξ , for all y ∈ Y , ĝM(y,ξ )→ g(y,ξ ) w.p.1 when M→ ∞, there exists x ∈ X∗ such that
h(x) 6= 0, and there exists y ∈ Y ∗(x,ξ ) such that g(y,ξ ) 6= 0.

Under Assumption 2, we can apply the known results for Problem (P2) to the
second stage of our problem (P1), to obtain the following proposition, whose proof
can be found in Atlason et al. (2004, 2008).

Proposition 1 Under Assumptions 1 and 2, and if there exists y ∈ Y ∗(x,ξ ) such that
g(y,ξ ) 6= 0, which occurs for P-almost any ξ , w.p.1 there is a finite M0 = M0(ξ ) such
that for all M ≥M0, /0 6=Y ∗M(x,ξ )⊆Y ∗(x,ξ ) and Q̂M(x,ξ ) = Q(x,ξ ). That is, for all
M ≥M0, the SAA in the second-stage has at least one optimal solution and any such
optimal solution is optimal for the true second-stage problem.

Moreover, again if there exists y∈Y ∗(x,ξ ) such that g(y,ξ ) 6= 0, there are positive
constants C and b(ξ ) such that

P [Y ∗M(x,ξ )⊆ Y ∗(x,ξ )]≥ 1−C exp[−b(ξ )M]. (11)

That is, for P-almost any ξ , the probability of missing optimality at the second stage
decreases to zero exponentially in M.

It is important to note that the sample size M0 and the constant b in Proposition 1
depend on ξ , and there may be no M0 and b for which the result holds uniformly in ξ .
The next example illustrates this problem. Because of that, we cannot rely on existing
results to directly derive exponential bounds for the large-deviation probabilities for
the SAA problem (P3).
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Example 1 Consider the two-stage program

min
x∈X

f (x) = x+Eξ [Q(x,ξ )]

where Q(x,ξ ) = min
y∈Y

2(y− x)

subject to Ew[y−2ξ −w]≥ 0,

where ξ ∼U(0,1) (the uniform distribution), w∼N (0,1) (the standard normal dis-
tribution), and X = Y = {0,1,2}. Given x ∈ X , the set of optimal solutions in the
second-stage is

Y ∗(x,ξ ) = argmin{2(y− x) |y ∈ Y,y≥ 2ξ}= argmin{y ∈ Y,y≥ 2ξ}.

Now, consider the SAA counterpart

min
x∈X

f̂N,M(x) = x+
1
N

N

∑
n=1

QM(x,ξn)

where QM(x,ξ ) = min
y∈Y

2(y− x)

subject to y−2ξ − ŵM ≥ 0,

where ŵM is a sample average approximation of w by a Monte Carlo method. In
this example, for notational simplicity we set M1 = . . . = MN = M. Regardless of
x, we have Y ∗(x,ξ ) = {1} if ξ ≤ 1/2, and Y ∗(x,ξ ) = {2} if ξ > 1/2. So, for a
given ξ ∈ [0,1/2], if we have ŵM > 1−2ξ in the second-stage of the SAA, then the
SAA does not return a true second-stage optimal solution, i.e, Y ∗M(x,ξ ) * Y ∗(x,ξ ).
Therefore, we have

P [Y ∗M(x,ξ )* Y ∗(x,ξ )]≥ P [ŵM ≥ 1−2ξ ] . (12)

Since ŵM ∼N (0,1/M), for any M > 0 we have

lim
1−2ξ→0

P [ŵM ≥ 1−2ξ ] = P [ŵM ≥ 0] =
1
2
. (13)

Hence, if 1−2ξ can be arbitrarily close to zero, for any given 0≤ ε < 1/4, then there
is no M0 > 0 such that P [ŵM ≥ 1−2ξ ]< ε for all M > M0 and all ξ ∈ [0,1/2), and
therefore, there is no M0 > 0 such that P [Y ∗M(x,ξ )* Y ∗(x,ξ )] < ε for all M > M0
and all ξ ∈ [0,1/2). This also means that there is no M0 such that, w.p.1, Q̂M(x,ξ ) =
Q(x,ξ ) for all M > M0 and all ξ ∈ [0,1/2).

We now show that exponential convergence of the probability of making a wrong
decision at the second stage does not hold uniformly in ξ . By contradiction, if there
are positive constants C0,b0 for which the exponential convergence in Proposition 1
holds uniformly in ξ , then for P-almost every ξ ∈ Ξ , we have

ln(P [Y ∗M(x,ξ )* Y ∗(x,ξ )])≤ lnC0−Mb0, for all M > 0. (14)

From (12) we have, for P-almost every ξ ∈ [0,1/2)

lnP [ŵM ≥ 1−2ξ ]

M
≤ lnC0

M
−b0. (15)
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However, we can always choose M∗ large enough such that

ln(1/4)− lnC0

M∗
>−b0,

and ξ ∗ ∈ [0,1/2) such that P [ŵM∗ ≥ 1−2ξ ∗] > 1/4. The latter can be done using
(13). Then, we have

lnP [ŵM∗ ≥ 1−2ξ ∗]

M∗
− lnC0

M∗
>

ln(1/4)− lnC0

M∗
>−b0,

meaning that (15) cannot hold for any M > 0 and for almost every ξ ∈ [0,1/2).

We now look at the convergence of the optimal value and optimal solution at
the first stage of the SAA problem to those of the true problem. We want to show
that w.p.1, we have X∗N,Mn,L ⊆ X∗ when min(N,M1, . . . ,MN ,L) is large enough. Since
X is finite, there is a fixed δ > 0 such that for every x ∈ X \ X∗, f (x)− v∗ ≥ δ .
Assuming that for a given L (large enough), {x ∈ X | ĥL(x)≥ 0}= {x ∈ X |h(x)≥ 0},
a sufficient condition for X∗N,Mn,L ⊆ X∗ is that | f̂N,Mn(x)− f (x)| < ε := δ/2 for all
x ∈ X . One could think that this last inequality would follow from the observation
that since for each ξn, Q̂Mn(x,ξn) converges to its expectation w.p.1 when Mn → ∞,
| f̂N,Mn(x)− f (x)| should converge to 0 w.p.1, so it will eventually be smaller than
ε . But this simple argument does not really stand (it is not rigorous), because the
convergence is not uniform in ξ , so the required M0 above which | f̂N,Mn(x)− f (x)|<
ε when N > N0 and min(M1, . . . ,MN) > M0 may increase without bound when N
increases. A more careful argument is needed and this is what we will do now, under
our two assumptions. We first introduce some notations, then prove three lemmas
which will be used to prove Theorems 1 and 2, which are our main results in this
section.

For any x ∈ X and ξ ∈ Ξ , we define

Y−(ξ ) = {y ∈ Y | ∃k such that gk(y,ξ )< 0)},

δ̄ (ξ ) =
1
2

max
y∈Y (ξ ),1≤k≤K

{gk(y,ξ ) | gk(y,ξ )< 0},

δ (ξ ) = min
y∈Y ∗(ξ ),1≤k≤K

{gk(y,ξ ) | gk(y,ξ )> 0}, and

δ (ξ ) = min{−δ̄ (ξ ),δ (ξ )}> 0. (16)

By convention, if Y−(ξ ) = /0 then δ̄ (ξ ) = −∞, and if {(y,k)| y ∈ Y ∗(ξ ), gk(y,ξ )
> 0} = /0, then δ (ξ ) = ∞. Under Assumption 2 we have δ (ξ ) < ∞ for P-almost
every ξ ∈ Ξ .

Lemma 1 maxx∈X | f̂N,Mn(x)− f (x)| ≥ |v̂N,Mn,L− ṽ∗L|.

Proof Let x∗N,Mn,L and x∗L be optimal solutions to (P3) and (P4), respectively. If f (x∗L)<
f̂N,Mn(x

∗
N), since f̂N,Mn(x

∗
N,Mn,L)≤ f̂N,Mn(x

∗
L), we have:

|v̂N,Mn,L− ṽ∗L|= | f̂N,Mn(x
∗
N,Mn,L)− f (x∗L)| ≤ | f̂N,Mn(x

∗
L)− f (x∗L)| ≤max

x∈X
| f̂N,Mn(x)− f (x)|.
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If f (x∗L)≥ f̂N,Mn(x
∗
N,Mn,L), since f (x∗L)≤ f (x∗N,Mn,L), we have |ṽ∗L− v̂N,Mn,L|= | f (x∗L)−

f̂N,Mn(x
∗
N)| ≤ | f (x∗N,Mn,L)− f̂N,Mn(x

∗
N,Mn,L)| ≤maxx∈X | f̂N,Mn(x)− f (x)|. In both cases,

we have |v̂N,Mn,L− ṽ∗L| ≤maxx∈X | f̂N,Mn(x)− f (x)|. ut

Also, for almost every scenario, we can recover solutions of the true second-stage
problem when the approximate constraints are close enough to the true ones.

Lemma 2 Under Assumptions 1, and 2, for P-almost every ξ ∈ Ξ , if |ĝk,M(y,ξ )−
gk(y,ξ )| ≤ δ (ξ ) for all y ∈ Y (ξ ) and k = 1, . . . ,K, then /0 6= Y ∗M(x,ξ )⊆ Y ∗(x,ξ ).

Proof Let YM(ξ ) be the set of feasible solutions of the SAA counterpart second-
stage problems. Given ξ such that δ (ξ )< ∞, which holds for P-almost every ξ ∈ Ξ ,
we have

|ĝk,M(y,ξ )−gk(y,ξ )| ≤ δ (ξ ) = min{−δ̄ (ξ ),δ (ξ )}.

If y ∈ Y−(ξ ), there exists some k such that gk(y,ξ )< 0 and

ĝk,M(y,ξ )≤ gk(y,ξ )− δ̄ (ξ )< 0.

Thus y ∈ Y\YM(ξ ), and Y\Y (ξ ) ⊆ Y\YM(ξ ). Since YM(ξ ) ⊆ Y , we have YM(ξ ) ⊆
Y (ξ ). Moreover, w.p.1, there exists y∗ ∈Y ∗(x,ξ ) such that g(y∗,ξ )> 0, we have that
for all k,

ĝk,M(y∗,ξ )≥ gk(y∗,ξ )−δ (ξ )≥ 0,

implying y∗ ∈YM(ξ ). Moreover, for all y∗M ∈Y ∗M(x,ξ ), we have f 2(x,y∗,ξ )≥ f 2(x,y∗M,ξ ).
As YM(ξ )⊆ Y , we also have f 2(x,y∗,ξ )≤ f 2(x,y∗M,ξ ), and therefore f 2(x,y∗,ξ ) =
f 2(x,y∗M,ξ ), implying that y∗ ∈ Y ∗M(x,ξ ), so Y ∗M(x,ξ ) 6= /0. This also implies that
if y∗1 ∈ Y ∗M(x,ξ ) and y∗2 ∈ Y ∗(x,ξ ), then f 2(x,y∗1,ξ ) = f 2(x,y∗2,ξ ). As Y ∗M(x,ξ ) ⊆
YM(ξ ) ⊆ Y , we also have y∗1 ∈ Y , and therefore y∗1 ∈ Y ∗(x,ξ ). As a consequence,
/0 6= Y ∗M(x,ξ )⊆ Y ∗(x,ξ ), which completes the proof. ut

A similar result holds for the first-stage optimal solutions. That is, if we denote

ζ = min
{

min
x∈X∗, j

{h j(x) | h j(x)> 0}; 1
2

max
x∈X , j
{h j(x) | h j(x)< 0}

}
and by X̃∗L the set of optimal solutions to (P4), then the following lemma can be
verified in a similar way.

Lemma 3 Under Assumptions 1, if |ĥ j,L(x)− h j(x)| ≤ ζ for all x ∈ X and all j ∈
{1, . . . ,J}, then /0 6= X̃∗L ⊆ X∗ and v∗ = ṽ∗L.

Theorem 1 Under Assumptions 1, and 2, for any ε > 0, w.p.1, there are integers
N0 = N0(ε), L0 = L0(ε) and M0 = M0(ε) such that for all N ≥ N0, L ≥ L0 and
min(M1, . . . ,MN)≥M0, | f̂N,Mn(x)− f (x)| ≤ ε for all x ∈ X, and |v̂N,Mn,L− v∗| ≤ ε .
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Proof We need to prove that for a given ε > 0, w.p.1, there are N0(ε), M0(ε)> 0 such
that | f̂N,Mn(x)− f (x)| ≤ ε for all N≥N0(ε), all M1, . . . ,MN such that min(M1, . . . ,MN)≥
M0(ε), and all x ∈ X . To prove this, we bound | f̂N,Mn(x)− f (x)| using a triangle in-
equality and then bound each term, as follows.

∣∣ f̂N,Mn(x)− f (x)
∣∣= ∣∣∣∣∣ 1

N

N

∑
n=1

Q̂Mn(x,ξn)−Eξ [Q(x,ξ )]

∣∣∣∣∣ (17)

≤

∣∣∣∣∣ 1
N

N

∑
n=1

Q(x,ξn)−Eξ [Q(x,ξ )]

∣∣∣∣∣+
∣∣∣∣∣ 1
N

N

∑
n=1

Q(x,ξn)−
1
N

N

∑
n=1

Q̂Mn(x,ξn)

∣∣∣∣∣ . (18)

To bound the first term in (18), note that under Assumption 1, Q(x,ξ ) is uniformly
bounded for P-almost every ξ ∈ Ξ , so the expectation of Q(x,ξ ) always exists ac-
cording to the Lebesgue integration. Thus, this part converges to zero when N → ∞

according to the strong law of large numbers, i.e., w.p.1, there exist N1
0 (x,ε) such that

for all N > N1
0 (x,ε), ∣∣∣∣∣ 1

N

N

∑
n=1

Q(x,ξn)−Eξ [Q(x,ξ )]

∣∣∣∣∣≤ ε

2
. (19)

Proving the convergence of the second term is more difficult, because Q̂Mn(x,ξ ) may
not converge to Q(x,ξ ) uniformly in ξ . To prove it, we partition the sample space Ξ

into four different subsets as follows. We first define Ξ̄ ⊆ Ξ as the set of all scenarios
such that Assumptions 1 and 2 hold for every ξ ∈ Ξ̄ . Assumptions 1 and 2 imply
that P(ξ ∈ Ξ̄ |ξ ∈ Ξ) = 1. We also choose Ξ1,Ξ2 and Ξ3 as three subsets of Ξ̄ such
that δ (ξ ) is bounded from below by a positive scalar and the convergence of ĝM to
g holds uniformly on Ξ3, and for which P[ξ ∈ Ξ1∪Ξ2] can be arbitrarily small. We
describe how to choose these sets in the following.

Since δ (ξ )> 0 w.p.1, we have

lim
π→0

Pξ [δ (ξ )≤ π] = 0.

Moreover, from Assumption 2, we can always choose a mapping M0 : Ξ ×R→ N
such that given ξ ∈ Ξ and for any ε > 0, w.p.1, we have that

|ĝk,M(y,ξ )−gk(y,ξ )| ≤ ε, (20)

for all y ∈ Y (x,ξ ), all M > M0(ξ ,ε), and k ∈ 1, . . . ,K. Note that M0(ξ ,ε) generally
depends on ξ and may be unbounded from above, i.e., we may have supξ∈Ξ M0(ξ ,ε)=
∞. However, we have

lim
M→∞

Pξ [M0(ξ ,ε)≥M] = 0.

So, there exist π(ε)> 0 and M1
0(ε)> 0 such that

P[δ (ξ )≤ π(ε)]≤ ε

6α
and P[M0(ξ ,π(ε))≥M1

0(ε)]≤
ε

6α
,

where α is a constant chosen such that α > supx∈X ,y∈Y,ξ∈Ξ\Ξ0
|2 f 2(x,y,ξ )|. We can

simply choose α = supx∈X ,y∈Y,ξ∈Ξ\Ξ0
|2 f 2(x,y,ξ )|+1. Hence, we always have α >
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|Q̂Mn(x,ξ )−Q(x,ξ )| for all x ∈ X , ξ ∈ Ξ̄ and all n = 1, . . . ,N. This α always exists
and is finite because f 2 is bounded uniformly for every ξ ∈ Ξ̄ . Let us define

Ξ1 = {ξ ∈ Ξ̄ |δ (ξ )≤ π(ε)},
Ξ2 = {ξ ∈ Ξ̄ |M0(ξ ,π(ε))≥M1

0(ε)},
Ξ3 = Ξ̄\(Ξ1∪Ξ2).

Suppose ξ1, . . . ,ξN ∈ Ξ̄ , which happens w.p.1. The second part of (18) can then be
written as∣∣∣∣∣ 1

N

N

∑
n=1

Q(x,ξn)−
1
N

N

∑
n=1

Q̂Mn(x,ξn)

∣∣∣∣∣
≤ 1

N

N

∑
n=1

∣∣Q(x,ξn)− Q̂Mn(x,ξn)
∣∣

=
1
N ∑

ξn∈Ξ1∪Ξ2

∣∣Q(x,ξn)− Q̂Mn(x,ξn)
∣∣+ 1

N ∑
ξn∈Ξ3

∣∣Q(x,ξn)− Q̂Mn(x,ξn)
∣∣

≤ 1
N

N

∑
n=1

αI[ξn ∈ Ξ1∪Ξ2]+
1
N ∑

ξn∈Ξ3

∣∣Q(x,ξn)− Q̂Mn(x,ξn)
∣∣ . (21)

The term 1
N ∑

N
n=1 I[ξn ∈ Ξ1∪Ξ2] is a sample average of P[ξn ∈ Ξ1∪Ξ2]. Therefore,

based on the strong law of large numbers, w.p.1, there is N2
0 (x,ε) such that, for all

N ≥ N2
0 (x,ε)

1
N

N

∑
n=1

I[ξn ∈ Ξ1∪Ξ2]≤ P[ξn ∈ Ξ1∪Ξ2]+
ε

6α

≤ P[ξn ∈ Ξ1]+P[ξn ∈ Ξ2]+
ε

6α

≤ ε

6α
+

ε

6α
+

ε

6α
=

ε

2α
.

(22)

Moreover, as Ξ3 = {ξ | δ (ξ ) > π(ε), M0(ξ ,π(ε)) < M1
0(ε)}, then for any ξ ∈ Ξ3,

w.p.1, we have |ĝk,M(y,ξ )− gk(y,ξ )| ≤ π(ε) < δ (ξ ) for all y ∈ Y (x,ξ ), all M >

M1
0(ε), and k = 1, . . . ,K. So, for any ξ ∈ Ξ3, w.p.1, Q̂M(x,ξ ) = Q(x,ξ ) for all M >

M1
0(ε) , or equivalently, w.p.1, for all Mn > M1

0(ε), n = 1, . . . ,N, we have

1
N ∑
{n|ξn∈Ξ3}

∣∣Q(x,ξn)− Q̂Mn(x,ξn)
∣∣= 0 (23)

Combining (18), (21), (22) and (23) we have, w.p.1, for all x ∈ X , all N > N0(ε) and
min{M1, . . . ,MN}> M0(ε), ∣∣ f̂N,Mn(x)− f (x)

∣∣≤ ε, (24)

where N0(ε)=max{N1
0 (ε),N

2
0 (ε)}, and M0(ε)=M1

0(ε). Furthermore, we have |v̂N−
v∗| ≤ |v̂N,Mn,L − ṽ∗L|+ |ṽ∗L − v∗|. By combining this with Lemmas 1 and 3, we ob-
tain that w.p.1, there are N0(ε), L0(ε) and M0(ε) such that |v̂N,Mn,L− v∗| ≤ ε for all
N > N0, L > L0 and min{M1, . . . ,MN}> M0. ut
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The next theorem concerns the consistency of the SAA counterpart in terms of
first-stage optimal solutions. We show that when the sample sizes are large enough,
w.p.1, we can retrieve a true optimal solution by solving the SAA problem.

Theorem 2 Under Assumptions 1 and 2, w.p.1, there are integers N0, L0 and M0 such
that for all N ≥ N0, L≥ L0 and min(M1, . . . ,MN)≥M0, X∗N,Mn,L ⊆ X∗.

Proof For each x ∈ X and x /∈ X∗, we have f (x) > v∗, and since X is finite, there
exists some δ > 0 such that

| f (x)− v∗|> η for all x ∈ X\X∗.

In other words, if | f (x)− v∗| ≤ η , then x ∈ X∗. Now, given x̂ ∈ X∗N,Mn,L, we have

| f (x̂)− v∗| ≤ | f (x̂)− f̂N,Mn(x̂)|+ | f̂N,Mn(x̂)− v∗|. (25)

From Theorem 1, w.p.1, there exist N0(η), L0(η) and M0(η) > 0 such that for all
N ≥ N0(η), L≥ L0(η), Mn ≥M0(η) for all n = 1, . . . ,N,

| f (x̂)− f̂N,Mn(x̂)| ≤ η/2 and | f̂N,Mn(x̂)− v∗| ≤ η/2.

Thus, w.p.1, there are N0,L0,M0 > 0 such that for all N ≥ N0, L ≥ L0 and Mn ≥M0,
n = 1, . . .N, we have | f (x̂)− v∗| ≤ η and X∗N,Mn,L ⊆ X∗. ut

In summary, we have shown that in the first stage, w.p.1, the optimal decision in
the SAA becomes equal to that of the true problem when the number of scenarios and
the sample size for each SAA second-stage constraint are large enough. Moreover,
for any fixed ξ , we can obtain an optimal solution of the corresponding second stage
problem by solving its SAA with large enough sample size.

3 Convergence of large-deviation probabilities

In this section, we establish large-deviation principles for the optimal value v̂N of
the SAA, for the true value f (x̂N,Mn,L) of an optimal solution x̂N,Mn,L of the SAA,
and for the probability that any optimal solution to the SAA is an optimal solu-
tion of the true problem. That is, we show that for any ε > 0, P[|v̂N,Mn,L− v∗| ≤ ε],
P[| f (x̂N,Mn,L)−v∗| ≤ ε], and P[ /0 6= X∗N,Mn,L ⊆ X∗] all converge to 1 exponentially fast
when L, N and the Mn go to ∞. Recall that in Proposition 1 and Example 1, we showed
that in the second-stage problem, the probability that a SAA second-stage solution is
truly optimal approaches one exponentially fast for any given ξ , but this exponential
convergence may not hold uniformly in ξ . For this reason, it is difficult to establish
the exponential convergence of P[X∗N,Mn,L ⊆ X∗] when L, N and the Mn go to infinity.

A standard large-deviation result is that if Z1, . . . ,ZM are i.i.d replicates of a ran-
dom variable Z of mean µ and variance σ2 > 0 and whose moment generating func-
tion is finite in a neighborhood of zero, then for any ε > 0 we have (Stroock, 1984;
Shapiro, 2003):

P[ẐM−µ > ε]≤ exp
(
−Mε2

2σ2

)
and P[ẐM−µ <−ε]≤ exp

(
−Mε2

2σ2

)
. (26)
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When Z is bounded, as is the case for Z = Q(x,ξ ) or if Z is given by an indicator
function as we will have later on in (P8), its moment generating function is always
finite, and we can simply use Hoeffding’s equality (Hoeffding, 1963) to establish
large-deviation results. We need the following assumption for G.

Assumption 3 For all x ∈ X, the moment-generating function of H(x,ω), defined as
Eω [exp(tH(x,ω))], is bounded in a neighborhood of t = 0, and for P-almost every
ξ ∈ Ξ , for all x ∈ X and y ∈ Y , the moment-generating function of G(y,ξ ,w), i.e.
Ew [exp(tG(y,ξ ,w))], is bounded in a neighborhood of t = 0.

The next assumption concerns a finite covering property of the support set Ξ with
respect to the function Gk(y,ξ ,w), given x ∈ X , y ∈ Y and w ∈ W . In other words,
we require that it is possible to cover the infinite set Ξ by a finite number of subsets
such that in each subset, the variation of Gk(y,ξ ,w), with respect to ξ , is bounded
by the size of the subset multiplied by a random variable having a finite moment-
generating function. Such an assumption is often made in the stochastic programming
literature to establish convergence results with continuous variables (Shapiro et al.,
2014; Kim et al., 2015). In our context, the decision variables x and y are discrete,
but we need this assumption because the stochastic functions G(·) also depend on
ξ whose support may be infinite. In particular, a finite covering property holds if Ξ

is compact and Gk(y,ξ ,w) is Lipschitz continuous in ξ . We introduce the following
assumption under a general setting.

Assumption 4 There is a measurable function κ : W → R+ with bounded moment-
generating function in a neighborhood of 0 such that for any υ > 0, there are S =
S(υ)< ∞ non-empty sets Ξ 1, . . . ,Ξ S covering Ξ , i.e., Ξ ⊂

⋃S
s=1 Ξ s, such that for any

s ∈ {1, . . . ,S} and P-almost every ξ1, ξ2 ∈ Ξ h, we have

|Gk(y,ξ2,w)−Gk(y,ξ1,w)| ≤ κ(w)υ , ∀x ∈ X , ∀y ∈ Y, k = 1, . . . ,K.

It is also convenient in our proofs to assume that the number of distinct values in
{M1, . . . ,MN} is bounded uniformly in N. This is not really restrictive in practice
and will permit us to remove the dependence on N when using the finite coverage
Assumption 4 to establish an upper bound on the probability

P

[∣∣∣∣∣ 1
N

N

∑
n=1

Q̂Mn(x,ξn)−Q(x,ξn)

∣∣∣∣∣> ε

]

for large N. Without Assumptions 4 and 5, we are still able to establish “weaker”
large-deviation results; see Theorem 4.

Assumption 5 The number of distinct values in {M1, . . . ,MN} is bounded uniformly
in N.

We are now in a position to provide large-deviation bounds for the optimal value
of the SAA problem.
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Theorem 3 Suppose Assumptions 1 to 5 hold. Then for any ε > 0, there exist positive
constants C0, C1, C2, b0, b1(ε), and b2(ε) that do not depend on L, N and the Mn,
n = 1, . . . ,N, such that

P [|v̂N,Mn,L− v∗|> ε]≤C0 exp[−b0L]+C1 exp[−b1(ε)N]+C2 exp[−b2(ε)M],

where M = minn=1,...,N Mn. There also exist positive constants C′0, C′1, C′2, b′0, b′1(ε),
and b′2(ε) such that

P [| f (x̂N)− v∗|> ε]≤C′0 exp[−b′0L]+C′1 exp[−b′1(ε)N]+C′2 exp[−b′2(ε)M],

where x̂N,Mn,L is an arbitrary optimal solution to the SAA problem.

Proof We use again the triangle inequality in (18). For any ε > 0, we have

P
[

max
x∈X

∣∣ f̂N,Mn (x)− f (x)
∣∣> ε

]
= P

[
max
x∈X

∣∣∣∣∣ 1
N

N

∑
n=1

Q̂Mn (x,ξn)−Eξ [Q(x,ξ )]

∣∣∣∣∣> ε

]
(27)

≤ P

[
max
x∈X

∣∣∣∣∣ 1
N

N

∑
n=1

Q̂Mn (x,ξn)−
1
N

N

∑
n=1

Q(x,ξn)

∣∣∣∣∣+max
x∈X

∣∣∣∣∣ 1
N

N

∑
n=1

Q(x,ξn)−Eξ [Q(x,ξ )]

∣∣∣∣∣> ε

]

≤ P

[(
max
x∈X

∣∣∣∣∣ 1
N

N

∑
n=1

(
Q̂Mn (x,ξn)−Q(x,ξn)

)∣∣∣∣∣> ε

2

)⋃(
max
x∈X

∣∣∣∣∣ 1
N

N

∑
n=1

Q(x,ξn)−Eξ [Q(x,ξ )]

∣∣∣∣∣> ε

2

)]

≤ P

[
max
x∈X

∣∣∣∣∣ 1
N

N

∑
n=1

(
Q̂Mn (x,ξn)−Q(x,ξn)

)∣∣∣∣∣> ε

2

]
+P

[
max
x∈X

∣∣∣∣∣ 1
N

N

∑
n=1

Q(x,ξn)−Eξ [Q(x,ξ )]

∣∣∣∣∣> ε

2

]

≤ ∑
x∈X

(
P

[∣∣∣∣∣ 1
N

N

∑
n=1

(
Q̂Mn (x,ξn)−Q(x,ξn)

)∣∣∣∣∣> ε

2

]
+P

[∣∣∣∣∣ 1
N

N

∑
n=1

Q(x,ξn)−Eξ [Q(x,ξ )]

∣∣∣∣∣> ε

2

])
. (28)

Considering the second part of (28) and given the fact that Q(x,ξ ) is bounded by the
interval [−α,α] for P-almost every ξ , where α is defined as in the proof of Theorem
1, we obtain the following from Hoeffding’s inequality (Hoeffding, 1963):

P

[∣∣∣∣∣ 1
N

N

∑
n=1

Q(x,ξn)−Eξ [Q(x,ξ )]

∣∣∣∣∣> ε

2

]
≤ 2exp

(
−Nε2

8α2

)
. (29)

As discussed earlier, the convergence in probability of Q̂M(x,ξ )→ Q(x,ξ ) does
not hold uniformly on Ξ . To deal with this issue, similar to the proof of Theorem 1,
we divide the support set Ξ into smaller sub-sets. First, we define Ξ̄ ⊆ Ξ as the set of
all scenarios ξ ∈ Ξ for which Assumptions 1, 2 and 3 hold. Note that P[ξ ∈ Ξ̄ ] = 1.
We select π(ε)> 0 such that

Pξ [δ (ξ )≤ π(ε)]≤ ε

6α
,
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where δ (ξ ) is defined in (16). Let also define Ξ1 = {ξ ∈ Ξ̄ |δ (ξ )≤ π(ε)}, and Ξ2 =
Ξ̄\Ξ1). We write the first part of (28) as

P

[∣∣∣∣∣ 1
N

N

∑
n=1

Q̂Mn(x,ξn)−
1
N

N

∑
n=1

Q(x,ξn)

∣∣∣∣∣> ε

2

]

≤ P

[
1
N ∑

ξn∈Ξ1∪Ξ2

∣∣Q̂Mn(x,ξn)−Q(x,ξn)
∣∣> ε

2

]

≤ P

[
1
N ∑

ξn∈Ξ1

∣∣Q̂Mn(x,ξn)−Q(x,ξn)
∣∣> ε

4

]
+P

[
1
N ∑

ξn∈Ξ2

∣∣Q̂Mn(x,ξn)−Q(x,ξn)
∣∣> ε

4

]

≤ P

[
1
N

N

∑
n=1

αI[ξn ∈ Ξ1]>
ε

4

]
+P

[
1
N ∑

ξn∈Ξ2

∣∣Q̂Mn(x,ξn)−Q(x,ξn)
∣∣> ε

4

]
. (30)

The first term in (30) concerns a sample average approximation of αP[ξ ∈ Ξ1], and
we have αP[ξ ∈ Ξ1] ≤ ε/6 < ε/4. Moreover, I[ξ ∈ Ξ1] only takes values in {0,1},
so by Hoeffding’s inequality we have

P

[
1
N

N

∑
n=1

I[ξn ∈ Ξ1]>
ε

4α

]
≤ exp

(
−Nε2

72α2

)
. (31)

For the second term of (30), we have

P

[
1
N ∑

ξn∈Ξ2

∣∣Q̂Mn(x,ξn)−Q(x,ξn)
∣∣≤ ε

4

]
≥ P

[∣∣Q̂Mn(x,ξn)−Q(x,ξn)
∣∣= 0, ∀ξn ∈ Ξ2, n = 1, . . . ,N

]
≥ P

[∣∣ĝk,M(ξ )(y,ξ )−gk(y,ξ )
∣∣≤ δ (ξ ), ∀ξ ∈ Ξ2, ∀y ∈ Y, k = 1, . . . ,K

]
≥ P

[∣∣ĝk,M(ξ )(y,ξ )−gk(y,ξ )
∣∣≤ π(ε), ∀ξ ∈ Ξ2, ∀y ∈ Y, k = 1, . . . ,K

]
,

where M(ξ ) is a mapping from Ξ to N+ such that M(ξn) = Mn, n = 1, . . . ,N, and
we assume that M(ξ ) = M for all ξ 6= ξn, n = 1, . . . ,N. Moreover, as the number of
distinct values in {M1, . . . ,MN} is bounded uniformly, there exists T ∈ N+ that is
independent of N and T values {M1, . . . ,MT } such that M(ξ ) ∈ {M1, . . . ,MT }
for all ξ ∈ Ξ . Hence, we have

P

[
1
N ∑

ξn∈Ξ2

∣∣Q̂Mn(x,ξn)−Q(x,ξn)
∣∣> ε

4

]
≤ P

[
∃(ξ ,y,k)

∣∣∣ ξ ∈ Ξ2, y ∈ Y, k ∈ {1, . . . ,K},
∣∣ĝk,M(ξ )(y,ξ )−gk(y,ξ )

∣∣> π(ε)
]

≤ ∑
y∈Y

K

∑
k=1

P

[
sup

ξ∈Ξ2

∣∣ĝk,M(ξ )(y,ξ )−gk(y,ξ )
∣∣> π(ε)

]

≤ ∑
y∈Y

K

∑
k=1

T

∑
t=1

P

[
sup

ξ∈Ξ2

∣∣ĝk,Mt (y,ξ )−gk(y,ξ )
∣∣> π(ε)

]
. (32)
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Basically, given a scenario ξ ∈Ξ2, we bound the probability P[|ĝk,Mt (y,ξ )−gk(y,ξ )|
> π(ε)] using LD theory. So, the probability P[supξ∈Ξ2

|ĝk,M(ξ )(y,ξ )− gk(y,ξ )| >
π(ε)] can be bounded using LD theory if |Ξ2| is finite. If |Ξ2| is infinite, we use a
discretization technique over set Ξ2 as in the following.

Under Assumption 4, if we define Ξ s
2 = Ξ2 ∩Ξ s, s = 1, . . . ,S, then for P-almost

every ξ ,ξ1 ∈ Ξ s
2 and for all x ∈ X , y ∈ Y , k = 1 . . . ,K, we have

|Gk(y,ξ ,w)−Gk(y,ξ1,w)| ≤ κ(w)υ .

For each set Ξ s
2, s = 1, . . . ,S, we choose a representative point ξ̄s ∈ Ξ s

2 such that for
P-almost every ξ ∈ Ξ s

2 and for all x ∈ X , y ∈ Y , k = 1 . . . ,K, we have

|Gk(y,ξ ,w)−Gk(y, ξ̄s,w)| ≤ κ(w)υ .

We also define the corresponding mapping s(ξ ) = ξ̄s if ξ ∈Ξ s
2. We have the following

inequality∣∣ĝk,M(y,ξ )−gk(y,ξ )
∣∣≤ ∣∣ĝk,M(y,ξ )− ĝk,M(y,s(ξ ))

∣∣
+
∣∣ĝk,M(y,s(ξ ))−gk(y,s(ξ ))

∣∣+ |gk(y,s(ξ ))−gk(y,ξ )| .
(33)

Here, we assume that ĝk,M(y,ξ ) and ĝk,M(y,s(ξ )) are computed by the same set of
realizations of w. We also have ĝk,M(y,ξ )− ĝk,M(y,s(ξ )) is a SAA of gk(y,ξ )−
gk(y,s(ξ )), therefore, for P-almost every ξ ∈ Ξ s

2 we can write

|ĝk,M(y,ξ )− ĝk,M(y,s(ξ ))|= 1
M

∣∣∣∣∣ M

∑
m=1

(Gk(y,ξ ,wm)−Gk(y,s(ξ ),wm))

∣∣∣∣∣
≤ 1

M

M

∑
m=1
|Gk(y,ξ ,wm)−Gk(y,s(ξ ),wm)|

≤ 1
M

M

∑
m=1

κ(wm)υ .

So, for P-almost every ξ ∈ Ξ s
2,

|ĝk,M(y,ξ )− ĝk,M(y,s(ξ ))| ≤ κ̂Mυ , (34)

where κ̂M =M−1
∑

M
m=1 κ(wm) is a sample average version of Ew[κ(w)]. We also have

that, for P-almost every ξ ∈ Ξ s
2,

|gk(y,ξ )−gk(y,s(ξ ))| ≤ Ew[κ(w)]υ . (35)

From the assumption that the moment-generating function of κ(w) is finite in a neigh-
borhood of 0, Ew[κ(w)] is finite. We define χκ = Ew[κ(w)]. From (35) we have
|gk(y,ξ )−gk(y,s(ξ ))| ≤ χκ υ for P-almost every ξ ∈Ξ s

2. Thus, for P-almost every ξ ∈
Ξ s

2, we have

|ĝk,M(y,ξ )−gk(y,ξ )|
≤ |ĝk,M(y,ξ )− ĝk,M(y,s(ξ ))|+ |ĝk,M(y,s(ξ ))−gk(y,s(ξ ))|
+ |gk(y,s(ξ ))−gk(y,ξ )|
≤ κ̂Mv+ |ĝk,M(y,s(ξ ))−gk(y,s(ξ ))|+χκ v.
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Let us return to the evaluation of (32). If we set υ = π(ε)/(4χκ), then from (33), (34)
and (35), we have

P

[
sup

ξ∈Ξ2

∣∣ĝk,Mt (y,ξ )−E[Gk(y,ξ ,w)]
∣∣> π(ε)

]

≤ P
[

max
s=1,...,S

∣∣ĝk,Mt (x, ξ̄s,y)−gk(x, ξ̄s,y)
∣∣> π(ε)

3

]
+P

[
max

s=1,...,S
κ̂Mt >

π(ε)

3υ

]
+P

[
χκ υ >

π(ε)

3

]
≤

S

∑
s=1

(
P
[∣∣ĝk,Mt (y, ξ̄s)−gk(y, ξ̄s)

∣∣> π(ε)

3

]
+P

[
κ̂Mt >

4χκ

3

])
. (36)

The first part of (36) can be handled using LD theory, i.e., under Assumption 3 and
using (26), we obtain

P
[∣∣ĝk,Mt (y, ξ̄s)−gk(y, ξ̄s)

∣∣> π(ε)

3

]
≤ 2exp

(
−Mtπ

2(ε)

18σ2
g

)
≤ 2exp

(
−Mπ2(ε)

18σ2
g

)
,

(37)
where σ2

g = supy,k,ξ Varw[Gk(y,ξ ,w)]. For the second part of (36), using again LD
theory we obtain

P
[

κ̂hMt >
4χκ

3

]
≤ exp

(
−Mχ2

κ

18σ2
κ

)
, (38)

where σ2
κ = Varw[κ(w)]. Combining (37) and (38), we have

P

[
sup

ξ∈Ξ2

∣∣ĝk,Mt (y,ξ )−gk(y,ξ )
∣∣> π(ε)

]
≤ S

(
2exp

(
−Mπ2(ε)

18σ2
g

)
+ exp

(
−Mχ2

κ

18σ2
κ

))
,

and, from (32),

P

[
1
N ∑

ξn∈Ξ2

∣∣Q̂Mn(x,ξn)−Q(x,ξn)
∣∣> ε

4

]
≤K|Y |ST

(
2exp

(
−Mπ2(ε)

18σ2
g

)
+ exp

(
−Mχ2

κ

18σ2
κ

))
.

(39)
Combining (30), (31) and (39), we have

P

[∣∣∣∣∣ 1
N

N

∑
n=1

Q̂Mn(x,ξn)−
1
N

N

∑
n=1

Q(x,ξn)

∣∣∣∣∣> ε

2

]

≤ exp
(
−Nε2

72α2

)
+ |Y |KST

(
2exp

(
−Mπ2(ε)

18σ2
g

)
+ exp

(
−Mχ2

κ

18σ2
κ

))
.
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Along with (28) and (29), this leads to

P
[

max
x∈X

∣∣ f̂N,Mn(x)− f (x)
∣∣> ε

]
≤ 2|X |exp

(
−Nε2

8α2

)
+ |X |exp

(
−Nε2

72α2

)
+ |X ||Y |KST

(
2exp

(
−Mπ2(ε)

18σ2
g

)
+ exp

(
−Mχ2

κ

18σ2
κ

))
.

< 3|X |exp
(
−Nε2

72α2

)
+ |X ||Y |KST

(
2exp

(
−Mπ2(ε)

18σ2
g

)
+ exp

(
−Mχ2

κ

18σ2
κ

))
(40)

Now, combining this result with Lemmas 1 and 3, we also have

P [|v̂N,Mn,L− v∗|> 2ε]≤ P [|v̂N,Mn,L− ṽ∗L|> ε]+P [|ṽ∗L− v∗|> ε]

≤ P
[

max
x∈X

∣∣ f̂N,Mn(x)− f (x)
∣∣> ε

]
+P

[
∃(x, j)

∣∣∣ |ĥ j,L(x)−u j(x)|> ζ

]
≤ P

[
max
x∈X

∣∣ f̂N,Mn(x)− f (x)
∣∣> ε

]
+ ∑

x∈X

J

∑
j=1

P
[
|ĥ j,L(x)−u j(x)|> ζ

]
≤ P

[
max
x∈X

∣∣ f̂N,Mn(x)− f (x)
∣∣> ε

]
+ |X |J exp

(
−Lζ 2

2σ2
u

)
, (41)

where σu = maxx Varω [H j(x,ω)]. Combining (40) and (41), we have that there exist
positive constants C0, C1, C2, b0, b1(ε), b2(ε), where b1, b2 depend on ε , and C0, C1,
C2 depend on |X |, |Y |, K, S, J and T such that

P [|v̂N,Mn,L− v∗|> ε]≤C0 exp(−Lb0)+C1 exp(−Nb1(ε))+C2 exp(−Mb2(ε)),
(42)

delivering the first inequality. Moreover, from the triangular inequality (25),

P [| f (x̂N,Mn,L)− v∗|> 2ε] (43)

≤ P
[
| f (x̂N,Mn,L)− f̂N,Mn(x̂N,Mn,L)|> ε

]
+P

[
| f̂N,Mn(x̂N,Mn,L)− v∗|> ε

]
,

≤ P
[

max
x∈X
| f (x)− f̂N,Mn(x)|> ε

]
+P [|v̂N,Mn,L− v∗|> ε] , (44)

and combining again (40) and (41), we obtain the second inequality. ut

In the next theorem we relax Assumptions 4 and 5 (finite coverage and bounded
number of distinct values for the Mn), and prove a weaker results under the remain-
ing assumptions. Note that there is now an extra lnN in the exponent of the second
exponential.

Theorem 4 Suppose that Assumptions 1, 2, and 3 hold. Given ε > 0, there are posi-
tive constants C0, b0, C1, b1(ε), C2, b2(ε) such that

P [|v̂N,Mn,L− v∗|> ε]≤C0 exp(−b0L)+C1 exp(−b1(ε)N)+C2 exp(−b2(ε)M+lnN),
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where M = minn=1,...,N Mn. There also exist positive constants C′0, C′1, C′2, b′0, b′1(ε),
and b′2(ε) such that

P [| f (x̂N,Mn,L)− v∗|> ε]≤C′0 exp[−b′0L]+C′1 exp[−b′1(ε)N]+C′2 exp[−b′2(ε)M+lnN],

where x̂N,Mn,L is any optimal solution to the SAA problem.

Proof We use the same notation and definitions as in the proof of Theorem 3. How-
ever, instead of using a discretization technique for the support set Ξ2, we just con-
sider (30) and derive the following inequalities

P

[
1
N ∑

ξn∈Ξ2

∣∣Q̂Mn(x,ξn)−Q(x,ξn)
∣∣> ε

4

]
≤ P

[
∃ξn ∈ Ξ2

∣∣ ∣∣Q̂Mn(x,ξn)−Q(x,ξn)
∣∣> ε

4

]
≤ ∑

ξn∈Ξ2
n=1,...,N

P
[∣∣Q̂Mn(x,ξn)−Q(x,ξn)

∣∣> ε

4

]

≤ ∑
ξn∈Ξ2

n=1,...,N

P
[
∃y,k

∣∣∣ ∣∣ĝk,Mn(y,ξn)−gk(y,ξn)
∣∣> δ (ξn)

]

≤ ∑
ξn∈Ξ2

n=1,...,N

∑
y∈Y

K

∑
k=1

P
[ ∣∣ĝk,Mn(y,ξn)−gk(y,ξn)

∣∣> π(ε)
]

≤ 2NK|Y |exp

(
−Mπ2(ε)

2σ2
g

)
= 2K|Y |exp

(
−Mπ2(ε)

2σ2
g

+ lnN

)
.

And similarly to the proof of Theorem 3 we also have

P
[

max
x∈X

∣∣ f̂N,Mn(x)− f (x)
∣∣> ε

]
≤ 2|X |exp

(
−Nε2

8α2

)
+ |X |exp

(
−Nε2

72α2

)
+2|X ||Y |K exp

(
−Mπ2(ε)

2σ2
g

+ lnN

)
. (45)

Then we can use (41), (44), Lemmas 1 and 2 to obtain the desired inequalities and
complete the proof. ut

Although Theorem 4 is “weaker” than Theorem 3 due to the term lnN, if M
increases at least as fast as N, for instance if M≥N, we have that (lnN)/M→ 0 when
N→ ∞, meaning that we can neglect the term lnN when N and M are large enough.
Formally speaking, there are N0 > 0 and b′2 < b2 such that for all M > N > N0, we
have that −Mb2 + lnN < −Mb′2. This means that, without Assumption 4 and 5, we
still obtain bounds that converge at the same (asymptotic) rates as in Theorem 3 when
M and N are large enough.
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The next theorem tells us that with a probability that converges to 1 exponentially
fast in N and M, the SAA has a non-empty set of optimal solutions and each one
is also an optimal (feasible) solution for the true problem. The proof is based on
the results of Theorems 3 and 4, and uses the fact that the set of first-stage feasible
solutions is finite.

Theorem 5 If Assumptions 1 to 5 hold, there exist positive constants C0, b0, C1, b1,
C2, and b2, such that

P
[

/0 6= X∗N,Mn,L ⊆ X∗
]
≥ 1−C0 exp(−b0L)−C1 exp(−b1N)−C2 exp(−b2M),

where M = minn=1,...,N Mn. If Assumptions 1 to 3 hold, there exist positive constants
C0, b0, C1, b1, C2, and b2, such that

P
[

/0 6= X∗N,Mn,L ⊆ X∗
]
≥ 1−C0 exp(−b0L)−C1 exp(−b1N)−C2 exp(−b2M+ lnN).

Proof Under Assumption 1, X∗N,Mn,L is not empty, and since |X | is finite, there always
exits ρ > 0 such that

| f (x)− v∗|> ρ, for all x ∈ X\X∗, (46)

where ρ can be chosen such that 0 < ρ < minx∈X\X∗ | f (x)− v∗|. In other words, if
x ∈ X such that | f (x)− v∗| ≤ ρ then x ∈ X∗. Now, we have

P
[

/0 6= X∗N,Mn,L ⊆ X∗
]
≥ P

[
∀x̂ ∈ X∗N,Mn,L | | f (x̂)− v∗| ≤ ρ

]
= 1−P

[
∃x̂ ∈ X∗N,Mn,L | | f (x̂)− v∗|> ρ

]
≥ 1− ∑

x̂∈X∗N,Mn ,L

P [| f (x̂)− v∗|> ρ] . (47)

Using the second inequalities of Theorem 3 and 4 and under the assumption that X is
finite, we obtain the desired results. ut

Theorems 3, 4, and 5 do not tell us explicitly how large N and Mn must be for the
probability of getting an exact optimal solution to exceed a given target value. The
next result provides such explicit sufficient conditions.

Corollary 1 (Sample size estimates)
Suppose Assumptions 1 to 5 hold. We have that P

[
X∗N,Mn,L ⊆ X∗

]
≥ 1−β if

N ≥
(

1152α2

ρ2

)
ln
(

18|X |2

β

)
,

L≥
(

2σ2
u

ζ 2

)
ln
(

3|X |2J
β

)
and

Mn ≥max

{
18σ2

g

π2(ρ/4)
,

18σ2
κ

χ2
κ

}
ln
(

18|X |2|Y |KST

β

)
, n = 1, . . . ,N.
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If only Assumptions 1 to 3 hold, we have the following sufficient values:

N ≥
(

1152α2

ρ2

)
ln
(

18|X |2

β

)
L≥

(
2σ2

u

ζ 2

)
ln
(

3|X |2J
β

)
and

Mn ≥
2σ2

g

π2(ρ/4)
ln
(

12|X |2|Y |KN
β

)
, n = 1, . . . ,N.

Proof We first show the estimates for the case that Assumptions 1 to 5 hold. The
estimates then can be obtained using the proof of Theorem 5 and 3 as follows. Using
(44), (47) and (41) , we have the chain of inequalities

1−P
[
X∗N,Mn,L ⊆ X∗

]
≤ ∑

x̂∈X∗N,Mn ,L

P [| f (x̂)− v∗|> ρ]

≤ |X |P
[

max
x∈X
| f (x)− f̂N,Mn(x)|>

ρ

2

]
+ |X |P

[
|v̂N,Mn,L− v∗|> ρ

2

]
≤ 2|X |P

[
max
x∈X
| f (x)− f̂N,Mn(x)|>

ρ

4

]
+ |X |2J exp

(
−Lζ 2

2σ2
u

)
(48)

We can bound the first part of (48) using (40) and obtain

1−P
[
X∗N,Mn,L ⊆ X∗

]
≤ |X |2J exp

(
−Lζ 2

2σ2
u

)
+6|X |2 exp

(
−Nρ2

1152α2

)
+

+2|X |2|Y |KST

(
2exp

(
−Mπ2(ρ/4)

18σ2
g

)
+ exp

(
−Mχ2

κ

18σ2
κ

))
.

So, if we choose N,L,Mn as in the corollary, then 1− P
[
X∗N,Mn,L ⊆ X∗

]
≤ β or

P
[
X∗N,Mn,L ⊆ X∗

]
≥ 1−β as desired.

If only Assumptions 1 to 3 hold, we make use of the proof of Theorem 4 to have

1−P
[
X∗N,Mn,L ⊆ X∗

]
≤ 2|X |P

[
max
x∈X
| f (x)− f̂N,Mn(x)|>

ρ

4

]
+ |X |2J exp

(
−Lζ 2

2σ2
u

)
< |X |2J exp

(
−Lζ 2

2σ2
u

)
+6|X |2 exp

(
−Nρ2

1152α2

)
+4|X |2|Y |K exp

(
−Mπ2(ρ/4)

2σ2
g

+ lnN

)
(49)

So the selection of N,L,Mn, n = 1, . . . ,N, in the corollary is sufficient to guarantee
that P

[
X∗N,Mn,L ⊆ X∗

]
≥ 1−β .
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These sufficient conditions on L, N and the Mn are probably too conservative and
difficult to compute to provide practical concrete numbers, but they provide insight
by showing that L and N depend logarithmically on the size of the feasible set X and
on the tolerance probability β , while M depends logarithmically on the sizes of the
feasible sets X and Y as well as the tolerance β .

4 Extension to a Multistage Setting

We now discuss how to extend our results to the multistage program. We construct
a SAA of Problem (P0) by replacing all the expectations by Monte Carlo estimates
obtained via nested sampling. These estimates can be obtained with different sample
sizes at the different nodes of the scenario tree, but to keep the discussion and notation
simpler here, we assume here that the sample sizes are the same in all branches: at
stage t, we use Nt realizations for ξ t and Mt realizations for wt . This assumption is
not essential for the proofs. It must be understood that the distribution of ξ t generally
depends on ξ t−1, which can be different between all tree nodes at stage t, although
this dependence is not indicated explicitly in the formulation below, to avoid overly
complicated notation. The SAA of (P0) can be stated as follows:

(P6)



min
x1∈X1

f̂ (x1) = f 1(x1)+ Q̂2
N2(x1) = f 1(x1)+

1
N2

N2

∑
n=1

Q̂2(x1,ξ 2
n )

subject to ĝ1
M1(x1) :=

1
M1

M1

∑
m=1

G(x1,w1
m)≥ 0,

where Q̂t(xt−1,ξ t
n)

= min
xt∈X t

f t(xt−1,xt ,ξ t
n)+ Q̂t+1

Nt+1(x
t ,ξ t

n)

subject to ĝt
Mt (xt ,ξ t

n) :=
1

Mt

Mt

∑
m=1

Gt(xt ,ξ t
n,w

t
m)≥ 0,

with Q̂t
Nt (xt−1,ξ t−1

n ) :=
1

Nt

Nt

∑
n′=1

Q̂t(xt−1,ξ t
n′)

for t = 2, . . . ,T,

and Q̂T+1
NT+1(·) ≡ 0. In this formulation, Q̂t

Nt (xt−1,ξ t−1) is the SAA counterpart of
Eξ t |ξ t−1 [Qt(xt−1,ξ t)] and ĝt

Mt (xt ,ξ t) is the SAA of gt(xt ,ξ t). We recall that the ξ t
n’s

and the wt
m are generally different across the different nodes of the scenario tree at

level t. We rely on some basic assumptions to establish the convergence results, e.g.,
for all t = 1, . . . ,T , f t is measurable and bounded uniformly, X t is finite, and the SAA
ĝt

Mt converges to gt w.p.1 when the sample size Mt goes to infinity.
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4.1 Consistency of the SAA

The strong consistency results proved for the two-stage case in Section 2 can be
extended to the multistage case by induction on T . For T = 2 strong consistency is
proved in Theorems 1 and 2. The next theorem extends it to T > 2. We use the short-
hand notation X∗Nt ,Mt for the set of optimal solutions to the SAA (P6), keeping in
mind that the subscript represents all the values of Nt and Mt at the different nodes
of the scenario tree.

Theorem 6 Under the obvious multistage extension of Assumptions 1 and 2, for any
ε > 0, w.p.1, there are integers N0 = N0(ε) and M0 = M0(ε) such that if Nt ≥ N0
and Mt ≥M0 for all t and at all tree nodes, then | f̂(x1)− f (x1)| ≤ ε for all x1 ∈ X1,
|v̂− v∗| ≤ ε , and X∗Nt ,Mt ⊆ X∗.

Proof For T = 2 the result follows from Theorems 1 and 2, so it remains to do the
induction step, and we give a sketch of how this can be done. Suppose the result
holds for T − 1. Then the T -stage problem (P0) can be rewritten as a “two-stage”
program by regrouping the time periods t = 2, . . . ,T into a “second stage”. The strong
consistency results for the second stage of this two-stage problem follow from the
induction hypothesis. Then, given strong consistency of the second stage, we can
complete the proof by using the same proof arguments as for the two-stage problem
in Section 2.

4.2 Large-Deviation Properties

It is also possible to establish exponential bounds on the large-deviation probabilities
for the multistage case. The idea is to find an upper bound for P

[
maxx1∈X1 | f̂ (x1)− f (x1)| ≥ ε

]
,

given any ε > 0. Under assumptions that are similar to Assumption 1–3, but for all
the stages, we decompose | f̂ (x1)− f (x1)| as

P
[

max
x1∈X1

| f̂ (x1)− f (x1)| ≥ ε

]
= P

[∣∣∣∣∣ 1
N2

N2

∑
n=1

Q̂2(x1,ξ 2
n )−Eξ 2

[
Q2(x1,ξ 2)

]∣∣∣∣∣≥ ε

]

≤ ∑
x1∈X1

P

[∣∣∣∣∣ 1
N2

N2

∑
n=1

Q2(x1,ξ 2
n )−Eξ 2

[
Q2(x1,ξ 2)

]∣∣∣∣∣≥ ε

2

]

+ ∑
x1∈X1

P

[∣∣∣∣∣ 1
N2

N2

∑
n=1

(
Q̂2(x1,ξ 2

n )−Q2(x1,ξ 2
n )
)∣∣∣∣∣≥ ε

2

]
. (50)

Using Hoeffding’s inequality, the first part of (50) can be bounded by an exponential
function of the form C1 exp(−N2b1(ε)). For the second part of (50), we again note
that Q2(x1,ξ 2) is the value of a (T − 1)-stage program, and we can use induction
on T again as in Section 4.1. Here we also face the issue that the convergence in
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probability of Q̂2(x1,ξ 2)→ Q2(x1,ξ 2) might not hold uniformly in the support set
of ξ 2, i.e., the exponents of the exponential bounds may depend on ξ 2. This issue,
again, can be resolved by decomposing the support set of ξ 2 into two parts, where
the results hold uniformly in first path and the second part has a probability of less
than ε/(6τ), where τ is an upper bound on

∣∣∣Q̂2(x1,ξ 2
n )−Q2(x1,ξ 2

n )
∣∣∣ (assuming that

this bound always exists). This way of solving the “non-uniform” issue is similar to
steps from Equation (28) to (30) in the proof of Theorem 3. This allows to recursively
apply Hoeffding’s inequality at each node of the scenario tree to derive a bound of
the form

T

∑
t=2

Ct exp

(
−bt(ε)Nt +

t−1

∑
h=2

lnNh

)
+

T

∑
t=1

Dt exp

(
−et(ε)Mt +

t

∑
h=2

lnNh

)
(51)

where C2, . . . ,CT , b2(ε), . . . ,bT (ε), D1, . . . ,DT and e1(ε), . . . ,eT (ε) are positive con-
stants which do not depend on any Nt and Mt .

In summary, we can bound large-deviation probabilities and the probability of
getting wrong solutions when solving the SAA by a function of the form (51), which
converges to 0 exponentially fast when mint min(Nt ,Mt)−maxt logNt → ∞. Here
we note that we are unable to use “finite covering” assumptions (e.g. Assumption
4) to remove the terms containing lnNh in the exponents of the bounds due to the
complexity of the proofs in the multistage case.

5 Illustration with a staffing optimization problem

In this section we illustrate consistency on of the SAA approach on the call center
staffing application mentioned in the introduction. In the first stage, the arrival rate
is assumed uncertain with some prior continuous distribution, then in the second
stage some additional information is revealed that changes this distribution. We first
formulate the problem and show how it fits our framework. Then we give numerical
illustrations.

5.1 A two-stage staffing problem with chance constraints

We consider a multi-skill call center with K call types (numbered from 1 to K), and
I agent groups (numbered from 1 to I). Agents within each group i are assumed to
be homogeneous and can answer the same set of call types. Each group can handle
a specific set of call types, which are not disjoint. The calls are assigned to agents
by a router. The staffing vector is y = (y1, . . . ,yI)

T, where yi is the number of agents
in group i. To keep the present example simpler, we consider a single time period,
which we call a “day.”

The exact arrival rates are usually unknown, and several authors consider stochas-
tic optimization to capture this uncertainty; see for instance Harrison and Zeevi (2005);
Bassamboo et al. (2006); Liao et al. (2012, 2013); Gurvich et al. (2010); Helber and
Henken (2010); Robbins and Harrison (2010), and Gans et al. (2015). Here we as-
sume that for a “random” day, the arrival process for call type k is time-homogeneous
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Poisson with rate Λ k for the entire day, for each k, where Λ = (Λ 1, . . . ,Λ K) is a
random vector, and we assume that these K Poisson processes are independent.

We suppose that several days in advance, in the first stage, Λ has a prior distri-
bution which corresponds to some initial distributional forecast. At a later time (the
second stage), the distributional forecast is updated, which means that Λ has a new
distribution, typically with less uncertainty (smaller variance) but not necessarily. To
fit our setting, we assume that ξ is a parameter of the distribution of Λ . Before stage
1, ξ is unknown but we know its probability distribution. At stage 2, we know ξ , but
we may not know yet Λ .

The manager of the call of center typically has to ensure sufficient quality of
service (QoS) in order to meet client satisfaction criteria, to be competitive, or to
comply with regulation. The QoS is often measured by the service level (SL), defined
as the fraction of calls answered within a given time limit, called the acceptable wait
threshold (AWT). Given the staffing vector y, the service level of call type k during
the day is defined by

Sk(y) = Sk(y,w) =
Ak(y)

Tk−Lk(y)

where Tk is the total number of calls of type k that arrived in the period, Ak(y) is
the number of those calls served after waiting at most τk seconds, and Lk(y) is the
number of them that abandoned after waiting more than τk seconds. We also denote
by S0(y) = S0(y,w) the aggregate SL of the day over all calls, which is the propor-
tion of all calls answered within τ0 seconds. All of these are random variables whose
distributions depend on the staffing y and are also functions of the random element
w, which represents the randomness that remains after y and ξ are known. For other
definitions of service level, see Jouini et al. (2013).

Our stochastic constraints at the second stage will be the following chance con-
straints on the SLs:

P[Sk(y)≥ lk]≥ 1−πk, 0≤ k ≤ K, (52)

where the probability is with respect to w, and for each k, lk is a given SL target
and πk is a risk threshold which represents the maximum acceptable value for the
probability of missing the SL target for call type k. Note that each constraint in (52)
can be rewritten in the form (3) as E[I[Sk(y) ≥ lk]] + πk− 1 ≥ 0, where I[·] is the
indicator function.

In the first stage, the manager selects an initial staffing x = (x1, . . . ,xI)
T, at the

corresponding cost per agent of c = (c1, . . . ,cI)
T, based on an initial forecast that

gives a prior distribution for ξ . In the second stage, the realization of ξ becomes
available, which provides an updated distributional forecast of the arrival rate, and
the manager can modify the initial staffing x by adding or removing agents at some
penalty costs. More specifically, given ξ , the manager can choose a new number of
agents yi for group i at additional cost c+i (yi− xi) if yi > xi and at cost c−i (yi− xi) if
yi < xi, where 0≤ c−i < ci. The latter cost is negative, which implies that the manager
can make a profit by removing agents from the initial staffing.

Let c, c+, c−, and y(ξ ) be the vectors with components ci, c+i , c−i , and yi(ξ ),
respectively. The first-stage cost is f 1(x) = cTx and the cost of the new staffing y is
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f 2(x,y,ξ ) = ∑
I
i=1 c+i (yi(ξ )− xi)I[yi(ξ ) > xi]+ c−i (yi(ξ )− xi)I[yi(ξ ) < xi]. The cor-

responding two-stage staffing problem can be written as

(P7)



min
x∈X

cTx+Eξ [Q(x,ξ )] ,

where Q(x,ξ ) = min

{
I

∑
i=1

c+i (yi(ξ )− xi)I[yi(ξ )> xi]+ c−i (yi(ξ )− xi)I[yi(ξ )< xi]

}
subject to P[Sk(y(ξ ))≥ lk]≥ 1−πk, k = 0, . . . ,K,

y(ξ )≥ 0 and integer.

In (P7), X is the set of initial staffing vectors that the manager can select at the first
stage, and Y is a set of possible staffing vectors at the second stage. Some assump-
tions must be made here to make sure that Assumptions 1 and 2 are satisfied. First, we
assume that the arrival rate vector Λ has a continuous distribution and an upper bound
vector Λ̄ = (Λ̄ 1, . . . ,Λ̄ K), i.e., supξ∈Ξ Λ k(ξ )≤ Λ̄ k, and that there is at least one solu-
tion x ∈ X large enough to satisfy all the SL constraints whenever Λ ≤ Λ̄ . Moreover,
as the arrival rates are bounded, there exists x̄ ∈ NI such that P[Sk(y)≥ lk]≥ 1−πk,
∀y ≥ x̄, k = 1, . . . ,K. Then, it is sufficient to choose X = {x ∈ NI | 0 ≤ x ≤ x̄}, and
Y = {y ∈ NI | 0≤ y≤ x̄}. Indeed, X and Y are finite. Since X and Y are finite, f 1(.)
and f 2(.) are also bounded. Here, f 2(.) is piecewise linear, but we could have more
general recourse functions, where the marginal costs to add or remove agents would
depend on the agents already affected in the first-stage.

For Assumption 2, here we have g(y,ξ ) = P[Sk(y) ≥ lk] + πk − 1. Note that
for any fixed Λ , the SL Sk(y) has a discrete distribution over the rational num-
bers (the SL is always a ratio of integers). Given that the arrival processes are time-
homogeneous Poisson with rate Λ , one can write the probability P[Sk(y) ≥ lk | Λ ]
as an infinite sum of continuous functions of Λ , and from this one can prove that
P[Sk(y)≥ lk |Λ ] is also continuous in Λ . Thus, our example satisfies all the assump-
tions for the consistency of the SAA. Assumption 4 is harder to verify and may not
always hold in our call center example, as the SL Sk(y) is a ratio of two integers and
can take an infinite number of rational values. However, even without Assumption 4,
we still have the weaker LD result of Theorem 4.

For the SAA problem, let yn = y(ξn) denote the second-stage staffing vectors for
scenario n, we can formulate the SAA problem as

(P8)



min cTx+
1
N

N

∑
n=1

[
I

∑
i=1

c+i (yn,i− xi)I[yn,i > xi]+ c−i (yn,i− xi)I[yn,i < xi]

]

subject to


1

Mn

Mn

∑
m=1

I[Ŝ m
k (yn)≥ lk]≥ 1−πk, k = 0, . . . ,K, n = 1, . . . ,N

x,yn ≥ 0 and integer, n = 1, . . . ,N,

where Ŝ m
k (yn) is the SL of call type k (the aggregated SL if k = 0) in the m-th

second-stage simulation for scenario n. The SAA problem above can be solved by
a simulation-based cutting plane method proposed in Chan et al. (2016). The main
idea of this algorithm is to replace the chance constraints by linear cuts and solve
the resulting mixed integer linear programming by a linear solver such as CPLEX.
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A numerically more efficient decomposition technique, developed in Ta et al. (2019),
can also be used. We also refer to those papers for more details about our application.

5.2 Numerical experiments

Here we report a numerical experiment to illustrate the consistency of the SAA es-
timator, with a small example. Numerical experiments with larger examples are pre-
sented in Ta et al. (2019). We consider a call center with K = 2 call types and I = 2
agent groups, with S1 = {1} and S2 = {1,2}. The cost per agent in stage 1 is c1 = 1
and c2 = 1.1. The recourse costs are c+i = 2ci and c−i = 0.5ci, for i = 1,2. We assume
that for the two call types, (i) each caller abandons with probability 0.02 if it has to
wait, (ii) patience times (for those who do not abandon immediately on arrival) are
exponential with means 10 and 6 minutes, (iii) the service times are exponential with
means 10 and 7.5 minutes. The arrival rate for call type k is Λ k = ξ kβ k, where β k is a
random busyness factor for the day, which follows a symmetric triangular distribution
with mean and mode 1, minimum 0.8, and maximum 1.2, while ξ k is an independent
random factor having a truncated normal distribution with means 70 and 100, stan-
dard deviations 10.5 and 15, and truncated to the intervals [50,90] and [80,120], for
the two call types. These random variables are assumed independent across the two
call types. We take τk = τ0 = 120 (seconds), lk = 0.8 for k = 1, . . . ,K, and l0 = 0.85,
πk = 0.2 for k = 1, . . . ,K, and π0 = 0.15.

The simulations were performed using the ContactCenter simulation software
(Buist and L’Ecuyer, 2005, 2012), developed with the SSJ simulation library (L’Ecuyer
et al., 2002). The SAA problems were solved with MATLAB linked to IBM-ILOG
CPLEX version 12.6, using the cutting plane method described in Chan et al. (2016).
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Fig. 1: Gaps between the costs given by SAA solutions with M = N = 50, 100, 200,
400, 600, 800, 1000 and the optimal cost given by the validation problem.

In the experiment, we aim at evaluating the quality of the SAA optimal solutions
given by different pairs of M,N, where M1 = M2 = . . . = MN = M. To do so we
increase M and N simultaneously. We take M = N = 50, 100, 200, 400, 600, 800,
and 1000. For each pair (M,N), we generate 20 sets of scenarios, and for each set
of scenarios we approximate the chance constraints by independent realizations of
w across scenarios. Each set of scenarios gives a SAA optimal solution x̂N,M whose
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quality can be measured by the gap f (x̂N,M)− v∗ between the true value of x̂N,M and
the optimal value v∗. We cannot compute f (x̂N,M) and v∗ exactly in general, but we
can estimate the gaps out of sample. For this, we consider a SAA with M = N =
1000 as a validation problem, in which the set of scenarios is independent of those
used to obtain x̂N,M . We then compute the gaps between the costs given by these
SAA solutions and the optimal costs given by the validation problem. Let f̄ and f̄ ∗

denote the first-stage cost function and the optimal cost given by the SAA validation
problem. We estimate the gap by f̄ (x̂N,M)− f̄ ∗. In Figure 1, on the left side we show
box plots of the estimated gaps and on the right side we report the number of zero
gaps, for the selected values of N = M. We see that when M = N increase above
400, the number of SAA solutions that are also optimal for the validation problem
increases quickly with N. When M = N = 1000, the corresponding SAA solutions
are all the same, and identical to the optimal solution of the validation problem.

6 Conclusion

We have considered a multistage stochastic discrete programming problem with con-
straints in expectation on any stage. We studied the consistency of the SAA method
with nested sampling to solve this problem, We have considered a multistage stochas-
tic discrete programming problem with constraints in expectation on any stage. We
studied the consistency of the SAA method with nested sampling to solve this prob-
lem, and we also proved exponential convergence of the probability of the probabil-
ity of a large deviation for the optimal value of the SAA with respect to true optimal
value, and of making incorrect decisions. We used a call center staffing problem under
arrival rate uncertainty to illustrate our theoretical findings in a two-stage context. For
future work, it would be interesting to investigate methods for choosing the sample
size at the second stage adaptively, e.g., with larger sample sizes for the more critical
scenarios. Another important aspect is to develop effective methods for solving the
SAA in large-scale settings.

Acknowledgements This work has been supported by a Canada Research Chair, an Inria International
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