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Abstract 

We describe various derivative estimators for the case of steady-state performance 
measures and obtain the order of their convergence rates. These estimators do not use 
explicitly the regenerative structure of the system. Estimators based on infinitesimal 
perturbation analysis, likelihood ratios, and different kinds of finite-differences are 
examined. The theoretical results are illustrated via numerical examples. 
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1. Introduction 

Estimating derivatives of expected performance measures with respect to 
some continuous parameters, in the context of stochastic discrete-event simulations, 
has received a great deal of attention lately [3,5,10,11,13,15,21-24,26]. Such 
derivative estimators are useful for sensitivity analysis, or can be used within 
stochastic optimization algorithms [3,10,17,24]. For finite-horizon simulations, 
Glynn [10] gives the convergence rates of different estimators, under given sets of 
assumptions. In that context, the infinitesimal perturbation analysis (IPA) and likelihood 
ratio (LR) (also called score function (SF)) estimators converge at the canonical rate 
of n -lt2, where n is the number of replications (thanks to the central-limit theorem). 
For finite-difference (FD) schemes, things are not so easy, because the bias component 
must be taken into account. To make the bias go to zero, the FD interval must be 
reduced towards zero, but then the variance typically increases to infinity. Therefore, 
a compromise must be made and as a result, typically, one does not obtain the 
canonical convergence rate. Glynn [10] gives (subcanonical) convergence rates for 
forward and centered FD schemes, with and without common random numbers, 
under specific assumptions. On the other hand, L'Ecuyer and Perron [18] show that 
in most interesting cases where IPA applies, FD with common random numbers 
reaches the canonical rates. 

The aim of this paper is to extend these results to derivative estimators of 
steady-state performance measures. The system is viewed as a discrete-time Markov 
chain with general state space. The model, with its assumptions, is stated in 
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section 2. Section 3 describes the derivative estimators that we consider and we 
derive bounds on their convergence rates. In this case, not only the number of  
replications but also the run length for the individual replications, should increase 
with the computer budget to get the initialization bias down to zero. Therefore, for 
a given budget, we have to compromise between run length and number o f  runs. 
It does not appear trivial, in this context, that the convergence rates will be the same 
as for the finite-horizon case. Indeed, it tums out that the straightforward LR 
estimators no longer reach the canonical rate. We derive their convergence rates 
with and without the control variate approach proposed in [16]. (Note, however, 
that there exist LR derivative estimators that converge at the canonical rate, but they 
use explicitly the regenerative structure [9,21].) For IPA and FD, we obtain the 
same rates as for the finite-horizon case. 

2. Model and assumptions 

As in [4], for any f :  IN ~ [0, ~),  we define O(f(n)) as the set of  functions 
g : IN e-~ [0, ~,) such that for some constant c > 0, g(n) < cf(n) for all n in IN. 
The  set ~( f (n ) )  is def ined in the same way, with < replaced by >, and 
O(f(n)) = O(f(n)) n f2(f(n)). 

The setting is similar as in [17]. We consider a Markov chain {X)(O, ¢o), 
j = 0, 1 . . . .  } with general (Borel) state space S, defined over a probability space 
(fL Z, Po). Let Xo(O, o9) = So for some fixed initial state So ~ S. The sample point 
to ~ f l  represents the "randomness" that drives the system. The probability measure 
Po depends (in general) on the parameter value 0. Here, 0 ~ (a, b), an open interval 
o f  IR. 

A cost g(O, x) is incurred whenever we visit state x (except for the initial state 
Xo = So), where g : (a, b) x S ~ IR is assumed measurable. Let 

1 t 
ht(O, co) = -[ ~.~g(O, Xj )  (1) 

j=l 

be the average cost for the first t steps and let 

,°,f at(O) = h (O, to)dPo(co)= 

Assume that for each 0 ~ (a, b), 

l 

 Eo[g(O, Xj)]. 
j= l  

(2) 

I a ,  ( o )  - a ( O )  l O(]/t), 

where or(O) represents the steady-state average cost for running the system at parameter 
level O. We suppose that the derivative ct'(O) exists for all 0 ~ (a, b) and we are 
interested in estimating a'(Oo) for some Oo ~ (a, b). We also suppose that 
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I a [ ( 0 o )  - a ' ( 0 o ) l  e O(1/t). ( 4 )  

These assumptions hold for many systems of interest. For regenerative systems, for 
example, the main theorem in [19] implies that under very mild assumptions, (3) 
holds. However, since a [ (0 )  = (1/t) Y.}=l bEo (g(O, Xj ))/30, the same result implies 
that (4) also holds under appropriate mild assumptions (just replace Eo[g(O, Xj)] by 
its derivative). 

Basically, our derivative estimators are based on simulations of the system 
for a finite number of transitions, each from initial state So. We perform n replications 
of this. Some schemes (like IPA or LR) require only one simulation run per replication, 
while others may require more (like the usual finite-difference schemes, which 
require two). Replication i gives an estimate g,~,i of the derivative and (except when 
stated otherwise) the overall derivative estimate is 

1 n 
r " =  n (5) 

i=l 

Our "loss function" is the mean square error of Yn and we are interested in how fast 
its square root converges to zero as a function of the total simulation time (computing 
cost) Cn required for the n replications. We assume that the simulation cost is 
directly proportional to the number of simulated transitions. We have 

R,~ = E[Yn - a ' (0o)]  z = V, + B 2, (6) 

where R n, V n, and B n  denote the mean square error, the variance, and the bias, 
respectively. The convergence rate is defined as C -#°/2 (in terms of the total CPU 

• # 
budget C), where fl is the largest value of b for which C~ R,, E O(1) (as a function 
of n). 

In most cases, all runs will have the same length tn, which yields Cn ~ O(ntn). 
In general, it is necessary that tn-'~ oo and n ~ oo to obtain B n ~ O. The bias 
component that is due to the fact that tn is finite is in O(1/tn). There might also be 
other bias, that is, if E[Yn] ~ at'~(qo) (like for finite differences). A reasonable 
choice for the general shape of t~ is 

,. =LT.?J (7) 

for some constants p > 0  and T > 0 .  Then, Cn = nLTnPJ ~ O(nP+l). 
Of course, the best way of reducing the bias due to the finite run length would 

be to devote the entire budget to a single replication, that is, to take n = 1. However, 
for FD there will still remain the finite-difference bias, while for LR, the variance 
will then be so high (in general) to make the estimator totally useless. This has been 
pointed out in particular by Glynn [9] and Rubinstein [24], who suggested truncation 
approaches similar to the ones that we study here, but who did not derive convergence 
rates. 
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3. Derivative estimators and their convergence rates 

3.1. FINITE DIFFERENCES 

In typical stochastic simulations, the sample point co (which represents the 
"randomness" that drives the system) can be viewed as a sequence of independent 
uniform variates between 0 and 1. Then, Po-P is independent of 0. (This is a 
standard interpretation; for more details, see [15,18].) 

Finite-difference (FD) schemes have been used for a long time to estimate 
derivatives. The most straightforward schemes use independent streams, as follows. 
Let n be the number of replications and e,, > 0. Let coi" . . . . .  ¢o;,-, co~" . . . . .  con + be 
2n independent sample points, where each co~- and each co+ is generated under P. 
The forward FD estimator is 

1 1_ oo;) (8) 
r n,l n ~n ' 

n i=l i=1 

while the central FD estimator is 

Y: Dc-- 1~ ~ ly'FDcrn,i = nl ~ h~,(O+en,co~)-ht,(O-e,,,co?)2en 
i=l i=l 

(9) 

In practice, to compute each term of the sum in (8), one performs two different 
simulation runs of length tn, with independent random numbers, to obtain htn (0, co~-) 
and h~n (0 + e , ,  to+) (and similarly for ht, (0 - en, co~-) and ht, (0 + e,, to+) in (9)). 
(Technically, all ¢o~- and co~" should be viewed as part of a unique sample point, 
i.e. defined over the same probability space. However, this "abuse of notation" is 
no serious problem since one can always take the product space, for which the 
sample point effectively contains all the information.). 

Alternatively, one can generate only n (independent) sample points col . . . . .  co,, 
from P and take co,:- = co,.+ = co,. for each i. This gives finite-difference estimators 
with common random numbers (FDC). The forward FDC estimator is 

1 ~-~ FDCf 1 r: f 
/.2 = - -  ~n,i = n 

n i=l 

h,. (O + e,,,coi ) -  &. (o, coi ) 

i=l En 
(lO) 

while the central FDC estimator is 

• n: 2en n i=I n i=1 
(11) 

Again, in practice, two simulation runs are made to compute each term of the sum, 
but these runs are made with common random numbers. 
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In the context of finite-horizon simulations (where Cn E O(n)), it is well 
known that FD with independent streams give rise to large variability [ 10, 18, 20, 27]. 

• FDf FDc • -2 The vanances of g;~,i and ~;~,i are m O(e,, ) in general. The best convergence 
rates for forward differences and central differences are in O(n -v4) and O(n-l13), 
respectively. For FDC and under a given set of assumptions (including the assumption 
that the variances of ~/DCf and V~ DCe are in O(e~q)), Glynn [10] obtains respective 
convergence rates in O(n -113) and" O(n-WS). In what follows, we show that the 
convergence rates for the infinite-horizon case are the same. 

THEOREM 1 

Let tn~O(nP), eneO(n-r), and suppose that supoe(.,,b)[Var(h,(O, to))] 
O(1/t). For the forward case (FDf and FDCf), suppose that ot"(O) ~ 0 (and exists) 

in a neighborhood of 0o. For the central case (FDc and FDCc), suppose that a'(O) ~ 0 
(and exists) in a neighborhood of 00. As in Glynn [10], we suppose that the 
variance of 1/]n,i is in O(e~lt~ 1). Then, the "optimal" values of p, $, fl, and the 
corresponding convergence rates are, respectively, 

(i) p = ~'= 1/3, fl = 1/2, and C -1/4 for (8); 

(ii) p = 1/2, ~'= 1/4, fl = 2/3, and C -1/3 for (9); 

(iii) p = ~'= 1/2, fl = 2/3, and C -1Is for (10); 

(iv) p = 2/3, 7= 1/3, fl= 4/5, and C -2/5 for (11). 

Proof 
Using Taylor's expansion, it is easily seen that the bias component due to the 

fact that we use finite differences is in e(en) for forward differences and in 
O(e~) for central differences. For (8), one has V~ = Var(Yn mr)  e O(l/(ne~t~)) 
= O(n-l-p+2~') ,  B n E O(1]tn + ~n) = O( n -p  + n - r ) ,  Cn e O ( n p + t ) ,  and  

C R,, • O(n(p+l)  iv. + 1) 

= O(n(p+l)#[n-l-p+2r + (n-P + n-r)2])  

= O(n(p+l)#[n-l-p+Er + n-2p + n-2r + n-P-r]) .  

Then, C~R,, will be in O(1) if 

(p + 1)fl < max(1 + p - 29', 2p, 2r,  p + 9,). 

The maximal value of fl for this inequality to be satisfied is fl= 1/2, with 
P = ?'= 1/3. (In this case, the maximum is reached for all four values and 
equality holds.) Also, C#nR,, • ~(n(P+l)#[n-l-e+2r - n-2r]), so that ( p +  1)fl 
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<max(1  + p - 2 y ,  2y) is a necessary condition for C#nR~ to be in O(1). Again, 
fl = 1/2 is the best possible value that satisfies this (with 4T= p + 1) and~i) follows. 
Results (ii) to (iv) are obtained in a similar way. The expressions of  C~Rn for (ii) 
to (iv) are, respectively, 

O(n(P+l)f[n-l-p+2r + (n-P + n-2r)2]); 

O(n(p+l)/3[n-l-p+r + (n-p + n-r)2]) ;  

O(n(p+l)f[n-l-p+r + (n-p + n-27)2]). [] 

Now, instead of  using the same tn and e,, for all n replications, one can use, 
say, ti ~ O(i p) and ei ~ O(i -r) for replication i, for i = 1 . . . . .  n. Y,, can then be 
defined as 

Yn = ~-~in=l Wil[/n'i (12) 
wi 

for some positive weights wl . . . . .  wn. We have Cn ~ O(E~'=Ii p) = O(nP+l). For 
forward FD, the bias and variance expressions become 

O(~,n=lwi(i -p +i-r)  1 

and 

One can take, for example, wi = 1 for all i, or wi = ti (weight proportional to work). 
In both cases, it is easy to see that B,, ~ O(n -p + n -r) and Vn ~ O(n-l -P+2r) ,  the 
same as for (8) above, so that theorem l(i) still applies. It can be verified in the 
same way that (ii) to (iv) in theorem 1 also remains unmodified. 

Instead of  performing n replications from a given initial state, one can also 
just perform one very long replication, in order to diminish the bias component  due 
to the initial state (transient).  Perform one (long) s imula t ion  of  length  in 
O(ntn) = O(n p + 1) at 0o + en, then another one at 00. Here, n is just  a parameter, not 
a number  of  replications. Equivalently, one can view the run length as being cut 
into n pieces of  size in O(nt'), in a "batch-means" fashion. The (only) gain here is 
that the bias component  due to the initial transient will now be in 
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Then, for forward FD, Bn ~ @(n - e -  1 In(n) + n -r) and 

CflnRn E O(n(p+l)fl[n-p-l+2r + (n -(p+I) In n)  2 + n -2r + n -P- l -r  In n]). 

To obtain ( p + l ) f l - l - p + 2 7 ' = ( p + l ) f l - 2 7 ' = 0 ,  we need f l = 1 / 2  and 
47'= p + 1. These conditions are also sufficient to obtain C#~Rn ~ O(1). So, there is 
no improvement of the convergence rate. It can be verified that the same also 
applies to the case of central differences and to the forward and central versions 
of FDC. This is no surprise. Recall that the convergence rates in theorem 1 are the 
same as for the finite-horizon case, for which there is no transient bias. Therefore, 
reducing the transient bias should not be expected fo improve the convergence rate. 

3.2. INFINITESIMAL PERTURBATION ANALYSIS 

As for FDC, let us view the sample point o9 as a sequence of independent 
uniform variates between 0 and 1, and denote Po by P. Under some conditions (see 
[6,15]), the random variable hi(O, o9) = dht(0, to)/d0 can be used as an unbiased 
estimator of a~(0). This is the IPA derivative estimator. 

One can obtain n i.i.d, replicates of h~' (0, to) and use the estimator 

yffA = 1 ~h~'  (O, ogi). (13) 
n i=l 

Here, 091,092 . . . . .  ogn are independent sequences of independent uniform variates. 
(In practice, for complex simulations, h~' (0,09) is not always easy to compute. 
There are also many cases where it gives a biased or even totally meaningless 
derivative estimator. See [15].) 

THEOREM 2 

Assume that E[h~(O0,09)] = a't(O0) for each t>  0 and that the variance of 
h[(O0, to) is in O(1/t). Let t~ ~ O(ne). Then, the convergence rate of C -v2 (fl = 1) 
is obtained for any p _> 1. 

Proof 

We have Cn~ @(n t' 
= O(n-2p). Therefore, C~Rn 
f l = l  a n d p > l .  

+ 1), Vn ~ O(1/(ntn)) = O(n  -p -  1), and B 2 e O(1/t  2) 
= C~(Vn + B 2) e O(nCP+l)#(n-P-1 + n-2p)) = O(1) for 

[] 

This is clearly the best convergence rate that one can expect. Again, as for 
FD, one can perform just one run of length in ®(np ÷ 1) to reduce the transient bias. 
This could reduce the mean square error, but will not improve the convergence rate. 
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Sufficient condit ions under which E[h:(Oo, to)] = ot:(Oo) are given in [6, 15]. 
In most  interesting cases where IPA applies, these conditions are satisfied. In the 
context of  finite-horizon simulations, L 'Ecuyer  and Perron [ 18] show that whenever  
these condit ions are satisfied, the variances of  • FDCf FDCc q',,.i and ~;,,i are in O(1) (instead 
of  O(I/e,0)  and the convergence rates for both the forward and central versions o f  
FDC are the same as for IPA. This is also true in the steady-state case. For forward 
FDC, one has in that case 

C#nRn ~ O(n(t'+l)#[n-I-P + (n-? + n- r )2] ) .  

A convergence rate of  C -1/2 is obtained when /3=  1, p > 1, and 7' > max( l ,  (p  + 1)/2). 
For example,  p = 1 and any y > 1 will do. For central FDC, one has 

CORn ~ O(n(P+l)P[n-l-P + (n -p + n-2r)2]) .  

A convergence rate of  C -1/2 is obtained when fl= 1, p > 1, and ~' > max( l /2 ,  (p + 1)/4). 
Here, with p = 1, any 7' _> 1/2 will do. 

3.3. LIKELIHOOD RATIOS 

The l ikelihood ratio (or score function) derivative est imation technique,  a imed 
for the case where Po really depends on 0, goes as follows [3,9, 11, 15 ,21 -24 ] .  To  
fix ideas, suppose that o9 can be "viewed" as to = (~'1 . . . . .  ~'t), where ~'j is the value 
taken by a continuous random variable with density3~,o, and the ~'j's are independent .  
Given Xj_ 1, the value of  ~'j determines the next state Xj of  the Markov chain. (A 
similar  deve lopment  can be made for discrete or mixed random variables.) Let  
G = Poo and suppose that G dominates  the Po's in a neighborhood of  0o. One can 
rewrite 

rn~(o ,  o9) dG(to) ,  (14) Ott( O) 

ft 
where 

' fj,o(~j) (15) l-6(o, to)=h,(o, to) l-I fj,oo( j)" 
j=l 

Now,  generate 09 according to G and compute  

t 

HI(O, ¢o) = hi(O, to) + hi(O, co) y .  Sj( O, to) (16) 
j=l  

as the LR derivative estimate at 0 = 0o, where 

S)(O, to) = d-~ ( l n ~ . o ( ~ ) ) ) .  (17) 
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The sum in (16) is called the score function. For n replications of length t,,, one has, 
as in (13): 

1 
Ht', (0, col). (18) 

This can be viewed as a generalization of IPA [15]. On the other hand, as explained 
in [18], this is equivalent to applying IPA after replacing ht and Po by H~ and G,. 
i.e. on top of an importance sampling scheme. Consequently, known results on IPA 
can be applied to LR. In particular, the sufficient conditions for unbiasedness of 
IPA also apply to LR [15]. 

Since the ~j's are independent, the variance bf  the score function is the sum 
of the variances of  the Sj's. When the latter variances are non-zero, the variance of  
the score function is typically in ®(t). Under mild conditions [16], the variance of  
Ht(O, co) is also in O(t), i.e. increases linearly with the simulation length. This is 
a most unfortunate situation. This also means that the assumptions of theorem 2 are 
usually not satisfied when IPA is applied on top of an importance sampling scheme 
as in (16). On the other hand, in the "degenerate" special case where IPA is applied 
directly to (1), the score function is always zero and does not contribute to the 
variance. 

L 'Ecuyer  and Glynn [16] have proposed a control variate scheme for LR 
under which that variance gets down to e(1).  Let us denote it by CLR. When the 
variance of ~'n,i was in the order of 1/tn, as in theorems 1 and 2, Vn depended 
essentially only on the total simulation length Cn, and not on the way it was cut 
down into pieces (replications). However, this is no longer the case here. Intuitively, 
we expect that the run lengths should be kept shorter to keep the variance down. 
This is exactly what the next theorem tells us. 

THEOREM 3 

Assume that E[H[(Oo, co)] = a~(0o) for each t > 0. Let t ne  O(nP). For LR, 
if the variance of  Ht(0o, co) is in ®(t), then the best convergence rate is C -1/4 
(fl = 1/2) and is obtained forp  = 1/3. For CLR, if the variance H[(Oo, co) is in O(1), 
then the best convergence rate is C -1/3 (fl = 2/3) and is obtained for p = 1/2. 

P roof 
For LR, we have Vn ~ O(nP/n), while for CLR, Vn ~ O(1/n). Therefore, for 

LR, CffR,, E O(n(P+l)#(nP-I + n-2p)), which is O(1) for f l=  1/2 and p - -  1/3, 
while for CLR, C~Rn ~ O(nCP+l)#(n-I + n-2p)), which is 0(1)  for f l= 2/3 and 
p = 1/2. [] 

One can also use different run lengths for different replications, like tl ~. O(i e) 
for replication i, i = 1 . . . . .  n, as explained in the context of  FD. It can easily be 
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seen that for LR and CLR, the orders of V,, and Bn, and the convergence rates, 
remain the same as in the theorem 3. 

For CLR, one can also perform just one long simulation run, of length 
tn ~- O(n t' ÷ l), to diminish the initial transient bias (as for FD). (Now, n becomes 
just an index; it is no longer a number of replications.) If one does this straightforwardly, 
the variance of Y,, will be in O(1). However, here hr,(0, 09) is an average of t,, terms 
(see eq. (1)). To diminish the variance of the score function, we can truncate it, that 
is, consider the derivative of each term ai(O) - ot i_ 1(0) individually and associate 
to this term a likelihood ratio based on a "window" of width, say, l i ~. O( j  q) for 
q < 1. This idea was proposed and explored in Arsham et al. [1] and Rubinstein 
[24]. This gives the gradient estimator 

1 t. j 
Yn = h : ( 0 o , 0 9 ) +  ~'n ~.g(Oo,Xj )  ~.  Sk(0o,~'k). (19) 

j=l k=j-ij+l 

The variance of Zj = g(Oo, Xj)Yjk=j_t:lSk(Oo,~k) is typically in O(lj). Assume 
(unrealistically, but optimistically) that these Zj's are independent. Then, the variance 
of Y. is 

Vn E {9 n -2(p+l) jq = O(n (p+l)(q-l)) 

and the bias is 

B , , e O  

This yields 

n p+I 

/'I-(P+I) Z J-q [ = O(tl-q(p+l))" 
j=l .] 

Cff R n E O(n(p+l)fl[n(p+l)(q-1) + n-2q(p+l)]) 

and the largest value of b for that to be in O(1) is fl = 2/3, with q = 1/3 and any 
p > -1 .  Therefore, there is no improvement on the convergence rate. 

When l j= j  (q = 1) in the above, (19) becomes 

1 tn J 
Yn = h~" (0o,09) + ~ ~_~g(Oo,Xj) ~_~ Sk(Oo,~k). 

j=l k=l 
(20) 

This is (16) with t = tn, except that the terms g(Oo, Xj)Sk(Oo, (k) f o r j  < k have been 
removed from the estimator. However, these terms have zero expectation because 
fo r j  < k, Xj(Oo, 09) is independent of Sk(Oo, 09) and E[Sk(Oo, 09)] = 0. Therefore, (20) 
is an unbiased estimator of a;,  (0o). Typically, its variance is less than that of  (16) 
(although there is no guarantee), but still in the same order. 
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Now, suppose that the process is regenerative. Let 0 = Xo < z~ < 72 . . . .  be the 
regeneration points. Conditional on 1:i, what happens after xi is independent of what 
happened until zi. Based on this, one would be tempted to remove from (20) the 
terms g(0o, xj)Sk(O0, (k) for which j and k belong to different regenerative 
cycles (say, k < %'i < J for some i), since then E[g( O0, Xj )Sk (00, ~k ) I "q, "¢2 . . . .  ] 
= E[ g(O0, Xj ) I xl, "r2 . . . .  ] E [ Sk ( 00, ~'k ) I "¢i, 'r2 . . . .  ]. However, the problem is that 
in general E[Sk(O0, (k)l "q, "r2 . . . .  ] ~ E[Sk(O0, (k)] = 0, which means that one 
cannot really remove these terms. Correct (asymptotically unbiased) gradient estimators 
for the regenerative case are given in [9,21]. 

4. Two examples involving a simple queue 

Consider a GI/G/1 queue [2] with service time distribution Fo, which has a 
density fo and depends on a parameter 0. We assume that for all 0 ~ (a, b), the 
queue is stable. A GI/G/1 queue can be described in terms of a discrete-time 
Markov chain via Lindley's equation. Let Wj, Z i, and Xj - Wj + Zj be the waiting 
time, service time, and sojourn time for the j th  customer, and let Aj be the time 
between arrivals of the ( j -  1)th and j th  customer. For our purposes, the sojourn 
time Xj will be the state of the chain at step j. The state space is S = [0, ~)  and 
X0 = 0, which corresponds to an initially empty system. For the first customer, one 
has XI = Z1 and, for j > 2, 

xj  = wj + zs = ( x j - 1 -  Aj) + + Zj, (21) 

where x + means max(x, 0). 

4.1.  AVERAGE SOJOURN TIME PER CUSTOMER 

Let a(0) be the average sojourn time in the sytem per customer, in steady 
state, at parameter level 0. The cost at step j is g(O, Xj) = Xj. It is proven in [17] 
that (3) - (4)  hold in this case, under mild conditions. 

For LR, one views a) as representing the sequence of interarrival and service 
times. The score function associated with customer j is Sj (0, 09) = ~,~=1 3 In f o ( Zk )/20. 
Sufficient conditions for the LR estimator to be unbiased are given in theorem 1 
of L 'Ecuyer  [15]. 

Suppose that each service time Zj is generated by inversion: Z./ = F~I(Uj), 
where the Uj's are i.i.d. U(0, 1) uniform variates. The IPA derivative estimator is 
h[(O, to) =(1/t)~}=IX~, where f o r j >  1, X~ = X~-I + Z~ i fXj_ l  > aj, and X} = Z~ 
otherwise. Here, Z~ = OF~ l (U j)~20. 

For a numerical illustration, consider an MIM/1 queue with arrival rate 
;I, and service rate #. The traffic intensity is p = M# and the parameter of interest 
is the mean service time 0 =  1/#. The true values of  the average cost and of its 
derivative are given by a(0) = 1/(/.t(1 - p ) )  and or'(0) = 1/(1 - p ) 2 ,  respectively. In 
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th i s  case ,  o n e  has  D In fo ( Z k ) / D 0  = D l n ( ( 1 / 0 ) e  - z ~ / o ) / D O  = (Zk - 0 ) / 0  2 for  L R  and  

Z~ = D [ 0 I n ( 1 -  Uj)]/DO = Zy/O fo r  I P A .  

T a b l e s  1 and  2 report  n u m e r i c a l  results for  )~ = 1 and  p = 1/4 and 1/2, respect ively .  

In  e a c h  case ,  we  e s t i m a t e d  the  e m p i r i c a l  m e a n  s q u a r e  e r ro r  ( M S E )  fo r  Cn = 10, 102, 

103, 104, a n d  105, w h e r e  Cn = ntn d e n o t e s  the  to ta l  n u m b e r  o f  c u s t o m e r s  i n  n 

s i m u l a t i o n  r u n s  o f  l e n g t h  tn ( the  r u n  l e n g t h  is m e a s u r e d  i n  t e r m s  o f  the  n u m b e r  o f  

Table 1 

Sample MSE for derivative of mean sojourn time, MIMI1 queue with p = 1/4. 

p ~" C n = 101 C,, = 102 C n = 103 C n = 10 4 C,, = 10 s 

FDc 

FDCe 

FDCc 

FDC¢ 
IPA 

IPA 

LR 

LRD 

CLR 

CLRD 

CLRD 

1/2 1/4 2.10 7.07E - 1 2.42E - 1 5.58E - 2 2.25E - 2 

2/3 1/3 9.36E - 1 3 .10E-  1 7 .08E-  2 1.63E- 2 4 .05E-  3 

1 1 7.62E - 1 1.57E - 1 2.25E - 2 2.47E - 3 2.44E - 4 

2 2 7.60E - 1 1.48E - 1 1.95E - 2 2.08E - 3 1.92E - 4 

1 5.86E - 1 1.39E - 1 1.97E - 2 2.12E - 3 1.47E - 4 

2 6 .86E-  1 1.45E- 1 1.93E- 2 2 .12E-  3 1 . 3 2 E - 4  

1/3 3.08 8.43E - 1 2.25E - 1 7.26E - 2 1.99E - 2 

I/3 2.64 6.88E - 1 1.69E - 1 5.34E - 2 1.59E - 2 

1/2 1.90 5.54E - 1 1.23E - 1 2.99E - 2 4.42E - 3 

1/2 1.77 4.56E - 1 9.48E - 2 1.80E - 2 2.85E - 3 
1 2.71 7 .95E-  1 1.61E- 1 2 .78E-  2 1 .19E-  2 

Table 2 

Sample MSE for derivative of mean sojourn time, M/MI1 queue with p = 1/2. 

P 1 Cn = 101 Cn = 102 C, = 103 Cn = 104 C~ = l0 s 

FDc 1/2 1/4 21.78 11.34 5.68 1.88 7 .17E-  1 

FDCc 2/3 1/3 14.31 7.48 2.54 6 .13E-  1 1 .23E-  1 

FDCc 1 1 9.80 3.26 6.48E - 1 7.01E - 2 7.38E - 3 

FDCc 2 2 7.27 1.99 4.08E - 1 5.55E - 2 4 . 8 4 E -  3 

IPA 1 6.71 2.68 5.70E - 1 7.20E - 2 5.10E - 3 

IPA 2 5.58 1.85 4.15E - l 4.81E - 2 6.88E - 3 

LR 1/3 10.58 7.05 4.15 2.46 1.13 

LRD 1/3 10.10 6.86 4.09 2.44 1.11 

CLR 1/2 8.84 5.19 2.53 9.34E - 1 2.33E - 1 

CLRD 1/2 8.72 5.08 2.49 8 .56E-  1 2 .14E-  1 

CLRD 1 9.02 4.41 1.62 3.28E - 1 5.99E - 2 

c u s t o m e r s ) .  W e  t o o k  tn = r o u n d ( n P ) ,  w i t h  d i f f e r e n t  v a l u e s  o f  p ,  d e p e n d i n g  o n  the  

d e r i v a t i v e  e s t i m a t i o n  m e t h o d s .  Here ,  r o u n d ( x )  m e a n s  x r o u n d e d  to the  n e a r e s t  i n t e g e r .  

F o r  a g i v e n  Cn, the  n u m b e r  o f  r u n s  w a s  t h e n  n = r o u n d ( ( C n )  1/(e + 1)). F o r  e x a m p l e ,  

i f p =  1 /2 ,  t h e n  fo r  C n =  103, w e  h a v e  tn= 10 a n d  n =  100,  w h i l e  f o r  C n =  105, w e  
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have tn = 46 and n = 2154. On the other hand, i f p  = 2 and Cn = 105, then tn = 2154 
and n = 46, which means much less initialization bias. This illustration shows how 
LR has to sacrifice unbiasedness to avoid variance explosion. For the FD methods, 
we took e,t = 0.1 n -r, where 7 is  indicated in the tables, and tried only the centered 
version. Note that the FD methods used twice the computer budget than the other 
methods, since each of  the n replications required two runs of length tn. 

To estimate the MSE, in each case, we repeated r times the computation of  
Yn based on these n runs of  length tn. The value of  r was larger for smaller Cn: we 
took r = min(20, 106In). Thus, each sample MSE value in the tables is an average 
of r "square error" values. These sample MSE are quite noisy, despite the large 
amount of  computer time involved in these experiments, so that the numerical 
results just give a rough idea of what is going on. 

In this case, IPA applies, which implies that from our discussion at the end 
of section 3.2, FDC will have the same convergence rate i f p  and '),are large enough. 
This can be observed clearly in the results (for p _> 1 and ~'> 1). One can also see 
that IPA and FDC are much more effective than the other methods in this case. For 
LR, incorporating the control variate scheme of  [16] (CLR) yields significant 
improvement. LRD means that we have used (20) instead of  (16). This gives a small 
improvement. The last line of both tables is interesting: we took p = 1 instead of  
the "optimal" p (= 1/2) prescribed by theorem 3. For p = 1/4, the results are then 
clearly worse. However, for p = 1/2, they look better! This can be explained by the 
fact that in the second case, the bias is more important. The optimal tn is still in 
the order of  n p, but with a larger hidden constant. This is why taking p = 1 does 
better for (relatively) small values of Cn. However, if we continue increasing Cn, 
the results of  the previous line (p  = 1/2) will become better at some point. 

4.2. PROPORTION OF CUSTOMERS WHOSE SOJOURN TIME IS MORE THAN L 

Suppose now that the objective function a(0) is the steady-state fraction of  
customers whose sojourn time is more than some fixed constant L. If  we define 

1, if Xj > L; 

tpj = 0, otherwise, 

then ht(O, to) = (1/t),Y_,~_ 1 tpj. For the M/M/1 queue, the theoretical value of that 
fraction is given by a((9-j = e -I~O-p)L (see Kleinrock [14], p. 202). The derivative 
with respect to the mean service time 0 is a ' ( 0 )  = (L/OZ)e -(1-p)L/°. 

In this case, straightforward IPA does not apply (i.e. it yields a biased estimate), 
since for a fixed sequence 09 of  underlying U(0, 1) random variables, the sample 
performance measure hi(O, to) is discontinuous with respect to 0. See L 'Ecuyer  and 
Perron [18] for further details. Therefore, we will not try IPA for this example. 
Note, however, that it is possible to apply IPA after replacing each tpj by an 
appropriate conditional expectation (see [18]). This is called smoothed perturbation 
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analysis [8]. We will not do it here. For LR, the score function is the same as for 
the previous example. 

We performed the same kind of numerical experiments as for the previous 
example, with p = 1/4, L = 1, and e,, = 0.01 n -r. The results appear in table 3. Now 
that IPA does not apply, FDC is not as good, i.e. its convergence rate is no more 
C -v2' but appears to correspond rather to the results of  theorem l(iv). In particular, 
large values o f p  and I a r e  bad in this case. The remainder of the results also agree 
with the theory. 

T a b l e  3 

S a m p l e  M S E  for de r iva t ive  o f  P ( s o j o u r n  t i me  > 1), MIM/1 q u e u e  wi th  p = 1/4. 

P ~ Cn= 101 C n =  10 2 C n =  10 3 C n =  10 a C n =  10 5 

F D c  1 /2  1/4 33 .97  12.95 4 .59  1.03 2 . 3 3 E  - 2 

F D C c  2 /3  1/3 3 .45  8 . 9 7 E  - 1 1 .64E - 1 2 . 9 3 E  - 2 3 . 8 5 E  - 3 

F D C e  1 1 8.68 3 .54  1.18 4 . 1 4 E -  1 2 .21E  - l 

F D C c  2 2 14.17 7 .02  3 .63  1.37 7 .93E  - 1 

L R  1/3 9 . 4 4 E  - 1 2 . 5 1 E  - 1 6 .08E  - 2 1 .87E - 2 5 . 5 6 E  - 3 

L R D  1/3 9 . 0 9 E  - 1 2 . 3 6 E  - 1 5 . 6 1 E  - 2 1 .79E - 2 5 . 1 0 E  - 3 

C L R  1/2  9 . 8 1 E  - 1 2 . 3 9 E  - 1 5 . 0 0 E  - 2 1 .05E  - 2 1 .90E  - 3 

C L R D  1/2 9 . 6 3 E -  1 2 . 1 5 E -  1 4 . 1 7 E - 2  6 . 9 9 E -  3 1 . 5 8 E -  3 

C L R D  1 1.39 3 .30E  - 1 5 . 8 3 E  - 2 1 .15E - 2 2 . 7 5 E  - 3 

5. Conclusion 

In the context of a Markov chain model, we have described various derivative 
estimation methods that do not exploit the regenerative structure explicitly. In that 
context, longer simulations and (in the finite-difference case) shorter finite-difference 
intervals must be used to reduce the bias. However, that often implies a variance 
increase. A trade-off must then be made between bias and variance to minimize, 
say, the mean square error. For many different estimators, we have shown how such 
a trade-off can be optimized, under reasonable conditions, if the aim is to optimize 
the convergence rate of  the mean square error as a function of  the computational 
budget (i.e. total simulation length). Some methods, like LR or FD, have poor 
convergence rates because decreasing the bias is very expensive in terms of  variance 
increase. In other cases, like for IPA, or for FDC when IPA applies, one can 
decrease the bias without increasing the variance and the convergence rate is much 
better: the canonical rate of  C -~/2 can be achieved. 

We looked at a number of  tricks that could be used to try to reduce the 
variance of  the likelihood ratio method. Among these tricks, only the control variate 
scheme of  [16] did improve the convergence rate. Other tricks, like truncating the 
score function by some "windowing" mechanism, or associating to each step of  the 
chain its own score function based only on what has happened up to this step, could 
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yield small variance reductions but do not improve the convergence rate. We have 
numerical examples that illustrate these theoretical properties. 
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