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DIRO, Université de Montréal, Canada (E-mail: lecuyer@iro.umontreal.ca)

Keywords: Monte Carlo, quasi-Monte Carlo, RQMC, low-discrepancy sequence, numerical integration

Abstract: Monte Carlo (MC) methods use independent uniform random numbers to sample realizations of random

variables and sample paths of stochastic processes, often to estimate high-dimensional integrals that can represent

mathematical expectations. Randomized quasi-Monte Carlo (RQMC) methods replace the independent random

numbers by dependent vectors of uniform random numbers that cover the space more evenly. When estimating an

integral, they can provide unbiased estimators whose variance converges at a faster rate than with Monte Carlo.

RQMC can also be effective for the simulation of Markov chains, to approximate or optimize functions, to solve

partial differential equations, for density estimation, etc.

Monte Carlo, QMC, and RQMC

Quasi-Monte Carlo (QMC) and randomized quasi-Monte Carlo (RQMC) methods were introduced to improve on

standard Monte Carlo (MC) when estimating the mathematical expectation µ = E[X] of a random variable X. In

simulation applications, the expectation can be rewritten as a multivariate integral of the form

µ = E[X] = E[f(U)] =

∫
(0,1)s

f(u) du (1)

where f : (0, 1)s → R is a function, U is a vector of s uniform random variables that represent the noise injected

into a simulation, and s is an upper bound on how many random numbers we need. We can allow s to be infinite.

With standard Monte Carlo (MC), one estimates µ by the average of n independent replicates of X, that is,

µ̂n,mc =
1

n

n−1∑
i=0

Xi (2)

where Xi = f(Ui) and U0, . . . ,Un−1 are n independent random vectors uniform over (0, 1)s, usually simulated

using random number generators. One has E[µ̂n,mc] = µ (unbiasedness) and Var[µ̂n,mc] = σ2/n with σ2 :=∫
(0,1)s

f2(u) du− µ2. When σ2 <∞, this estimator obeys the central limit theorem (CLT)
√
n(µ̂n,mc −

µ)/Sn ⇒ N (0, 1) when n→∞, where S2
n = 1

n−1
∑n−1
i=0 (Xi − X̄n)2 is the sample variance. This CLT implies
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that the width of a confidence interval on µ is asymptotically proportional to σ/
√
n. This O(n−1/2) convergence is

slow.

Quasi-Monte Carlo (QMC) methods replace the independent random vectors Ui by a deterministic low-

discrepancy set of n points Pn = {u0, . . . ,un−1} that cover [0, 1)s more evenly The estimate is

µ̂n,qmc =
1

n

n−1∑
i=0

f(ui).

Roughly speaking, a point set Pn is said to have low-discrepancy if a given measure of discrepancy between the

empirical distribution of Pn and the uniform distribution converges to 0 at a faster rate than for independent

points. A discrepancy is usually defined jointly with a measure of variation of f in some functional space H (often a

Hilbert space), in a way that the following type of worst-case error bound can be obtained via the Cauchy-Schwarz

inequality:

|µ̂n,qmc − µ| ≤ D(Pn)V (f) (3)

for all f ∈ H, where V (f) = ‖f − µ‖H measures the variation of f in H and D(Pn) is the discrepancy of Pn
[6, 12, 44]. This bound is a product of two terms, one that depends only on the point set Pn and the other that

depends only on f . For any f ∈ H with V (f) 6= 0, the bound (3) converges at the same rate as D(Pn). The error

itself may converge faster than the bound.

The best-known special case of (3) is the classical Koksma-Hlawka inequality, in which D(Pn) is the star

discrepancy D∗(Pn) defined as follows: for each u ∈ (0, 1)s, let ∆(u) be the absolute difference between the volume

of the box [0,u) and the fraction of Pn that fall in that box, and let D∗(Pn) be the supremum of ∆(u) over all

u ∈ (0, 1)s. The corresponding variation V (f) is the Hardy-Krause variation of f , VHK(f), whose definition and

discussion can be found in [1, 6]. Note that VHK(f) is infinite whenever f has a discontinuity not aligned with

the axes, in two or more dimensions. There are known explicit point sets Pn for which D∗(Pn) = O(n−1(lnn)s−1).

and also infinite sequences of points for which D∗(Pn) = O(n−1(lnn)s) if Pn is defined as the first n points of the

sequence. There are many other useful choices for the discrepancy and variation in (3). They are usually defined in

a way that the discrepancy is easy to compute for the selected type of point set construction, that one can search

efficiently for point sets having a small discrepancy, and they often give different weights to the projections of the

points (and of f) on different subsets of coordinates. See the next section for one more example. Classical references

on QMC include [6, 5, 44, 51, 52].

In applications, the bound in (3) is usually much too hard to compute; only its convergence rate is known, and it

is very hard to estimate the QMC integration error. Randomized QMC (RQMC) addresses this issue by providing

an unbiased estimator of µ whose variance converges at worst at the same rate as the square of the QMC error

bound (and sometimes at a better rate). This is achieved by randomizing the point set Pn in a way that each

individual point has the uniform distribution over the unit cube (0, 1)s while the point set as a whole preserves its

low discrepancy. The RQMC estimator of µ is

µ̂n,rqmc =
1

n

n−1∑
i=0

f(Ui).

where U0, . . . ,Un−1 are now the randomized points. The variance of this estimator can itself be estimated by

replicating the RQMC scheme m times independently, to obtain m independent realizations of µ̂n,rqmc, and

computing their empirical mean and variance. This can be used to estimate the error and perhaps compute a

confidence interval. However, one must keep in mind that the distribution of this mean does not always converge to



a normal for n→∞ [35]. It does for m→∞, and also for n→∞ for specific types of (more costly) randomizations

such as nested scrambling [40]; otherwise one must be careful when computing confidence intervals.

One may wonder how it is possible to fill the unit hypercube (0, 1)s very uniformly when s is large. For s = 100,

for instance, it already takes 2100 points to have one in each quadrant. This is far too many points to be practical.

So how can RQMC possibly work for high-dimensional functions, say for s > 30 with no more than 220 points?

The reason is that when it works, it is typically because f can be well approximated by a sum of low-dimensional

functions: f(u) =
∑

u⊆{1,...,s} fu(u), where fu(u) depends only on the coordinates of u that belong to the set u,

and the variance σ2 decomposes accordingly as the sum of the variances σ2
u = Var[fu(U)]. This is known as an

ANOVA decomposition of f . It often occurs that only a small fraction of the σ2
u’s contribute to almost all the

variance σ2. Then, to obtain a significant variance reduction, it is sufficient that the projections of the point Pn
on those important subsets u be very uniform. This can be achieved by giving more weights to these projections

in the discrepancy criterion used to construct the points. In practice, these variance components do not need to

be known accurately, only very rough estimates suffice. The faster convergence rates of RQMC vs MC are proved

under conditions that do not always hold, but RQMC can nevertheless reduce the variance by large factors even

when these conditions do not hold.

RQMC sampling can be useful in other settings than estimating an integral. It can also improve efficiency

when estimating a quantile, a density, a function of several expectations, the derivative of an expectation, and

the solution of an optimization problem (e.g., for maximum likelihood estimation) [2, 17, 43]. Active areas of

application of RQMC include option pricing in finance [8, 10, 17, 24, 56], simulating partial and stochastic differential

equations [18, 17] , statistics, and computer graphics [55]. Further details on RQMC in general can be found in

[31, 24, 25, 37, 49, 50, 54].

Construction and Randomization of Points Sets

The two main types of point set constructions are lattice rules and digital nets. We now look at how they are

defined and how the points are randomized.

Lattice rules

In a rank-1 lattice rule, the points are defined as ui = (i/n)a mod 1, i = 0, . . . , n− 1, where a ∈ {0, . . . , n− 1}s is

called the generating vector, and “mod” means that we take the fractional part of each vector coordinate. This

lattice point set Pn can be randomized by a random shift modulo 1, which means that a single random vector U

is generated uniformly over (0, 1)s and added to all the points ui, modulo 1. This yields an RQMC method known

as a randomly-shifted lattice rule. The variance of the corresponding RQMC estimator is exactly (see [30]):

Var[µ̂n,rqmc] =
∑

0 6=h∈L∗s

|f̂(h)|2, (4)

where L∗s ⊂ Zs is the dual of the lattice generated by the points of Pn and the f̂(h) are the Fourier coefficients

of f [30]. To minimize the variance, ideally we would like to select a lattice that minimizes (4), which is very

hard in general, because there is an infinite number of Fourier coefficients in the sum, and they are usually

unknown. A more practical approach is the following. Suppose that for an even integer α > 0, the mixed partial

derivatives of f up to order α/2 > 0 are square-integrable, and the periodic continuations of the derivatives

of f up to order α/2− 1 are continuous across the boundaries of the unit hypercube modulo 1, then one has



|f̂(h)|2 = O((max(1, h1) · · ·max(1, hs))
−α). Moreover, for any ε > 0, there is always a choice of a such that

Pα :=
∑

0 6=h∈L∗s

(max(1, h1) · · ·max(1, hs))
−α = O(n−α+ε). (5)

This Pα is the variance for a worst-case f with square Fourier coefficients |f̂(h)|2 = (max(1, |h1|) · · ·max(1, |hs|))−α.
The larger is α, the smoother is f and the faster is the convergence rate.

A more general version of Pα gives different weights γu to the different projections (subsets of coordinates)

u ⊆ {1, . . . , s}. Let

Pγ,α =
∑

0 6=h∈L∗s

γu(h)(max(1, |h1|) · · ·max(1, |hs|))−α,

in which u(h) = u(h1, . . . , hs) = {j : hj 6= 0}. The idea here is to give larger weights to the projections deemed more

important (having larger σ2
u).

This Pα or Pγ,α criterion is defined for any real number α > 1, but we know how to compute it exactly only

when α is an even integer. In that case, we have

Pγ,α =
∑

∅6=u⊆{1,...,s}

1

n

n−1∑
i=0

γu

[
−(−4π2)α/2

(α)!

]|u|∏
j∈u

Bα(ui,j), (6)

where Bα is the Bernoulli polynomial of degree α (e.g., B1(u) = u− 1/2, B2(u) = u2 − u+ 1/6, etc.). The

corresponding (squared) variation for f : [0, 1)s → R smooth enough is

V 2
γ (f) =

∑
∅6=u⊆{1,...,s}

1

γu(4π2)α|u|/2

∫
[0,1]|u|

∣∣∣∣∂α|u|/2∂uα/2
fu(u)

∣∣∣∣2 du,
and one has

Var[µ̂n,rqmc] =
∑

u⊆{1,...,s}

Var[µ̂n,rqmc(fu)] ≤ V 2
γ (f)Pγ,α. (7)

This Pγ,α is a good practical choice of figure of merit for lattice rules [7, 13, 32]. The weights are usually chosen to

have a specific form with a small number of parameters, such as order-dependent weights for which γu depends only

on the cardinality of u, or product weights for which a weight γj is selected for each coordinate j and γu =
∏
j∈u γj ,

for example [7, 32, 52]. Generating vectors a with a small Pγ,α can be found with the Lattice Builder software [33]

for arbitrary n, s, and weights. The software supports other criteria as well.

The bound on the square Fourier coefficients here holds under conditions (e.g., f is periodic and sufficiently

smooth) that do not always hold in applications. But often, f can be changed into a function having the same

integral and that satisfies the conditions, via a change of variable. For example, if f is discontinuous at the boundary,

i.e., f(. . . , uj = 0, . . . ) 6= f(· · · , uj = 1, . . . ), one can make the change of variable ũj = 2uj if uj ≤ 1/2 and 1− 2uj
if uj > 1/2 [14]. It stretches the points by a factor of 2 from [0, 1) to [0, 2), then folds the segment [1, 2) back to

[1, 0). This is equivalent to shrinking f horizontally by a factor of 1/2 and making a mirror copy on the interval

[1/2, 1), which makes f continuous. Higher-order transformations can also make the derivatives continuous and

sometimes further improve the convergence rate of the variance. However, they may also increase the variation of

f and the variance for the values of n that are used [24, 51].



Digital nets

To define a digital net in base b, select a base b ≥ 2, usually a prime and most often b = 2, an integer k > 0, and a

set of s generating matrices C1, . . . ,Cs, which are w × k matrices with elements in Zb. To define the n = bk points

ui, for i = 0, . . . , bk − 1 and j = 1, . . . , s, put i = ai,0 + ai,1b+ · · ·+ ai,k−1b
k−1 = ai,k−1 · · · ai,1ai,0,ui,j,1...

ui,j,w

 = Cj

 ai,0
...

ai,k−1

 mod b, ui,j =
∑w
`=1 ui,j,`b

−`, and ui = (ui,1, . . . , ui,s).

In practice, w and k are finite, but there is no limit. The definition in [44] is slightly more general. Assuming that each

Cj has full rank, each one-dimensional projection truncated to its first k digits is Zn/n = {0, 1/n, . . . , (n− 1)/n}.
If each Cj has an infinite number of columns, this gives an infinite sequence of points, called a digital sequence in

base b. One can always take the first n = bk points of a digital sequence to define a digital net, for any k.

The point set Pn is called a (t, k, s)-net in base b if for all non-negative integers q1, . . . , qs for which q1 + · · ·+ qs =

k − t, if we partition [0, 1)s into bk−t rectangular boxes by dividing the interval [0, 1) into bqj equal parts in the j

axis for each j, each box contains exactly bk−t points. The smallest t for which a digital net is a (t, k, s)-net is called

its t-value. A smaller t guarantees better uniformity of the points, so the ultimate value is t = 0, but this can be

achieved only for b ≥ s− 1. An infinite sequence of points in [0, 1)s is a (t, s)-sequence in base b if for any k > 0 and

` ≥ 0, the point set {ui, i = `bk, . . . , (`+ 1)bk − 1} is a (t, k, s)-net in base b. Beyond its intuitive interpretation,

the t-value also has theoretical relevance: if Pn is a (t, k, s)-net in base b for n = bk and k = 1, 2, 3, . . . and t is fixed

or bounded, then D∗(Pn) = O(n−1(log n)s−1). Using Koksma-Hlawka, this provides the same convergence rate for

the worst-case error, and O(n−2+ε) rate for the RQMC variance, for any ε > 0, when VHK(f) <∞. Moreover, there

are known digital net constructions that achieve this property. The most popular type is in base b = 2 and was

proposed by Sobol’ [53]. It requires a selection of parameters called direction numbers. Specific ones are proposed

in [16, 38], for example. Instead of selecting the parameters based on a single t-value in s dimensions, one can also

use a criterion based on a weighted sum of the t-values of projections on subsets of coordinates, as we saw for the

lattice rules. An algorithm that does this is given in [41].

Applying a random shift modulo 1 to a digital net does not preserve its (t, k, s)-net property. but applying a

random digital shift does so and provides an RQMC point set. One generates a single U = (U1, . . . , Us) uniformly

over (0, 1)s as before, find the digits in base b of the expansion of each coordinate Uj , and add these digits modulo

b to the corresponding digits of the same coordinate of each point ui. For b = 2, the shift is applied by a bitwise

xor, which is very fast. See [6, 25, 31] for more details and illustrations.

Another important type of randomization for digital nets is the nested uniform scramble (NUS) proposed by

Owen [47, 48]. Let b = 2. As for the digital shift, for any given coordinate, with probability 1/2 we flip the first bit

for all the points, then we also flip the second bit with with probability 1/2, and so on. But instead of flipping the

second bit the same way for all the points, we make two independent flipping decisions, one for the points whose first

bit is 0 and another for the points whose first bit is 1. And we perform this recursively: there are four independent

flip decisions for the third bit, eight for the fourth bit, and so on. We can stop at the kth bit (or perhaps earlier)

and generate the other bits randomly and independently across the points and coordinates. This also works for a

general base b: replace the flip by a random permutation of the elements of Zb applied to each digit. NUS is much

more costly than a random digital shift, but also more powerful. For sufficiently smooth f , with NUS applied to

digital (t, k, s)-nets with fixed s and bounded t, the RQMC variance converges as O(n−3(log n)s−1) = O(n−3+ε)

[47, 48, 50]. Other types of scrambles that provide only a slower rate but are faster to apply are discussed in

[15, 42, 50], for example.



Polynomial Lattice Rules

One important way of constructing digital nets is via lattice rules in spaces of polynomials or formal series, say

with coefficients in the finite field F2 or more generally in the residue ring Zb of integers modulo b. Most practical

implementations use b = 2 for efficiency reasons, so we take b = 2 in the following. A polynomial lattice rule of rank

1 in base 2 with n = 2k points in s dimensions is defined as follows [6, 44]. Let F2[z] be the ring of polynomials

with coefficients in F2. Select a polynomial Q(z) of degree k and a vector a(z) = (a1(z), . . . , as(z)) of polynomials

of degree less than k which are relatively prime with Q(z), all in F2[z]. For any other polynomial h(z) ∈ F2[z]

and 1 ≤ j ≤ s, h(z)aj(z)/Q(z) is a formal power series of the form
∑∞
`=w x`z

−` with coefficients x` ∈ F2, for some

integer w. We define a mapping ϕ from the set of such formal series to the interval [0, 1] by

ϕ

( ∞∑
`=w

x`z
−`

)
=

∞∑
`=max(w,1)

x`2
−`.

Then Pn is the set of all points of the form (ϕ(h(z)a1(z)/Q(z)), . . . , ϕ(h(z)as(z)/Q(z))) where h(z) ∈ F2[z] has

degree less than k. Note that there are n = 2k distinct choices for h(z). This Pn turns out to be a digital net in

base 2 [23, 31, 39, 44] and its uniformity can be analyzed in the same way as a digital net. A very similar theory as

for ordinary lattice rules has also been developed for polynomial lattice rules, in which the Fourier coefficients of f

are replaced by Walsh coefficients, and counterparts of (7) and its other versions have been obtained by adapting

the weighted Pα criterion in (6); see [6, 11, 45].

Latnet Builder [27] permits one to construct different types of point sets, including polynomial lattice rules and

Sobol’ points, with a variety of criteria. The Magic Point Shop [46] offers another set of tools.

RQMC for Markov Chains

In many applications, the expectation of interest is with respect to the distribution of the state of a Markov chain

after several steps. If each step requires d uniform random numbers and there are τ steps, then we have an integral in

s = τd dimensions, which can be very large, in which case straightforward RQMC is likely to be ineffective. Special

variants of RQMC have been designed to address this situation, the main one being Array-RQMC [28, 29, 34],

based on ideas from [19, 21, 22]. The method simulates n dependent realizations of the chain, using an RQMC

point set at each step to advance all the chains by one step, after sorting the chains in a specific order in terms

of their states. For the sort, each state can be mapped to a real number using some well-selected value function

and then the states are sorted by order of value, or one can use some form of multivariate sort [34]. The basic

idea is to maintain an empirical distribution of the states, from step to step, that is closer to the exact theoretical

distribution than if the n realizations were independent. Several successful applications and numerical examples

can be found in [3, 4, 8, 20, 26, 29, 34, 36], where convergence rates of O(n−2) or even better for the variance

are observed empirically on some examples. A closely related method was studied in [9] in the context of particle

filters. These authors proved an o(1) convergence rate for the variance.
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