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AbstractmThe dynamic behavior of a three-stage production transfer line with finite buffers 
and unreliable machines is modeled as a Markov chain. Performance measures are computed 
using value iteration dynamic programming with over-relaxation steps and finite element ap- 
proximation. This approach permits considering larger buffers than is possible when solving 
directly for the steady-state probabilities. 

1. INTRODUCTION 

A transfer line is a sequence of machines (or stages) connected by transfer mechanisms 
(see Fig. I). Items enter from one end of the line, visit each machine, and emerge at 
the other end. In the model discussed here, the machines are liable to failure at random 
times, and remain inoperative for random durations while they are under repair. To 
decrease the effects of machine failures on the rest of the line, buffer storages are 
placed between the unreliable machines. Larger buffers improve the line throughput, 
but their costs in terms of larger inventories, floor space and additional equipment must 
be taken into account. Applications of transfer lines models arise in a wide range of 
areas, including manufacturing industry, computer science, mining, etc. (see [4, 6, 8]). 

Transfer lines have been studied by many authors during the last 30 years. See [6] 
for a list of references. For given storage allocations, these authors wish to compute 
various performance measures, such as the line throughput or the mean total inventory. 
Some also seek to distribute a fixed total buffer size to the k - I buffers so as to 
maximize the line throughput. 

For two-stage lines, the throughput can be computed analytically[3, 6]. Gershwin 
and Schick[6] proposed a Markov chain model for a 2- or 3-stage line, and a method 
for solving the large linear system for the steady-state probabilities. The method is 
easy to implement for the two-machines case, but for the three-machines case, computer 
time and memory requirements increase respectively as the cube and square of the 
total buffer capacity. Also, even with 35 decimal digits extended precision computation, 
numerical instabilities prevent any reliable answers when the buffer capacities are larger 
than about 15. Other analytic techniques for more than two unreliable machines and 
finite buffers have been proposed only for models with more restricted assumptions 
than those retained in [6]. 

Lines with more than three stages have been studied by approximation[3, 5, 9], 
or by simulation[8,13]. 

In this paper, we use the same Markov chain model as in [6]. However, instead 
of computing the steady-state probabilities, we compute the throughput and mean total 
inventory via value iteration dynamic programming. We also experiment with different 
methods to approximate the value function, and over-relaxation steps to accelerate the 
convergence. This approach permits us to cope with larger buffers than in [6]. 

2. THE MODEL 

Many variants of the transfer line model appear in the literature. Here, we adopt 
the same variant as in [6]. 

The system is comprised of k machines, serially ordered and separated by k - 1 
finite capacity buffers (see Fig. 1). An inexhaustible supply of items is available to 
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Fig. 1. Diagram of  a k-stage transfer  line. 

machine 1, and items are brought into an unlimited storage area after being processed 
by machine k. All machines are synchronized, and have equal and constant service 
times. That  common  one time unit fixed cycle includes transportation time to or from 
the buffers.  

I tems move  from machine I to buffer I . . . . .  to buffer i - 1, to machine i, to 
buffer i . . . . .  to machine k. Each machine in the line may fail at a random time and 
for a random duration. Actually,  a 'failure' may correspond to stoppage for mainte- 
nance,  adjustments ,  repairs,  etc . . . .  Machines are assumed to have geometrically 
distr ibuted number  of  processing cycles between failures and number of  cycles to re- 
pair. If  machine i is processing an item during a cycle, there is a probability pi that it 
fails during that cycle.  If  machine i is down (in failure state) at the beginning of a cycle,  
there is a probabil i ty ri that it is repaired during that cycle. 

For  i = I . . . . .  k - I, let N i  be the capacity of buffer i. When machine i is down, 
the level in buffer  i - 1 may rise. If the failure persists, that buffer may fill up and 
force machine i - i to stop its processing. In such a case, machine i - 1 will be called 
blocked.  Similarly, the level in buffer i may fall, as machine i + 1 drains its contents.  
That  buffer  may empty  and force machine i + I to idleness. Such a forced down machine 
will be called s t a r v e d .  If  a failure persists long enough, the blocking and starvation 
effects could propagate  up and down the line. Notice that machine 1 can never be 
starved and machine k can never  be blocked. The role of  the buffers is to provide a 
partial decoupling of  the machines and lessen the effects of  a failure. 

It is assumed that machines can fail only while processing items. A starved or 
blocked machine cannot  fail. When a machine fails, the item it was working on is not 
damaged or des t royed,  but is returned to the previous storage location. Processing on 
that i tem is resumed when the machine is repaired. 

We assume that a cycle  begins with the transitions in the machine conditions 
(breakdown or repair) and ends with storage levels modifications that depend on the 
new machine states. Not ice  that with this convention, a machine that is repaired during 
a cycle  is assumed to be operational  for that cycle and can process an item (i.e. finish 
the processing cycle that was aborted previously). Actually, processing can take place 
on machine i only if at the beginning of the cycle, there is at least one item in buffer 
i - I and at least one free location in buffer i. If this is the case and machine i does 
not fail, one item is r emoved  from buffer i - 1 and added to buffer i at the end of  the 
cycle.  

During a cycle,  we say that the transfer line is up if machine k successfully pro- 
cesses an item. Otherwise,  it is down. The throughput or efficiency E of  the line is the 
s teady-state  propor t ion of  up cycles,  that is the mean number  of  items coming out of  
the line per  cycle,  in the long run. The mean in-process inventory I is the expected 
total number  of  units in the buffers at any given cycle, in steady-state. We wish to 
compute  E and I, for given values of  k, N~ . . . . .  N k -  1, P l  . . . . .  Pk,  r~ . . . . .  rk. 

For  i -- 1 . . . . .  k, the condition of machine i is given by 

0 if machine i i s  down 
ai = I if machine i is operational. (1) 

Not ice  that an operat ional  machine can be either processing, blocked or starved. For  
i = I , . . .  , k  - 1,1et ni be the number of items in buffer i. The state of the system 
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is s = (n~ . . . . .  n k - 1 ,  a~ . . . . .  a , ) ,  where a,. = 0 or 1 and 0 =< n,. ~ N,- for  each i. 
The  cardinality of  the state space S is 

k - I  

M = 2* 1--[ (Ni  + 1). (2) 
i=1 

3. A V A L U E  ITERATION A P P R O A C H  

The model can be seen as a discrete-time Markov chain with state dependent  
' re turns ' ,  where E and I are average values per cycle.  

We define the one cycle value functions g: S ~ [0, I] and f :  S --* {0, 1, 2 . . . .  } 
a s  

0 i f n k - i  = 0 
g(s) = rk if n , - i  > 0 and ak = 0 

1 - -  Pk i f n k - t  > 0 a n d a x  = 1 

f ( s )  = nl + nz + "" + n k - l .  

(3) 

(4) 

The system being in state s at the beginning of a cycle,  g(s)  is the probabili ty that an 
item emerges from the line at the end of that cycle,  and f ( s )  is the in-process inventory  
during that cycle. 

For  s and x in S, let p( s ,  x) be the transition probabil i ty from state s to state x in 
one cycle.  The computat ion of  these probabilities is cumbersome,  but straightforward.  
They  are analyzed more fully in [6]. Notice that the underlying Markov chain has a 
closed irreducible set of  states, plus some transient states. For  instance, s = (0, 0, 
. . . .  0) is transient, since buffer i - 1 cannot be empty  if machine i is failed. 

In what follows, we discuss only the computat ion of  E. The  same type of  reasoning 
is also valid for I. 

Theoretically,  E can be computed by the following algorithm, due to White[12]: 

begin  

end.  

pick a recurrent  state y in S; 
set h(s) :=  0 for all s in S; 
repea t  

H(s)  :=  g(s) + ~ ,  p ( s ,  x)h(x) ,  all s in S; 
x E S  

d + :=  max (H(s)  - h(s)); 
s E S  

d -  :=  min (H(s)  - h(s)); 
s ~ S  

h(s) :=  H(s )  - H(y),  all s in S 
unti l  

d + - d -  is small enough 

(5) 

(6) 

(7) 

(8) 

T h e o r e m  1. After each iteration of the repeat  loop, we have d -  ~ E - d +. 
Fur thermore ,  the successive values of d -  and d ÷ converge  to E. Hence ,  if 'small 
enough'  means smaller than E, for ~ > 0, then the algorithm converges  in a finite number  
of  iterations. 

Proof :  It follows from propositions 6 and 7 in chapter  8 of  [2]. 
Unfortunately,  when S is very large, this algorithm could be very time consuming,  

or even impossible to implement on a computer  in its present  form. One may look for 
approximations.  For  instance, instead of computing H ( s )  for  every  state, compute  it 
only for a small subset of  S, and interpolate for  the remaining states. This technique 
has been studied in [7] for the case of discounted d.p. 

Another  problem with the algorithm is that its convergence  is very slow, especially 
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when the buffer sizes are large. For a given s, the sequence of values of H(s )  behave 
somewhat  like a geometr ic  sequence, but with a ratio of almost one. Various modifi- 
cations can be tried to accelerate the convergence.  One of them is to perform o v e r -  
r e l a x a t i o n  steps. Such a step consists of  replacing equation (8) by 

h(s)  :=  h(s)  + • [H(s) - H ( y )  - h(s)], all s in S (9) 

where "r => 1 is the relaxation factor. The step can be performed every say h iterations. 
One can also vary the values of  h and "r during the execution. 

The idea of  over-relaxation was considered in [10] and [111 for the case of  dis- 
counted dynamic  programming. Equation (9) was used at every iteration (h = I), and 
"r was restricted to be in the interval (0, 2). Obviously, without restrictions on -r and h, 
the algorithm does not necessarily converge.  But for a fixed h, if one uses a decreasing 
sequence of  values of  • converging to a value smaller than one, the convergence is 
certainly guaranteed.  

More  interestingly, one could implement the algorithm through an interactive pro- 
cedure,  where  the user can observe the successive values of  d + and d - ,  halt the 
execut ion after any iteration to contemplate a graphical display of  H or h, adjust the 
values of  h and "r accordingly or change the method of approximation, and even return 
to a previous iteration (i.e. previous value of h). This is the approach we took, and it 
is illustrated in the next  section for three-machine examples. The programs were im- 
plemented in F O R T R A N  on a VAX-11/780 mini computer. 

4. NUMERICAL ILLUSTRATIONS 

Consider  a three-stage transfer line (k = 3). The state of the system is denoted s 
--- (hi, n2, a l ,  a2, a3). In equation (5), one may compute H ( s )  for all 8 possible values 
of  a = (al ,  a2, a3), but only on a grid of  values of (n~, n2). More precisely, choose 
two positive integers a and 13, and integers ui and vj such that 

Let  

0 = ut  < u2 < "" < u~  = N~ ( 1 0 )  

0 = v l < z'2 < "" < v13 = N_~. 

S .  = {(ui, vj, a), 1 =< i =< a, 1 =< j =< 13. a E {0, 1}3}. 

At each iteration, compute  H ( s )  on S . ,  and approximate for the other  states, using an 
approximation surface for each value of  a. Four  approximation methods were imple- 
mented in the programs. 

Method 1 is piece-wise bilinear interpolation (BILIN). For  each a, the points of  
S .  determine a parti t ion of  S into (a - 1) (13 - 1) subrectangles, and we compute an 
interpolating funct ion which is bilinear on each subrectangle, i.e. has the form 

F ( n l ,  n2, a) = c i j  a -~- c(1)ij,~nt + c(2)ijan2 + c(1, 2)ij ,  n tn2 ,  

ui <= nl <= ui+l and vj <= n2 <= v i+l .  (11) 

Method 2 is piece-wise biquadratic interpolation (BIQUAD). It takes the subrec- 
tangles by blocks of  four, and the interpolating function is quadratic in nl and n2, on 
each block, a and [3 must be odd, and the interpolating function has the form 

F ( n l , n z ,  a) = c + c(l)nl + c(1, 1)n~ + c(1,2)nln2 

+ c(2)n2 + c(2, 2)n~ + c(1, 1, 2)n~n2 

+ c(l ,  2, 2)nln~ + c(1. 1. 2, 2)n~n~ (12) 

on each of  the (a - 1) (13 - 1)/4 pieces. 
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Method 3 is piece-wise bicubic interpolation (BICUB), as proposed by Akima[1]. 
It asks for 16 coefficients on each of  the (a - 1) (13 - 1) pieces. 

The  last method  uses piece-wise constant  approximation (PCONST),  which is 
equivalent  to approximat ion by state aggregation, as described in [2]. 

Not ice  that the size o f  the grid, or the method of  approximation,  may vary from 
iteration to iteration. It should be reasonable to start with a coarse grid and the simplest 
method,  refining the mesh gradually and switching to more sophisticated approximation 
methods  as the iterative process  goes on. All these methods converge in the following 
sense: when a attains N1 and 13 attains N2, we have S ,  = S and the error  of  approx- 
imation becomes  0. One will note  that d -  and d + provide bounds for the limiting value 
of  H(y), using the current  approximat ion scheme. To obtain real bounds on E, one 
must take S ,  = S for one iteration at the end. 

The algori thm now opera tes  as follows: 

Algorithm 
begin 

end. 

read N , ,  N 2 ,  Pi and r~ for i = 1, 2, 3, and y; 
set h(s) to 0 for  all s in S; 
repeat 

read or, 13, ul . . . . .  u~, v, . . . . .  va, -r, h, an approximation method,  
and a posit ive integer NITER;  

for n :=  1 to N I T E R  do begin 
compute  (5-7)  for  S ,  instead of S; 
/f  h divides NITER then 

compute  (9) for S ,  
else 

compute  (8) for S . ;  
print H(y), d -  and d ÷ ; 
end 

until no more data  to read; 

Example 1. L e t S ,  -- N2 = 10, pl = 0.01 a n d r i  = 0 .09for  i = 1 ,2 ,  3, a n d y  
= (5, 5, 1, 1, 1). Taking a = 13 = 5, (u, . . . . .  us) = (Vl . . . . .  vs) = (0, 2, 4, 7, I0), 
performing 400 iterations with "r = 1 we obtain the results of  Table I. For  P CO N S T t, 
we took the average of  the four corners  as the approximation value on each subrec- 
tangle, while for  P C O N S T  2, we took the lower left corner.  We see that P CO N S T yields 
very  bad results,  while for  the other  three methods,  d ÷ - d -  converge to 0 and the 
results are ve ry  consistent .  If  we take the results of either BILIN,  BIQUAD or BICUB 
(the resulting h) and perform another  400 iterations with the whole state space (a = 
13 = 11), we obtain H(y) = 0.79977 = d -  = d ÷ , which is the true value of  E. The 
programs were  run with simple, double,  and extended (35 decimal digits) precision 
ari thmetic,  and this same value was obtained in all cases. For  the same problem, Gersh- 
win and Schick[6] obtained E = 0.8000 (which is exact  to 3 decimal places) using 
ex tended  precision arithmetic.  

Not ice  that the approximat ion obtained with BIQUAD or BICUB is quite good. 
B I LI N  yields an underes t imat ion of  E, and it is due to the fact that h is concave.  

Exper iments  with over-relaxat ion were also done with this example,  and typically 
good values for  h and "r were  h = 10 and r between 10 and 20. With such values, it 

Table 1. Results for example 1 with a 5 by 5 approximation grid 

Approx. r:ethod d "  ~(y) d + 

BILIN .7851 .7852 .7852 
BIQ~D .7945 .7946 .7946 
B~CL~ .7951 .7952 .7952 

-.046 .883 1.185 
.000 .001 5.025 
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t o o k  about  2 to 3 t imes  f e w e r  i terat ions  to get  the s a m e  value  for d* - d , c o m p a r e d  
to what  it t o o k  using "r = 1. 

Table  2 p r o v i d e s  a typical  i l lustration o f  what  g o e s  on.  N o t e  that the iteration 
numbers  for w h i c h  the resul ts  are s h o w n  h a v e  been  careful ly  c h o s e n  not  to co inc ide  
with  over -re laxa t ion  s teps .  Each  o f  the t h e s e  s t eps  induce  a perturbat ion o f  the funct ion 
h(.) ,  w h i c h  s o m e t i m e  deter iorates  the t ightness  o f  the bounds  d-- and d + at the cor- 
responding  iteration.  A typical  pattern appears  in Table  3. 

Example 2. L e t N i  = 40, N2 = 60, pl  = 0 .03,  p2 = 0.05,  p3 = 0 .08,  rl = r2 = 
r3 = 0.20,  and y = (20, 30, l ,  l ,  1). For  this c a s e ,  due to numerica l  instabil i t ies ,  it 
w o u l d  be  pract ica l ly  i m p o s s i b l e  to s o l v e  the l inear s y s t e m  for the s t eady  state prob- 
abil i t ies .  For  ins tance ,  this e x a m p l e  c a n n o t  be  s o l v e d  using the G e r s h w i n  and S c h i c k ' s  
m e t h o d .  H o w e v e r ,  E can be c o m p u t e d  us ing d .p .  and s u c c e s s i v e  grid re f inements .  

Table 2. Intermediate results for example 1 with a 5 × 5 grid. The values shown are those of d- ,  
H(y) and d +, in that order. Note that the convergence is not monotonous 

iteration BILI~ BILIN 
r=l T-10, ~=i0 

49 .75619 .78422 .81676 .77656 .78646 .79787 
99 .77482 .78413 .79748 .78394 .78511 .78700 

149 .78115 .78465 .78998 .78499 .78516 .78545 
199 .78361 .78494 .78705 .78516 .78519 .78523 
249 .78457 .78509 .78591 .78519 .78519 .78520 
299 .78495 .78515 .78547 .78519 .78519 .78519 
349 .78510 .78517 .78530 .78519 .78519 .78519 
399 .78515 .78518 .78523 .78519 .78519 .78519 

BICUB BICUB 
x=l r=10, X=I0 

19 .46282 .82~72 .88482 .56274 .79389 .90891 
39 .74129 .79484 .83477 .77771 .79672 .82180 
59 .76652 .79280 .82624 .78648 .79493 .80796 
79 .77538 .79302 .81732 .79084 .79468 .80137 
99 .78132 .79342 .81081 .79298 .79481 .79816 

119 .78545 .79381 .80619 .79406 .79496 .79661 
139 .78834 .79414 .80292 .79460 .79505 .79587 
159 .79036 .79440 .80061 .79488 .79511 .79551 
179 .79178 .79461 .79899 .79502 .79514 .79534 
199 .79278 .79476 .79785 .79510 .79516 .79525 

299 .79475 .79509 .79562 .79517 .79517 .79517 

Table 3. Detailed intermediate results for example 1 with a 5 × 5 grid, using BICUB with r = 10, 
h = 10, and starting with h(.) = 0 

iteration d- H (y) d + iteration d- H (y) d + 

1 0.00000 .99000 0.99000 
2 0.00000 . 98100 0.98100 
3 0.00178 .97215 0.97290 
4 0.00789 .96275 0.97185 132 .79543 .79504 .79596 
5 0.01975 .95232 0.97747 133 .79454 .79504 .79595 
6 0.02346 .94077 0.98826 134 .79455 .79504 .79594 
7 0.06090 .92857 1.00065 135 .79456 .79505 .79592 
8 0.08880 .91642 O. 96336 136 .79457 .79505 .79591 
9 0.12029 .90447 0.95531 137 .79458 .79505 .79590 

iO .78633 138 .79459 .79505 .79588 
ii -0.61653 .77949 1.52678 139 .79460 .79505 .79587 
12 -0.15458 .77725 1.04796 140 .79507 . 
13 0.09811 .77794 1.00814 141 .79471 .79507 .79573 
14 0.28001 .78084 1.02287 142 .79471 .79508 .79572 
15 0.32000 .78381 0.99537 143 .79472 .79508 .79572 
16 0.41525 .78674 0.95528 144 .79473 .79508 .79571 
17 0.47106 .78940 0.93672 145 .79474 .79508 .79570 
18 0.50684 .79172 0.91794 146 .79474 .79508 .79569 
19 0.56274 .79389 0.90891 147 .79475 .79508 .79568 
20 .81234 148 .79476 .79508 .79567 
21 0.53745 .80956 1.14075 149 .79476 .79509 .79566 
22 0.63682 .80775 l.lllO0 150 .79510 
23 0.64938 .80647 1.08539 151 .79484 .7C510 .79556 
24 0.68398 .80532 1.04246 152 .79484 .79510 .79556 
25 9.72688 .80433 1.04133 153 .79485 .79510 .79555 
26 0.73479 .80347 0.99842 154 .79486 .79510 .79554 
27 0.74647 .80270 0.93582 155 .79466 .79511 .79554 
28 0.75029 .80201 0.87887 156 .79486 .79511 .79553 
29 0.75299 .80139 0.83857 157 .79487 .79511 .79552 
30 .79583 158 .79488 .79511 .79551 
31 0.69577 .79610 0.84770 159 .79488 .79511 .79551 
32 0.73739 .79641 0.84594 160 .79512 

161 .79493 .79512 .79544 
162 .79494 .79512 .79544 
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Using BICUB interpolation with X = T = I0, performing 400 iterations with a 7 
x 9 grid, (ul . . . . .  UT) = (0, 3, 6, 13, 20, 30, 40) and (vl . . . . .  Vg) = (0, 3, 6, 13, 
20, 30, 40, 50, 60), we  obtain H(y) = 0.7134, d -  = 0.7123 and d ÷ = 0.7138. Refining 
the grid to 11 × 15 and performing 100 new iterations yields H(y) = 0.7135, and adding 
another 100 iterations with a 23 x 33 grid yields again H(y) = 0.7135, with d-  = 
0.7134 and d ÷ = 0.7144. The value of  H(y) has stabilized and a further grid refinement 
is obviously unnecessary. 

5. CONCLUSION 

We have seen that value iteration dynamic programming with interpolation can 
provide precise performance measures for three-stage transfer lines with buffers of  
virtually any sizes, while state aggregation fails. Over-relaxation steps can also accel- 
erate the convergence.  The numerical illustrations given here are representative of a 
larger amount of  numerical testing that was performed. In principle, this approach can 
be extended to lines with more than 3 stages, and be a good alternative to simulation. 
For lines with many stages, however,  interpolation would be more difficult than for 
the three-stage case,  and the amount of computing will soon become overwhelming. 
Simulation and decomposition probably remain the sole efficient methods to approx- 
imate the performance measures for these cases. 

For three-stage lines, the time spent by the Gershwin and Schick's method is 
O((NI + N2)3), while for our method, it is O(a13) for each iteration. As the number of  
iterations in our case depends on the precision we need, it is difficult to compare the 
two methods. For small values of  NI and N2, for which the Gershwin and Schick's 
method can be used, the latter is certainly faster. They needed about I min of CPU 
time on their machine to solve example 1, while we spent about 20 min on our VAX 
for the same problem. But for large values of  N~ and N2, our method not only becomes 
competitive w.r. to CPU time, but still provides reliable results, while the method of  
Gershwin and Schick fails, due to numerical instabilities. 
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