
Comput. & Indus. Engng Vol. 9, No. 4, pp. 387-393, 1985 0360-8352/85 $3.00 + .00
Printed in the U.S.A. © 1985 Pergamon Press Ltd.

COMPUTING TRANSFER LINES PERFORMANCE
MEASURES USING DYNAMIC PROGRAMMING

PIERRE L'ECUYER
Universit~ Laval, Ste-Foy, Quebec, Canada GIK 7P4

(Received for publication 12 March 1985)

AbstractmThe dynamic behavior of a three-stage production transfer line with finite buffers
and unreliable machines is modeled as a Markov chain. Performance measures are computed
using value iteration dynamic programming with over-relaxation steps and finite element ap-
proximation. This approach permits considering larger buffers than is possible when solving
directly for the steady-state probabilities.

1. INTRODUCTION

A transfer line is a sequence of machines (or stages) connected by transfer mechanisms
(see Fig. I). Items enter from one end of the line, visit each machine, and emerge at
the other end. In the model discussed here, the machines are liable to failure at random
times, and remain inoperative for random durations while they are under repair. To
decrease the effects of machine failures on the rest of the line, buffer storages are
placed between the unreliable machines. Larger buffers improve the line throughput,
but their costs in terms of larger inventories, floor space and additional equipment must
be taken into account. Applications of transfer lines models arise in a wide range of
areas, including manufacturing industry, computer science, mining, etc. (see [4, 6, 8]).

Transfer lines have been studied by many authors during the last 30 years. See [6]
for a list of references. For given storage allocations, these authors wish to compute
various performance measures, such as the line throughput or the mean total inventory.
Some also seek to distribute a fixed total buffer size to the k - I buffers so as to
maximize the line throughput.

For two-stage lines, the throughput can be computed analytically[3, 6]. Gershwin
and Schick[6] proposed a Markov chain model for a 2- or 3-stage line, and a method
for solving the large linear system for the steady-state probabilities. The method is
easy to implement for the two-machines case, but for the three-machines case, computer
time and memory requirements increase respectively as the cube and square of the
total buffer capacity. Also, even with 35 decimal digits extended precision computation,
numerical instabilities prevent any reliable answers when the buffer capacities are larger
than about 15. Other analytic techniques for more than two unreliable machines and
finite buffers have been proposed only for models with more restricted assumptions
than those retained in [6].

Lines with more than three stages have been studied by approximation[3, 5, 9],
or by simulation[8,13].

In this paper, we use the same Markov chain model as in [6]. However, instead
of computing the steady-state probabilities, we compute the throughput and mean total
inventory via value iteration dynamic programming. We also experiment with different
methods to approximate the value function, and over-relaxation steps to accelerate the
convergence. This approach permits us to cope with larger buffers than in [6].

2. THE MODEL

Many variants of the transfer line model appear in the literature. Here, we adopt
the same variant as in [6].

The system is comprised of k machines, serially ordered and separated by k - 1
finite capacity buffers (see Fig. 1). An inexhaustible supply of items is available to

387

388 P I.' Ecu~[R

Unprocessed Buffer Buffer Buffer
units 1 i -1 i

Machine Machine
I i

Buffer
k-1

Flnol
~ ~] ~ r o d u c ts

Machine
k

Fig. 1. Diagram of a k-stage transfer line.

machine 1, and items are brought into an unlimited storage area after being processed
by machine k. All machines are synchronized, and have equal and constant service
times. That common one time unit fixed cycle includes transportation time to or from
the buffers.

I tems move from machine I to buffer I to buffer i - 1, to machine i, to
buffer i to machine k. Each machine in the line may fail at a random time and
for a random duration. Actually, a 'failure' may correspond to stoppage for mainte-
nance, adjustments , repairs, etc Machines are assumed to have geometrically
distr ibuted number of processing cycles between failures and number of cycles to re-
pair. If machine i is processing an item during a cycle, there is a probability pi that it
fails during that cycle. If machine i is down (in failure state) at the beginning of a cycle,
there is a probabil i ty ri that it is repaired during that cycle.

For i = I k - I, let N i be the capacity of buffer i. When machine i is down,
the level in buffer i - 1 may rise. If the failure persists, that buffer may fill up and
force machine i - i to stop its processing. In such a case, machine i - 1 will be called
blocked. Similarly, the level in buffer i may fall, as machine i + 1 drains its contents.
That buffer may empty and force machine i + I to idleness. Such a forced down machine
will be called s t a r v e d . If a failure persists long enough, the blocking and starvation
effects could propagate up and down the line. Notice that machine 1 can never be
starved and machine k can never be blocked. The role of the buffers is to provide a
partial decoupling of the machines and lessen the effects of a failure.

It is assumed that machines can fail only while processing items. A starved or
blocked machine cannot fail. When a machine fails, the item it was working on is not
damaged or des t royed, but is returned to the previous storage location. Processing on
that i tem is resumed when the machine is repaired.

We assume that a cycle begins with the transitions in the machine conditions
(breakdown or repair) and ends with storage levels modifications that depend on the
new machine states. Not ice that with this convention, a machine that is repaired during
a cycle is assumed to be operational for that cycle and can process an item (i.e. finish
the processing cycle that was aborted previously). Actually, processing can take place
on machine i only if at the beginning of the cycle, there is at least one item in buffer
i - I and at least one free location in buffer i. If this is the case and machine i does
not fail, one item is r emoved from buffer i - 1 and added to buffer i at the end of the
cycle.

During a cycle, we say that the transfer line is up if machine k successfully pro-
cesses an item. Otherwise, it is down. The throughput or efficiency E of the line is the
s teady-state propor t ion of up cycles, that is the mean number of items coming out of
the line per cycle, in the long run. The mean in-process inventory I is the expected
total number of units in the buffers at any given cycle, in steady-state. We wish to
compute E and I, for given values of k, N~ N k - 1, P l Pk, r~ rk.

For i -- 1 k, the condition of machine i is given by

0 if machine i i s down
ai = I if machine i is operational. (1)

Not ice that an operat ional machine can be either processing, blocked or starved. For
i = I , . . . , k - 1,1et ni be the number of items in buffer i. The state of the system

Compute r transfer lines performance m e a s u r e s 389

is s = (n~ n k - 1 , a~ a ,) , where a,. = 0 or 1 and 0 =< n,. ~ N,- for each i.
The cardinality of the state space S is

k - I

M = 2* 1--[(Ni + 1). (2)
i=1

3. A V A L U E ITERATION A P P R O A C H

The model can be seen as a discrete-time Markov chain with state dependent
' re turns ' , where E and I are average values per cycle.

We define the one cycle value functions g: S ~ [0, I] and f : S --* {0, 1, 2 }
a s

0 i f n k - i = 0
g(s) = rk if n , - i > 0 and ak = 0

1 - - Pk i f n k - t > 0 a n d a x = 1

f (s) = nl + nz + "" + n k - l .

(3)

(4)

The system being in state s at the beginning of a cycle, g(s) is the probabili ty that an
item emerges from the line at the end of that cycle, and f (s) is the in-process inventory
during that cycle.

For s and x in S, let p(s , x) be the transition probabil i ty from state s to state x in
one cycle. The computat ion of these probabilities is cumbersome, but straightforward.
They are analyzed more fully in [6]. Notice that the underlying Markov chain has a
closed irreducible set of states, plus some transient states. For instance, s = (0, 0,
. . . . 0) is transient, since buffer i - 1 cannot be empty if machine i is failed.

In what follows, we discuss only the computat ion of E. The same type of reasoning
is also valid for I.

Theoretically, E can be computed by the following algorithm, due to White[12]:

begin

end.

pick a recurrent state y in S;
set h(s) := 0 for all s in S;
repea t

H(s) := g(s) + ~ , p (s , x)h(x) , all s in S;
x E S

d + := max (H(s) - h(s));
s E S

d - := min (H(s) - h(s));
s ~ S

h(s) := H(s) - H(y), all s in S
unti l

d + - d - is small enough

(5)

(6)

(7)

(8)

T h e o r e m 1. After each iteration of the repeat loop, we have d - ~ E - d +.
Fur thermore , the successive values of d - and d ÷ converge to E. Hence , if 'small
enough' means smaller than E, for ~ > 0, then the algorithm converges in a finite number
of iterations.

Proof : It follows from propositions 6 and 7 in chapter 8 of [2].
Unfortunately, when S is very large, this algorithm could be very time consuming,

or even impossible to implement on a computer in its present form. One may look for
approximations. For instance, instead of computing H (s) for every state, compute it
only for a small subset of S, and interpolate for the remaining states. This technique
has been studied in [7] for the case of discounted d.p.

Another problem with the algorithm is that its convergence is very slow, especially

390 P. L'EcuYER

when the buffer sizes are large. For a given s, the sequence of values of H(s) behave
somewhat like a geometr ic sequence, but with a ratio of almost one. Various modifi-
cations can be tried to accelerate the convergence. One of them is to perform o v e r -
r e l a x a t i o n steps. Such a step consists of replacing equation (8) by

h(s) := h(s) + • [H(s) - H (y) - h(s)], all s in S (9)

where "r => 1 is the relaxation factor. The step can be performed every say h iterations.
One can also vary the values of h and "r during the execution.

The idea of over-relaxation was considered in [10] and [111 for the case of dis-
counted dynamic programming. Equation (9) was used at every iteration (h = I), and
"r was restricted to be in the interval (0, 2). Obviously, without restrictions on -r and h,
the algorithm does not necessarily converge. But for a fixed h, if one uses a decreasing
sequence of values of • converging to a value smaller than one, the convergence is
certainly guaranteed.

More interestingly, one could implement the algorithm through an interactive pro-
cedure, where the user can observe the successive values of d + and d - , halt the
execut ion after any iteration to contemplate a graphical display of H or h, adjust the
values of h and "r accordingly or change the method of approximation, and even return
to a previous iteration (i.e. previous value of h). This is the approach we took, and it
is illustrated in the next section for three-machine examples. The programs were im-
plemented in F O R T R A N on a VAX-11/780 mini computer.

4. NUMERICAL ILLUSTRATIONS

Consider a three-stage transfer line (k = 3). The state of the system is denoted s
--- (hi, n2, a l , a2, a3). In equation (5), one may compute H (s) for all 8 possible values
of a = (al , a2, a3), but only on a grid of values of (n~, n2). More precisely, choose
two positive integers a and 13, and integers ui and vj such that

Let

0 = ut < u2 < "" < u~ = N~ (1 0)

0 = v l < z'2 < "" < v13 = N_~.

S . = {(ui, vj, a), 1 =< i =< a, 1 =< j =< 13. a E {0, 1}3}.

At each iteration, compute H (s) on S . , and approximate for the other states, using an
approximation surface for each value of a. Four approximation methods were imple-
mented in the programs.

Method 1 is piece-wise bilinear interpolation (BILIN). For each a, the points of
S . determine a parti t ion of S into (a - 1) (13 - 1) subrectangles, and we compute an
interpolating funct ion which is bilinear on each subrectangle, i.e. has the form

F (n l , n2, a) = c i j a -~- c(1)ij,~nt + c(2)ijan2 + c(1, 2)ij , n tn2 ,

ui <= nl <= ui+l and vj <= n2 <= v i+l . (11)

Method 2 is piece-wise biquadratic interpolation (BIQUAD). It takes the subrec-
tangles by blocks of four, and the interpolating function is quadratic in nl and n2, on
each block, a and [3 must be odd, and the interpolating function has the form

F (n l , n z , a) = c + c(l)nl + c(1, 1)n~ + c(1,2)nln2

+ c(2)n2 + c(2, 2)n~ + c(1, 1, 2)n~n2

+ c(l , 2, 2)nln~ + c(1. 1. 2, 2)n~n~ (12)

on each of the (a - 1) (13 - 1)/4 pieces.

Computer transfer lines performance measures 391

Method 3 is piece-wise bicubic interpolation (BICUB), as proposed by Akima[1].
It asks for 16 coefficients on each of the (a - 1) (13 - 1) pieces.

The last method uses piece-wise constant approximation (PCONST), which is
equivalent to approximat ion by state aggregation, as described in [2].

Not ice that the size o f the grid, or the method of approximation, may vary from
iteration to iteration. It should be reasonable to start with a coarse grid and the simplest
method, refining the mesh gradually and switching to more sophisticated approximation
methods as the iterative process goes on. All these methods converge in the following
sense: when a attains N1 and 13 attains N2, we have S , = S and the error of approx-
imation becomes 0. One will note that d - and d + provide bounds for the limiting value
of H(y), using the current approximat ion scheme. To obtain real bounds on E, one
must take S , = S for one iteration at the end.

The algori thm now opera tes as follows:

Algorithm
begin

end.

read N , , N 2 , Pi and r~ for i = 1, 2, 3, and y;
set h(s) to 0 for all s in S;
repeat

read or, 13, ul u~, v, va, -r, h, an approximation method,
and a posit ive integer NITER;

for n := 1 to N I T E R do begin
compute (5-7) for S , instead of S;
/f h divides NITER then

compute (9) for S ,
else

compute (8) for S . ;
print H(y), d - and d ÷ ;
end

until no more data to read;

Example 1. L e t S , -- N2 = 10, pl = 0.01 a n d r i = 0 .09for i = 1 ,2 , 3, a n d y
= (5, 5, 1, 1, 1). Taking a = 13 = 5, (u, us) = (Vl vs) = (0, 2, 4, 7, I0),
performing 400 iterations with "r = 1 we obtain the results of Table I. For P CO N S T t,
we took the average of the four corners as the approximation value on each subrec-
tangle, while for P C O N S T 2, we took the lower left corner. We see that P CO N S T yields
very bad results, while for the other three methods, d ÷ - d - converge to 0 and the
results are ve ry consistent . If we take the results of either BILIN, BIQUAD or BICUB
(the resulting h) and perform another 400 iterations with the whole state space (a =
13 = 11), we obtain H(y) = 0.79977 = d - = d ÷ , which is the true value of E. The
programs were run with simple, double, and extended (35 decimal digits) precision
ari thmetic, and this same value was obtained in all cases. For the same problem, Gersh-
win and Schick[6] obtained E = 0.8000 (which is exact to 3 decimal places) using
ex tended precision arithmetic.

Not ice that the approximat ion obtained with BIQUAD or BICUB is quite good.
B I LI N yields an underes t imat ion of E, and it is due to the fact that h is concave.

Exper iments with over-relaxat ion were also done with this example, and typically
good values for h and "r were h = 10 and r between 10 and 20. With such values, it

Table 1. Results for example 1 with a 5 by 5 approximation grid

Approx. r:ethod d " ~(y) d +

BILIN .7851 .7852 .7852
BIQ~D .7945 .7946 .7946
B~CL~ .7951 .7952 .7952

-.046 .883 1.185
.000 .001 5.025

392 P. L'EcuYER

t o o k about 2 to 3 t imes f e w e r i terat ions to get the s a m e value for d* - d , c o m p a r e d
to what it t o o k using "r = 1.

Table 2 p r o v i d e s a typical i l lustration o f what g o e s on. N o t e that the iteration
numbers for w h i c h the resul ts are s h o w n h a v e been careful ly c h o s e n not to co inc ide
with over -re laxa t ion s teps . Each o f the t h e s e s t eps induce a perturbat ion o f the funct ion
h(.) , w h i c h s o m e t i m e deter iorates the t ightness o f the bounds d-- and d + at the cor-
responding iteration. A typical pattern appears in Table 3.

Example 2. L e t N i = 40, N2 = 60, pl = 0 .03, p2 = 0.05, p3 = 0 .08, rl = r2 =
r3 = 0.20, and y = (20, 30, l , l , 1). For this c a s e , due to numerica l instabil i t ies , it
w o u l d be pract ica l ly i m p o s s i b l e to s o l v e the l inear s y s t e m for the s t eady state prob-
abil i t ies . For ins tance , this e x a m p l e c a n n o t be s o l v e d using the G e r s h w i n and S c h i c k ' s
m e t h o d . H o w e v e r , E can be c o m p u t e d us ing d .p . and s u c c e s s i v e grid re f inements .

Table 2. Intermediate results for example 1 with a 5 × 5 grid. The values shown are those of d- ,
H(y) and d +, in that order. Note that the convergence is not monotonous

iteration BILI~ BILIN
r=l T-10, ~=i0

49 .75619 .78422 .81676 .77656 .78646 .79787
99 .77482 .78413 .79748 .78394 .78511 .78700

149 .78115 .78465 .78998 .78499 .78516 .78545
199 .78361 .78494 .78705 .78516 .78519 .78523
249 .78457 .78509 .78591 .78519 .78519 .78520
299 .78495 .78515 .78547 .78519 .78519 .78519
349 .78510 .78517 .78530 .78519 .78519 .78519
399 .78515 .78518 .78523 .78519 .78519 .78519

BICUB BICUB
x=l r=10, X=I0

19 .46282 .82~72 .88482 .56274 .79389 .90891
39 .74129 .79484 .83477 .77771 .79672 .82180
59 .76652 .79280 .82624 .78648 .79493 .80796
79 .77538 .79302 .81732 .79084 .79468 .80137
99 .78132 .79342 .81081 .79298 .79481 .79816

119 .78545 .79381 .80619 .79406 .79496 .79661
139 .78834 .79414 .80292 .79460 .79505 .79587
159 .79036 .79440 .80061 .79488 .79511 .79551
179 .79178 .79461 .79899 .79502 .79514 .79534
199 .79278 .79476 .79785 .79510 .79516 .79525

299 .79475 .79509 .79562 .79517 .79517 .79517

Table 3. Detailed intermediate results for example 1 with a 5 × 5 grid, using BICUB with r = 10,
h = 10, and starting with h(.) = 0

iteration d- H (y) d + iteration d- H (y) d +

1 0.00000 .99000 0.99000
2 0.00000 . 98100 0.98100
3 0.00178 .97215 0.97290
4 0.00789 .96275 0.97185 132 .79543 .79504 .79596
5 0.01975 .95232 0.97747 133 .79454 .79504 .79595
6 0.02346 .94077 0.98826 134 .79455 .79504 .79594
7 0.06090 .92857 1.00065 135 .79456 .79505 .79592
8 0.08880 .91642 O. 96336 136 .79457 .79505 .79591
9 0.12029 .90447 0.95531 137 .79458 .79505 .79590

iO .78633 138 .79459 .79505 .79588
ii -0.61653 .77949 1.52678 139 .79460 .79505 .79587
12 -0.15458 .77725 1.04796 140 .79507 .
13 0.09811 .77794 1.00814 141 .79471 .79507 .79573
14 0.28001 .78084 1.02287 142 .79471 .79508 .79572
15 0.32000 .78381 0.99537 143 .79472 .79508 .79572
16 0.41525 .78674 0.95528 144 .79473 .79508 .79571
17 0.47106 .78940 0.93672 145 .79474 .79508 .79570
18 0.50684 .79172 0.91794 146 .79474 .79508 .79569
19 0.56274 .79389 0.90891 147 .79475 .79508 .79568
20 .81234 148 .79476 .79508 .79567
21 0.53745 .80956 1.14075 149 .79476 .79509 .79566
22 0.63682 .80775 l.lllO0 150 .79510
23 0.64938 .80647 1.08539 151 .79484 .7C510 .79556
24 0.68398 .80532 1.04246 152 .79484 .79510 .79556
25 9.72688 .80433 1.04133 153 .79485 .79510 .79555
26 0.73479 .80347 0.99842 154 .79486 .79510 .79554
27 0.74647 .80270 0.93582 155 .79466 .79511 .79554
28 0.75029 .80201 0.87887 156 .79486 .79511 .79553
29 0.75299 .80139 0.83857 157 .79487 .79511 .79552
30 .79583 158 .79488 .79511 .79551
31 0.69577 .79610 0.84770 159 .79488 .79511 .79551
32 0.73739 .79641 0.84594 160 .79512

161 .79493 .79512 .79544
162 .79494 .79512 .79544

Computer transfer lines performance measures 393

Using BICUB interpolation with X = T = I0, performing 400 iterations with a 7
x 9 grid, (ul UT) = (0, 3, 6, 13, 20, 30, 40) and (vl Vg) = (0, 3, 6, 13,
20, 30, 40, 50, 60), we obtain H(y) = 0.7134, d - = 0.7123 and d ÷ = 0.7138. Refining
the grid to 11 × 15 and performing 100 new iterations yields H(y) = 0.7135, and adding
another 100 iterations with a 23 x 33 grid yields again H(y) = 0.7135, with d- =
0.7134 and d ÷ = 0.7144. The value of H(y) has stabilized and a further grid refinement
is obviously unnecessary.

5. CONCLUSION

We have seen that value iteration dynamic programming with interpolation can
provide precise performance measures for three-stage transfer lines with buffers of
virtually any sizes, while state aggregation fails. Over-relaxation steps can also accel-
erate the convergence. The numerical illustrations given here are representative of a
larger amount of numerical testing that was performed. In principle, this approach can
be extended to lines with more than 3 stages, and be a good alternative to simulation.
For lines with many stages, however, interpolation would be more difficult than for
the three-stage case, and the amount of computing will soon become overwhelming.
Simulation and decomposition probably remain the sole efficient methods to approx-
imate the performance measures for these cases.

For three-stage lines, the time spent by the Gershwin and Schick's method is
O((NI + N2)3), while for our method, it is O(a13) for each iteration. As the number of
iterations in our case depends on the precision we need, it is difficult to compare the
two methods. For small values of NI and N2, for which the Gershwin and Schick's
method can be used, the latter is certainly faster. They needed about I min of CPU
time on their machine to solve example 1, while we spent about 20 min on our VAX
for the same problem. But for large values of N~ and N2, our method not only becomes
competitive w.r. to CPU time, but still provides reliable results, while the method of
Gershwin and Schick fails, due to numerical instabilities.

Acknowledgements--This research has been supported by NSERC-Canada Grant No. A5463 and FCAC-
Qu6bec Grant No. EQ2831. The author wish to thank Jacques Malenfant and Marc Veiileux, who contributed
to the numerical implementation.

REFERENCES

1. H. Akima, A method of Bivariate interpolation and smooth surface fitting based on local procedures.
Commun. A C M 17(1), 18-20 and 26-31 0974).

2. D. P. Bertsekas, Dynamic Programming and Stochastic Control. Academic Press (1976).
3. J. A. Buzacott, Automatic transfer lines with buffer stocks. Int. J. Prod. Res. 5, 183-200 (1967).
4. J. A. Buzacott & L. E. Hanifin, Models of automatic transfer lines with inventory banks--a review and

comparison. AIIE Trans. 10, 197-207 (1978).
5. S. B. Gershwin, An efficient decomposition method for the approximate evaluation of production lines

with finite storage space, Presentation TB8.2 at ORSA/TIMS 84 in San Francisco (May 1984).
6. S. B. Gershwin and I. C. Schick, Modeling and analysis of three-stage transfer lines with unreliable

machines and finite buffers. Ops. Res. 31(2), 354-380 (1983).
7. A. Haurie & P. L'Ecuyer, Approximation and bounds in discrete event dynamic programming, Les

cahiers du GERAD (G-83-25), Ecole des H.E.C., Montr6al (1983).
8. Y. C. Ho, M. A. Eyler & T. T. Chien, A new approach to determine parameter sensitivities of transfer

lines. Man. Sci. 29(6), 700- (1983).
9. J. Masso & M. L. Smith, Interstage storages for three stage lines subject to stochastic failures. AIIE

Trans. 6(4), 354-358 (1974).
10. E. L. Porteus & J. C. Totten, Accelerated computation of the expected discounted return in a Markov

chain. Ops. Res. 26(2), 350-358 (1978).
11. D. Reetz, Solution of a Markovian decision problem by successive over-relaxation. Z. Oper. Res. 17,

29-32 (1973).
12. D. J. White, Dynamic programming, Markov chains, and the method of successive approximations. J.

Math. Anal. Appl. 6, 373-376 (1963).
13. H. Yamashima & K. Okamura, Analysis of in-process buffers for multi-stage transfer line systems. Int.

J. Prod. Res. 21(2), 183-195 (1983).

