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In typical stochastic simulations, randomness is produced by generating a sequence 
of independent uniform variates (usually real-valued between 0 and 1, or integer-valued 
in some interval) and transforming them in an appropriate way. In this paper, we 
examine practical ways of generating (deterministic approximations to) such uniform 
variates on a computer. We compare them in terms of ease of implementation, efficiency, 
theoretical support, and statistical robustness. We look in particular at several classes 
of generators, such as linear congruential, multiple recursive, digital multistep, Tausworthe, 
lagged-Fibonacci, generalized feedback shift register, matrix, linear congruential over 
fields of formal series, and combined generators, and show how all of them can be 
analyzed in terms of their lattice structure. We also mention other classes of generators, 
like non-linear generators, discuss other kinds of theoretical and empirical statistical 
tests, and give a bibliographic survey of recent papers on the subject. 
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1. Introduction 

Simulating stochastic models requires a source of randomness. Modelers and 
programmers normally assume that random variables from different probability 
distributions, like normal, exponential, Bernouilli, Poisson, and so on, are available. 
The methods that have been designed to generate those random variables (see, e.g. 
Bratley et al. [10], Devroye [19], or Law and Kelton [47]) assume in turn the 
availability of  a source of  i.i.d. U(0, 1), i.e. continuous random variables distributed 
uniformly over the real interval (0, 1), or sometimes discrete random variables 
distributed uniformly over some finite set of  integers (like, e.g. random bits). In this 
paper, we discuss the methods which are most widely used, or most promising, for 
generating sequences of values which try to imitate such uniform random variables 
for simulation purposes. Those sequences are called pseudorandom and the programs 
which produce them are called pseudorandom number generators. In most of this 
paper, we will just use the term "random" instead of  "pseudorandom",  a slight 
abuse of  language which is common usage in simulation contexts. 
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1.1. TRULY RANDOM VERSUS PSEUDORANDOM SEQUENCES 

In lotteries with prize money, the winning number is usually (hopefully) a 
truly random number, each digit being determined, for example, by physically 
drawing a (numbered) ball from some kind of container. This is not very practical 
for computer simulation, especially when millions of random numbers are required, 
as is often the case. Using truly random numbers for simulation and other Monte 
Carlo methods has been tried for a while, a few decades ago, but practically abandoned 
for various reasons [10,49]. On modern computers, pseudorandom numbers are 
generated by completely deterministic algorithms. We want these numbers to look, 
from the outside, as if they were truly random. We would be quite happy if, for 
example, no one who observes only the sequence from the outside (and does not 
know the structure of the generator) can distinguish it from a truly random sequence 
in "feasible" time (say, a few years of CPU time on a large computer) better than 
by flipping a fair coin. In practice, however, most of the generators we use do not 
have such strong properties. This is still okay for many practical applications, but 
not all. There are reasonable applications for which many of the generators currently 
available on computers are useless (or dangerous). For example, for applications 
dealing with the geometrical behaviour of random vectors in high dimensions, many 
generators must be avoided because of the bad geometrical structure of the vectors 
of successive points that they produce [50]. For cryptology, most available generators 
are dangerous because there are efficient ways of predicting the next value, given 
the sequence of values already produced by the generator [9, 42, 45]. 

1.2. BAD AND DANGEROUS GENERATORS 

There is a well-developed body of theory concerning the construction and 
analysis of (pseudo)random number generators. Good introductory references and 
survey papers include [6, 10, I6 ,41,44,47,50,75-77,82] .  Unfortunately, practice 
does not always keep up with theory. Many of the "default" generators currently 
offered in popular computer softwares, or suggested in some simulation textbooks, 
are old ones, and are not competitive with those based on the more recent theory. 
Much worse, many bad generators are still proposed every year in (supposedly 
serious) journal articles. One of my favorite exercises for students when I teach a 
simulation course is to have them test a bad generator recently proposed in a journal 
or available on a popular computer. For more on bad generators, see [41,50,79, 83]. 
As Ripley [85] said: "Random number generation seems to be one of the most 
misunderstood subjects in computer science". On the surface, it looks easy and 
attractive. This is probably why so many new generators are proposed by people 
from so many different fields (mathematics, computer science, physics, electrical 
engineering, management science, etc.). But building good generators is not so easy 
and requires a good understanding of the theory. As Knuth [44, p. 5] said: "Random 
numbers should not be generated with a method chosen at random". 
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1.3. A DEFINITION OF A GENERATOR 

To-day 's  practical random number generators are computer programs which 
produce a deterministic, periodic sequence of numbers. The following definition is 
a slight variation from L 'Ecuyer  [49]. 

DEFINITION 1 

A generator is a structure ~ = (S, s0, T, U,G),  where S is a finite set of  states, 
s o ~ S is the initial state, T : S --4 S is the transition function, U is a finite set of  
output symbols, and G : S --> U is the output function. 

A generator operates as follows: Start from the initial state So (called the 
seed) and let u0 := G(so). Then, for i := 1,2 . . . . .  let s i : =  T(Si_l) and u i : =  G(si). 
We assume that efficient procedures are available to compute T and G. The sequence 
{ui} is the output of  the generator and the ui's are called the observations. For 
pseudorandom number generators, one would expect the observations to behave 
from the outside as if  they were the values of  i.i.d, random variables, uniformly 
distributed over U. The set U is often a set of  integers of the form {0 . . . .  , m - 1 }, 
or a finite set of  values between 0 and 1 to approximate the U(0,1) distribution. 

1.4. PERIOD AND TRANSIENT 

Since S is finite, the sequence of  states is ultimately periodic. The period is 
the smallest positive integer p such that for some integer "r >_ 0 and for all n > "r, 
sp + n = sn. The smallest "r with this property is called the transient. When "r = 0, the 
sequence is said to be purely periodic. 

1.5. QUASI-RANDOM SEQUENCES 

The aim of a generator is not always to imitate true randomness as closely 
as possible. For example, in Monte Carlo numerical  integration, one can take a 
sample of points over the domain of  integration, and use the average of  the function 
values at those points, multiplied by the volume of  the integration domain, as an 
estimator of  the integral. This can be done by using a pseudorandom sequence. But 
in terms of bounds on the integration error, one can often do better if the sample 
points are spread more evenly over the integration domain than a typical sample 
from the uniform distribution. The so-called quasi-Monte Carlo methods construct  
generators (in the sense of  definition 1) which produce deterministic sequences 
whose purpose is not to look random, but to give the best possible determinist ic 
bounds on the integration error. Such sequences are called quasi-random. Bounds 
on the integration error can be obtained in terms of the discrepancy of  the sequence 
(we will briefly explain that concept  later on) and of  some measure of  variability 
of  the function. Then, one looks for quasi-random sequences with the lowest possible 
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discrepancy (or, in practice, with the lowest upper bound on their discrepancy, since 
the discrepancy can rarely be computed exactly). Niederreiter [77] is an excellent 
(high-level) introduction to quasi-Monte Carlo methods. In this paper, we will not 
enter further into that subject. Our interest will be in pseudorandom sequences. 

1.6. A LITTLE BIT OF TRUE RANDOMNESS 

In our definition of generator (definition 1), the initial state s o was assumed 
to be given (deterministic). To introduce some real randomness, one can choose this 
initial state randomly, say by drawing balls from a box. In other words, we can 
generalize our definition by saying that the initial state So is generated randomly 
according to some probability distribution/2 on S. Generating a truly random seed 
is much less work and is more reasonable than generating a longer sequence of  truly 
random numbers. A generator with a random seed can be viewed as an e x t e n s o r  of 
randomness, whose purpose is to save "coin tosses". It stretches a short truly 
random seed into a long sequence of values that is supposed to appear and behave 
like a true random sequence. 

1.7. OVERVIEW OF THE PAPER 

In the next section, we discuss what we think are the properties that a good 
general purpose generator must possess: good statistical properties; long period; 
speed; low memory; portability; reproducibility; and splitting facilities. In section 3 
we define different classes of generators based on linear recurrences over some 
finite space (often a finite field). This will be our framework for most of  what will 
follow afterwards. In section 4, we give full-period conditions for recurrences over 
finite fields and discuss their verification in practice. We also look at the period 
lengths of other classes of generators. In section 5, we examine, the lattice structure 
of different classes of generators defined in section 3. Some have a lattice structure 
in real space R t, while others have a lattice structure in a vector space of formal 
series. In both cases, the lattice structure characterizes how well the (overlapping) 
vectors of  t successive values produced by the generator, over its entire period, are 
evenly distributed over the t-dimensional unit hypercube. We briefly discuss the 
notion of discrepancy in section 6. Practical implemention considerations, especially 
for linear congruential, multiple recursive, and Tausworthe generators, are discussed 
in section 7. In section 8, we address the question of parallel generators and explain 
how to implement jumping-ahead (and splitting) facilities. The most popular approach 
for trying to improve the quality of  generators is by combination of many different 
generators. This is the subject of section 9. We discuss in more detail two classes 
of combination approaches which have been recently analyzed successfully. 
Section 10 is about nonlinear generators, which do not have the same kind of lattice 
structure as the linear ones and have better discrepancy properties, but which are 
also slower. The question of  empirical statistical testing is treated in section 11. 
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2. What is a good generator? 

We summarize in this section the major requirements for a good random 
number generator, for general purpose simulation. These requirements are also discussed 
in [10,41,79,84], and we do not always share the views of all these authors. 

2.1. STATISTICAL UNIFORMITY AND UNPREDICTABILITY 

As we said, the sequence of observations from a generator should behave as 
if it was a sequence of independent random variables, uniformly distributed over 
the set U. But what does the word "behave" ~ean exactly here, and how can we 
verify whether the sequence behaves satisfactorily? Various definitions of "random" 
sequence are given in Knuth [44]. These definitions apply to infinite, non-periodic, 
sequences, whereas the practical generators produce periodic sequences. From a 
pragmatic point of view, we can say that the generators should pass statistical tests 
for unifomity and independence. But after more careful thinking, we find out that 
this is a meaningless requirement. Indeed, since the sequence is deterministic and 
periodic, we know in advance that it is not truly uniform. In other words, we know 
that it is always possible to build a statistical test powerful enough, if enough time 
is allowed, so that the generator will fail it miserably. This looks like an hopeless 
situation. 

One way out of this apparent dead end is to consider the time it takes to apply 
the tests in practice. We know that there is a test that can catch our generator. But 
if running that test requires billions of years CPU time on the most powerful 
computers, then perhaps we do not care about that test. In other words, we might 
feel happy if the generator passes all (or almost all) the tests which can be run in 
"reasonable" time. This can be made more precise by using the ideas of computational 
complexity. The following definition is from L'Ecuyer  and Proulx [54]. 

Consider a family { Gk, k > 1 } of generators, where k represents the size (e.g. 
the number of bits to represent the state). The family is called P T - p e r f e c t  (polynomial- 
time perfect) if Gk "runs" in polynomial-time (in k) and if any polynomial-time (in 
k) statistical test which tries to distinguish the output of the generator from a truly 
random sequence, and to guess which is which, will not make the right guess with 
a probability larger than 1/2 + ek, where ek, k > 1 converges to zero exponentially 
fast. An equivalent definition is that no polynomial-time algorithm should be able 
to predict successfully u i + 1 from (u 0 . . . . .  ui) with a probability larger than 1/I UI + ek, 
i.e. significantly better than by picking a value uniformly from U. So, by taking k 
large enough, one has a safe generator which would pass all the statistical tests that 
can be run in reasonable time. For further details on these notions, see [8, 49, 54] and 
the references given there. The idea of PT-perfect generators was introduced by 
cryptologists, for which "unpredictability" is a crucial property. All of this looks 
nice, but the bad news is that no generator (family) has been proven PT-perfect to 
date. In fact, nobody even knows for sure whether there really exists any PT-perfect 
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generator. Some generators conjectured to be PT-perfect have been proposed. However, 
they are still too slow for practical simulation use. 

The generators mostly used in simulation (linear congruential, multiple recursive, 
GFSR . . . .  ) are known not to be PT-perfect. "Efficient" algorithms have been designed 
to infer their sequence by looking at the first few numbers [9,45]. But in practice, 
they remain quite useful for simulation, mainly because of their speed. When their 
parameters are well chosen and only a small fraction of their period is used, they 
show good statistical behaviour with respect to most reasonable empirical tests. 
Binary (or m-ary) expansions of algebraic numbers (roots of polynomials with 
integral coefficients) or some transcendental numbers (including 7r) do not define 
PT-perfect generators either. Kannan et al. [42] give efficient algorithms to compute 
further digits given a long enough initial segment of the expansion. 

So, seeking PT-perfect generators for simulation might be too demanding and 
we are back to a weaker definition of "reasonable statistical test". Current practice 
sets up standard batteries of tests and applies them to generators [20,48,50,60]. 
Ideally, the tests should be selected in relation with the target application. But this 
is not always (easily) feasible, especially for "general purpose" generators which 
are to be provided in software packages or libraries. The question of statistical 
testing is further discussed in section 1 I. 

2.2. THEORETICAL SUPPORT 

Empirical testing is fine, but there are often better ways of understanding the 
behavior of a generator, by theoretical analysis. Properties like the period length, 
lattice structure (or lack thereof), discrepancy, equidistribution, etc., usually give 
better insight on how the generator behaves. Generators lacking strong and convincing 
theoretical support must be avoided. The right approach for selecting a generator 
is to first screen out generators on the basis of their theoretical properties, and then 
submit the retained ones to appropriate empirical tests. In the next few sections, we 
will look at some of those theoretical properties. 

In most cases, however, the available results are valid only for the entire 
period. For example, we might know that in a given dimension t, the t-tuples of 
successive output values, over the entire period, are very evenly distributed in the 
t-dimensional unit hypercube (0, 1] t. But in practice, we should use only a tiny 
fraction of the generator's period. Good equidistribution over the whole period 
might improve our confidence in good statistical behavior over the fraction of the 
period that we use, but provides no proof of such good behavior. In fact, when we 
use a generator whose points are very evenly distributed over the whole period, we 
implicitly hope and assume that over the small fraction of the period that we use, 
the points look like a random (and not perfectly evenly distributed) set of points. 
Indeed, points that are too evenly distributed fail to imitate randomness as well as 
points whose distribution is too far from even. Intuitively, we may view the set of 
points P over the entire period as a finite (but large) sample space, and the (much 
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smaller) set of points P0 that we use as "random sample" (without replacement) 
from this set. If the points of P are not well distributed in the hypercube (0, 1 It, then 
it is likely that the points of P0 will not look random. But if the points of P are very 
evenly distributed in (0, 1] t and P0 contains only a "negligible" fraction of those 
points, then the points of P0 are likely to look random, as long as they behave 
somewhat like a random sample from P. As an analogy, imagine you want to put 
101° balls in a box, each bearing a number from 1 to 105, then draw 1000 of them 
without replacement, to simulate a sample of I000 i.i.d, uniform variates from the 
set {I . . . . .  105}. Then, the best you can do is to put 105 balls of each number in 
the box. Of course, if you draw a sample of size close to 101° instead of 1000, the 
set of numbers you will get will look too unifot:m (or "super-uniform"), but if you 
draw a few, you will get nice random looking numbers. 

However, we must be aware that this intuitive analogy has a catch: the points 
P0 that we generate over a tiny part of the period are not a random sample, because 
the generator is deterministic. It may happen that in some dimension t, the points 
are generated in such an order that small subsets of successive points do not look 
random at all. So, having the points very evenly distributed over the entire period 
is appealing, but not enough. Theoretical results do not always apply only to the 
entire period; sometimes we can characterize the behavior of shorter subsequences 
as well. But in general, albeit necessary, theoretical support is not sufficient and 
should be supplemented by other empirical tests. 

2.3. PERIOD LENGTH 

As computers become increasingly faster, people perform larger simulations, 
which require more and more random numbers. Generators whose period length was 
sufficient some years ago are now unacceptable. For example, the period length of 
a multiplicative linear congruential generator with modulus 232, which is p = 23°, can 
be exhausted in a few minutes of CPU time of a small workstation. Acceptable 
generators should have at least a period length of 260 or more, and a much larger 
value is probably safer. 

For most linear-type generators, the discrepancy of the vectors of successive 
values over the entire period is much too small compared with the discrepancy of 
truly random sequences (see section 6 and [77]). Therefore, at most a small fraction 
of the period should be used. This gives further motivation for very long period 
generators. Based on a "nearest pair" argument, Ripley [82, p. 26] suggests that for 
linear congruential generators, the period (and the modulus) should always be at least 
an order of magnitude larger than the square of the number of values we use. Further, 
in many simulation applications, the generator's sequence is "split" into a large 
number of (disjoint) substreams, which should behave themselves as virtual generators 
(see [10,52] and section 8). Then, the period must be orders of magnitude longer. 
Families of fast-speed low-memory generators, with period lengths well over 2200 , 
have been proposed and analyzed recently and will be discussed in this paper. 



84 P. L'Ecuyer, Uniform random number generation 

2.4. EFFICIENCY 

Despite the dramatic increases in computing power, speed and memory usage 
are still major concerns regarding generators. The time and memory space used by 
the random number generator might be insignificant in some cases [41], but (i) this 
will usually not be the case if the generator is slow or requires a lot of memory and 
(ii) there are cases where the time and space used by even the most efficient 
generators cannot be neglected [21,43,84]. Memory frugality becomes especially 
important when many "virtual" generators (i.e. many substreams) are maintained in 
parallel on a single computer (see section 8). 

2.5. REPEATABILITY, PORTABILITY, JUMPING AHEAD, AND EASE OF IMPLEMENTATION 

A generator must be easy to implement efficiently in a standard high-level 
language. The code must be portable, i.e. produce exactly the same sequence (at 
least up to machine accuracy) with all "standard" compilers and on all "reasonable" 
computers. There is no good reason for choosing a generator which can be implemented 
only in machine-dependent assembly language. We do not say that a generator 
should never be implemented in assembly language, but at least, a high-level portable 
implementation must be available. Being able to reproduce the same sequence of 
random numbers on a given computer (called repeatability) is important for program 
verification and for variance reduction purposes [10, 47, 84]. Reproducing the same 
sequence on different computers is also important, for example for program verification 
across computers [41]. Repeatability is a major advantage of pseudorandom sequences 
with respect to sequences generated by physical devices. Of course, for the latter, 
one could store an extremely long sequence on a large disk or tape, and reuse it 
as needed thereafter. But his is not as convenient as a good pseudorandom number 
generator, which can stand in a few lines of code. 

In our mind, ease of implementation also means the ease of breaking up the 
sequence into long disjoint substreams and jump ahead quickl3, from one substream 
to the other (see section 8). This means that given the state sn, it should be possible 
to calculate quickly the state sn+ v for any large v (without generating all the 
intermediate states, of course). Most "classical" (linear) generators allow such 
"leapfrogging" (even though the appropriate software tools are rarely available in 
packages or libraries). But there are classes of nonlinear and combined generators 
for which efficient ways of jumping ahead are unknown. One should think twice 
before selecting the backbone generator of a simulation package from such a class. 

3. Generators based on linear recurrences over finite fields 

3.1. GENERAL FRAMEWORK 

Most of the random number generators used in practice can be expressed by 
linear recurrences in modular arithmetic, over a finite set S. Often, S is a finite field 
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and the transition function has the form T(s)  = as, where ct, s ~ S. In the latter case, 
S has the form S = ~:m*, where m = pC, p is prime, and e, k are positive integers. For 
k = 1, one has S = Ilm, the finite field with m elements. Recall that F m exists if 'and 
only if m is a power of  a prime. When m is prime, one can identify ~:m with the 
set 7/m = { 0, 1 . . . . .  m - 1 } on which arithmetic operations are performed modulo 
m. For k > 1, Ilm k can be constructed as a factor ring Ilm[X]/(P), which can be identified 
with the space of  polynomials modulo P and with coefficients in Ilm, where P is an 
irreducible polynomial  of  degree k with coefficients in Ilm. The state space S can 
also be viewed as the k-dimensional vector space Il k (space of k-dimensional vectors 
with elements in F~). A good reference on finite fields and related topics is Lidl 
and Niederrei ter  [58]. 

In what follows, unless otherwise indicated, we will assume that m is prime 
and that tx ~ S = I l m  k . Then, the state sn of  the generator evolves in Fro* as 

Let 
Sn = a s h -  I. 

P ( z )  = z k - a l z  k -  1 _ . . .  _ ak ~ Ilm[z] 

(1) 

be the minimal polynomial  of  tx over Ilm. Then, in ~:m k, one has P(ct) = 0, i.e. 

an  = a l tXn-  l + . . .  + ako~n-k (2) 

The value of  k is called the o r d e r  of  the recurrence. If  P ( z )  is a primitive polynomial  
over Ilm and tx is a generator of  the cyclic group Ilm k =link\{0}, then the generator 
has full  p e r i o d  p = m k - 1, which means that if So ~ 0, any subsequence of  p consecutive 
values of  sn will visit each element  of  II,~k once and only once (of course, s = 0 
should not be visited, because it is an absorbing state). Further, a p = a mk -1 = 1 and 
a p - 1  = a - I  in Ilm k. 

Suppose that the output function is defined as a composit ion of  the form 
G = G1 o G2, where  G1 : Ilm k ---> Fm is a linear form over  Fm k, and G2 : Ilm "-> [0, 1]. 
This is the usual form of  the output function in practice. Then, if  xn = Gl ( sn )  ~ Ilm, 

one has 
xn = a l X n -  l + .  • • + akXn-  k (3) 

in Ilm- Typical ly,  we will directly implement  the recurrence (3) over 6: m instead 
of the recurrence (1) over Ilm k. The transformation Gz is sometimes defined by 
G2(x)  = x / m ,  where  x ~ Ilm is identified with its representative in 7/m. The sequence 
{xn} is called a l i n e a r  r e c u r r i n g  s e q u e n c e  with c h a r a c t e r i s t i c  p o l y n o m i a l  P ( z ) .  In 
fact, we will use that definition even when P ( z )  is not primitive and even when m 
is neither a prime nor a power  of  a prime (in the latter case, the recurrence is in 
7/m, which is not a field). As we will see later on, some classes of  generators based 
on linear recurrences  with non-primitive (and reducible) characteristic polynomials ,  
or linear recurrences  modulo  an integer m which has distinct pr ime factors,  have 
very attractive practical properties. 
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To design a generator, typically, one selects m, U, and the output function G, 
then one finds a characteristic polynomial  P(z)  of a desired form for which (1) can 
be implemented efficiently, and finally one tests the structural and statistical properties 
of  the output  sequence. In the remainder  of  this paper, we will discuss different 
ways of  performing these tasks. We now examine a series of examples.  

3.2. THE MULTIPLICATIVE LINEAR CONGRUENTIAL GENERATOR 

Let k = 1, m prime, and identify F,, with g,, .  Let a = al = o~ ~ 7/~n= 7/,n\ {0}. 
Then (3) becomes 

x ,  = axn _ I mod m. (4) 

If  G : 2~,,, --~ [0, 1] is defined by G(x)  = x / m ,  this gives the classical m u l t i p l i c a t i v e  

l i near  c o n g r u e n t i a l  g e n e r a t o r  (MLCG), which has been deeply analyzed, scrutinized, 
and often criticized, over the past 30 years or so [ 10, 33, 34, 44, 49, 77, 81 ]. Despite 
well founded critics, this kind of generator is still largely used in practice [10,47].  
One can also use (4) with a non-pr ime modulus  m. Then,  7/m is not a field, but 
we still call the generator a MLCG. For example,  m can be a large power  of two. 
In that case, the characteristic polynomial  P(z )  = z -  a cannot  be primit ive and 
the largest possible period is only m / 4 ,  reached when a mod 8 = 5 and x0 is odd. 
If  m is prime,  the period is m -  1 if and only if the m u l t i p l i e r  a is a pr imit ive 
root  m o d u l o  m and x 0 ¢:0. Speci f ic  modul i  and mul t ip l iers  are ana lyzed  in 
[33, 34, 43, 44, 48, 79]. 

3.3. THE MULTIPLE RECURSIVE GENERATOR 

Let k > 1 and m prime. Again, identify g:m with 77 m. The  recurrence (3) is now 

x n = ( a l X n - I  + .  . . + a k x . - z )  m o d m .  (5) 

The generator ' s  state at step n is the vector sn = ( x n , . . .  , x , + k - l ) e  z,kn, which 
could be t ransformed into a value u~ 6 [0, 1] by u~ = G ( s , ) = x n / m .  This kind of  
higher-order  linear congruential  generator is known as a m u l t i p l e  r ecur s i ve  g e n e r a t o r  

(MRG) [38 ,49 ,51 ,77] .  The special case where k = 1 gives the usual M L C G  with 
pr ime modulus .  For k > 1, for P(z )  to be primitive,  it is necessary that ak and at least 
another  aj be non-zero.  So, the most  favorable case in terms of  implementa t ion  is 
when P(z )  is a tr inomial,  of the form P ( z )  = z k - arz  k -  r _ ak. The recurrence (5) then 
becomes  

Xn ---- (arXn - r + akXn - k) mod m. (6) 

3.4. DIGITAL MULTISTEP SEQUENCES AND THE TAUSWORTHE GENERATOR 

Cons ider  again the recurrence (5), for pr ime m, but redefine sn = (xns . . . . .  

xns + k - 1) and 
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L 

u n = G(sn)= YjXns+j_lm -j ,  
j=l 

(7) 

where s and L < k are positive integers. Here, computing s, from s~_ t involves 
performing s steps of the recurrence (5). Using a digital expansion in base m as 
in (7) yields a better resolution for the output values (for L > 1) than when u n is 
just x, /m.  The output sequence {u~} obtained from such a generator is called a 
digital multistep sequence [75,77] (Niederreiter [75,77] imposes the additional 
constraints L = s < k, so our definition is more general). If  (5) has full period 
p = m k - 1 and s is coprime p, then the digital multistep sequence (7) also has period 
p = m k - 1. Note that the previous example is a s~ecial case, with s = L = 1. Another 
important special case is when m = p = 2: the output values un are then constructed 
by taking blocks of L successive bits from the binary sequence (5) with spacings 
of s -  L > 0 bits between the blocks. This was introduced by Tausworthe [88] and 
is known as a Tausworthe generator [44,77,90,91].  (Sometimes, the Tausworthe 
generator is defined slightly differently, by filling up the bits of u, from the least 
significant to the most significant one, instead of from most to least significant as 
in (7). See [88,90]. This corresponds to generating the sequence (5) in reverse 
order.) 

3.5. LINEAR RECURRENCES OVER SPACES OF POLYNOMIALS OR FORMAL SERIES 

= _ Z k -  t Let  P(z) z k al - - . . . - a k  be a pr imi t ive  po lynomia l  over  0:m, 
S =~:m k = ~:,,[Z]/(P) (the field of polynomials modulo P(z), with coefficients in Q:,,), 
and a ~ S be a non-zero polynomial of  the form g(z) = (z ~ mod P(z)), where s is a 
positive integer. Observe that since P(z) is primitive, any non-zero polynomial  
g(z) ~ S  can be expressed as g(z)= z s mod P(z) for some integer s in the range 
{ 1 . . . . .  m k -  I }. Therefore,  there is no loss of  generality in imposing that form 
to g(z). The state s,  at step n is a non-zero polynomial of  degree smaller than k, 
with coefficients in 0: m. The transition function is given by 

s,(z) = zSs,_ j(z) mod P(z), (8) 

where the arithmetic on the polynomial coefficents is performed in ~:m" Again, grin 
can be identified with Zm. 

If we formally divide s,(z) by P(z), we obtain a formal Laurent series expansion 
in z -l, with coefficients dnj ~ Igm: 

~n(z) = s~(z) /P(z)= ) _ ~ , j z  -j .  (9) 
j= l  

Dividing eq. (8) by P(z), we see that this generator is in fact a linear congruential  
generator defined over the space of  formal Laurent series: 
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s n ( z )  = z S s n - l ( Z )  mod Fro[z]. (10) 

The multiplication by z ~ in (10) corresponds to shifting the coefficients of ~,,(z) to 
the left by s positions, and the "mod g:m[Z]'" operation means dropping off the terms 
with non-negative exponents in the formal series, i.e. those that were in the first s 
positions. In other words, one has d , , j  = dn -1 , j+s .  Define x j  _ 1 = do,j  for each j > 0. 
Then, dn , j  = do,ns + j = X.s + j -  1. 

From the definition of  s0(z), one obtains (replacing do,j  by x j _  1): 

So(Z) = P ( z ) s o ( z )  

= Z k -- a i  z k u i  

~=1 ) \ j=l  ) 

= Xh_ I -- a l X h _ l _ i X o  Z k - h  
u 

+ 2 . ~ ( X h - 1  -- a l X h _  2 - - . . .  -- a k X h _ k _ l ) Z  
h=k+I 

Since So(Z) is a polynomial, the coefficient of z k- h must be zero for each h > k, i.e. 

x j  = ( a l x j _  1 + .  • • + a k x j - k )  mod m 

for each j > k. This is exactly the same recurrence as (5). Therefore, (8), (10), 
and (5) with sn = (xsn . . . . .  x s ~ + k - t )  (as in section 3.4) are just different ways of 
expressing the same generator. 

The above development of So(Z) also allows one to recover its coefficients 
from the sequence {x~}. One can similarly recover the coefficients of  sn ( z )  for 
any n: the coefficient of z j in s~(z )  is 

Cn,j  = ( X n s - j  + k - 1 -- a l X n s - j + k - 2  - - ,  • • -- a h - l X n s - j + k  - h )  m o d  m 

= ( a h X n s _ j + k _ h _  1 + . . .  + a k X n s _ j _ l )  mod m .  

Replacing the formal variable z by the integer m in the formal series 

 0(z) = Y' ,a0jz-J  xj_lz -j, 
j=l  j=l  

we obtain a digital fractional expansion in base m, namely 

~t 0 = Z x j _ i m - J  = . x O X l X  2 . . . .  

j--I 
(11) 
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Similarly, replacing z by m in sn(z) gives 

~tn = L X n s + j - l m - J  = .XnsXns+lXns+2 . . . .  (12) 
j=l  

It is easily seen that Un is obtained by shifting the digital expansion of ~0 by ns  

positions to the left, and dropping the non-fractional digits. To produce the 
output un in practice, the digital expansion of ~n can be truncated to, say, L digits. 
This yields L 

U n = ZXns+j_ lm-J ,  
j = l  

which is the same as (7). So, we have just recovered the digital multistep sequence 
by following a different development. This alternative view was first suggested by 
Tezuka and turns out to be quite useful for analyzing some of the structural properties 
of the sequence when m is small (e.g. m =2)  [14,89,90,91]. The Tausworthe, 
MRG, and MLCG generators are special cases of this. In [9], for m = 2, the generator 
defined by (10)- (11)  is called an LS2 generator. 

3.6. M L C G s  IN M A T R I X  FORM 

Let P(Z)  = z k - a l z  k -  1 - - . . .  _ ak be a primitive polynomial and A a k x k 
matrix whose elements are in Fm and with characteristic polynomial P(z) .  Consider 
the recurrence 

Xn = AXn - l ,  (13) 

where each Xn is a k-dimensional column vector of elements of ~:,, and the arithmetic 
is in 0: m. Then, it can be shown (see [37, 38,71,77]) that {Xn} follows the recurrence 

Xn = a l X n -  1 4" . . . -1- akXn_ k. (14) 

In other words, each component of the vector Xn evolves according to (3), which 
means that we just have k copies of the same linear recurring sequence evolving 
in parallel, with perhaps different lags (or shiftings) between themselves (i.e. different 
initial states). Using (14) directly instead of (13) multiplies by k the size of the 
required memory, but often leads to quicker implementations (the state is then 
redef'med as sn = (Xn . . . . .  Xn ÷ k- 1)). We will call (14) the para l l e l  M R G  implementation 
of the matrix generator (13). One instance of this is the GFSR generator, to be 
discussed later on. 

Let us write Xn as 

I xn'l I 
Xn = i • 

 ,Xn,k ) 
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Define y,, = xn, l and for j  > I, let dj be the lag (or shift) associated with the component  
j of X n. That is, xn,j = x~ + dj, l = Yn ÷ aj for 2 < j  < k and all n > 0. Those lags actually 
depend on the matrix A. One special case is when A is the companion matrix of P(z): 

Ac l 
0 1 ... 0 / 
" " " ' .  i 

0 0 ... 1 " 

ak ak-I ... al 

Then, the recurrences associated with the successive components  of  X n are 
shifted one unit apart: dj = j  - 1 for al l j .  To have them shifted exactly d units apart, 
i.e. dj = ( j -  1)d, one can just use A = Aft. In general, if P(z )  is the characteristic 
polynomial  of A, one can write A = P A c P  -l for some regular matrix P. Then, 
Xn = AnXo = PA~  P - 1 X  o for all n. 

If the output of the matrix generator is produced by a composit ion of  the form 
G = G l o G2, where Gt : ~:,,? --~ IF,, is linear, then the matrix generator is no more 
general than the MRG, in the sense that if we define xn = GI(X, , ) ,  then the sequence 
{x,,} obeys again the linear recurrence (5). In other words, any linear combination 
of  elements of  X,, in IFm obeys (5). However,  there are other ways of  combining the 
elements of  X,, which might lead to a different recurrence than (5). We now examine 
two of  them: the matrix MLCG, which uses each component  Xn, to produce k 
uniform variates per step, and the digital matrix MLCG, which uses the digital 
method on each X,, to produce one uniform variate per step. 

Suppose that at each step n, each component  of  X, is used to produce a 
uniform variate: that is, u ~  +j_ 1 = Xn,j/m. This kind of  matrix generator has been 
studied by Grothe [37,38] and Afflerbach and Grothe [3]. We call it the m a t r i x  

M L C G .  It may prove useful for implementing parallel generators on parallel processors. 
One question arises: is the sequence {un} produced by that generator the same as 
that produced by an MRG? To answer that question, suppose that g c d ( k , p ) =  1, 
where p = m k - 1 is the period of  {Yn}" Then, k has an inverse d = k -j in 7/o, i.e. 
k d  mod p = 1, and d can be easily computed via d = k p -  l mod p.  Assume further 
that the lags are regularly spaced, d units apart: dj = ( j -  1)d. Define xj  =Yja,  for 
j > 0. Since g c d ( d , p ) =  1, {xj} is also a linear recurring sequence of  period p. 
Further,  for each n > O, xnk + j -  1 " -  Y,ka + ( j -  l)d = Y, + ( j -  l~a = X n , j "  S o ,  the sequence 
{ x j , j  > k}  is the same as the sequence obtained by taking all the components  of 
all the vectors X, in successive order: xi,1 . . . .  , xl,k, x2,1 . . . . .  X2,k . . . . .  Each of 
those components  can be used to produce a uniform variate, e.g. as un = x n / m .  Note 
that {x,,} is not necessarily a shift of  {yn}; in general, the (primitive) characteristic 
po lynomia ls  of  those two sequences are different. Further,  the above reasoning 
holds only if the dj 's are equally spaced d = k -1 units apart. 

Now, suppose that the output at step n is produced by the digital expansion 
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L L 

un = 2 xn,J m-j  = ~F..Yn+aj m-j ,  (15) 
j =  I j=l  

where L < k. We call this generator a d i g i t a l  m a t r i x  M L C G .  Again, let { Yn } be a 
sequence with characteristic polynomial P ( z )  and assume that the successive shifts 
between the first L components of {Xn} are all equal: dj = ( j  - 1)d for some positive 
integer d such that gcd(d, p) = 1 (here, d is no longer the inverse of k). Then, d has 
an inverse s = d p -  1 mod p in Zp. Again, if we define :9 = Y j a ,  {xj} is a linear 
recurring sequence of period p and xns - k + j = Y~sa + ( j -  J)a = Yn + ( j -  l )a = xnd for each 
n > 0. Then, (15) can be rewritten as 

L . L  
un = ~. ,  x , + ( j _ l ) a m  - j  = ~ x n . ~ + j _ l m - J .  (16) 

j = l  j = l  

This is the digital multistep sequence (7). Reciprocally, given a digital multistep 
sequence {x~} with gcd(s,p) = 1, let d = s p -  l mod p and consider a digital matrix 
MLCG with initial state given by x0,j = xj_ l for each j.  Then, the sequence (15) 
produced by that digital matrix MLCG is the same as (7). In other words, a digital 
matrix MLCG, can be used for implementing (7). 

3.7. LAGGED-FIBONACCI AND GFSR GENERATORS 

An important special case of the digital matrix MLCG is when m = 2 and the 
generator is implemented using (14): this gives the well known Generalized Feedback 
Shift Register (GFSR) generator [36, 57, 77]. In that case, in (14), each Xn is a vector 
of bits and is obtained by making a bitwise exclusive-or of the Xn_j's for which 
aj  ¢: O. Since only the first L bits of each Xn are used, one should keep only those 
first L bits. In practice, L is usually the word-size of the machine (e.g. L = 32), 
so that each Xn occupies one word of memory. The state s~ = (Xn ,  • • • ,  Xn  + k - l )  al 
step n is an L x k dimensional array of bits. Practical GFSR generators are usualb  
based on a primitive trinomial: P ( z )  = z k - z k- r _ 1. Then, one obtains 

X n --Xn_r(~Xn_k, 

where (9 denotes the bitwise exclusive-or. 
The fact that a GFSR generator is equivalent to a Tausworthe generator whe~ 

the initial state of GFSR is chosen appropriately (with equally spaced shifts) give 
us a good method for choosing that initial state: select a good Tausworthe generate 
and initialize the GFSR in such a way that it is equivalent to the Tausworthe (ill 
up the array of bits column by column using the Tausworthe generator). Thi 
approach is from Fushimi [35]. Tootill  et al. [96] first suggested the GFS  
implementation of Tausworthe sequences. 

Observe that a GFSR generator (with parallel MRG implementation) c~ 
also be viewed as a "bigger" MLCG as follows. The state s,, = (Xn  . . . .  , Xn  + k - 
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at step n is viewed as a kL-dimensional vector of bits X~. One has X~ = A X  n_ 1 
where 

l O I ... 0 I : : ".. : 

A = A ® I =  0 0 ... I ' Xn= 

akI ak-lI ... all 

Xn+l 

Xn+k-I  

I is the L x L identity matrix and ® denotes the tensor product  of  matrices. We call 
that a GFSR in expanded matrix form. Of course, the characteristic polynomial  of  
the kL x kL matrix A is not primitive over gz 2 and the generator does not reach the 
maximal  possible period for a generator of  that size, which is 2 kL- 1. Its period is 
only 2 k -  1. One could then argue that the GFSR is a waste of  memory  [60,61].  
Ideally, a generator using kL bits of memory  should have a period near 2 kL. This 
leads to the fol lowing idea: try to modify slightly the matrix A in such a way that 
it gets a pr imit ive characteristic polynomial  over g:2, without  impair ing too much  
the speed of  the GFSR generator. This is the subject of  the next subsection.  What  
we just  said concerning GFSR generators also holds more generally for digital 
generators over ~:,,, instead of  over ~z 2, for m prime. 

Some authors [72, 77, 90] use the expression GFSR sequence for the recurrence 
(15), whatever  its implementat ion and (prime) value of  m. We prefer  to reserve the 
term GFSR to denote  the parallel MRG implementat ion,  because this is how the so- 
called GFSRs are actually implemented  in practice, and to emphasize  the size of 
the state space. If  we extended our definit ion of  GFSR to m 4: 2, then any digital  
matrix M L C G  can be implemented  as a GFSR. The converse is not true, however .  
For example,  if dj = 0 for all j ,  then Xn has all its components  equal, for any n. I f  
the GFSR has period m k - 1 for k > 1, that cannot be implemented  in the form of (13). 

A "general izat ion" of  the GFSR is the so-called lagged-Fibonacci generator,  
for which • can be replaced by any ari thmetic or logical operation.  One example  
is the additive generator  [44], given by 

Xn "- (Xn - r q" S n ,  k) mod m, 

where m = 2 L. This is a special case of  the MRG, but with a power-of - two modulus .  
Its maximal  period length, for suitable choices of  r and k, is (2 k - 1)2 L- 1 = 2 k +/~- I, 
which is 2 L- I t imes larger than that of  a GFSR with the same values of L and k, 
but falls way short of  2 kL. See [60,61] for more details and specific examples  with 
the operators +, - ,  and x, in ari thmetic modulo  2 L. 

3.8. TWISTED GFSR AND LARGE MATRIX GENERATIONS 

Matsumoto  and Kurita [66] have proposed  replacing a j  in the matrix A of  
the GFSR in expanded  matrix form by an L x L matrix B of  the fo rm 
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0 1 ... 0 / 
; " " ' .  i 

B =  0 0 ... 1 ' 
bL bL-l ... bl 

whose characteristic polynomial PB(z)  = z L - bLz L -  1 - . . .  _ bL is such that P s ( P ( z )  

- ak) is primitive over 0: 2. The resulting matrix A then has a primitive characteristic 
polynomial of degree kL  over F 2, and the period becomes p = 2 kL - 1. For the usual 
case where the GFSR is based on a primitive trinomial P ( z )  = z k - z k -  r _ 1, P n ( P ( z ) )  

is primitive over ~:2 if and only if (i) Pn(z )  is irreducible and (ii) /5(z) = z k - z k -  ~ - 77 

is primitive over 0:2L, where 77 is a root of PB(z)  over g:2. Matsumoto and Kurita 
explain how to find polynomials satisfying those conditions and call the resulting 
generators t w i s t e d  G F S R ,  or TGFSR. In [67], they point out statistical defects in 
the TGFSR generators proposed in [66] and develop an improved variant (in terms 
of statistical behavior), which amounts to replacing B by P B P - 1  for some well 
chosen regular matrix P. These TGFSR variants are fast, practically as fast as GFSR 
generators, and have extremely long period. They can be viewed as efficient ways 
of implementing digital matrix generators of order kL.  Incidentally, the latter can 
also be implemented as large GFSRs (based on a characteristic polynomial of 
order kL) .  

Of course, one can do more than replace only a k l  by a more general matrix 
B; one can replace, say, e a c h  a j l  in A by some more general matrix Bj  in such a 
way that the resulting matrix A has a primitive characteristic polynomial. However, 
there is a compromise to be made in terms of implementation speed. If the Bj's do 
not have a special structure that can be exploited, the generator will be too slow. 

3.9. A D D - W I T H - C A R R Y  A N D  S U B T R A C T - W I T H - B O R R O W  G E N E R A T O R S  

Marsaglia and Zaman [62] propose two types of random number generators, 
called a d d - w i t h - c a r r y  (AWC) and s u b t r a c t - w i t h - b o r r o w  (SWB), which are slight 
modifications of the lagged-Fibonacci generators with the + and - operations, 
respectively. The AWC generator is based on the recurrence 

x j  = ( x j _  r + Xj_k  + c j )  mod b, 

cj+ 1 = l ( x ) _  r + x j _  k + cj  > b), 

(17) 

(18) 

where b and k > r are positive integers, cj is called the carry ,  and I is the indicator 
function, whose value is 1 if its argument is true, and 0 otherwise. This generator 
is similar to an MRG, except for the carry. It is extremely fast: it requires no 
multiplication and the modulo operation can be performed by just subtracting b 
when cj + 1 = 1. The SWB has two variants. One is based on the recurrence: 
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Xj = (Xj_  r -- Xj_ k -- Cj) mod b, 

cj+l = l ( x i _ r  - x j_~ - cj  <.0), 

(19) 

(20) 

where k > r and cj is called the b o r r o w .  The other one is obtained by exchanging 
r and k in (19)-(20) .  

To produce the output, one can use L successive values xj for each u~ as in 
the digital multistep method: 

L-I 

U n = Z X L n + j b J - L .  (21) 

j=0 

Note that here, the digits of  un are filled up from the least significant to the most 
significant one. 

Tezuka and L 'Ecuyer  [92] have shown that AWC and SWB generators are 
essentially equivalent to MLCGs in the following sense. Let m = bk+ b r -  1 for 
AWC, and m = b ~ - b r-t- 1 (depending on the variant) for SWB. Suppose that m is 
prime and let b -I = b m-2  mod m be the multiplicative inverse of  b modulo m. Let 
a = (b-l) L mod m = b (m-2)L mod m and consider the MLCG: 

Yn = aYn-I mod m; wn = Yn lm.  (22) 

Then, Tezuka and L 'Ecuyer  prove that (assuming that Yo is chosen appropriately to 
insure synchronization) 

un = b - L L b t ' w n  j (23) 

for all n > k. In other words, un is wn truncated to its first L fractional digits in 
base b. In other words, the sequences {un} and {wn} are the same, if they have 
corresponding initial seeds, up to a precision of b -L. For example, if b < 230 and 
L = 2, then the first 60 bits of  un and wn are the same and for practical purposes, 
we may safely assume that u n = wn. So, we are back into the MLCG bandwagon. 

The maximal period for the AWC or SWB is m -  1, which can be attained 
if a is a primitive element modulo m. With b around 231 and k around 20, for 
example, one could reach a period of approximately 262°. Marsaglia and Zaman 
suggest specific values of the parameters b, r, and s, most of  them yielding extremely 
large periods. Unfortunately, as discussed in section 5.1, these generators always 
have a bad lattice structure and therefore must be discarded. 

4. Period length and primitive polynomials 

4.1. PRIME MODULUS 

For a prime modulus m, the linear recurring sequence (5) has full period 
p = m k - 1 if and only if its characteristic polynomial P ( z )  is a primitive polynomial  
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over g:,,. So, a first step in building a generator based on such a sequence is to find 
an appropriate primitive polynomial. How can we do that? The following are necessary 
and sufficient conditions for P(z )  to be primitive over U: m (see Knuth [44]). Let 
r = (m k - l ) /(m - 1). 

(a) ( ( -1)  k + lak)Cm- l)/q ~ 1 for each prime factor q of m - 1; 

(b) (x r mod P(z ) )  = ( -1)  k÷ lak; 

(c) (x  r/q mod P ( z ) )  has degree < 0 for each prime factor q of  r, 1 < q < r. 

The most difficult task in verifying those conditions is usually the factoring 
of r, unless r is prime. For that reason, and since testing primality is much easier 
than factoring, it is a good idea to choose m and k such that r is prime. For that, 
k must be odd. L'Ecuyer et al. [51 ] discuss that topic and give some useful factorizations 
and primitive polynomials, for m near 23I, 247, and 263. Given m, k, and the factorizations 
of  m - 1 and r, it is relatively easy to find primitive polynomials simply by random 
search. In fact, there are exactly 

N ( m , k )  = (m k -  1)(1 - 1/q l )  ' ' "  (1 - 1/qh)/k  

vectors (a I . . . .  , ak) ~ Uzm k that satisfy the conditions, where ql . . . . .  qh are the distinct 
prime factors of m k -  1 (see [44]). In the case k = 1, a primitive polynomial x - al 
means that al is a primitive element modulo m, and whenever one such al has been 
found, all others can be found easily, since they are exactly all the integers of the 
form a( mod m w h e r e j  is relatively prime to m - 1. For k > 1, it is often convenient 
to first find a value of ak which satisfies condition (a), then perform a random search 
for the remaining coefficients (al  . . . . .  ak_ 1). Lists of primitive polynomials over 
0z2 can be found in [39,46,58] and the references given there. 

4.2. COMPOSITE MODULUS 

When m is not prime, the maximal possible period for the linear recurring 
sequence (5) typically falls way short of m k - 1. For m = pe, p prime and e > 1, the 
upper bound is (pk _ 1)pe- 1, except for p = 2 and k = 1, where it is 2 e-  2 [30,44]. 
Eichenauer-Hermann et al. [30] show how to construct generators whose periods 
reach that upper bound. For p = 2 and k = 1, see [44]. The case p = 2 is interesting 
in terms of efficiency, because the modulo operation can be implemented by just 
"chopping-off"  the higher-order bits. However,  it is "costly in terms of period 
length. For example, i fk  = 5 and m = 231 - 1, the maximal period length is (231 - 1) 5 
- 1 -- 2155, while if m is increased to 231, the longest possible period becomes 
(25 _ 1)231 - l _ 235. That is, approximately 2120 times shorter. 

This is not the only reason why using prime m is to be recommend.  Another  
important reason is that for small p, the low order bits do not look random at 
all. For p = 2 and k = 1, the ith least significant bit of  xn has period equal to 
max ( l , 2  i -2 )  [10,18]. If the period of such a generation is split into 2 a equal 
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segments, then all segments are identical except for their d most significant bits 
[18,21]. For i = 2 e - a - 2  > 0, all points (Xn, X, + i) lie on at most max(2, 2 d-  1) parallel 
lines [18]. For k > 1 (still with p = 2), the maximal period for the dth least significant 
bit is (2 k -  1)2 d-  I. 

4.3. NON-MULTIPLICATIVE LCGs 

The LCG is usually presented in slightly more general form: 

xn = (axn_i + c) mod m, (24) 

where c is a constant. Adding such a constant permits one to reach a period length 
of  m. Conditions for that are given in Knuth [44]. If m is prime, this has no real 
interest. Indeed, this just increases the maximal period by one, and otherwise gives 
no further significant improvement [44]. However,  if m is not prime, e.g. if it is a 
power  of  two, then this more general form really becomes attractive. But it also has 
many drawbacks. For example, if  m = 2 e, the period of  the ith least significant bit 
o f  xn is at most 2 i and the pairs (x,, Xn + i), for i = 2 e - a, lie in at most max(2, 2 a-  i) 
parallel lines [18]. 

One can also add a constant term c to the MRG recurrrence (5) or a constant 
matrix C to the matrix MLCG (13). However,  it can be shown [49] that any kth 
order recurrence with such a constant term is equivalent to some (k + 1)th order 
MRG with no constant term. Therefore, a general upper bound on the period length 
if m =pe is (pk+ 1 _ 1)pC-1. Again, for large e and k, this is much smaller than m k. 
All of  these reasons argue against the use of  power of  two moduli. 

5. L a t t i c e  s t r u c t u r e  

5.1. THE LAITICE STRUCTURE OF MRGs IN R t 

It is well known that the vectors of  successive values produced by a MLCG 
or MRG, in any given dimension, have a lattice structure [38,44,49,81].  More 
precisely, consider the MRG (5). For any integer t > 0, let 

= {u. = (u.  . . . . .  u . + t _ l ) l n  2 O, So = (Xo . . . . .  X k - l )  ~ 7 / ~ } ,  (25)  

the set of  all possible overlapping t-tuples of  successive values produced by (5) with 
un = x J m ,  from all possible initial seeds. The set Tt turns out to be the intersection 
of  a lattice Lt with the t-dimensional unit hypercube I t = [0, 1) t. Recall that a d- 
dimensional  lattice in R t ( fo r  d < t) is a set of  the form 

L =  V =  zjVy l e a c h z j E  7/ , 
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where Vl . . . . .  Vd ~ R t is a set of independent vectors called a basis. The lattice Lt 
is usually t-dimensional (otherwise, all the points of Tt are contained in one hyperplane). 
A basis for Lt, a s  well as for its dual lattice, can be constructed as explained in [44] 
for k = 1 and in [38, 53] for k > 1. For t < k, one obviously has Lt = Zt/m, because 
(Xo, . . . .  x t - l )  can take any value in Ztm, and so un can take any value in Z t / m  
= (Z t /m)  n I t. For a full period MRG, the latter also holds even if we limit So in 
the definition of Tt to a fixed (non-zero) vector of 7/~, and then add the zero vector 
to Tt, because sn runs through all k-dimensional vectors with components in Zm 
(except the zero vector) over the generator's period. For t > k, the set Tt contains 
only a small fraction of Ztm/m. That fraction is equal to m k - t .  

If the generator does not have full perioa and if one considers only the cycle 
that corresponds to a given initial seed s 0, then, in general, the points do not form 
a lattice, but are still a subset of the lattice defined above, and typically also 
generate that same lattice. There are cases, however, where the points over one 
cycle generate a sublattice or a subgrid of L t. A grid in R t is a shifted lattice, i.e. 
a set of the form V0 + L where V0 ~ R t and L is a lattice. One should then analyze 
the appropriate sublattice or subgrid instead of analyzing L t (see also [34, 44]). One 
important example is an MLCG for which m is a power of two, a mod 8 = 5, and 
x0 is odd. In that case, as observed by Hoaglin and King [40] and Atkinson [7], the 
t-dimensional vectors of successive values form a subgrid of L t containing one- 
fourth of  the points. Another important case is when m is a product of J distinct 
primes m = m r . . .  mj (see [55] and section 9). Then, in most cases of practical 
interest (according to my empirical experience), the generator has a few long subcycles 
of length p = lcm (ml - 1 . . . .  , mj - 1), plus some shorter subcycles, and the set 
of  points over each of those long subcycles of length p typically generates the 
whole lattice L t. 

The fact that the point s of Tt belong to a lattice means that they lie on a set 
of  equidistant parallel hyperplanes. The shorter the distance dt between those 
hyperplanes, the better, because this means thinner empty (without points) slices of 
space. Computer programs now exist for computing d t in reasonably large dimensions, 
up to around 40 or more [53]. 

A slightly different way of  measuring the "quality" of the lattice is by the 
Beyer quotient, defined as follows. Geometrically, the lattice L t "partitions" the 
space ~t into a juxtaposition of identical t-dimensional parallelepipeds whose vertices 
are points of the lattice, and which contain no other lattice points except for their 
vertices. Those are called the unit cells of the lattice. The. volume of  each unit cell, 
called the determinant of the lattice, is one over the cardinality of T t. All the edges 
connected to a given vertex of a unit cell form a set of  linearly independent vectors 
which form a lattice basis. Such a basis is called Minkowski-reduced (MRLB) when 
the basis vectors are in some sense most orthogonal [2]. The Beyer quotient qt is 
the ratio of the length of the shortest vector over the length of the longest vector 
in a MRLB. A ratio qt near one means that the unit cells are more cubic-like and 
that the points are more evenly distributed, while a ratio near 0 means the opposite. 
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In contrast to dr, qt is a normalized measure (always between 0 and 1). As a figure 
of  merit to rank generators, one can take for example the worst-case measure 

QT = minqt (26) 
t<T 

for some (fixed) large T. However, qt is much more costly to compute than dr. An 
algorithm to compute a MRLB and the Beyer quotient is given in Afflerbach and 
Grothe [2]. See also [38,53]. L 'Ecuyer et al. [51] suggest specific MRGs, after a 
search based on the criterion Q20, for orders k up to 7 and prime moduli up to 263. 

As observed by L'Ecuyer  [49] comparing quotients makes sense only for generators 
having the same number of lattice points in the unit hypercube. A full period MRG 
has m k such points, i.e. unit cells of volume m -k, in all dimensions. For t < k, the 
lattice is a perfect square grid of size 1/m, and the Beyer quotient is 1. Increasing 
m or k gives smaller unit cells. If a generator Gl has smaller Beyer quotient 
than another generator G2, then GI might still be better than G2 if it has smaller 
unit cells. In such a situation, as a bottomline criterion, one can turn back to the 
distance dt between hyperplanes. If Gl has a smaller dt than G2 for all t, then we 
can say that G~ dominates G2 in terms of the spectral test, and claim that Gl has 
a better lattice structure. 

The matrix MLCG, which uses all the components of X,, at each iteration, has 
a similar lattice structure and can be analyzed in a similar way [3,38]. When the 
MLCG is not multiplicative, the lattice is shifted by a constant vector, becoming 
a grid. The structure can be analyzed in the same way, since it does not really 
depend on the additive constant except for shifting. When Tt is replaced by the set 
of  non-overlapping t-tuples, Z t does not form a lattice in general [1]. 

The AWC/SWB generators described in section 3.9 are equivalent to linear 
congruential generators, and therefore have a lattice structure. In [14,93], it is 
shown that this structure is always bad: in all dimensions t > k, one has dt < 1].,/-3. 
It is also shown that combining an AWC/SWB generator with an LCG still yields 
an unfavorable lattice structure in large dimensions. That could explain the statistical 
anomalies observed empirically in [32,50]. 

5.2. EQUIDISTRIBUTION WITH FINITE RESOLUTION AND LATTICE STRUCTURE IN THE 

SPACE OF FORMAL SERIES 

Tausworthe and GFSR generators also have a lattice structure, which stems 
from the fact that they can be expressed as MLCGs over a space of  formal series 
(see eq. (10)). To analyze the meaning of such a lattice structure, we will use the 
following definitions. 

The (t,l)-equidissection in base m of the t-dimensional unit hypercube I t is 
a partition of  I t into m tl cubic cells of equal size. A finite set of  points P in I t is 
said to be (t ,l)-equidistributed in base m if each cell of  the (t , l)-equidissection 
contains the same number of points of  P. When the value of the base m is clear from 
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the context, we often omit the expression "in base m". In practice, the most interesting 
base is m = 2. Clearly, for P to be (t,l)-equidistributed in base m, its cardinality 
must be a multiple of m tl. In our applications, it will in fact be a power of m a. It 
is evident that (t, l)-equidistribution implies (t', l' )-equidistribution for all t' < t and 
l '  < I. Furthermore, (t, l)-equidistribution in base m is equivalent to (t, 1)-equidistribution 
in base m I. Knuth [44, p. 144] has a related definition: when the latter holds, he says 
that the mt-ary sequence is t-distributed. See also [96]. 

Consider the set of ~ of all t-tuples of successive formal series obtained 
from (10): 

= {~i,, = ( ~  . . . . .  ~+ ,_ l )  I n -> 0, 30 ~ S}, (27) 

where S is the set of formal series of the form 

7S= {f (z) /P(z)I f (z)  is a polynomial of degree < k}. 

The mapping 

3(Z)= ~CjZ-J --~ ~ c j m  -j, 
j=l j=l 

when applied componentwise,  maps ~ to a finite set of points Pt c I t. These points 
are in fact all the t-dimensional vectors of successive values of (12), from all 
possible initial seeds 30 ~ S: 

P, = {t~n = (fin . . . . .  f in+t-1)ln > 0, 70 ~ S}. 

We are interested in knowing how well those points are distributed in I t. If  Pt is 
(t, l)-equidistributed, we say that the sequence (12) is (t, l)-equidistributed. If L > l, 
the sequence (7) is also (t, l)-equidistributed and we say that the generator is (t, l)- 
equidistributed. In the best case (like for a full period generator), Pt has  ca rd ina l i t y  
m k, so (t , l)-equidistribution is possible only for l <Lk/t 3. When the sequence is 
(t, Lk/tj)-equidistributed for t = 1 . . . .  , k, we say that it is maximally equidistributed. 
Some authors also call such a sequence asymptotically random [90, 96]. 

Full period digital multistep generators (7) are all (1,k)-equidistributed (for 
L = k), because each possible vector sn (except zero) occurs once and only once over 
the full period. Tausworthe [88] also showed that they are (Lk/sJ,  s)-equidistributed. 
Tootill et al. [96] found the following maximally equidistributed Tausworthe generator: 
P(Z) = Z 607 - Z  2 7 3 -  1, S = 512, and L = 23. In a similar vein, all GFSRs based on 
primitive polynomials are (k, 1)-equidistributed, because their first bit evolves according 
to a full period MRG of order k. But for more than one bit of resolution, the 
equidistribution properties of the GFSR depend on the lags dj between the components 
of X~, i.e. on the initial state So = (Xo . . . . .  X~_ l ). If the initial state is badly chosen,  
one might not even have (1,2)-equidistribution: for example, just take d2 = 0. Fushimi 
and Tezuka [36] gave a necessary and sufficient condition on the initial state for 
the GFSR generator  to be (t ,L)-equidistributed for t =Lk/LJ. Consider  the tL bits 
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(x0,1 . . . . .  x0,t.,. • •,  x t_  1,~ . . . . .  xt_ ~,t.). The condition is that those bits must be 
independent in the sense that the tL x k matrix which expresses them as a linear 
transformation of(y0 . . . .  , Y k - l )  = (Xo, t . . . . .  xk_ l,lYhas (full) rank tL. Fushimi [35] 
gives a nice initialization procedure for GFSR generators to satisfy that condition, 
based on the use of an equivalent Tausworthe generator. Besides being slow and 
cumbersome, the GFSR initialization procedures previously available merely insured 
(1,L)-equidistribution. In fact, the condition for (t,L)-equidistribution can be used 
as well to verify (t,/)-equidistribution for any l < L: just pretend that the word size 
is l, i.e. replace L by I. All of this also generalizes to m ~: 2. 

The set Tt generates the following lattice over the field of formal series: 

= + (U:m[Z])' 
= + (hl(z) . . . . .  I g(z)  and g, hi D:m[Z]}, 

where ~:m[Z] is the space of polynomials in z with coefficients in US m. Let ~2m((Z-l))  

denote the space of formal Laurent series of the form ~(z) ** -J = Y . j=hc j z  and define 
a norm on the vector space (D:m((Z-l))) t as follows. For each s = ( s l  . . . . .  st) 
~. (~2m((Z-l)))t  , where s i ( z )  = ~,7=hi ci,jZ j with Ci, hi ~ O, define llsll = maxi < i< t m-hi" If 
all Ci,y'S are zero, define IIk'll =tl011 =0.  Using this norm to define distances, and 
assuming that Lt has dimension t (which is usually the case), let ~3 = { ~ , . . . ,  ~} 
be a set of vectors in ~ such that ~ is a shortest vector in ~ and, for j = 2 . . . . .  t, 
~_ is a shortest vector in ~ among those which are linearly independent of 
{ Vt . . . .  , Vj- t}. Then, it can be shown [14] that ~ is a basis for Lt, and it is called 
a r e d u c e d  bas i s .  So, the lattice can be expressed as 

Zt : g j  ] g j  E ~2m[Z ] . 

Reduced bases can be computed via Lenstra's algorithm [56]. The values U ~ II . . . .  , II ~11 
are called the s u c c e s s i v e  m i n i m a  o f ~ .  Define lj =-logm[ t ~11 and for each integer 
l > 0, let 

t 
d ( l )  = ~ ( l j  - l) +. (28) 

j = l  

Now, assume that (8) has full period p = m k -  1. For the case where P ( z )  is 
irreducible, Couture et al. [14] have shown that in the (t,/)-equidissection in base m, 
m k - act) cells contain m a(t) points of Pt each, while m tl - m k -  act) cells contain no point 
of Pt. therefore, Pt is (t, l)-equidistributed if and only if d ( l )  = k - tl. (The proofs in 
[14] are given for m = 2, but their generalization to any prime m is straightforward.) 
If one considers only the main cycle of the generator, i.e. discards the zero formal 
series (as done in [14]), then the cell with one corner at the origin contains one point 
less. In fact one always has 
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=k. 
j=l 

Then, recalling that I l > . . .  > It, one can see that d ( l ) =  k - t l  is equivalent to 
l t - - m i n i  <j<t l j  > -- I. Therefore, 1 t gives the resolution of the generator, that is, the 
maximum value of l for which it is (t,/)-equidistributed. In other words, we want 
the minimum lj to be as large as possible. This is achieved if and only if It - l, > 1. 
So ,  l t and 11 - l t act as respective analogues of the distance dt between hyperplanes 
and the Beyer quotient qt defined in section 5.1. 

For the case where P(z) is reducible with J factors, Couture et al. [14] have 
obtained general results giving a precise descri]gtion of how the points of Pt are 
distributed into the cells of the (t,l)-equidissection. For J = 2 and 3, they give 
explicit formulae to quickly compute how many cells contain exactly n points, for 
each integer n, in terms of the successive minima of different lattices. They show 
how to construct bases for those lattices. From that, generators can be found which 
are "approximately" (t, l t)-equidistributed [14]. 

As we saw in section 3.7, there is an equivalence between Tausworthe generators 
and GFSR generators with appropriate parameters and initial states. Therefore, the 
lattice structure of such GFSR generators can be analyzed in the same way as for 
Tausworthe generators. More general GFSR generators (with unevenly spaced shifts 
di) and twisted GFSR generators also have a lattice structure. See Tezuka [89,90]. 

5.3. NETS AND NIEDERREITER'S FIGURE OF MERIT 

A stronger notion than that of (t,/)-equidistribution is the notion of net, 
introduced by Sobol' (see[77]). A (q ,k , t ) -ne t  in base m is a set of m k points in I t 
such that each e lementary  interval  E of I t of the form 

l 

E : H [ a i , a i  + 1)m -r' , 
i=1 

where each tx i and N are non-negative integers such that aim ~,i < 1, and with volume 
m q - k  (i.e. ~l=lYi = k -  q), contains exactly m q points. In the case of the (t,/)- 
equidistribution, we were considering only the cubic elementary intervals E, i.e. we 
were imposing that all N's be equal. 

Consider a digital multistep sequence (7). Let t >Lk/sj  and let a be a root 
of P(z) in [Fm k. Consider the set of vectors 

C = { o ~ i - 1 ) s + J - l l l  < i S t ,  I < j < L } .  

Let l* be the largest integer such that l* =~I=1/i, 0 < I i < L for each i, and such that 

CI(/1 . . . . .  it ) = { ~ i -  l)s + j -  t I 1 < i < t, 1 < j < li} 
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is linearly independent in D:~. Niederreiter [77] defines the f igure  o f  meri t  r (0 
= min(L, l*) and proves that for t >Lk /LJ ,  the m k points of Tt form a (q ,k , t ) -ne t  in 
base m with q = k - r (0. He also proves that the sfime holds for the digital matrix 
generator (15) if we replace Cl by 

C2(ll . . . . .  l t ) =  {t~i+d)-I I 1 < i <  t, 1 < j <  li}. 

Note that l* _< k and r (0 < min(L, k) always hold. Assuming that we seek low discrepancy 
over the full period, the smaller q the better, i.e. we want r (0 to be as large as 
possible. In the best case, one has r (0 = k, i.e. q = 0, and each elementary interval 
of  the (0, k, t)-net contains exactly one point. According to corollary 4.21 of  [77], 
a (0, k, t)-net can only exist for t < m + 1. Therefore, for t > m + 1, one must have 
r (t) <-- k - 1. 

Unfortunately, finding generators with larger r (t) for large k and t appears 
difficult for the moment, from the computational point of view. Steps in that direction 
have been made by Andr6 et al. [5]. For m = 2, they have computed a list of 
primitive polynomials of degree k < 32 for which r (2} > k - 1 and r (0 is large for all 
t < 5. Tezuka and Fushimi [94] extended those results to a list of polynomials for 
which r C2) = k and r (t) is large for t < 6. Their associated sequences can also be 
generated more quickly than those of [5], with the GFSR implementation. 

6. Discrepancy and other theoretical measures 

The noton of discrepancy  has been the subject of many papers and is well 
treated in the excellent book of  Niederreiter [77], who is undoubtedly the "grand 
master" of the subject. Here, we just give it a quick look. For more details, see the 
many references given in Niederreiter [69, 75, 77]. 

Suppose we generate N t-dimensional points un = (un . . . . .  u~ + t - l ) ,  0 < n 
< N -  1, formed by (overlapping) vectors of t successive values produced by the 
generator. For any hyper-rectangular box aligned with the axes, of  the form 
R-'-H~=t[aj,~/), with 0 < o:j< j~ ~ 1, let I(R) be the number of  points u,, falling 
into R, and V(R) t a =l-Ij=l(f l j ,  j )  be the volume of R. Let ~t be the set of all such 
regions R, and 

Dg } = max I V(R)  - I ( R ) / N  I. 
REfit 

The latter is called the t-dimensional (extreme) d iscrepancy  for the set of  points 
Uo . . . . .  UN- 1. If  we impose aj = 0 for all j, i.e. we restrict fit to those boxes which 
have one corner at the origin, we obtain a variant called the star d iscrepancy ,  
denoted by D~ (t). 

Points whose distribution is far from uniform will have high discrepancy, 
while points which are too evenly distributed will tend to have a discrepancy that 
is too low. A well behaved generator should have its discrepancy in the same order 
(for large N) as that of a truly random sequence, which lies between O(N -u2) and 
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O(N-112(loglogN)ll2), according to the law of the iterated logarithm [76,77]. 
This holds for both the star and extreme discrepancies. (Here, O(f(n))  denotes 
the set of functions g such that for some constant c > 0, g(n)< cf(n) for all n.) 
Niederreiter [77] shows that for a full period MLCG (with period p = m -  1), for 
an average multiplier a (average over the set of multipliers which are primitive 
modulo m), the discrepancy D(mt)..1 over the full period is in O(m-l(log m)/log log(m + 1)). 
For large m this is too small, meaning too much regularity. Niederreiter [76,77] 
concludes that for that reason, MLCGs should be discarded altogether. A somewhat 
different interpretation (or conclusion) could be that in practice, one should never 
use more than a tiny fraction of the period of the MLCG. Because of the lattice 
structure, it is clear from the outset that over the'full period, the points will be much 
too evenly distributed. This is even more so when the Beyer quotient qt is close 
to 1. However, as explained in section 2.2, super-uniformity over the entire period 
is reassuring and intuitively good when we use only a tiny fraction of the period. 
Bounds on the discrepancy also exist for part of the period [70] and the discrepancy 
is then better behaved. Of course, using only a small fraction of the period is not 
necessarily foolproof, but at least the argument of the wrong order of magnitude 
of the discrepancy no longer stands in that case. 

Consider now the digital multistep method [7]. The resolution here is m -t", 
which means that all un's are rational with denominator m L. From that, it is easily 
seen [77] that D*N (t) > m L for all t > 1 and N > 1. Further, for t < k/s and L = s = k, 
Niederreiter [77] shows tha t  D*N (t) = 1 - (1 - m- L)t for N = p  (the period). Therefore, 
as a necessary condition for the discrepancy to be in the right order of magnitude, 
the resolution m -t  must be chosen small enough for the number of points N that 
we plan to generate. A too coarse discretization implies a too large discrepancy. If 
N points are to be used, one should take m -L much smaller than N -1/2. These 
recommendations apply in particularly to MLCGs and MRGs (with L = 1) and 
Tausworthe (with m = 2). They also provide justification for using the digital method 
even when m is large. For L = s = k and t > k/s, one has D*N (t) E O(r t-  lm-r), where 
r = r (t) is the figure of merit of the generator defined in section 6.3 (see [77]). So, 
a large figure of merit suggests a lower discrepancy. This also holds for digital 
matrix generators. Further, on the "average" (over primitive polynomials), for 
N = m k - 1 (the period) and assuming again that L = s = k, one h a s  D*N (t) E O ( N  -1 
(log N)t+ 1 log log N) for the digital multistep method and D*N (t) E O(N-l(log N) t) 
for digital matrix generators. For large N, these discrepancies are too small. Therefore, 
the same recommendations as for MLCGs holds here: never use more than a tiny 
fraction of the period. One question arises here: since D~ t) is already too small on 
the average, and decreases with r (t), why should we seek a large figure of merit rC°? 
Again, as explained in section 2.2, having the points u 0 , . ' . ,  up_ l very evenly 
distributed gives us (heuristically) greater confidence that the small fraction that we 
use will be random looking. We view the latter fraction of points somewhat like 
a random sample from the whole set. Discrepancy bounds for part of the period are 
given in [72,73]. 
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One major difficulty with discrepancy is that it can be computed exactly only 
for a few very special cases (e.g. for a LCG, for t = 2 [4]). Otherwise, only bounds 
on Dg ), or orders of magnitude, are available [77]. Typically, these orders of magnitude 
are for N equal to the period length, or are averages over a whole class of generators. 
Estimating the discrepancy empirically, e.g. from a fine grid, does not seem possible 
for moderate t (say, t > 4) and reasonably large N. Another drawback is that discrepancy 
depends on the orientation of the axes, in contrast to the Beyer quotients and 
distance between hyperplanes. On the other hand, generators of different types (e.g. 
linear versus nonlinear) can be compared in terms of the order of magnitude of their 
discrepancies. This cannot be done with the lattice test. Finally, discrepancy is also 
interesting and useful because one can obtain error bounds for (Monte Carlo) numerical 
integration or random search procedures in terms o fDg  ) . In that context, the smaller 
the discrepancy, the better (because the aim is to minimize the numerical error, not 
really to imitate i.i.d. U(0, 1) random variables). 

There are other "statistical measures" which we did not discuss here and 
which can be computed exactly (or bounds for them can be computed) for specific 
classes of generators. That includes computing bounds on the serial correlation [44], 
computing the results of the "run" test applied over the whole sequence of a Tausworthe 
generator [95], computing the nearest pair of points over the whole period, or the 
minimal number of hyperplanes that cover all the points, etc. See [44] for further 
details. 

7. Implementation and efficiency considerations 

7.1. LINEAR CONGRUENTIAL AND MRG GENERATORS 

Implementing (5) in a portable way, in high level language, for a large prime 
modulus m, is tricky in general because of the possible overflow in the products. 
If m is representable as a standard integer on the target computer, there is a reasonably 
efficient and portable way of computing ax mod m for 0 < x < m provided that 

a(m mod a) < m. (29) 

See [10, 48, 49, 79] for the details. In fact, all the multipliers a satisfying this condition 
turn out to be of  the form a = i or a = Lrn/iJ for i < ~fm. In view of (29), it may be 
worthwhile considering negative multipliers a: it is possible that - a  > 0 satisfies the 
condition (29) while a + m (which is equivalent to a) does not. For small a, another 
approach which is often faster is to perform the computations in double-precision 
floating-point [48]. Techniques for computing ax mod m in a high-level language 
for the more general case are studied by L 'Ecuyer  and C6t6 [52], who also give 
portable codes. A portable implementation of an MRG based on a characteristic 
trinomial with coefficients satisfying (29) is given in [51]. 

If m = 2 e where e is the number of bits on the computer  word, and if one can 
use unsigned integers without overflow checking, the products modulo m are easy 
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to compute: just discard the overflow. This is quick and simple, and is the main 
reason why power of two moduli are still used in practice, despite their serious 
"statistical" drawbacks. 

7.2. TAUSWORTHE, GFSR, AND TGFSR 

Na'fve software implementations of the digital multistep sequence (5)- (7)  are 
rather slow in general, before s steps of the recurrence (5) must be performed for 
each un. However, very fast implementations are possible in some special cases. 
Hardware implementations are also possible via feedback shift registers. 

For m = 2 (the Tausworthe generator), if 'one is willing to sacrifice memory 
for speed, then one can just implement the Tausworthe generator by implementing 
the equivalent GFSR generator, as explained in sections 3.6-3.7.  But wasting that 
much memory could become a problem, especially when many parallel generators 
are required or helpful (see section 8). Further, even if a GFSR is an acceptable 
option, one is better off with a TGFSR anyway. See Matsumoto and Kurita [66, 67] 
for how to implement the TGFSR. 

Consider now a Tausworthe generator based on the characteristic trinomial 
P ( Z )  = Z k - Z k -  r _ 1, and which satisfies 2r > k and 0 < s < r < k. Define q = k - r. 
The following algorithm quickly computes sn from s,_ i. Let A and B be bit vectors 
of size k and suppose that A initially contains sn_ l = (x(n_ 1)s . . . . .  x(,_ j)~ +k- l). 
The symbol • denotes the (bitwise) exclusive-or operator. 

ALGORITHM 1 

Step 1. B <-- q-bit left-shift of A; 

Step 2. B ~-- A (9 B; 

Step 3. B +-- (k - s)-bit right-shift of B; 

Step 4. A +-- s-bit left-shift of A; 

Step 5. A +-- A ~9 B. 

To simplify the notation in explaining how the algorithm works, assume 
(without loss of  generality) that n = 1. Initially, A contains (x0 . . . . .  Xk_ 1). After 
step 2, the first r bits of B contain (x0 • Xq . . . . .  x r _  l ~ Xq + r -  1) = (Xk . . . . .  Xk + ~_ 1). 
After step 4, A contains xs  . . . . .  Xk_  1 followed by s zeros, while B contains k -  s 
zeros followed by Xk . . . . .  xk + s - t  (recall that s < r). Therefore, after step 5, A 
contains ( x s , . . . ,  Xs+k_ l). Then, A can be viewed as an unsigned integer and 
multiplied by the normalization constant 2 - / t o  produce u,, (here, L = k). If k is not 
larger than the computer ' s  word size, this algorithm is fast and easy to program in 
any computer  language which supports shifting and bitwise exclusive-or operations. 
Tezuka and L 'Ecuyer  [91] give an example in the C language. A FORTRAN code 
implementing a different algorithm, for the case k - s (for which algorithm 1 does 
not work) is given in [10, p. 216]. 
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7.3. COMPLICATED CHARACTERISTIC POLYNOMIALS OR LARGE MODULI 

Linear recurrences whose characteristic polynomials are a trinomial appear 
to allow much faster implementations than those based on polynomials with many 
non-zero coefficients, at least from what we saw so far. However, recurrences based 
on polynomials with few non-zero coefficients have important statistical defects 
[13, 59, 65, 66]. One way of getting around this problem is to combine two or more 
trinomial-based generators. Some classes of combined generators are in fact just 
efficient ways of implementing a recurrence whose characteristic polynomial 
has a large degree and many non-zero coefficients. This is the basic idea of the 
combined Tausworthe generators proposed in Tezuka and L 'Ecuyer  [91]. Their 
implementation turns out to be pretty fast, roughly as fast as that of  a simple MLCG 
with prime modulus (depending on the computers and compilers), according to 
Tezuka [90], Such combined generators are also recommended and studied in Wang 
and Compagner [97]. In a similar way, some MLCGs with very large moduli can 
be implemented efficiently via the combination of easily implementable MLCGs 
with small moduli. See section 9 for further details. L 'Ecuyer  [48] gives examples 
of such implementations and explain how to do it in general. Other efficient ways 
of implementing MLCGs with large moduli are through the AWC and SWB generators 
discussed in section 3.9. However, the latter generators always have a bad structure 
and must be avoided [15,93]. 

7.4. RETURNING VECTORS OF RANDOM NUMBERS 

James [41] observes that for fast generators, when the generator (procedure) 
returns one random number per call, the procedure call itself accounts for a large 
part of the time for generating the random number. He then recommends that each 
procedure call returns a v e c t o r  of random numbers. Of course, if the size of  the 
vector is large, this mechanism will be efficient only if all (or most) of the random 
numbers from the vector are used. This could speed up some simulation applications, 
but for many other applications, having to manage such a vector could be somewhat 
bothersome, especially to programmers who seek simplicity and elegance in their 
code. Anderson [6] gives FORTRAN codes to generate vectors of random numbers on 
vector computers. 

8. Leapfrogging and generating numbers on parallel processors 

There are two major situations which ask for generating (independent) multiple 
streams of random numbers in parallel: 

(a) To perform a simulation on parallel processors, where each processor must 
generate its own random number stream [6]; 
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(b) To assign different random number streams to different components of the 
model, for example to implement some variance reduction techniques, when 
performing a simulation on a single processor [10,52]. 

Of course, these two situations can also be combined. To generate multiple streams 
in parallel, for either situation (a) or (b), the following approaches can be used: 

(i) Use completely different generators for the different streams; 

(ii) Use variants of the same generator; e.g. same modulus but different multipliers; 

(iii) Use the same generator, but with different seeds. 

Method (iii) is more convenient than (i) and (ii) in terms of management and 
implementation. Even when many good parameter sets are available, implementation 
considerations must be taken into account when selecting a generator. Often, the 
implementation of the selected generator is artfully crafted for speed and portability 
and some constants depending on the selected parameters must be precomputed for 
that purpose [48,51,91]. This tends to support approach (iii). Finding millions of 
good generators is not really a problem for some classes of generators like the LCG 
or MRG [21,51 ], but not necessarily for all classes of generators. For example, for 
the two-component 32-bit combined Tausworthe generators proposed in [91], there 
is a limited number of good parameter sets. If many good parameter sets are 
available, one can conceivably maintain a large list of such good parameters to 
implement method (ii). These parameters must be computed beforehand and perhaps 
stored in a (permanent) file that would come with the simulation package. This 
seems more troublesome than approach (iii), which does not require storing that 
much information. 

For the case of linear generators, matrix generators can be viewed as a way 
of formulating (iii). But in terms of speed, it is generally better to implement the 
corresponding MRG and run many copies of it in parallel. 

Durst [21] suggests using (iii) with random seeds. Another approach is to 
select (deterministically) individual seeds that are far apart in the basic sequence. 
Typically, those seeds are evenly spaced and split the period of the generator into 
disjoint pieces, called subs treams ,  long enough so that none of them could be 
exhausted in reasonable time. This is called spl i t t ing [52]. To generate the (far 
apart) seeds, for the case of a linear generator, just use the matrix formulation of 
the generator, with matrix multiplier A and modulus m. If Xn is the current seed, 
then Xn + v, for very large v, can be computed directly as 

X,, + v = ( Av mod m)Xn mod m. 

The matrix A v mod m can be precomputed efficiently by a standard divide-to- 
conquer algorithm [49]. 

At first sight, splitting looks safer than generating seeds randomly. But one 
should be careful: it is a mined ground. The major concern is that of long range 
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correlations, e,g. between X n and Xn + v, and so on. Extremely bad correlations 
occur, for example, when v and the modulus m are both powers of two. This is why 
Durst [2I] prefers random seeds. For further discussion on this and related topics, 
see [18,21,26,49]. 

Niederreiter [76, 77] proposes different classes of nonlinear vector generators 
for use on parallel processors. Those generators appear interesting (at least theoretically), 
although specific (well tested) parameter values and efficient implementations are 
not given. 

L'Ecuyer and C6t6 [52] have developed a random number package with two- 
level (embedded) splitting facilities. It is based on the combined generator proposed 
in L'Ecuyer [48]. It provides for multiple generators running simultaneously, and 
each generator has its sequence of numbers partitioned into many long disjoint 
substreams. Simple procedure calls allow the user to make any generator jump 
ahead or backwards over those substreams. Similar packages could also be implemented 
rather easily using other (perhaps longer-period) generators. 

9. Combined generators 

To increase the period, improve the statistical properties, and perhaps try to 
get rid of the lattice structure, different kinds of combined generators have been 
proposed. See [12,41,44,49,55,60,63,64,91,97,98] and other references given 
there. The structure of the hybrid generator thus obtained is often not well understood. 
Then, as pointed out by Ripley [83], using such generators may be a bit like playing 
ostrich. Theoretical results in [60, 11] appear to support the view (at first glance) 
that combined generators should have better statistical behavior in general than 
their individual components. However, as explained in [49], applying those theoretical 
results to "deterministic" generators is a somewhat shaky reasoning. Combination 
can conceivably worsen things. Nevertheless, empirical results strongly support 
combination [60, 50]. Most of the fast and simple generators (e.g. Tausworthe or 
MRGs based on primitive trinomials) happen to have statistical defects [13, 50, 59, 65]. 
Combining fast generators could yield an efficient generator with much better 
statistical properties. 

Recently some combined generators have been analyzed successfully and 
turn out to be equivalent, or approximately equivalent, to MLCGs with large (non- 
prime) moduli or to Tausworthe generators with large-degree (reducible) characteristic 
polynomials. Other classes of combined generators (like shuffling) are not (yet) 
well understood theoretically. See L'Ecuyer [49] and the references given there. We 
will now discuss two classes of combined generators which have been recently 
analyzed. 

L'Ecuyer [48] proposed a combination method for MLCGs with distinct 
prime moduli ml . . . . .  mj. I fxjn denotes the state of generator j at step n, define the 
combination: 
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Z n = Xjn mod m 1 (30) 

for some fixed integers 5j. In [48], 5) = (-1) j - I and a specific generator are suggested. 
Wichmann and Hill [98] proposed a slightly different combination approach, which 
is a bit slower because it requires more divisions: 

U n = Xjn/m j rood 1. (31) 

If each individual MLCG has full period mj--" 1, then the period of the latter is 
always equal to the least common multiple of ml - 1 . . . . .  mj - 1 [49]. In practice, 
if the mj's  are distinct primes slightly smaller than 231 and if the multipliers satisfy 
(29), then the generator is easy to implement on a 32-bit computer and can reach 
a very large period. 

L'Ecuyer and Tezuka [55] have shown that there exists a MLCG with modulus 
m = 1-~J=lmj whose lattice structure approximates quite well the behavior of (30) 
in higher dimensions, and which is exactly equivalent to (31). This MLCG does not 
depend on the 5j's. The equivalence of the Wichmann and Hill generator to a 
MLCG was already pointed out by Zeisel [98]. The results of [55] mean that (30) 
and (31) are almost equivalent. Such structural properties imply that the combined 
generators can be viewed as efficient ways of implementing MLCGs with very large 
moduli (with added "noise", in the case of (30)), which can be analyzed with the 
Beyer and spectral tests. Numerical and graphical illustrations are given in [55]. 
These combinations methods can also be generalized to the combination of MRGs 
with distinct prime moduli. 

For the generator of L'Ecuyer [48], the lattice approximation is quite good 
in dimensions t > 3. As shown in [55], components with bad lattice structure can 
give rise to good combined generators, and the reverse is also true. Therefore, the 
selection of a combined generator should not be made just by selecting components 
with good lattice structure, as was done in [48], but by analyzing the lattice structure 
of the combined generator itself. Based on that criterion, better generators than the 
one proposed in [48] can be found [55]. Press and Teukolsky [80] propose a 
generator which adds a shuffle to the combined generator of [48]. That destroys the 
lattice structure. 

Tezuka and L'Ecuyer [91] combine Tausworthe generators as follows. For 
each j = 1 . . . . .  J, consider a Tausworthe generator with primitive characteristic 
polynomial Pj(z) of degree kj, with s = s j  such that gcd(sj,2 kj-  1)= 1, and whose 
recurring sequence is {xj, n,n > 0}. At step n the output of generator j is produced by 

L 
Uj, n = ~.~Xj,ns+i_lrn -i .  

i=1 
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The output of the combined generator is defined as the bitwise exclusive-or of 
ul,n . . . . .  uj.n. If the polynomials Pj(z) are pairwise relatively prime, then the period 
of the combined generator is the least common multiple of the individual periods, 
i.e. p = lcm(2 kl - I . . . . .  2 ~J- 1) (see [91]). Clearly, one should take distinct k j ' s  

and the period p could then be the product of the individual periods. In that case 
Wang and Compagner [97] call the sequence {xn = xl ,n  ~ " " " ~ x j ,n ,  n > 0} an AM- 
sequence, where AM stands for "approximate maximum-length". As shown in [91,97], 
the combined generator is equivalent to a Tausworthe generator with (reducible) 
characteristic polynomial P ( z )  = P l ( Z )  • • • P j ( z ) .  The lattice structure and equidistri- 
bution properties of such combined generators are analyzed in [14, 91]. Tezuka and 
L'Ecuyer [91] suggest three specific combined generators, and give computer codes. 
TGFSRs can also be combined in a similar way and this is the subject of ongoing 
research. 

One very attractive feature of that kind of combination is that even when the 
individual P j ( z )  have few non-zero coefficients (e.g. are trinomials) and bad statistical 
behavior, P ( z )  often has many non-zero coefficients and the combined generator 
could be very good. In other words, this combination approach can be viewed as 
an efficient way of implementing Tausworthe generators with "good" characteristic 
polynomials. Compagner [13] and Wang and Compagner [97] also suggest the same 
kind of combination, and give supporting arguments. They show that the correlation 
structure of AM-sequences behaves very nicely in general. Their empirical investigation 
also suggests that when the number of non-zero coefficients in P ( z )  is reasonably 
large, then the figure of merit r Ct) defined in section 5.3 is (usually) also large. 

Marsaglia [60] recommends combining generators of different algebraic 
structures instead of combining generators within the same class. This is perhaps 
an interesting "scrambling" heuristic, but little theoretical analysis is available for 
such combinations. In [63,64], he and his co-workers propose two specific combined 
generators of that sort. However, the generator of [63] has an important defect; as 
shown in [15], it has a lattice structure with distance d t between hyperplanes of at 
least 1/-,/-6 for all t > 45. 

10. Nonlinear generators 

Linear generators tend to have a too regular structure, and for that reason, 
many believe that the way to go is n o n l i n e a r  [28, 29,76,77]. We distinguish the 
following two ways of introducing nonlinearity in a generator: 

(a) Use a generator with a linear transition function T, but transform the state 
nonlinearly to produce the output (G is nonlinear); 

(b) Construct a generator with a nonlinear transition function T. 

We will discuss one example of (a), namely the inversive congruential generator, 
and a few examples of (b). A common property of those nonlinear generators is that 
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they do not produce a lattice structure like the linear ones. Their structure is highly 
nonlinear: typically, any t-dimensional hyperplane contains at most t overlapping 
t-tuples of successive values. Niederreiter [77] shows that they behave very much 
like truly random generators with respect to discrepancy. Therefore, their theoretical 
properties look quite good. However, specific well-tested parameter values with fast 
implementations are currently not available. 

10.1. NONLINEAR CONGRUENTIAL GENERATORS OVER D: m 

Let S = 7/m, where m is a large integer, and the output function be G(x)= 
x/m. Suppose that the transition function has the form 

T(x) = f ( x )  mod m, x e 7/m" (32) 

This is an instance of case (b). Suppose now that m is prime and that f is 
selected so that the sequence {xn} defined by x~ = T(x ,_  l), for any x0 ~7/,,, has 
(full) period p = m. Then, there exists a (unique) permutation polynomial P, of 
degree k < m - 2, such that P(n) = x n for all n ~ 7/,. [76, 77]. Further, for all t < k, 
the "smallest" lattice which contains all the t-dimensional vectors of successive values 
u,, = (un . . . . .  u, + t -  1) produced by the generator is the "complete" lattice 7/t/m. In 
that case, i.e. when the vectors { u~ } span 7/t[m (over 7/), some authors say that the 
generator passes the t-dimensional lattice test [77]. Passing this test means that the 
points really do not have a lattice structure. This could be viewed as a desirable 
feature. So, the larger k, the better. We must emphasize, however, that passing the 
lattice test does not mean at all that the generator has good statistical properties. 
The degree k of the polynomial P here also has do with the discrepancy. It has been 
shown [76, 77] that for 2 < t < k, D~ ) ~ O(km-1/2(log m)t). For k close to m, this is 
the right order of magnitude. 

10.2. INVERSIVE CONGRUENTIAL GENERATORS 

Eichenauer et al. [22, 24, 25] introduced a class of nonlinear inversive generators 
which can be defined as the application of a supplementary step when transforming 
the xn produced by an MRG into a value between 0 and 1 (and skipping the 
x,,'s which are zero). Let {xn} be a full period linear recurring sequence (5), 
with prime m. Let xi be the i th non-zero value xn in that sequence. Define 
z~ = ( -~ + 1 -~n ~) mod m, where ~n 1 is the inverse of ~,~ in 0z,,, and let the output be 
u~ = zn/m. The inverse ~n 1 can be computed via a version of Euclid'  s algorithm [44] 
or via ~ 1  = xnm-2 rood m .  Both methods to compute the inverse take. time in 
O(log m) and have similar performance in practice. They are rather slow when 
implemented in software, which might make the generator unacceptably slow for 
certain applications. Fast hardware implementations are possible though, see [22]. 
For prime m, the maximal possible period for {zn} is m k- 1. Sufficient conditions 
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for it to be attained are given in [24, 28, 77], Maximal period generators are easy 
to find. A nice property of inversive congruential generators with prime moduli  is 
that their discrepancy is in the same order of magnitude as that of truly random 
numbers [28, 77]. 

For k = 2 or 3, one can also write a recursion directly for Zn. For k = 2, it is 

I -1 (al + a2zn-1) mod m if zn-z ~ 0; 

Zn = ~ al if zn-I = O. 

In that case, a sufficient condition for maximal period is that P ( z ) =  z 2 -  a l z -  a2 
is a primitive polynomial over tF m. 

A slightly different variant is the explicit  inversive congruent ial  method,  
introduced by Eichenauer-Herrmann [27]. Here, x n = an + c, for n > 0, where a ~ 0 
and c are in 7/m, zn = x n  I = (an + c) m - 2 mod m, and un = zn/m. The period is p = m 
and the permutation polynomial P associated with this generator has degree k = 

m - 2. So, the generator "passes the lattice test" in all dimensions t < m - 2. Niederreiter 
[76,78] also shows that every hyperplane in •t contains at most t points from the 
set { u 0 , . . . ,  urn_ l}, and obtains discrepancy bounds. 

Inversive congruential generators with power-of-two moduli  have also been 
studied [25, 28, 29]. For these generators, non-trivial upper bounds on the discrepancy 
are available only in dimension 2. Further, the generated points have some regular 
structures [28]. Therefore, prime moduli  appear preferable. 

Inversive congruential generators have been the subject of  many papers in the 
last five years or so. Eichenauer-Herrmann [28] gives a survey, as well as a few 
suggested parameters. These generators would perhaps deserve a more extensive 
coverage than what is done here, The present coverage reflects the relative lack of 
practical experience of  the author with their use. They certainly deserve further 
investigation. 

10.3. QUADRATIC CONGRUENTIAL GENERATORS 

A special case which has received some attention is the quadra t ic  case, for 
which f in (32) has the quadratic form f ( x )  = ax  z + c, with a, b, c ~ 2v,n [44,77]. 
If  m is a power  of  two, then the generator has full period ( p  = m) if and only 
if a is even, ( b -  a) mod 4 = 1, and c is odd [44]. The points produced by that 
generator  turn out to lie on a union of  grids, which can be determined explicitly 
[23]. Bounds on D(m 0 are given in [77]. 

10.4. OTHER NONLINEAR GENERATORS 

Some nonlinear  generators have also been proposed by people  f rom the field 
of  cryptology [8,54,85].  Blum et al. [8] proposed the fol lowing class, known as 
BBS generators.  Let  m = pq  be a B l u m  integer ,  i.e. such that p, q are two distinct 
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primes both congruent to 3 modulo 4. Let x0 = x 2 mod m, where x is a positive 
integer such that gcd(x,m) = 1, and for n > 1, let 

Xn =x2-1 mod m. 

At each step, the generator outputs the last v bits of xn. Suppose that both p and 
q are k/2-bit integers and that v ~ O(log k). Under the reasonable assumption that 
factoring Blum integers is hard, it has been proved that no polynomial-time (in k) 
statistical test can distinguish (in some specific sense) a BBS generator from a truly 
random one. This means that for large enough k, the generator should behave very 
nicely from a statistical point of view. See [8,54] for further details. However, 
L'Ecuyer and Proulx [54] show that a software implementation of the BBS generator 
is much too slow for practical use in simulation applications. More efficient generators 
with the same kind of polynomial-time statistical "perfectness" have been proposed 
recently [85]. Further investigation is required before assessing their practical 
competitivity for simulation. 

11. Empirical statistical testing 

An unlimited number of empirical tests can be designed for random number 
generators. The null hypothesis is H0: "The sequence is a sample of i.i.d U(0, 1) 
random variables", and a statistical test tries to find empirical evidence against H0 
(usually, against unspecified alternatives). Any function of a finite number of U(0, 1) 
random variables, whose (sometimes approximate) distribution under H0 is known, 
can be used as a statistic T which defines a test for H0. 

11.1. MULTILEVEL TESTS 

To increase the power, a given test can be replicated N times, on disjoint 
parts of the sequence, yielding values T l . . . .  , T z of the statistic. The empirical 
distribution of those N values can then be compared to the theoretical distribution 
of T under H0, via standard univariate goodness-of-fit tests, like Kolmogorov-  
Smirnov (KS), Anderson-Darl ing,  or Cramer-von Mises [87]. We call this a two- 
level test. 

For example, one can compute the value d of the KS statistic D/v, and the 
descriptive level ~ of the two-level test, defined as 

t~2 = P[DN > d I n0]. (33) 

Under H0, (52 should be U(0, 1). A very small value of 6z (say, 6z < 0.01) provides 
evidence against H0. In case of doubt, the whole procedure can be repeated 
(independently), and if small values of 6z are produced consistently, H0should  be 
rejected, which means that the generator fai ls  the test. If ~ is not too small, that 
improves confidence in the generator. It should be clear that statistical tests never 
prove that a generator is foolproof. 
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Here, we did not specify an alternative to H0. So, the power of the test is not 
really a well-defined notion. Empirically, however, two-level testing tends to catch 
up more easily the defective generators, at least for ~the current "standard" tests, and 
this is what we mean by "increasing the power". 

One can also perform a three-level test: replicate the two-level test R times, 
and compare the empirical distribution of the R values of 63 with the U(0, I) 
distribution, using again a goodness-of-fit test, and yielding a descriptive level 63. 
Reject if 63 is too small. This can be taken up to fourth level, fifth level, and so 
on. However, one major problem with higher-level tests is that in most cases, the 
exact distribution of the first-level statistic T under H 0 is not available, but only an 
approximation of it is (e.g. a chi-squared distribution). Often, that approximation 
is also the asymptotic distribution as the (first-level) sample size increases to infinity. 
Higher-level tests may then detect the lack-of-fit of that approximation long before 
detecting any problem with the generator. Good generators will then be rejected. 
The higher the level, the more this is likely to happen. Perhaps this problem could 
be alleviated in some cases by finding better statistics or better approximations, but 
is usually hard to eliminate. Similarly, for a three-level (or more) test, if a KS 
statistic is used at the second level, the N descriptive level values 63 will usually 
be computed using the asymptotic (as N ~ o~) KS distribution. Again, if N is too 
small, the test will detect the fact that the asymptotic is not yet a good enough 
approximation. So, for higher-level tests, one must take much larger sample sizes 
at the lower levels. This quickly becomes time-wise prohibitive. 

If higher-level tests are problematic, why not just use one level? One-level 
tests do not test the local behavior of generators as well as higher-level tests. Some 
sequences have good properties when we take the average over the whole sequence, 
but not when we look at very short subsequences. As an illustration, consider the 
(extreme) example of a generator producing the value i/2 31, i = 1,2 . . . .  , 2  31 - 1, in 
that order. A uniformity test over the whole sequence will give a perfect adjustment. 
In fact, the adjustment will be too good, giving what is called super-uniformity [87]. 
On the other hand, uniformity tests over disjoint shorter subsequences will give 
terribly bad adjustments. So, one-level tests are not always appropriate, and two- 
level tests seem to offer a good compromise. 

11.2. STANDARD AND MORE STRINGENT TESTS 

Knuth [44] describes a set of tests which have been considered for a while 
as "the standard tests" for testing random number generators. Arguing that those so- 
called standard tests were not sufficiently discriminatory, i.e. that many "bad" 
generators passed most of the tests, Marsaglia [60] proposed a new set of more 
stringent tests. Indeed, sophisticated applications like probabilistic computational 
geometry, probabilistic combinatorial algorithms, design of statistical tests, and so 
on, often require generators with excellent high-dimensional structures. Marsaglia 
argued that for such classes of applications, simple generators (e.g. LCG, Tausworthe, 
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GFSR, etc.) were not good enough, and advocated combined generators. Other 
statistical tests for random number  generators are proposed  or d iscussed  in 
[17 ,31 ,43 ,50 ,66 ,68 ,87]  and the references given there. 

For many interesting statistical tests, the theoretical distribution of  the associated 
statistic is unfortunately unknown, at least in practically usable form [50, 60]. In 
such situations, Marsaglia [60] suggests comparing the empirical distribution of  a 
generator to be tested with that of  a "good" generator. But which generator should 
we use for that? We get into a vicious circle, because what we want to test is 
precisely whether the random number generators are able to reproduce the right 
distribution function for T. In practice, though, estimating the theoretical distribution 
with many different types of  (supposedly good)" random number generators could 
be a reasonable (heuristic) compromise.  If  the results agree, it will certainly improve 
our confidence that this is the right distribution. 

11.3. EXAMPLES OF TEST RESULTS 

L 'Ecuyer  [50] has applied 10 (two-level) statistical tests to 8 popular or 
recently proposed random number generators. The tests included the poker test, the 
runs-up test, the birthday spacings test, OPSO (with four different sets of  parameters), 
and the nearest pair test (in dimensions 4, 6, and 9). See [50] for more details. The 
generators were the first 8 listed in table 1. The author also applied the same tests 
to the M R G  defined by x,, = (107374182xn_ t +  104480xn_5) mod m; un = x J m ,  
with m = 231 - 1, taken from [51] (G9 in the table). 

Table 1 

The generators tested. 

G1. MLCG with m = 23t- 1 and a = 16807. 
G2. MLCG with m = 231 - 1 and a -- 630360016. 
G3. MLCG with m = 231 - 1 and a = 742938285. 
G4. CSD generator of Sherif and Dear [86]. 
G5. Combined generator in fig. 3 of L'Ecuyer [48]. 
G6. Combined Tausworthe generator GI of Tezuka and L'Ecuyer [91]. 
G7. Twisted GFFSR with (r,s,p) = (25,7,32). 
G8. Subtract-with-borrow generator with (b, r, s,L) = ( 2 3 2  - 5 , 4 3 , 2 2 ,  1). 

G9. MRG with m = 231 - 1, k = 5 and a I = 107374182, a 5 = 104480, a 2 = a 3 = a 4 = 0. 

Generators G1 and G2 are used in various software packages [10,47] and 
recommended by some authors [79,47]. Fishman and Moore  [33] recommend G3. 
G7 is proposed by Matsumoto and Kurita [66], while G8 is proposed by Marsaglia  
and Zaman [62] and further recommended by James [41]. The results were that 
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besides G5, G6, and G9 all other generators failed spectacularly at least one of the 
tests. Moreover, each of G1 to G4 failed spectacularly at least 6 tests out of 10. In 
more than half of the "fail" cases, the descriptiv~ level ~ was less than 10 -15. 
Clearly, these results should be shocking to many simulation practitioners. 

Some of the test results could be explained by looking at the structure of the 
generator. For example, as pointed out by Ripley [81,82], the MLCGs are bound 
to fail the nearest-pair test because of  their regular structure: the length of  the 
shortest vector in the Minkowski reduced basis is a lower bound on the distance 
between points, so that the nearest pair in a large set of points cannot be as close 
as it should be statistically. A nearest-pair test can also be constructed using 
the norm on the space of formal series defined in section 5.2. Tausworthe and 
GFSR generators with good equidistribution properties are likely to fail such tests 
(see [89]). Other examples of  tests that certain classes of generators are bound 
to fail are given in [59,67]. Results of extensive statistical tests can also be 
found in [43,48,60]. In [43], the authors have applied a battery of tests to 35 
generators in the literature, and recommend three generators on the basis of their 
speed and their performance in those tests. Two of those generators are LCGs with 
modulus 232, while the third one is a combined generator. The two recommended 
LCGs would certainly fail some of  the 10 tests applied in [50], for the reasons 
explained above. 

I 1.4. WHICH TESTS ARE THE GOOD ONES? 

Statistical tests are far from being clean-cut testing tools. Because any generator 
has finite period, almost any good test, if run long enough, will eventually detect 
regularity and reject the generator. So, how can we be satisfied with empirical test 
results? A reasonable practical view here is to restrict ourselves to tests that we can 
practically run on a computer. For example, if a test needs 10 million years of CPU 
time on the world's fastest computer, perhaps we do not care much about its 
eventual results. However, we would like the generator to pass (with probability 
close to one) all known tests which can run in, say, less than a few hours, assuming 
that the generator 's structure is unknown to the test builder and only the output 
values un are observed. But even this is not easy to achieve with efficient generators. 
If  the generator is a MLCG, for example, there exist efficient algorithms which can 
find out the modulus and multiplier only from the output values, and guess the next 
values [9, 45]. From that, it is easy to design a test that the MLCG will fail. Perhaps 
asking a generator to pass all such tests is asking too much? Well, that depends on 
the application. If  a generator fails a given statistical, it is easy, from that, to 
construct an application for which the generator will produce completely wrong 
results. One trivial example: Suppose you want to estimate the distribution of  the 
statistic T on which the  test is based. If the generator fails the test, it means that 
the distribution of  T is not correctly estimated. 
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