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ABSTRACT

We consider a system with two types of traffic and two
types of agents. Outbound calls are served only by
blend agents, whereas inbound calls can be served by
either inbound-only or blend agents. Our objective is
to allocate a number of agents such that some service
requirement is satisfied. We have taken two approaches
in analyzing this staffing problem: We developed a sim-
ulation model of the call center, which allows us to do
a what-if analysis, as well as continuous-time Markov
chain (CTMC) queueing models, which provide approx-
imations of system performance measures. We describe
the simulation model in this paper.

1 INTRODUCTION

We consider a telephone call center with two types of
traffic, inbound and outbound, and two types of agents,
inbound-only and blend. The number of agents of each
type can vary from day to day and within each day.
The inbound calls arrive according to a Poisson process
whose rate may itself evolve as a stochastic process.
When traffic is too high, new inbound calls must wait in
a queue. For inbound traffic, we consider abandonment,
i.e., some customers may not stay in the queue once
learning that they are put on hold, or they may leave
after spending some time waiting.

When the inbound traffic is low, and some blend
agents are idle, an automatic dialer composes multiple
outbound calls in parallel (trying to reach potential cus-
tomers, e.g., for marketing or direct sales), in order to
increase the productivity of the center. Mismatches oc-
cur when more customers are reached by outbound calls
than the number of idle agents. The outbound calls are
served only by blend agents, whereas inbound calls can
be served by either type. We are primarily interested
in finding the number of agents such that at least p% of
customers should have delay time less than s seconds,
for arbitrary p and s. Other performance measures of
interest are agent utilization, abandonment rate, and

rate of outbound calls.

We have taken two approaches in analyzing the
staffing problem: We developed a simulation model
of the call center and continuous-time Markov chain
(CTMC) queueing models. Each method has its own
appeal: The simulation approach is highly flexible,
e.g., it can be tailored to specific details and is easy
to modify. The simulation model also allows us to
do a what-if analysis and learn additional informa-
tion that may otherwise not be available, e.g., times
that customers are willing to wait before abandon-
ing. On the other hand, the CTMC models are in-
sightful, sometimes faster computationally, and rela-
tively easier to construct than a simulation model.
Moreover, a call center can be naturally viewed as
a queueing system, e.g., the simplest CTMC model
for an inbound call center is a M/M/s queueing
model (see and

for an overview of queue-
ing models in call center applications). In this pa-
per, we will only describe our simulation model of call
centers. Our CTMC development can be found in

This paper is organized as follows: Section 2 dis-
cusses some difficulties that we encountered in mod-
elling the call centers. We describe our data analysis in
Section 3. Section 4 explains how we construct our sim-
ulation model and how it is validated. Supposing that
the simulation model reproduces performance of a real
call center, we explore how other management policies
affect the call center performance in Section 5.

2 DIFFICULTIES ENCOUNTERED

Although the call center staffing problem poses many
real-world issues that require us to make seemingly sim-
plistic assumptions, the resulting simulation model is
reasonably good at emulating the performance of a real
call center (see Section 5) while maintaining its parsi-
mony. We describe the issues that we have encountered
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in developing the call center simulation model in this
section.

The types of data that are traditionally available at
call centers poses many challenges, one of which is due
to the aggregation of data over some period, typically 30
minutes. That is, for each half hour, we have the num-
ber of (inbound call) arrivals, the sum of service times of
the inbound calls served, and similarly for the outbound
calls, but not the arrival times or service times of the
individual calls (with the exception on outbound calls
in our case). The lack of call-by-call information com-
plicates the data analysis because standard parameter
estimation methods generally do not apply. In addition,
the stochastic nature of call centers add difficulties to
the data analysis, e.g., the arrival rates varies from day
to day and within each day.

It has been observed that the arrivals to a call
center are not realistically modelled by a pro-
cess with a deterministic time-varying arrival
rate ( ,

and ).
From empirical study, call center arrivals are known
to have a variance that is considerably higher than
implied by Poisson arrival (

and ) and strong positive associa-
tion between the arrivals in different time periods
( and ).

Moreover, some relevant information is simply not
available. For example, in an ideal world, we would
use the distribution of time that a customer is will-
ing to wait before abandoning the queue (called the
patience time) to model the abandonment process. In-
stead, what we have is the number of customers aban-
doning and a rough histogram of distribution of the
waiting times before they hang up. In other words, we
have a problem of highly censored data; we only ob-
serve the maximal patience times of those customers
who abandon, but we have no information about these
times for customers who are served.

Another piece of missing information is how the dialer
works (i.e., the algorithm it uses to activate outbound
calls and how many outbound calls it makes) for it is a
proprietary knowledge of a software vendor. We gather
from Bell staff that the dialer considers the number of
idle agents and some measures of the quality of service,
e.g., the fraction of inbound calls that waits for longer
than some threshold averaged over some previous time
interval. However, we do not know how the dialer actu-
ally uses this information. Because the dialer is key to
the call center performance in blend environment, the
lack of knowledge on the dialer makes it more difficult
to validate our simulation model. Specifically, when
we compare the simulated performance measures to the
empirical values, we cannot be sure if the discrepancies

we observe are due to our modelling assumptions or due
to our lack of knowledge on the dialer.

Human aspects of call center operations also compli-
cate model validation. We observe that the empirical
quality of service (QoS, defined as the fraction of in-
bound customers whose waiting time is smaller than 20
seconds) is better than the target (80%) most of the
time. From the discussion with Bell staff, we specu-
late that this is partly because call center managers re-
spond “too quickly” when they observe short-term poor
QoS by manipulating the dialer aggressiveness param-
eter that controls how often the dialer makes outbound
calls and how many calls it attempts at a time. We do
not know how the managers control the dialer in real
time or if they do so in a systematic fashion. In essence,
the manager’s control of a dialer coupled with the al-
gorithms inside the dialer constitute a black box which
we regard as the dialer in our model.

Another human factor comes from the call center
agents themselves. The time that they are available
to take a call is very likely to be less than the time for
which they are scheduled, because of coffee breaks, trips
to restrooms, absenteeism, etc. At this moment, due to
the lack of information and for the sake of model sim-
plicity, these factors are taken into account globally by
reducing the number of agents by some fixed percentage
(see Section 4).

3 INPUT MODELLING

The call center operates from 8:00 to 20:30, i.e., 8:30
PM. Agents receive only inbound calls before 14:00.
After that, some of the agents are in blend mode, and
there are also outbound calls. Because all the available
data is aggregated as averages over half-hour periods,
it is natural to assume that the model parameters (e.g.,
arrival rate, service time distributions) are constant
over each half hour, and we proceed as such. That is,
the planning horizon is partitioned into half-hour time
periods; period 1 is 8.00-8.30, period 2 is 8.30-9.00, and
so on. We experiment with the empirical data from Bell
Canada to find the fitting distribution for each process,
but we will discuss only the arrival and the service pro-
cesses in this paper (see for additional
details on the model). For those who are interested in
data analysis for call centers, offer
extensive study of call-by-call data as well as investiga-
tion of how well conventional queueing models perform
in such cases (inbound-only call centers).

3.1 Arrival Processes

After verifying that a Poisson process with a determin-
istic time-varying arrival rate cannot realistically model
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the call center arrivals, we consider a Poisson process
with stochastic rate. This choice is partially supported
by the empirical evidence in where
they concludes that the arrival processes of call center
are well modelled as an inhomogeneous Poisson process.
Let X, be the number of inbound call arrivals in half
hour ¢, with the probability mass function:

e_A"'A—’. (1)

Pr{X; =z} '
x!

model A; as a gamma ran-
dom variable with density:

for A > 0, where I'(a) = [°t* *e~!dt. They assume
that the A;’s are mutually independent. This model,
which we call the Poisson-gamma arrival process model,
is appealing because it is flexible and mathematically
tractable; under it, the number of arrivals in a given
time interval has the negative binomial distribution.

To estimate the parameters in (2), we use the max-
imum likelihood estimation (MLE) method where we
estimate the parameters of the negative binomial dis-
tribution. Let r be the number of days in our data, d
be the total number of half-hour periods in a day (in
our case, it is 25), X; ; be the number of arrivals in half
hour ¢ of day j,

Xi = iXi’j/r
j=1

M; = max X;

1’7
1<i<r

filk) = ZI{Xi,jZk}7

where Z{e} is 1 if € is true and 0 otherwise. The log-
likelihood function of observing {Xi’j, 1<i<dl1<
j <r} under (1)—(2) is

M;
i) = D filk)In(a; +k —1)
k=1

+ roy ln(ai/(az‘ + Xz))
+ 7“)_(1’ 1D<Xl/(az + Xl))

We will denote an estimator of a parameter a as a@. The
desired @; is the the value at which ¢; () is maximized
with respect to «, i.e., the root of the first derivative
of ¢;(e;) with respect to ;. The parameter (; can
be obtained by first solving for the negative binomial
parameter 3; = a;/(q; + X;) then 3; is simply (1 —
i)/ @i

We test the goodness of fit via the Kolmogorov-
Smirnov (KS) test statistic

D; def sup F,(x)fﬁz(:zr) , (3)

where Fj(z) is the empirical distribution and ﬁl(m) is
the estimated distribution of X; for half hour 7. Because
the empirical data are already used for estimating the
distribution parameters, the distribution of D; under
the null hypothesis is complicated and unknown. We
estimate it via a bootstrapping technique ( )
as follows. Using the parameterized distribution Fa X
we simulate a new sample path for the same length of
time as the empirical data. From this realization, we
again estimate the distribution parameters in (2) via
the MLE method so that we can compute the boot-
strapped D;* via (3). By repeating this process, say,
B, times we can estimate the p-value—the probability
that we observe D; conditional on the hypothesis that
the parameterized distribution is the true underlying
distribution—for half hour i as:

B
1 .
pi A~ E};I{Di’k > D;}.

A drawback of the Poisson-gamma process is that
the number of arrivals in one time period is indepen-
dent of those in all other periods. This assumption
rarely holds in practice ( ).

model
the A; in (1) as dependent random variables where

Ai = WAZ" (4)

the \;’s are constants to be estimated, and W is a
gamma random variable with parameters (o/, 3") and
E[W] =1. (See for a Poisson model
with auto-regressive rate parameters across successive
days.) The idea is to let the random factor W account
for the day-to-day traffic variation. The main advan-
tages of this model are (a) mathematical tractability:
under (1) and (4), the distribution of X, is negative
multinomial distribution; and (b) the possibility of time
dependence, which improves modelling realism, e.g., a
time period with a heavy inbound traffic would likely be
followed by a high call volume in the next time period
(however, the random variable W induces a positive
correlation between the number of arrivals in succes-
sive half hours). In addition, the arrival process (4) has
fewer parameters than (2), i.e., 26 vs. 50 parameters for
25 time periods under study.
We estimate parameters in (4) via MLE. Let

T d
o = ZI{ZX“]ZZ}
j=1 i=1



Pichitlamken, Deslauriers, L’Ecuyer and Avramidis

Table 1: Parameter Estimates for the Poisson Arrival
Process with a Gamma-Distributed Correlation Factor
for Tuesday (The Number of Arrivals is Per Half Hour)

Value Value
36.0 | Xis | 57.3
0.0278 || A\ia | 548
26.5 || A5 | 57.8
384 | X | 588
524 || M7 | 60.1
61.1 || Ms | 54.3
63.8 || Mo | 46.3
62.2 || hao | 405
| 662 || Nar | 35.0
Xs | 59.8 || e | 312
No | 588 | Mas | 271
Mo | 574 | s | 247
M1 | 58.0 | s | 17.9
X2 | 57.8

= max X; i
¢ 1<j<r £ “
p

and A be a constant that is independent to the param-
eters we want to estimate. For E[WW] = 1, we have that
B =1/a’, and the log likelihood function is:

a
= Zollog(a/—i—l—l)

=1

!
+ A +ra log %
D k=1 Ak o

(s

We get a better goodness of fit when we assume that
the arrival process is time-of-the-day and day-of-the-
week dependent. Table 1 shows the estimated param-
eters for Tuesdays. We observe the arrival rates that
are time-of-the-day dependent. We will use model (4)
in our simulation model.

g(a/v)‘lw"a)‘

3.2 Service Time Distributions

We tried to fit an inbound service time S; as an expo-
nential random variable with rates that are piecewise-
constant over each half-hour. Recall that we only have
sum of service times and not call-by-call service times.
Let X ; be the number of inbound calls served in half-
hour ¢ on day j, and Y; ; is the sum of service times of
these calls. The maximum likelihood estimator of the

service rate for half hour 7 is

s /.

7 2i=1X iy

1,0 — T )
Zj:l Yij

We assess the goodness of fit by the bootstrapping KS
test described in Section 3.1. Because we do not have
individual service times, we use the property of the ex-
ponential distribution that, for Zy, Zs, ..., Z, i.i.d. ex-
ponential random variables with mean 3, Y0 | Z; is
a gamma random variable with parameters « and [.
We do the bootstrapping KS test on the sum of service
times. We find that the exponential distribution does
not provide a satisfactory fit to our data. Note that we
simply test if the sum of the service times, conditional
on the number of calls served, follows a gamma distri-
bution. This test is weaker than testing if individual
service times are exponential, yet the null hypothesis is
rejected by a wide margin (the estimated p-values are
< 0.001 for 11 of the 25 half-hour periods), so it seems
that the service times are far from exponential.

As is also suggested in , we have
experimented with the lognormal distribution whose
density is

1 —(Inz — p)?
exp
xV2mo? 202
We use the method of moments to get the estimators.
Let the kth moment of S; be m; = E(S¥), and the

average inbound service time for half hour i be Y;. The
first two moments are simply

for z > 0. (5)

1
,u:2lnm1—§1nm2, o2 =Inmsy —2Ilnmq, (6)
and the m; estimate is
. XYy
My = Zkli (7)

> X,

We obtain mgy via the relationship my = Var(S1) +
m?, and the unbiased estimator of Var(Sj) (see
for the proof):

d

— 2 1 _ .
Var(Sl) = m E X];(Yk — m1)2. (8)
k=1

For S; in seconds, we get i = 5.874 and 62 = 0.948 in
(5).

Another distribution we have explored is the gamma.
The method of moments yields the gamma parameter
estimates in Equation (2) as:

3 = 7Var£51)2 and a = 7,\771%

my Var(S1)?
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We considered the case where the service times are
time-of-the-day independent and dependent, and we got
a better fit with the latter. Table 2 shows the parameter
estimates and its bootstrapped p-values. We decided to
use the gamma distribution in our simulation model in
Section 4 because it was easier to test the goodness of
fit for this distribution than for the lognormal, and the
fit was reasonably good.

Table 2: Estimated Parameters of Service Times of In-
bound Calls Under the Gamma Model (The Service
Times are in Seconds)

i a; Bi Di i a; Bi Di
1 1.374 357.4 0.55 14 | 0.702 838.4 0.34
2 0.924 608.9 0.78 15 | 0.782 727.9 0.89
3 0.956 634.1 0.50 16 | 0.776 725.2 0.73
4 0.807 750.5 0.65 17 | 0.821 678.3 0.93
5 0.735 811.3 0.21 18 | 0.565 992.3 0.76
6 0.706 843.6 0.61 19 | 0.583 970.4 0.73
7 0.700 888.9 0.60 20 | 0.583 917.0 0.66
8 0.533 1126.2 0.58 21 | 0.496 1080.2 0.16
9 0.664 863.9 0.37 || 22 | 0.487 1089.0 0.44
10 | 0.740 770.0 0.89 23 | 0.506 1021.4 0.35
11 | 0.465 1218.0 0.38 24 | 0.536 944.1 0.79
12 | 0.615 935.0 0.93 25 | 0.505 986.7 0.34
13 | 0.697 844.9 0.56

Unlike inbound service times, we do have call-by-call
outbound service times. We first explore modelling the
outbound service times with parameterized distribu-
tions such as exponential, gamma and lognormal. The
lognormal appears to be a good choice if we assume
that the outbound service times are half-hour depen-
dent. Nevertheless, because we have a large amount of
data, the KS goodness-of-fit test rejects all the distri-
butions we tried. In the simulation, we generate the
service times with a density obtained via a kernel den-
sity estimation method, using the UNURAND package

( )-

4 OTHER ASPECTS OF THE SIMULATION
MODEL

In our simulation model of the call center, there are
n;,1 identical inbound agents and n; 2 identical blend
agents during period . These integers are parameters
of the model. There is a single FIFO waiting queue
for inbound calls. A customer who is not served im-
mediately hangs up with probability 0.005; otherwise,
he joins the queue from which he will abandon if expe-
riencing a waiting time greater than his patience time.
We model this patience time as an exponential random
variable with mean 1/#; for half hour i.

Our dialer model tries to emulate the real dialer in
that the decision on when and how many outbound calls
to make is based on the current state of the system.
When the service of a customer ends, if the number of
idle blend agents is Na, the dialer makes outbound calls
if all of the following three conditions are satisfied: (a)
Ny > 1; (b) the number of busy agents (of any type)
is at most n;1 + n;2 — 4; and (c) more than 75% of
the inbound calls that arrive over the last 10 minutes
wait for less than 20 seconds. The number of calls com-
posed is 2N5 if the percentage of mismatches averaged
over the last 15 minutes does not exceed 8% of the to-
tal outbound calls attempted; otherwise, the number of
outbound calls composed is Ny. We do not claim that
this heuristic is a good control policy for the dialer. We
merely want to reproduce what we have observed in the
empirical data and learned by talking to the call center
managers.

Each outbound call successfully reaches a customer
with probability x; during half hour i. The answering
time for an outbound call, defined as the time required
by the dialer to either reach the customer or recognize
that the attempt is not successful, is exponentially dis-
tributed with mean 2 seconds.

Under the arrival process and service time distribu-
tions described in Section 3 and the parameter values
in Table 3, we have validated our simulation model by
comparing the simulation results to the empirical data
collected form the center. Using the average number
of agents from the empirical data, we noticed that our
QoS was higher and the agent occupation fraction (de-
fined as the ratio of times agents are busy to the total
scheduled times) lower than in the data. We think that
this is because our agents are too “efficient,” in a sense
that they are never absent or take a break. We were
able to obtain results much closer to the empirical data
by assuming that the inbound agents are available only
90% of time and the blend agents are available only
85% of time. (To implement this, we simply multiplied
the number of agents of each type by the appropriate
percentage rounded to the next integer. The numbers
given in Table 3 are before this reduction).

In Section 3, we saw that the arrival rates are day-
of-the-week dependent, and so is the number of agents.
Thus, we simulate each day of the week separately. Ta-
ble 4 shows the simulation results for Tuesdays. The
half widths of the 95% confidence intervals are obtained
by assuming that the simulation outputs are i.i.d. nor-
mally distributed. Here and in all other forthcoming
tables, € denotes a value less than 0.1. For most perfor-
mance measures, there is no significant difference be-
tween the results of the simulation and the empirical
data. The number of abandoned calls in the simulation
could better match what we observe in the empirical
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Table 3: Input Parameters of the Simulation Model for Tuesdays

Period | Start | End Out. Mean # in. | # blend
7 time | time | success | patience time | agents agents
(hr) | (hr) | prob. &; 1/n; (sec) ni na
1 8.0 8.5 0 400 11.4 0
2 8.5 9.0 0 400 18.6 0
3 9.0 9.5 0 400 24.3 0
4 9.5 10.0 0 700 27.9 0
5 10.0 | 10.5 0 700 28.1 0
6 10.5 | 11.0 0 600 28.1 0
7 11.0 | 11.5 0 600 27.7 0
8 11.5 | 12.0 0 600 27.8 0
9 12.0 | 12.5 0 600 25.8 0
10 12.5 | 13.0 0 600 25.9 0
11 13.0 | 13.5 0 500 29.0 0
12 13.5 | 14.0 0 500 28.9 0
13 14.0 | 14.5 0.27 500 26.6 6.1
14 14.5 | 15.0 0.27 500 25.0 14.1
15 15.0 | 15.5 0.28 500 25.6 19.5
16 15.5 | 16.0 0.29 500 26.5 21.7
17 16.0 | 16.5 0.29 500 24.8 20.2
18 16.5 | 17.0 0.30 500 21.4 18.6
19 17.0 | 17.5 0.33 500 19.6 14.1
20 17.5 | 18.0 0.37 500 9.9 21.3
21 18.0 | 18.5 0.40 500 4.1 21.2
22 18.5 | 19.0 0.38 500 3.2 20.6
23 19.0 | 19.5 0.41 500 2.8 19.8
24 19.5 | 20.0 0.41 100 3.3 21.9
25 20.0 | 20.5 0.41 50 3.2 20.8

Table 4: Comparison of Daily Performance Measures
Averaged from Empirical Data and Those Obtained by
Simulation of 100,000 Days

Performance Tuesday
measure Simulated Empirical
QoS (%) 883 £ ¢ 879 £ 24
Inbound calls arrived | 1230.9 + 1.3 | 1228.1 + 67.1
Abandoned calls 26.9 + 0.2 28.1 + 4.8
Outbound calls
attempted 1952.9 + 1.6 | 1783.7 &+ 218.1
Outbound calls
served 601.7 £ 0.5 565.3 £+ 69.6
Mismatches 444 + 0.1 38.5 + 6.2
Agent occupation (%) 71.1 ¢ 71.7 £ 28

data had we have better information on customer pa-
tience time.

We have developed a simulation tool in C for sim-
ulating our models of call centers. The software has
a modular design, which is practical in that it enables
users to understand the structure and relationships be-
tween the various aspects of the model without going

into much detail. In addition, it allows stability in the
general structure of the simulation model as it evolves;
the modification of certain details is done inside the
corresponding module while leaving other modules un-
changed.

The simulation programs are fast. To give an idea,
it takes approximately 12 minutes of CPU time on a
2MHz Athlon-XP processor running the RedHat Linux
8 operating system to simulate 100,000 operating days
of the call center.

5 NUMERICAL EXPERIMENTS

The goal of this section is to provide some examples
of what-if analysis that the simulation model allows us
to do. For this purpose, we assume that the simulation
model described in Section 4 replicates the performance
of a real call center, and we use it to benchmark the
changes that we make.

5.1 Improving the Dialer’s Operation

The policy of the dialer used in our model (and in the
call center) attempts at maintaining the QoS above 80%
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every day, and perhaps every hour, by basing its deci-
sion on the QoS and number of mismatches observed
over the past 10 minutes. It would certainly be less re-
strictive to respect the QoS requirement only over the
long term (say, one month or one year) rather than in
the short term. Simulation experiments can give us an
idea of how much we can gain by changing the policy in
that direction, i.e., adopting a policy that avoids look-
ing at the QoS over the past few minutes or hours and
bases its decision only on the current system’s state.
Additional motivation for looking at this came from
the observation that call center managers may have a
tendency to modify the dialer’s aggressiveness parame-
ters and over-react when they see poor QoS in the last
few minutes. This type of behavior degrades the per-
formance of the system in the long run.

To illustrate this, we made simulation experiments
with the following simple dialing rule: at the end of
a service, if Ny blend agents are idle, the system dials
round(7Ns) numbers in parallel for some fixed constant
7, where “round” means rounding to the nearest inte-
ger.

Table 5 gives the results for 7 = 1.2, 1.4, 1.6, and 2.0.
We see that the volume of outbound calls completed in-
creases significantly, and the agent occupation increases
slightly, compared with the original rule described in
Section 4 (see Table 4 under column Simulated). Of
course, these values also increase with 7. The QoS de-
creases slightly, but still remains well above the 80%
limit, even for 7 = 2. The number of abandonments is
larger than with the original rule and increases slowly
with 7. The number of mismatches, on the other hand,
increases very rapidly with 7. It is smaller than with
the original rule for 7 < 1.4 and larger for 7 > 1.6.
(Note that with 7 = 1, there would be no mismatch.)
The appropriate choice of 7 would depend on how the
call center managers value the increases/decreases in
these different performance measures. For instance, we
see that the policy with 7 = 1.6 achieves a much larger
volume of outbound calls (around 11% increase) than
the original rule. On the other hand, there are more
abandonments and mismatches. It should be left to the
managers to decide if the value of the increased vol-
ume of outbound calls outweights the “cost” of these
additional abandonments and slight QoS decrease.

More refined stationary rules could also be considered
and could certainly improve on the simple rules in Ta-
ble 5. Such rules could take into account the number of
idle agents of each type and perhaps the current arrival
rate \;. Then, one can define an optimization problem
by imposing constraints on some of the long-run per-
formance measures and incorporating the others into
the objective function. The decision variables of this
problem would be the parameters of the dialing rule

Table 5: Daily Performance Measures Obtained from
the Simulation with a New Dialing Heuristic

Performance T Half
measures 1.2 1.4 1.6 2.0 width
QoS (%) 86.0 85.4 84.5 84.1 €
Abandonments | 36.1 38.2 41.6 42.8 0.3
Outbound

calls served 639.0 | 652.6 | 669.5 | 677.0 0.4
Mismatches 2.2 15.3 75.0 98.8 0.1
Agent

occup. (%) 72.0 | 72.3 | 728 | 73.0 €

(for the above simple rule, it is 7). The optimization
problem could be solved via optimization-by-simulation
methodology.

5.2 Sensitivity of the Performance Measures to
the Staffing Level

We now look at how the performance measures are af-
fected by a change in the staffing level. From the sim-
ulation experiment, we observe that the QoS is higher
than what is required (88.3% vs 80%). The simulation
model allows us to assess the call center performance if
we lower the staffing level.

Table 6 shows the performance measures when we
decrease the number of agents by 5%. The QoS is still
comfortably above the requirement, but the number of
outbound calls served decreases. These results enable
the call center managers to evaluate if the saving of 5%
reduction in the number of agents is enough to compen-
sate the loss of revenue resulting from fewer outbound
calls and the loss of customer satisfaction as manifested
by the increase in the number of abandoned calls. (One
possible explanation for the decrease in agent occu-
pancy is that when there are fewer agents, the dialer
is triggered to make outbound calls less frequently as
the threshold condition is harder to satisfy.)

Table 6: Daily Performance Measures Obtained from
the Simulation with 5% Fewer Agents

Performance measures Tuesday

QoS (%) 85.4 + ¢ (—2.9)
Outbound calls served | 540.4 £+ 0.5 (—61.3)
Abandoned calls 34.6 £ 0.3 (+7.7)
Mismatches 39.3 £ 0.1 (—5.1)
Agent occupation (%) 68.8 + € (—2.3)
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5.3 Sensitivity of the Performance Measures to
the Distributions of Stochastic Processes

In the next experiment, we modify the assumptions of
our simulation model by changing the distributions of
the arrival process and the service times of inbound and
outbound calls to resemble those of a M/M/s queue-
ing model which is often used to model call centers
( ). As we previously men-
tioned, we have also developed CTMC models in par-
allel to the simulation model, so we are curious to see
how the change in the input distributions would affect
the call center performance.

We consider the Poisson arrival process with the de-
terministic time-of-the-day dependent arrival rates (i.e.,
W =1 in (4)) and exponentially distributed service
times (for inbound and outbound calls, with different
distribution parameters). Note that these distributions
have the same means as their corresponding counter-
parts that we have chosen for our original simulation
model.

Table 7 shows a significant increase in the QoS of the
simulation under the new set of distributions compared
to the original simulation model. This is not surprising,
because assuming deterministic arrival rates reduces the
traffic variability. This reduces congestion in the system
and improves the QoS. We also observe a significant
decrease in the in the volume of outbound calls. Our
experiment shows that simply using the assumptions
of a M/M/s queueing model can give significant error
in performance measures estimates. The significance of
these errors depends of course on the other sources of
error in the model (e.g., amount and reliability of the
data) and also on what the managers find acceptable.

Table 7: Daily Performance Measures Obtained from
the Simulation Where the Arrival Process is Pois-
son with Deterministic Rates and Exponential Service
Times

Performance measures Tuesday

QoS (%) 91.7 +e (+3.4)
Outbound calls served | 572.0 £ 0.7 (—29.7)
Abandoned calls 16.5 £ 0.2 (—10.4)
Mismatches 42.2 £0.1 (—-2.2)
Agent occupation (%) 70.2 e (—0.9)
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