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ABSTRACT

Random number generators based on linear recurrences
modulo 2 are among the fastest long-period generators cur-
rently available. The uniformity and independence of the
points they produce, over their entire period length, can be
measured by theoretical figures of merit that are easy to
compute, and those having good values for these figures of
merit are statistically reliable in general. Some of these gen-
erators can also provide disjoint streams and substreams ef-
ficiently. In this paper, we review the most interesting con-
struction methods for these generators, examine their theo-
retical and empirical properties, and make comparisons.

1 INTRODUCTION

Given that computers work in binary arithmetic, if we want
fast uniform random number generators (RNGs), it seems
natural to define them so that they can be implemented in the
computer by few elementary operations on bit strings, such
as shifts, rotations, exclusive-or’s (xor’s), and bit masks.
Very fast RNGs with huge period length can indeed be con-
structed this way. Among them, we find the Tausworthe or
linear feedback shift register (LFSR), generalized feedback
shift register (GFSR), twisted GFSR (TGFSR), Mersenne
twister, the WELL, and xorshift generators (Tezuka 1995,
L’Ecuyer 1996, Matsumoto and Nishimura 1998, L’Ecuyer
and Panneton 2002, L’Ecuyer 2004b, Panneton, L’Ecuyer,
and Matsumoto 2005, Panneton and L’Ecuyer 2004a, Pan-
neton 2004). They will be described later in the paper. An
important property of all these generators is that they are
special cases of a general class of generators whose state
evolves according to a (matrix) linear recurrence modulo 2
and the bits that form the output are also determined by a
linear transformation modulo 2 applied to the state. Since
doing arithmetic modulo 2 can be interpreted as working in
the finite field F2 of cardinality 2, with elements {0, 1}, we
shall refer to this general class as F2-linear generators.

Several widely-used RNGs of this form are not statisti-
cally reliable, but some well-designed ones are good, reli-

able, and fast. Which ones? What defects do the others
hide? What mathematical tools can be used to analyze and
practically assess their quality from a theoretical viewpoint?
Is it easy to jump ahead quickly in their sequence in order
to split their period into multiple streams and substreams?
(Such multiple streams and substreams are now commonly
available in the best simulation software and are very con-
venient, e.g., to obtain parallel RNGs and to support the im-
plementation of variance reduction methods; see Law and
Kelton 2000, L’Ecuyer, Simard, Chen, and Kelton 2002.)

These questions are answered in the remainder of this pa-
per, where we summarize the recent developments (over the
past 10 years or so) in that area. In the next section, we give a
general framework that covers all these F2-linear generators.
We also provide a simple way to jump ahead with these gen-
erators and explain how different F2-linear generators can
be combined (via a bitwise xor) to construct larger (and of-
ten better-behaved) F2-linear generators. In Section 3, we
discuss the theoretical measures of uniformity and indepen-
dence that are typically used in practice as figures of merit
to assess their quality. These RNGs turn out to have a lattice
structure in spaces of polynomials and formal series over F2.
There are counterparts in those spaces of the spectral test,
and other lattice-based tests and properties that have been
developed for linear congruential generators. Interestingly,
these tests are strongly linked with computing the measures
of uniformity of F2-linear generators. Section 4 briefly out-
lines this theory. In Section 5, we describe several types of
F2-linear generators proposed over the years, show how they
fit the general framework, and summarize what we know
about their strengths and weaknesses. In Section 6, we com-
pare specific implementations in terms of their speed and
(theoretical) figures of merit, and discuss their behavior in
empirical statistical tests. Compared with the most widely
used RNG that offers multiple streams and substreams in
simulation software, the best F2-linear RNGs are faster by a
factor of 2 to 3. Section 7 concludes the paper.
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2 F2-Linear Generators

2.1 General Framework

Consider an RNG defined by a matrix linear recurrence over
the finite field F2, as follows:

xn = Axn−1, (1)
yn = Bxn, (2)

un =
w∑

`=1

yn,`−12−` = .yn,0 yn,1 yn,2 · · · , (3)

where xn = (xn,0, . . . , xn,k−1)t ∈ Fk
2 is the k-bit state

vector at step n, yn = (yn,0, . . . , yn,w−1)t ∈ Fw
2 is the w-

bit output vector at step n, k and w are positive integers,
A is a k × k transition matrix with elements in F2, B is
a w × k output transformation matrix with elements in F2,
and ui ∈ [0, 1) is the output at step n. All operations in (1)
and (2) are performed in F2, i.e., modulo 2. This setting was
adopted in L’Ecuyer and Panneton (2002).

The characteristic polynomial of the matrix A is

P (z) = det(zI−A) = zk − α1z
k−1 − · · · − αk−1z − αk,

where I is the identity matrix and each αj is in F2. This
P (z) is also the characteristic polynomial of the linear re-
currence

xn,j = (α1xn−1,j + · · ·+ αkxn−k,j) mod 2 (4)

and it is well-known (Niederreiter 1992, L’Ecuyer 1994) that
when the xn’s obey (1), the sequence {xn,j , i ≥ 0} fol-
lows the linear recurrence (4) for each j. The sequences
{yn,j , n ≥ 0}, for 0 ≤ j < w, also obey the same re-
currence (although they may follow recurrences of shorter
order in certain situations, depending on B). In this paper,
we assume that αk = 1, so that the recurrence (4) has order
k and is purely periodic. Its period length is 2k − 1 (i.e.,
maximal) if and only if P (z) is a primitive polynomial over
F2 (Niederreiter 1992, Knuth 1998).

Several popular classes of RNGs fit this framework as
special cases, by appropriate choices of the matrices A and
B. Many will be described in Section 5.

2.2 Jumping Ahead

Jumping ahead directly from xn to xn+ν for a very large
integer ν is easy in principle with this type of generator. It
suffices to precompute the matrix Aν mod 2 (this can be
done in O(k3 log ν) operations by a standard method) and
then multiply xn by this binary matrix, modulo 2. The latter
step requires O(k2) operations in general. This approach
works fine for relatively small values of k (e.g., up to 100
or so), but becomes excessively slow when k is large. For
example, the Mersenne twister of Matsumoto and Nishimura

(1998) has k = 19937 and the above method is impractical
in that case.

For this reason, it is not a good idea in our opinion to con-
struct F2-linear generator with such (excessively) large pe-
riods and values of k. One way to make the jumping-ahead
easier is to adopt a combined generator (see Subsection 2.3),
for which the ν-step jumping-ahead is done separately for
each component.

2.3 Combined F2-Linear Generators

A very simple way of combining F2-linear generators is as
follows. For some integer C > 1, consider C distinct re-
currences of the form (1)–(2), where the cth recurrence has
parameters (k,w,A,B) = (kc, w,Ac,Bc) and state xc,n

at step n, for c = 1, . . . , C. The output of the combined
generator at step n is defined by

yn = B1x1,n ⊕ · · · ⊕BCxC,n,

un =
w∑

`=1

yn,`−12−`,

where ⊕ denotes the bitwise exclusive-or (xor) operation.
One can show (Tezuka and L’Ecuyer 1991, Tezuka 1995)
that the period length ρ of this combined generator is the
least common multiple of the period lengths ρc of its com-
ponents and that this combined generator is equivalent to
the generator (1)–(3) with k = k1 + · · · + kC , A =
diag(A1, . . . ,AC), and B = (B1, . . . ,BC).

With this method, by selecting the parameters carefully,
the combination of F2-linear generators with characteris-
tic polynomials P1(z), . . . , PC(z) gives yet another F2-
linear generator with characteristic polynomial P (z) =
P1(z) · · ·PC(z) and period length equal to the product of
the period lengths of the components (Tezuka and L’Ecuyer
1991, Wang and Compagner 1993, L’Ecuyer 1996, Tezuka
1995).

So why would we want to combine these generators? We
already gave one good reason in the previous subsection: ef-
ficient jumping-ahead is easier for a combined generator of
order k having several components than for a non-combined
generator with the same k. Another important reason is
that matrices A that give very fast implementations typically
lead (unfortunately) to poor quality RNGs from the statisti-
cal viewpoint, because of a too simplistic structure. Com-
bined generators provide a way out of this dilemma: select
simple components that allow very fast implementations and
such that the corresponding combined generator has a more
complicated structure, good figures of merit from the theo-
retical viewpoint, and good statistical properties. Many of
the best F2-linear generators are defined via such combina-
tions. We will give specific examples later.
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3 QUALITY CRITERIA

In general, good RNGs must have a long period ρ (say,
ρ ≈ 2200 or more), must run fast, should not waste mem-
ory (the state should be represented in no more than roughly
log2 ρ bits of memory), be repeatable and portable (able
to reproduce exactly the same sequence in different soft-
ware/hardware environments), and allow efficient jumping-
ahead in order to obtain multiple streams and substreams.
But these properties do not suffice to imitate independent
random numbers.

Recall that a sequence of random variables
U0, U1, U2, . . . are i.i.d. U [0, 1) if and only if for all
integers i ≥ 0 and t > 0, the vector (Ui, . . . , Ui+t−1) is
uniformly distributed over the t-dimensional unit hypercube
[0, 1)t. Of course, this cannot hold for algorithmic RNGs
that have a finite period length. For RNGs that fit our
F2-linear framework, any vector of t successive output
values of the generator belongs to the finite set

Ψt = {(u0, . . . , ut−1) : x0 ∈ Fk
2},

i.e., the set of output points obtained when the initial state
runs over all possible k-bit vectors.

This set Ψt always has cardinality 2k when viewed as a
multiset (i.e., if the points are counted as many times as they
appear).

If x0 is drawn at random from the set of k-bit vectors Fk
2 ,

with probability 2−k for each bit vector, then (u0, . . . , ut−1)
is a random vector having the uniform distribution over
Ψt. Thus, to approximate well the uniform distribution over
[0, 1)t, Ψt must cover the hypercube [0, 1)t very uniformly
(L’Ecuyer 1994, L’Ecuyer 2004b). More generally, we may
also want to measure the uniformity of sets of the form

ΨI = {(ui1 , . . . , uit
) | x0 ∈ Fk

2},

where I = {i1, · · · , it} is a fixed set of non-negative inte-
gers such that 0 ≤ i1 < · · · < it. For I = {0, . . . , t − 1},
we recover Ψt = ΨI

The uniformity of ΨI is usually assessed by measures of
discrepancy between the empirical distribution of its points
and the uniform distribution over [0, 1)t (Hellekalek and
Larcher 1998, L’Ecuyer and Lemieux 2002, Niederreiter
1992). These measures can be defined in many ways and
they are in fact equivalent to goodness-of-fit tests for the
multivariate uniform distribution. They must be computable
without enumerating the points, because the cardinality of
Ψt makes the enumeration practically infeasible when the
period is large enough. For this reason, the uniformity mea-
sures are usually tailored to the general structure of the
RNG. Measures that are commonly used for F2-linear RNGs
will be described in a moment. The selected discrepancy
measure can be computed for each set I in some predefined
class J , then these values can be weighted or normalized by

factors that may depend on I , and the worst-case (or aver-
age) over J can be adopted as a figure of merit used to rank
RNGs. The choice of J and of the weights are arbitrary.
Typically, J would contain sets I such that t and it − i1
are rather small. We generally try to optimize this figure of
merit when searching (by computer) for concrete RNG pa-
rameters.

For F2-linear generators, the uniformity of the point sets
ΨI is typically assessed by measures of equidistribution de-
fined as follows (L’Ecuyer 1996, L’Ecuyer and Panneton
2002, L’Ecuyer 2004a, Tezuka 1995). For an arbitrary vec-
tor q = (q1, . . . , qt) of non-negative integers, partition the
unit hypercube [0, 1)t into 2qj intervals of the same length
along axis j, for each j. This determines a partition of [0, 1)t

into 2q1+···+qt rectangular boxes of the same size and shape.
If a given set ΨI has exactly 2q points in each box of this par-
tition, for an integer q that must satisfy k−q = q1 + · · ·+qt,
we say that ΨI is q-equidistributed. This means that among
the 2k points (ui1 , . . . , uit

) of ΨI , if we consider all (k−q)-
bit vectors formed by the qj most significant bits of uij

for
j = 1, . . . , t, each of the 2k−q possibilities occurs exactly
the same number of times. Of course, this is possible only if
q ≤ k.

If ΨI is (`, . . . , `)-equidistributed for some ` ≥ 1, it is
called (t, `)-equidistributed (L’Ecuyer 1996). The largest
value of ` for which this holds is called the resolution of
the set ΨI and is denoted by `I . It cannot exceed `∗t =
min(bk/tc, w). We define the resolution gap of ΨI as δI =
`∗t − `I . Possible figures of merit can then be defined by

∆J ,∞ = max
I∈J

δI and ∆J ,1 =
∑
I∈J

δI ,

where J is a preselected class of index sets I .
We also denote by t` the largest dimension t for which Ψt

is (t, `)-equidistributed, and define the dimension gap for `
bits of resolution as

δ̃` = t∗` − t`,

where t∗` = bk/`c is an upper bound on t`. We may then
consider the worst-case dimension gap and the sum of di-
mension gaps, defined as

∆̃∞ = max
1≤`≤w

δ̃` and ∆̃1 =
w∑

`=1

δ̃`,

as alternative figures of merit for our generators.
When ∆̃∞ = ∆̃1 = 0, the RNG is said to be maximally

equidistributed (ME) or asymptotically random for the word
size w (L’Ecuyer 1996, Tezuka 1995, Tootill, Robinson, and
Eagle 1973). This property ensures perfect equidistribution
of all sets Ψt, for any partition of the unit hypercube into
subcubes of equal sizes, as long as ` ≤ w and the number
of subcubes does not exceed the number of points in Ψt.
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Large-period ME (or almost ME) generators can be found
in L’Ecuyer (1999b), L’Ecuyer and Panneton (2002), Pan-
neton and L’Ecuyer (2004b), and Panneton, L’Ecuyer, and
Matsumoto (2005), for example.

The (k − q)-bit vectors involved in assessing the q-
equidistribution of ΨI can be expressed as a linear func-
tion of the k-bit initial state x0, that is, as Mqx0 for
some (k − q) × k binary matrix Mq. Clearly, ΨI is q-
equidistributed if and only if Mq has full rank k − q. Thus,
q-equidistribution can easily be verified by constructing this
matrix Mq and checking its rank via (binary) Gaussian elim-
ination (Fushimi 1983, L’Ecuyer 1996, Tezuka 1995). This
is a major motivation for adopting this measure of unifor-
mity.

For very large values of k, the matrix Mq is expensive to
construct and reduce, but a more efficient method based on
the computation of the shortest nonzero vector in a lattice of
formal series (see Section 4), as explained in Couture and
L’Ecuyer (2000), can be used in that case to verify (t, `)-
equidistribution.

The figures of merit defined above look at the most sig-
nificant bits of the output values, but give little importance
to the least significant bits. We could of course extend
them so that they also measure the equidistribution of the
least significant bits, simply by using different bits to con-
struct the output values and computing the corresponding q-
equidistributions. But this becomes quite cumbersome and
expensive to compute in general because there are too many
ways of selecting which bits are to be considered. Certain
classes of F2-linear generators (e.g., the Tausworthe/LFSR
RNGs defined in Subsection 5.1) have the interesting prop-
erty that if all output values are multiplied by a given power
of two, modulo 1, all equidistribution properties remain
unchanged. In other words, they enjoy the nice property
that their least significant bits have the same equidistribu-
tion as the most significant ones. We call such generators
resolution-stationary.

Aside from excellent equidistribution, good F2-linear
generators are also required to have characteristic polyno-
mials P (z) whose number of nonzero coefficients is not too
far from half the degree, i.e., near k/2 (Compagner 1991,
Wang and Compagner 1993). In particular, generators for
which P (z) is a trinomial or a pentanomial, which have been
widely used in the past, must be avoided. They fail rather
simple statistical tests (Lindholm 1968, Matsumoto and Ku-
rita 1996). So the fraction of nonzero coefficients in P (z)
can be used as a secondary figure of merit.

Other measures of uniformity are popular in the context
where k is small and the entire point set Ψt is used for quasi-
Monte Carlo integration (Niederreiter 1992, Hellekalek and
Larcher 1998, L’Ecuyer and Lemieux 2002); for example
the smallest q for which Ψt is a (q, k, t)-net, the Pα measure
and its weighted versions, the diaphony, etc. However, no
one knows how to compute these measures efficiently when

k > 50 (say), which is always the case for good F2-linear
RNGs.

4 LATTICE STRUCTURE IN SPACE OF FORMAL
SERIES

The lattice structure of linear congruential generators
(LCGs) is well-known in the simulation community (Law
and Kelton 2000, Knuth 1998). F2-linear RNGs do not have
a lattice structure in the real space, but they do have a similar
form of lattice structure in a space of formal series (Couture
and L’Ecuyer 2000, L’Ecuyer 2004a, Lemieux and L’Ecuyer
2003, Tezuka 1995), which we now outline. In comparison
with the lattices of LCGs, the real space R is replaced by the
space L2 of formal power series with coefficients in F2, of
the form

∑∞
`=ω x`z

−` for some integer ω, and the integers
are replaced by polynomials over F2.

The sequence of values taken by the jth bit of the output
has generating function

Gj(z) = y0,jz
−1 + y1,jz

−2 + · · · =
∞∑

n=1

yn−1,jz
−n.

When multiplying this formal series by P (z), we obtain the
polynomial gj(z) = Gj(z)P (z) in F2[z]/P (z) (the space of
polynomials of degree less than k, with coefficients in F2),
because the successive terms of the series satisfy a recur-
rence with this characteristic polynomial. For ` = 1, . . . , w,
let G(`)(z) = (G0(z), . . . , G`−1(z)).

If P (z) is an irreducible polynomial and G0(z) 6= 0, then
g0(z) has an inverse modulo P (z). In this case, there is an
initial state of the RNG that corresponds to the vector

Ḡ(`)(z) = g−1
0 (z)G`(z)

= (1, g−1
0 (z)g1(z), . . . , g−1

0 (z)g`−1(z))/P (z).

When the latter holds, we have the following.
Let L2 = F2((z−1)) the space of formal series of the

form
∑∞

n=i dn−1z
−n where i ∈ Z and dn−1 ∈ F2 for each

n. Let L2,0 those series for which i ≥ 1. Suppose that the
first ` lines of the matrix B are linearly independent. Then
the vectors v1(z) = Ḡ(`)(z), v2(z) = e2(z), . . . ,v`(z) =
e`(z) form a basis of a lattice L` in L2, defined by

L` =

v(z) =
∑̀
j=1

hj(z)vj(z) such that hj(z) ∈ F2[z]

 .

This lattice is called the `-bit resolution-wise lattice associ-
ated with the RNG. The matrix V whose lines are the vj’s
has an inverse W = V−1 whose columns

w1(z) = (P (z), 0, . . . , 0)t,
w2(z) = (−g1(z), 1, . . . , 0)t,

· · ·
w`(z) = (−g`−1(z), 0, . . . , 1)t
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form a basis of the dual lattice

L∗` = {h(z) ∈ L`
b : h(z) · v(z) ∈ F2[z] for all v(z) ∈ L`},

where h(z) · v(z) =
∑s

j=1 hj(z)vj(z) (the scalar product).
This resolution-wise lattice fully describes all the possible
output sequences of the RNG via the following:

Theorem (Couture and L’Ecuyer 2000). We have

L` ∩ L2,0

= {(g0(z), . . . , g`−1(z))/P (z) : g0(z) ∈ F2[z]/(P (z))}.

For any h(z) = (h1(z), . . . , h`(z)) ∈ (F2[z])`, we may
define the length of h(z) by ‖0‖ = 0 and

log2 ‖h(z)‖ = max
1≤j≤`

deg hj(z) for h(z) 6= 0.

Theorem (see Tezuka 1995, Couture and L’Ecuyer 2000,
L’Ecuyer 2004a). Ψt is (t, `)-equidistributed if and only if

min
0 6=h(z)∈L∗`

log2 ‖h(z)‖ > `.

This theorem shows that checking equidistribution
amounts to computing a shortest nonzero vector in the dual
lattice L∗` , just like the spectral test commonly applied to
LCGs but with a different lattice. As it turns out, very sim-
ilar algorithms can be used to compute the shortest vector
in both cases (Couture and L’Ecuyer 2000). This approach
is more efficient than applying Gaussian elimination to the
matrix Mq (see Subsection 3) when t is large.

Some F2-linear RNGs (e.g., the LFSR generators) also
have a dimension-wise lattice structure where the lattice con-
tains vectors of t-dimensional formal series, whose coordi-
nate j is the generating function for the binary expansion
of the jth output value, for a given initial state (Tezuka
and L’Ecuyer 1991, L’Ecuyer 1994, Tezuka 1995, Lemieux
and L’Ecuyer 2003). This lattice can also be used to study
equidistribution. However, it only applies to a subclass of
F2-linear RNGs.

5 SPECIFIC CLASSES OF GENERATORS

5.1 The LFSR Generator

The Tausworthe or linear feedback shift register (LFSR)
generator (Tausworthe 1965, L’Ecuyer 1996, Tezuka 1995)
is defined by a linear recurrence modulo 2, from which a
block of w bits is taken every s steps, for some positive in-
tegers w and s:

xn = a1xn−1 + · · ·+ akxn−k mod 2, (5)

un =
w∑

`=1

xns+`−12−`. (6)

where a1, . . . , ak are in F2 and ak = 1. This fits our frame-
work by taking A = (A0)s (in F2) where

A0 =


1

. . .
1

ak ak−1 . . . a1

 , (7)

and blank entries in this matrix are zeros. The matrix B con-
tains the first w lines of the k × k identity matrix, assuming
that w ≤ k.

Note that P (z) is the characteristic polynomial of the ma-
trix A = (A0)s, not that of the recurrence (5), and the
choice of s is important for determining the quality of this
generator. A frequently encountered case is when a single aj

is nonzero in addition to ak; then, P (z) is a trinomial and we
say that we have a trinomial-based LFSR generator. Typi-
cally, s is small to make the implementation efficient. These
trinomial-based generators are known to have important sta-
tistical weaknesses (Matsumoto and Kurita 1996, Tezuka
1995) but they can be used a components of combined RNGs
(Tezuka and L’Ecuyer 1991, Wang and Compagner 1993,
L’Ecuyer 1996). They also enjoy the important properties of
being resolution-stationary.

Tables of specific parameters for maximally equidistrib-
uted combined LFSR generators, together with concrete im-
plementations for 32-bit and 64-bit computers, can be found
in L’Ecuyer (1999b). These generators are among the fastest
ones currently available.

5.2 The GFSR, Twisted GFSR, and Mersenne Twister

Here we take A as the pq × pq matrix

A =


Ip S

Ip

Ip

. . .
Ip


for some positive integers p and q, where Ip is the p × p
identity matrix, S is a p × p matrix, and the matrix Ip on
the first line is in columns (r − 1)p + 1 to rp for some pos-
itive integer r. Often, w = p and B contains the first w
lines of the pq × pq identity matrix. If S is also the iden-
tity matrix, this generator is the trinomial-based generalized
feedback shift register (GFSR), for which xn is obtained by
a bitwise exclusive-or of xn−r and xn−q (Lewis and Payne
1973). This provides an extremely fast RNG. However, its
period length cannot exceed 2q − 1, because each bit of xn

follows the same binary recurrence of order k = q, with
characteristic polynomial P (z) = zq − zq−r − 1.

More generally, we can define xn as the bitwise
exclusive-or of xn−r1 ,xn−r2 , . . . ,xn−rd

where rd = q, so
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that each bit of xn follows a recurrence in F2 whose charac-
teristic polynomial P (z) has d+1 nonzero terms. However,
the period length is still bounded by 2q −1, whereas consid-
ering the pq-bit state, we should expect a period length close
to 2pq. This was the main motivation for the twisted GFSR
(TGFSR) generator. In the original version introduced by
Matsumoto and Kurita (1992), w = p and the matrix S is de-
fined as the transpose of A0 in (7), with k replaced by p. The
characteristic polynomial of A is then P (z) = PS(zq+zm),
where PS(ζ) = ζp − apζ

p−1 − · · · − a1 is the characteristic
polynomial of S, and its degree is k = pq. If the para-
meters are selected so that P (z) is primitive over F2, then
the TGFSR has period length 2k − 1. Matsumoto and Ku-
rita (1994) pointed out important weaknesses of the original
TGFSR and proposed an improved version that uses a well-
chosen matrix B whose lines differ from those of the iden-
tity. The operations implemented by this matrix are called
tempering and their purpose is to improve the uniformity of
the points produced by the RNG.

The Mersenne twister (Matsumoto and Nishimura 1998,
Nishimura 2000) is a variant of the TGFSR where k is
slightly less than pq and can be a prime number. A spe-
cific instance proposed by Matsumoto and Nishimura (1998)
and named MT19937 is fast, has the huge period length of
219937−1, and has become quite popular. A weakness of this
RNG is underlined and illustrated in Panneton, L’Ecuyer,
and Matsumoto (2005): if the generator starts in (or reaches)
a state that has very few ones, it may take up to several hun-
dred thousands steps before the ratio of ones in the output
and/or the average output value are approximately 1/2. For
example, for MT19937, if we average the output values at
steps n + 1 to n + 100 (a moving average) and average this
over all 19937 initial states x0 that have a single bit at one,
then we need at least n > 700, 000 before the average gets
close to 1/2 as it should be (this is graphically illustrated in
Panneton, L’Ecuyer, and Matsumoto 2005). Likewise, if two
states differ by a single bit, or by only a few bits, a very large
number of steps are required on average before the states or
the outputs differ by about half of their bits. The source of
the problem is that this RNG has a (huge) 19937-bit state
and few of these bits are modified from one step to the next.
In the terminology of cryptologists, the recurrence has low
diffusion capacity. This may be linked to the fact that its
characteristic polynomial has only 135 nonzero coefficients
out of 19938. Moreover, the figure of merit ∆̃1 takes the
large value 6750 for this generator.

It has been proved that the TGFSR and Mersenne twister
construction methods used in Matsumoto and Kurita (1994),
Matsumoto and Nishimura (1998) cannot provide ME gen-
erators in general. They typically have large equidistribution
gaps. But combining them via a bitwise xor can yield gener-
ators with the ME property. Concrete examples of ME com-
bined TGFSR generators with period lengths around 2466

and 21250 are given in L’Ecuyer and Panneton (2002). These

generators have the additional property that the resolution
gaps δI are also zero for a class of index sets I of small
cardinality and whose elements are not too far apart. These
RNGs are of course somewhat slower than their original (un-
combined) counterpart.

5.3 The WELL RNGs

These RNGs were developed by Panneton (2004) and are
described by Panneton, L’Ecuyer, and Matsumoto (2005).
The idea was to “sprinkle” a small number of very simple
operations such as xor, shift, bit mask, etc., into the ma-
trix A in a way that the resulting RNG has maximal period
and runs about as fast as the Mersenne twister, but also has
(under these constraints) the best possible equidistribution
properties, and a characteristic polynomial with around 50%
nonzero coefficients.

The state xn = (vt
n,0, . . . ,v

t
n,r−1)

t is comprised of r
blocks of w = 32 bits vn,j , and the recurrence is defined
by a set of linear transformations that apply to these blocks,
as described in Panneton, L’Ecuyer, and Matsumoto (2005).
Essentially, the transformations modify vn,0 and vn,1 by us-
ing several of the other blocks. They are selected so that
P (z), a polynomial of degree k = rw − p, is primitive over
F2. The output is defined by yn = vn,0.

The authors list specific parameters for WELL genera-
tors with period lengths ranging from 2512 − 1 to 244497 −
1. Many of them are ME and the others are nearly ME.
Their characteristic polynomials have nearly 50% coeffi-
cients equal to 1. These RNGs have much better diffusion
capacity than the Mersenne twister and have comparable
speed.

5.4 Xorshift Generators

Marsaglia (2003) has proposed a class of very fast RNGs
whose recurrence can be implemented by a small number
of xorshift operations only, where a xorshift operation con-
sists in replacing a w-bit block in the state by a (left or right)
shifted version of itself (by a position, where 0 < a < w)
xored with the original block. The constant w is the com-
puter’s word size (usually 32 or 64). The specific generators
he proposed in his paper use three xorshift operations at each
step. As it turns out, xorshifts are linear operations so these
generators fit our F2-linear setting.

Panneton and L’Ecuyer (2004a) analyzed the theoretical
properties of a general class of xorshift generators that con-
tains those proposed by Marsaglia. They studied maximal-
period conditions, limits on the equidistribution, and submit-
ted xorshift generators to empirical statistical testing. They
concluded that three-xorshift generators are unsafe and came
up with generators based on 7 and 13 xorshifts, whose speed
is only 20% slower than those with three xorshifts to gen-
erate U(0, 1) real numbers. Aside from the tests that detect
F2-linearity, these RNGs pass other standard statistical tests.
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5.5 Linear Recurrences in F2w

Fix a positive integer w (e.g., w = 32) and let q = 2w. Pan-
neton (2004) and Panneton and L’Ecuyer (2004b) consider
fast RNGs based on recurrences in the finite field Fq, which
can be written as

mn = b1mn−1 + · · ·+ brmn−r

for some integer r, where the arithmetic is performed in Fq.
The maximal period ρ = 2rw − 1 is reached if and only
if P̃ (z) = zr − b1z

r−1 − · · · − br−1z − br is a primitive
polynomial over Fq.

To implement this recurrence, these authors select an al-
gebraic element ζ of Fq, take {1, ζ, . . . , ζr−1} as a basis
of Fq over F2, and represent the elements mn = vn,0 +
vn,1ζ + · · · + vn,w−1ζ

w−1 of Fq by the bit vectors vn =
(vn,0, vn,1, . . . , vn,w−1)t. The state of the RNG is thus rep-
resented by a rw-bit vector and the output is constructed as
in (3), from the bits of vn. This construction fits our F2-
linear framework (1–3) and generalizes the TGFSR genera-
tors. Panneton and L’Ecuyer (2004b) call them LFSR gener-
ators in F2w .

The same authors also propose a slightly different con-
struction called polynomial LCG in F2w , and based on the
recurrence

qn(z) = zqn−1(z) mod P̃ (z)

in Fq[z] (the ring of polynomials with coefficients in Fq),
where P̃ (z) ∈ Fq[z] is a primitive polynomial. To imple-
ment this, each coefficient of qn(z) is represented by a w-bit
vector just as for mn and the output is defined in a similar
way. Again, this fits the F2-linear framework (1–3).

Panneton (2004) (see also Panneton and L’Ecuyer 2005)
goes further by proving certain properties of the equidistrib-
ution of these RNGs. For instance, he shows that if P̃ (z) is
irreducible over Fq and can be written as

P̃ (z) = p0(z) + ζp1(z) + · · ·+ ζγpγ(z)

where each pi(z) is in F2[z], then the RNG cannot be (t, `)-
equidistributed if t > r and ` > γ. As a special case, since
the TGFSR has P̃ (z) = p0(z)+ζp1(z), it cannot be equidis-
tributed with more than a single bit of resolution in any di-
mension t > r. He also shows that if P̃ (z) is irreducible
over Fq and has at least three nonzero coefficients, then
among the 2rw−1 two-dimensional point sets Ψ{0,j} where
1 ≤ j < 2kw, exactly 2w − 1 are not (2, w)-equidistributed.
For example, if w = 32 and r = 25 (so k = 800), only
one two-dimensional projection out of 2768 is not equidis-
tributed!

Panneton (2004) and Panneton and L’Ecuyer (2004b) pro-
pose tables of good parameters for LFSRs and polynomial
LCGs in Fq. These parameters were found by computer

Table 1: CPU time (sec) to generate 109 random numbers,
and CPU time to jump ahead 106 times, with some RNGs
available in SSJ

RNG ρ ≈ gen. time jump time
LFSR113 2113 31 0.1
LFSR258 2258 35 0.2
WELL512 2512 33 234
WELL1024 21024 34 917
MT19937 219937 36 —
MRG31k3p 2185 51 0.9
MRG32k3a 2191 70 1.1

searches based on the figure of merit ∆̃1. They also pro-
vide concrete implementations in the C language. These im-
plementations are fast, comparable to the Mersenne twister
for instance, but one drawback is that they use precomputed
multiplication tables that require a non-negligible amount of
memory. (In the case of multiple streams, a single copy of
the tables is shared by all the streams.) The output trans-
formation by a non-trivial matrix B is integrated into these
multiplication tables to improve the efficiency.

6 PERFORMANCE

Table 1 reports the speed of some RNGs available in the
SSJ simulation package (L’Ecuyer and Buist 2005). These
timings are for the Java implementations, running on a 2.4
GHz 64-bit computer with SUN’s JDK 1.5. The first and
second columns give the generator’s name and its approx-
imate period length. Column 3 gives the CPU time (sec)
to generate 109 random numbers and add them up, whereas
column 4 gives the CPU time needed to jump ahead 106

times by a very large number of steps (to get a new stream).
The first five RNGs are F2-linear and the last two are com-
bined multiple recursive generators (MRGs). The first two
are combined LFSRs proposed by L’Ecuyer (1999b) for 32-
bit and 64-bit computers, with four and five components, re-
spectively. The two WELL RNGs are proposed in Panneton,
L’Ecuyer, and Matsumoto (2005). Other WELL generators
with much longer periods (up to nearly 244497) proposed
in that paper have approximately the same speed as those
given here to generate random numbers, but are slower for
jumping ahead because of their larger value of k. For the
Mersenne twister MT19937, proposed by Matsumoto and
Nishimura (1998), jumping ahead is just too slow to be use-
ful. All these F2-linear RNGs have roughly the same speed
for generating random numbers. Other good ones with about
the same speed are also proposed by Panneton and L’Ecuyer
(2004b) and Matsumoto and Kurita (1994), e.g., with period
lengths near 2800.

The timings of the two MRGs in the table are reported
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for comparison. The first one (MRG31k3p) was pro-
posed by L’Ecuyer and Touzin (2000) while the second one
(MRG32k3a) was proposed by L’Ecuyer (1999a) and is used
in several simulation packages to provide multiple streams
and substreams. This latter RNG has been heavily tested
over the years and is very robust. On the other hand, the
F2-linear generators are definitely faster.

Other timings are reported in Panneton, L’Ecuyer, and
Matsumoto (2005), this time on a 2.8 GHz 32-bit com-
puter using the C language. In that setting, the F2-linear
RNGs have roughly the same speed (they all require between
30 and 43 CPU seconds to generate 109 random numbers)
whereas MRG32k3a needs nearly 100 seconds.

All the RNGs discussed above have been submitted to
empirical statistical testing using the batteries Smallcrush,
Crush, and Bigcrush of the TestU01 package (L’Ecuyer
and Simard 2002). They passed all the tests in these bat-
teries with the following notable exceptions: All F2-linear
generators fail the tests that look for linear relationships in
the sequences of bits they produce, namely the matrix-rank
test (Marsaglia 1985) for huge binary matrices and the lin-
ear complexity tests (Erdmann 1992). The reason for this
general failure is obvious: We know from their definitions
that these generators produce bit sequences that obey linear
recurrences, so they cannot have the linear complexity of
a truly random sequence. Should this be viewed as a strong
limitation of these RNGs for simulation? In my opinion, this
is very unlikely to cause a problem in practice, unless the
system we simulate has a lot to do with linear dependencies
among bits. To make these RNGs safer for such applications
without slowing them down too much, we could either com-
bine them with a generator from another class (such as an
MRG, for instance), or combine them with a small nonlin-
ear RNG implemented via precomputed tables as suggested
by L’Ecuyer and Granger-Piché (2003), or add a nonlinear
output transformation that is fast to compute.

7 CONCLUSION

F2-linear RNGs are convenient for simulation because they
are fast and the high-dimensional uniformity of their point
sets can be measured by theoretical figures of merit that
can be computed efficiently. Combined F2-linear generators
with relatively small components have the important advan-
tage of faster jumping-ahead, because the (smaller) compo-
nents can be dealt with separately. Some F2-linear genera-
tors proposed in the literature have huge period lengths, but
it is not always true that larger is better. A huge state has the
disadvantages that it uses more memory (this can be impor-
tant when there is a large number of streams in a simulation),
makes jumping ahead much slower, and requires more oper-
ations to modify a large fraction of the bits in the state. Of
course, very long bit sequences produced by these genera-
tors will always fail statistical tests that measure their linear

complexity. This can be viewed as a weak limitation, which
could be overcome by adding a nonlinear output transforma-
tion or combining the F2-linear RNG with a generator from
another class.
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