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ABSTRACT

We study the combination of two efficient rare event Montel@amulation techniques for the estimation of the

connectivity probability of a given set of nodes in a graptewlinks can fail: approximate zero-variance importance
sampling and a conditional Monte Carlo method which coodgion the event that a prespecified set of disjoint
minpaths linking the set of nodes fails. Those two methode leeen applied separately. Here we show how their
combination can be defined and implemented, we derive asjimpbbustness properties of the resulting estimator
when reliabilities of individual links go arbitrarily clesto one, and we illustrate numerically the efficiency gain
that can be obtained.

1 INTRODUCTION

In the design of telecommunication networks, an histolgcahportant topic from the reliability point of view has
been the study of connectivity properties of the networlotogy. This study can be accomplished by building a
probabilistic model of the network focusing on the possiaiture of its components, from which we can compute
the probability of still supporting the specified communioas when taking these failures into account. Today, these
problems are of high importance with the technologicalvatrof different types of wireless architectures. In these
contexts, network components (and particularly, linkg) more prone to fail because of changes in the environment,
changes which are difficult to contrdNetwork reliabilityis the branch of Operations Research where these problems
are studied. In this area, exact computations are usuatly (w&., highly computationally expensive), and Monte
Carlo techniques provide the most powerful tools for quatitie evaluations of the systems under consideration.
In this paper, we consider the most representative modedtwark reliability. One can think of the system as
a communication network, but there are several other agtjiics of that same model. The model is represented
by a non-oriented graply = (.4,.¢) where ./ is the set ofm nodes, and? = {1,...,¢} is the set of links
connecting nodes. Nodes are assumed perfect, in the seatshel never fail. On the other hand, links may fail,
with probability g; for link i (1 <i <), and failures are assumed to oc@udependenthyacross links. Our goal is
to compute the probability(¥) that a given subse¥” of the set of nodes isot connected, that is, that these nodes
are not in the same connected componer# aifter removing the failed links. In this context, the grapbether
with the probabilistic model is often callednetwork andq(¥) is thenetwork unreliability The most frequent case
is when estimating thewo-terminalor source-to-terminal unreliabilitywhere.#” is comprised of only two nodes.
Formally, defineX; =1 if link i works, andX; = 0 otherwise. The randoroonfigurationof the graph is the
vector X = (Xi,...,X¢). Let us denote byp(-) the following structure function of the networkp(-) is defined
on the set of all configurationg0,1}* and takes values ii0,1}; for each configuratiox = (xq,...,x%,), we have
@(x) =1 if the set.# is notincluded in the same connected component in the graph timios only the linksg
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for which x; = 1, and the value O otherwise. .Observe that, for convenjemaedefinition of¢(-) differs from the
structure function that is commonly adopted, and whichesponds to + ¢(+).
The network unreliability is then

4
) = EleX)= 5 oWEX=x= 3 e0[]@1-%)+(1-ax).
xe{0,1} x€{0,1}¢ i=

The number of terms to be considered for computing this giibahas 2 elements, that is, its size increases
exponentially with the number of links. Actually, th# -connectivity problem is know to be NP-hard in general
(Ball 1986. As a consequence Monte Carlo simulation becomes a relévanwhen looking at large graphs.

StandardMonte Carlo consists in generatingindependent copies of (that is of the random graph), say
X® ... X, and to take as an (unbiased) approximatiow|(f) the average valug’_, (X)) /n. From the law
of large numbers, this approximation converges almostlystioeq(¥) asn— . One can compute a confidence
interval with confidence % a, centered at the approximation, of half-widtho/\/n, wherecy is the 1-a/2
quantile of the standard normal distribution (with mean @ gariance 1) ana is the standard deviation @f(X).
From the Central Limit Theorem, this confidence interval ppraximately valid whemq(¥¢) is large enough
(Asmussen and Glynn 2007

The standard Monte Carlo is based on the direct uggXj, which is a Bernoulli random variable, and therefore
02=q(%9)(1—-q(%)). Then one can note that thelative half-width of the confidence interval, given by this
half-width divided by the expected value we are computirg, ~Y/%cq0/q(¥), is Car/1—q(¥)/+/nq(¥) — o
asq(¢) — 0. In other words, the rarer the event, the larger the sampéerequired to get a confidence interval
with a fixed relative accuracy.

This highlights the need for designing more subtle simafkatechniques dealing with rare events. For more
about rare event simulation, the reader can looR@ino and Tuffin (2009)The goal is to use another estimator
Y of q(¢) with variance VajyY] for which a relative accuracy is not (or at least less) simesto rarity. In general,
define the relative error as RE = (Var[Y])¥2/E[Y]. An estimatory will be said to verifybounded relative error
(BRE) if RE[Y] remains bounded ag(¥¢) — 0. In that case, the sample size needed to get a specifietveelat
accuracy is bounded whatever the rarity of the event. An dedter property is the so-calledinishing relative
error (VRE), meaning that RE¥] — 0 whene — 0 (LEcuyer, Blanchet, Tuffin, and Glynn 2010

A well-known variance reduction techniquernsportance samplingS) (Asmussen and Glynn 207t consists
in changing the probability laW (and expectatioiif) driving the system to a new orfe(and associated expectation
E), but simulating a new random variabjgX)L(X) instead ofg(X) to keep an unbiased estimator, witkx) =
dP(x)/dP(x) is the associated likelihood ratio. Inded&{p(X)] = [ (X)dP(X) = [ @(X)L(X)dP(x) = E[@(X)L(X)].

By an appropriate change of probability law, the variaﬁée[qa(X)L(X)] can be significantly reduced with respect
to Var{o(X)].

The rest of the paper is organized as follows. Section 2 |deta¢ simulation method studied in this paper.
It combines conditional Monte Carlo and importance sangpliBection 3 analyzes its robustness properties as the
reliability of individual links goes to 1. Section 4 illusties the gain that can be obtained on benchmark examples,
compared with standard Monte Carlo, and also compared waitidiional Monte Carlo or importance sampling

alone.

2 DESCRIPTION OF THE METHOD

The method we are going to describe and study is based onehef nsinpaths. Aminpathis a minimal set of links
whose correct operation ensures that the global systemeisatpnal, i.e, that all terminals ig¥” are connected.
In the general? -terminal network reliability case, a minpath will topologlly correspond to a¥ -tree (a tree
included in the given graph, whose terminal set4§). In the case of source-to-terminal network reliabilityat
is, when|.#'| = 2, a minpath topologically corresponds to an elementarly patween the terminals. Although the
numerical ilustrations will be given in the case of the sedi@-terminal network reliability, the general desciapti
given below corresponds to the general case.

Given the graph# and the terminal set?’, select a set oh disjoint minpaths%” = {Py,...,R,} connecting
each the set?". For the selection of the se®?, different methods for finding trees in graphs can be used th&
source-to-terminal case, see Remark 1 belovCancela et al. (2009) Define byp; (1 < j < h) the probability
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that all links of minpathP; work. Due the to the independence of failurgs = [icp, (1—q). Let alsom; be the
number of links inP;.

Remark now that obtaining a configuration where the’gebf nodes is not connected requires that at least one
link on each minpatl; is failed. LetC be the event “every minpath i&” has at least one link that does not work.”
This event has probability = ﬂ?zl(l— pj). Instead of generating independent copies of the configurat of
the graph under its original distribution, we will generéitéem conditional orC, and then multiply the estimator
by p=P|[C] to recover an unbiased estimator. Yetlenote the Bernoulli random variabgX) conditional onC.

We have

E[p(X)] = E[p(X) | C[P[C] = pE[Y].

We can estimatg(¥) by the average afindependent copies @Y, This kind of conditional Monte Carlo procedure
is known to always reduce the variance with respect to thedsta estimatorAsmussen and Glynn 20R7

It remains to see how we can efficiently generdteonditional onC. Suppose that the links on each minpath
are ordered (in any way), and gly,...,ij m be the ordered list of links on minpaH). Define the random variable
W, as the index of the first failed link in this list, for ea¢h. The idea is to first sample the¥¢ directly, and
then sample the other links. Note tigV; = w] is simply the probability that links numbered 1wo-1 onP; are
working and linkw is not, conditionally on the fact that at least one link in thepath is failed. We then have,
vwe {1,...,m;} (Cancela et al. 2009

(1- Qij‘l)(l_ Qij,z) (- qijw—l)qij,w
1- (17qij,1)(17qij,2) (17qij1mj) -

P =w] =

All other links i gurj]:l{ihl,...,ijy\/j} (i.e., that belong to none of the patRy can then be sampled from their
priori original Bernoulli distribution, with a probabilitg; to be failed, since no additional information is available
from the evenC. This gives a (conditional) configuration from which one caeck if the nodes i#” are connected
or not (i.e., computé’).

This describes the conditional Monte Carlo procedure, viare will now combine with IS. To do that, instead
of sampling the links with the probabilities just describ&agk will use modified probabilities prescribed by an IS
procedure that mimics the zero-variance change of meagugeneral description of zero-variance IS estimators
can be found inCEcuyer and Tuffin (2008)and a specific description for the static reliability perbl (but not
using the conditional expectation that minpaths are failed Ecuyer, Rubino, Saggadi, and Tuffin (2010)

Recall that minpaths i¥” are indexed (ordered) from 1 to Each minpattP; also has its links ordered from
1 tom;. Finally, the rest of the links are also indexed in some orBefine¥j.w,,..w, as the graph such for each

minpathR (1 <k < j) the first failed link is thewy-th, that is, all links 1 tav_1 on every minpathi are considered
as working while thewth is failed, the status of all other links &f being still considered random. The principle
of our IS procedure is the following:

o First sample the first broken link on each minpB&ftknowing the status of the first broken link of minpaths
P,...,Pj—1 according to

™ It )
P[VVJ = W] = P[VVJ = W} m q( JVWJ_,...,W],]__W) .
2k=1]P)[VVj = k]q(g]-JW]_,...,Wj,l,k)

e Second, the link states not sampled yet are determsnedessivelwith the following IS rule, according
to the predefined order of links (but where link states alyessmpled on minpaths are considered fixed).
Define¥ o nist (respectively¥ 1 hisy) as the graph for which all the states of each mingthp toW; have
been sampled as described just above, as well as all Itimsi?:l{iLl,...,iLWj} such thatk < i, and link
i is selected as failed (respectively as working). Here "hetnds for “history” (to simplify the notation).
Link i is sampled as failed with probability

@)

g = d d(% o hist)
' G0 onis) + (1—G) A% 1his)

)



Cancela, L'Ecuyer, Rubino and Tuffin

The corresponding likelihood ratio is given by

D PIW; = wj] Gi(1—%)+(1—a)X
LX)=[]=—"—— — ——. 3
) rh%MZWﬂg@uﬂJLWMWQWQK)Hlmx X

Define
Y = @(X)L(X).
Theorem 1. The estimator Y of E[Y] is unbiased and has variance Vf] = 0.

Proof.  We are going to show that’ always produces the vallgY] = q(¢). As a consequence, we will have
E[Y’] = E[Y] and VafY’] = 0. For all j € {0,...,h}, defineY’(wy,...,w;) as a random variable having the same
distribution asY conditional onW; = wy,..., W, = w;. Observe thal’(wi,...,w,) is the estimator obtained by
applying the IS scheme (2) to sample successively the stéti links of the grapt¥hw,,...w,- From the results

of L'Ecuyer et al. (201Q)we always havey’(w, ..., Wh) = q(%hw,,..w,)- From (1), forj <h,

PW; = w;
Y (Wi, W1) = Y/(Wl,...,Wj)M
PIW; = wj]

1 il

- Y/(le"'awj) IED[V\/J = k}Q(gﬁWl,...,Wj,l,k)'

UG 1)

But by induction (starting fronj = kdown toj = 1), if Y/(wy, ..., wj) = AGjwy,...w; ), using also that, by conditioning
over the value o,

m;
z P[\Nj = km(gj;wl,...,wj,l,k) = q(gjfl;wl,...,wj-,l)a (4)
K=1

we getY’(wy,...,wj_1) = q(%j_l;wbwwjfl) Vj, and thereforey’ = q(¥). O

Unfortunately, this estimator cannot be implemented éydmtcause it requires the knowledgeﬂ(i?j;Wlwwjfl’w),
q(% onist) and q(¥ 1hist). If those values were known, there would be no need to uselasiion, because)(¥)
could be computed immediately. Instead, we propose heresdoan approximation(”) of g(-), and to plug this
approximation in expressions (1) and (2) in placeq¢f). Our approximation follows the same principle as in
L'Ecuyer et al. (2010) we define it as the maximal probability of a mincut of the drapnd refer to it as a
mincut-maxprokapproximation. Recall that @ut (or " -cut) in the graplt¥ is a set of links such that if we remove
them from¢, the nodes inZ" are not in the same connected component of the resultindigeaqul that anincut
(minimal cut) is a cut that contains no other cut than its&lie probability of a cut is defined as the probability
that all links of the cut fail. This approximation @f(-) has the advantage of being relatively easy to compute, in
polynomial time, using for instance the basic Ford-Fulkaralgorithm Sedgewick and Schidlowsky 2003

Remark 1. In Cancela et al. (2009we have shown that for the conditional Monte Carlo approacthe source-
to-terminal homogeneous case (that is when all links hagestime reliability), there always exists a construction
of the set of minpaths (actually in this case patB8)yielding an “efficient” estimator, but that this is not pdssi

in general in the heterogeneous case. The idea is to alsoausethe Ford-Fulkerson algorithm which runs in
polynomial time in terms of the number of nodes and links. Weve in the next section that thanks to the IS
change of measure, when sampling the first failed link on apatim robustness properties can be obtained in
general (when reliabilities of individual links go to one).

3 ROBUSTNESS ANALYSIS
The goal being to design a method that provides accuratksé@sthe case of rare events, we are interested in how our

algorithms behave in asymptotic regimes where the linke lfe@lure probabilities that converge to 0. To define such a
regime, we introduce a rarity parametex 1, as done for example IriEcuyer, Blanchet, Tuffin, and Glynn (201,0)
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Nakayama (1996)Shahabuddin (1994and we assume that for each linkthere are positive constards and b
(independent o) such that

g = aisbi. (5)
Thus we are investigating situations where the failure abdlties g; of the individual links are very close to 0.
Under this assumption, it is easy to verify (because the gordtion space is finite and the probability of any
configuration is a polynomial ig) that the system unreliability (which depends ©nis

q(¥) =d(¥,¢) =O(e°) (6)

for some constant > 0 (seeColbourn (1987)for instance) andj(¢) — 0 as€ — 0. The BRE and VRE properties
can then be reformulated in terms of the relative erroe as 0 instead of ag)(¥4) — 0.
We have the following robustness property for our combingteme.

Proposition 1. If §(¢') =©(q(¥’)) as € — 0 whatever the graply’, then our method yields BRE.

Proof.  The proof is similar to that in’Ecuyer et al. (2010)except that we need to separate the following two
steps: (i) sampling the first failed link on each minpath aiijdsémpling the state of the remaining links one after
the other. Letaj;wl7_,_7wj be the constant independent ofand strictly larger than 0) such that

Q<gj;W17...7Wj) = aj;wl,...,w,-Q(gj;wl,...,wj- )+ O(Q(gj:wl,...,w,- ))-

From (4), allthe termBW; = K|a(Zjw,,...w;_y k) ar€O0(A(Yj-1wy,...w; ), With atleast one ter®(q(Yj—1w,...w; 1));
this means that there exists a consﬂa)ml;\,vl7._.7\,\,1._1 > 0 independent of verifying

m;
z IP)[\NJ = k]q(gj;wl,qujfl-,k) = bj—1:W1 ..... ijlq(gj—LWlﬁw,ijl) +o(q(gj—l§W1 ..... ijl));
k=1

similar arguments were developed in the proof of Theorem R'BEuyer et al. (2010) When sampling the first
failed link on the j-th minpath (1< j < h), the likelihood ratio is

Siea PW = KA, w, 1 k)

LiWw) =

Q(gi W, W1, W )
bj— 1wy, w1 A(Gi-1ma,.. 0 1)

+0(1)

aj W, W q(gj WA, W )

with d; = maxbj,1;W1,_._,Wj_l/aj;W17_,_7Wj, the maximum being taken over glland the whole (finite) set of values
(W,...,Wy) (note that as thcz'atj-;\,\,l7_,_7\,vj are larger than 0q; is well-defined).

Similarly, from the proof of Theorem 2 dfEcuyer et al. (2010)there exists a constadp independent of
such that the likelihood ratio, when sampling the state i li given that all the states of each minpdghup to
W, have already been sampled, as well as all Iihl@U?zl{ij71,...7ij7M/j}, k <, verifies

q(gi,xa,hist)

Li(X) <d
(X|) 2 q(%717)(i_1,hist)

+0(1).
We then have from (3),

A, ) +0(1)> 1§i§&i¢u?|:‘|{ij‘lﬂ...,ij,Wj} <d2q(gi—l~xi1,hi5t) +o(1)) < dal@)+o(a®))
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with d = max(ds,dy, 1).
Due to the finite number of terms in the sum (in the expectaibomula), we have

E[(Y")?] < E[(L(X))?] < d*(a(%))*+o((a(#))),
meaning that BRE property is verified. O

Corollary 2. With the mincut-maxprob approximatio§(¥’) = ©(q(¢’)) as € — 0 whatever be the grap#’. As
a consequence, we always get the BRE property with our method

Proof.  This corollary is a direct consequence of Proposition 1. fdw that(¥’) = ©(q(¥¢’)) is proved in
L’Ecuyer, Rubino, Saggadi, and Tuffin (2010)basically comes from the fact thatijf%’) = ©(¢%) for somec’ > 0,
the mincut-maxprob approximation is aléhjed) otherwise, there would be a contradiction with its defimjio O

There are situations where not only the BRE property but #lsdVRE property is verified using the mincut-
maxprob approximation. The next proposition provides eigffit (but unnecessary) conditions for that. Define
A ={xec{0,1}': p(x) =1 andP[X =x] = O(1)} and.%p = {x € {0,1}' : ¢(x) = 1 andP[X = x| = o(1)}, the
sets of configurations under which the system fails and whiehno longer rare and still rare, respectively, under
IS.

Proposition 2. Suppose that the assumptions of Proposition 1 hold and ¢inagefch configuration of#7, we have:

(i)  When sampling the first failed link Vwn minpath B, for every j and every w such that

m;

PW =W a(Gjwy,...w; 1w) = e(kzlp[wj =KA(Gjw,...w; k)

we have

q(gj;wl,...,wj,l,w)/Q(gj ;Wl....,wj,l,w) — Cj (W, ... aijl)

ase — 0, where g(wa,...,wj_1) is independent of w, and @i, ...,wj_1) = 1if there is only one such w.
(i)  When sampling the remaining links, for all=x(x,...,%;) € 71, one of the following three conditions of
Theorem 5 ot ’Ecuyer, Rubino, Saggadi, and Tuffin (2018)verified:

either

a(“1hist) (% .onist)
= = +0(1),
A(“.1hist) A onist) @
or X =0, G(% ohist) = A(% ohist) + (A(Z onist))» and (1 —Gi)G(% 1nist) = O(GiG(% onist))

or Xi = 1, G(%4 1nist) = A(4 1hist) + (A(Z 1hist) ), and qa(%4 o.nist) = 0((1 — i) G(4 1 nist) )-

Then, the VRE property is verified.

Proof.  The second moment is decomposed in two terms using the setmbifurations; and.“%:

Elp)L2X)] = T o0LXEX =X+ T @XLZ0BX =x. @)

XES XES

As in the proof of Proposition 1, there exists a constant 0, independent of, such that_?(x) < d*™(q(¢))? +
0((q(¢))?), and, because; is finite,

T oL2XBIX =X < (P™(q(#))> +o((a(@))2) T (PIX =X,

XEAD XEL
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with this last sum being(1), as afinite sum of terms that are ati(1). Consequently,

Y LERBX = = o((a(#))?).

XELD

For the first term on the right side of (7), orf, it has been proved ibEcuyer et al. (2010}hatd, =1 in the proof
of Proposition 1, under our assumption (ii). Bog .71, it is easy to check that the corresponding valuef W, is

necessarily such th&W; = wlq(Gjaw,,...w;_1w) = O(zf:jl]f”[V\/,— =KG(Gjwy,... ;1K) otherwiséﬁ[wj =k =o0(1)and

sowould beP[X =X]. Let.#j={we {1,...m}: PW, = WA Gwy,...w;_1w) = O3 b PIW; = KIA(Giwy,...wj_1.k))
be the set of indices for whicfW; = K] is not rare under IS. We then have from the first bullet

Seq PV = KA, w, 1K)
AL Wiy ;)
Yke.r; PIWi =KaA(Zjwy....w; 1.k) +0(1)

Liw) =

AL, w;)
Yke.a; PIWj = Klej(W, ... Wi—1)d(Fjaw,,... w;_1.k) +0(1)
Cj(WA, ..., Wi—1)a(Zjwy,...w;_.w;) +0(1)
Ske.z; PWj = Kld(Fjow,,...w;_1,k) +0(1)
q(gj;wlvwvvj—lvvvj )+0(1)

_ W) oy

This givesd; = 1 in the proof of Proposition 1 and

S PP BX =X = (q(%))*+0((d(#))?). ®)

XES

Combining the results for the two terms, we have thato(X)L(X)] < E[L2(X)] — (q(9))% = o((q(#))?). O

Remark 2. Sufficient conditions for getting the BRE property for theoad conditional Monte Carlo method were
derived in Cancela et al. (2005) When additionally using zero-variance approximation, vixam the stronger
property that BRE isalwaysverified, and even VRE can be obtained in some cases.

4 NUMERICAL ILLUSTRATIONS

Example 1. Consider the small example of Figure 1, where we want to coenthwe probability that the gray nodes
A and D are disconnected. The links are assumed homogeneous, withiabilitesqg = € for i =1,...,5. We
consider? = {{1,4},{2,5}}. Herep= (1— (1—¢€)?)2 = (2 — £2)2. For this small model, one can easily list the 32
possible configurations, identify those that lead to disemted nodeé andD (there are 16), compute their original
probabilities and their probabilities under 1S, computeitttontribution to the second moment of random variable
Y, and then compute the exact unreliability and exact vagéanthe exact value ig(9) = 2¢2 + 23 — 5% + 2¢°,
For the conditional Monte Carlo (CMC) method? = 4¢* — 8> — 10® + 42e7 — 46¢8 + 22¢% — 410, while for
the combination methodj? = 4> — 15e% + 20s7 — 9¢8 — 3% + 4610 — ¢11, We see that VRE is verified for the
Combination method, whereas only BRE is verified for CMC. @ae check froml’Ecuyer et al. (2010}hat the
Combination method and ZVA givexactlythe same IS probability whatever the configuration. As a equence,
the variance is also exactly the same.

Example 2. We now consider an example with the topology depicted in feig2, where the source and the
terminal nodet are connected throudh disjoint pathsP; - -- | R,, having no node in common excepts@ndt. In
such a model, it is immediate thgt=P(C) = q, since, if every path in® = {P;--- ,R,} has at least one link
down, there is no way to joint from s, and reciprocally, ifs andt are unconnected, then necessarily at least
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Figure 1: Graph topology with five links and two nodes reaugrio be connected

one link in any of theh paths has a failed link. This means that using the CMC methgdjefinition, the sum
of the probabilities of the failing configurations under 68C sampling procedure is 1 (remember that we are
conditioning with respect to the eve@), and then, the variance of the CMC estimator is

o’=p* Y @XPX=x-(q%))*=p"~(a¥)>=0.
x€{0,1}5

In this type of topology, the combination method will sampbeactly as the CMC one, leading to a zero-variance
estimator as well.

=€ ™ B=€& ™ Q=¢
U/

Juz=€¢ "\ Q3=€ 7\ QqQu=¢
/ N

Figure 2: Graph topology made of three direct and indepenpatis

Let us now illustrate numerically the power of the method lore¢ examples. The first two, the Arpanet and
the dodecahedron topologies, are benchmark topologiesinghe literature Cancela et al. 2009 The third one
is a topology made of direct paths with few arcs connectirggphths. In the tables, the methods are abbreviated
by CMC for the conditional Monte Carlo method based on minpditut without IS, ZVA for the zero-variance IS
approximation of_Ecuyer et al. (2010)where no conditional expectation is used, i.e., the metbodavhich (2) is
used successively for all links, and “Combination” whenhbotethods are combined as described earlier. This will
help weighting the relative importance of IS and conditigni In all illustrations, we consider the homogeneous
case, where all links have the same unreliabififyand we want to compute the probability that nodemndt are
disconnected. In the general non-homogeneous case, ZVAGobination” are known to yield at least BRE,
which is not the case for CMC; we focus on the homogeneous ttadtustrate the potential gain in the less
advantageous situation.

Example 3. The first topology, presented in Figure 3, is the topology ofession of the Arpanet (“Advanced
Research Projects Agency Network”), the first packet-bamddiork in the USA, at the beginning of its life-time.
Links are ordered as displayed in Figure 3. We compare ineTakthe results obtained for our method with the
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Figure 3: A version of the Arpanet topology.

cases where only zero-variance approximation is used agdconditional Monte Carlo based on the selected paths
is used, this for various values ef We consider two disjoint paths, the first one made of lifiks3,6,9,11 12},
and the second one made of link&,20,19,21,22,23,24, 25 26}.

Table 1: Empirical results for the Arpanet topology, for= 10* and four values of.

Method £ Estimate 95% Confidence interval Std deviation | Relative error
CMC 1071 | 9.406x 1072 | (9.142x 1072, 9.670x 1072) | 1.347x 1071 | 143
CcMC 1073 | 5.875x10°% | (5546x107°° 6.203x10°°) | 1.675x107° | 2.85
CcMC 1075 | 5.837x 10710 | (5508x 10710 6.166x 10710 | 1.677x10°° | 2.87
CMC 107° | 5.837x 10712 | (5509x 10712 6.166x 1071?) | 1.677x 10711 | 2.87
ZVA 1071 | 9.295x 1072 | (8.469x 1072, 1.0121x 10°1) | 4.214x 101 | 453
ZVA 103 | 5.956x 106 | (5.794x 1076 6.118x10°%) | 8.260x10°6 | 1.39
ZVA 105 | 5.897x 10710 | (5.748x 1071, 6.045x 10719 | 7.575x 10710 | 1.28
ZVA 106 | 5.897x 10712 | (5.748x 10712, 6.045x 101?) | 7.575x 1071? | 1.28
Combination| 1071 | 9.245x 1072 | (8.780x 1072, 9.710x 1072) | 2.372x 107! | 257
Combination| 10~2 | 6.093x 10°® | (6.007x 10°°, 6.180x 10°6) | 4408x10°° | 0.723
Combination| 1075 | 6.065x 10719 | (5.987x 10719, 6.144x 1071%) | 4.000x 10719 | 0.659
Combination| 107 | 6.065x 10712 | (5.986x 10712, 6.143x 1071?) | 4.000x 107? | 0.659

The results shown are based on a sample size=6fl0*. The first column of the table indicates the methods
employed. The second one shows the values obnsidered. The third one gives the estimates of the network
unreliability computed by the different methods. The foucblumn gives a 95% confidence interval, and the fifth
and sixth ones give the standard deviation and the relatiee for a single random variate. The results show a large
degree of agreement in the estimations computed by all thbade. The CMC method results are consistent with
a BRE situation, as the relative error first grows but thers géhble where approaches zero. Both the ZVA and
the combined methods have higher relative error than CMQHerless reliable networke(= 101), but improve
substantially for smaller values of this parameter. The&hdvior is also consistent with a BRE situation. The
combined method has the best results, attaining a relatiee almost half of the ZVA one.

Example 4. We now look at another classical topopology, made of 20 nadeb 30 links, the dodecahedron
topology as shown in Figure 4. Links are ordered arbitraglycording to their numbering in the figure. The set
& is made of three path§3,9,18 25,26,30}, {1,5,12 19 20,28} and{2,7,15,23,22,29}. The empirical results
appear in Table 2.

The results for ZVA algorithm are taken fromEcuyer, Rubino, Saggadi, and Tuffin (2010Jhe confidence
intervals show again good agreement between the diffegimh&tions. As in the previous case, CMC provides a
relative error which first grows and then seems to approaaipper bound, as could be expected in a BRE situation.
On the other hand, the ZVA and the combined method yield aimésults, both with much smaller relative errors
than CMC. The relative errors moreover diminish substéintvehen € gets smaller, as would be expected in a VRE
situation.



Cancela, L'Ecuyer, Rubino and Tuffin

Figure 4: Dodecahedron topology

Table 2: Empirical results for the dodecahedron topologynf= 10* and four values of.

Method £ Estimate 95% Confidence interval Std deviation | Relative error
CMC 101 | 2531x 103 | (2.218x 1073, 2.843x 10°3%) 1.594x 1072 | 6.30
CMC 102 | 1.864x 107 1.487x 1076, 2.241x 10—6) 1.924x10°° | 103
CMC 103 | 1.844x10°° | (1456x107° 2.232x 1079) 1.980x 108 | 107
CMC 104 | 1.856x 10?2 | (1.466x 10—12 2.247x 10712 1.993x 10711 | 107
ZVA 101 | 2.896x 103 | (2.8276x 1073, 2.9645x 10°3) 3491x10°° |12
ZVA 102 | 2.0678x10°® | (2.0611x 10r6 2.0744x 10°°) 3.425x 107 | 0.17
ZVA 103 | 2.0076x 107° | (2.0053x 1&9 2.0099x 1079) 1.145x 10719 | 0.057
ZVA 104 | 2.0007x 10~*? | (2.0000x 1 crlz 2.0014x10°1%) | 3.464x10°'* | 0.017
Combination| 10~ | 2.901x 1073 | (2.839x 1073, 2.963x 1073) 3.147x10°° | 1.08
Combination| 1072 | 2.063x 106 | (2.054x 106, 2.072x 107°) 4.607x 1077 | 0.223
Combination| 1073 | 2.008x 10°° | (2.0053x 1cr9 2.0111x1079) 1.486x 10719 | 0.0740
Combination| 104 | 2.0019x 1012 | (1.9996x 1&12 2.00096x 1071?) | 3.466x 107 1% | 0.0173

Example 5. Consider finally the topology of Figure 2 where we add an asmfthe third node on the highest path
(between links 2 and 3) to the node just below it, and anotheramnnecting the node between links 8 and 9 and
the node just below it. We will refer to this topology as thénfiast direct” one. Table 3 displays the results. BRE
is actually verified in each case, but the smallest variasabtained for the combined method. The improvement
in the relative error is already significant for the lessaielé caseq = 10-2), and attains an order of magnitude in
the most reliable case considerad={ 10~4).

We have compared the accuracy of estimators for fixed valuganople sizes. On the other hand, computational
times are also different due for instance to the time requicefind mincuts with maximal probability at each step
of the sampling process. Table 4 displays the relative tionghfe ZVA and combination techniques, compared with
CMC, for all the above examples. We see that the additiond) @fe is non-negligible when using importance
sampling, but the BRE property is ensured, and even VRE cawbtsned in some cases.
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Table 3: Empirical results for the topology of Figure 2 witiot additional links between direct paths, foe= 10*
and two values ot.

Method € Estimate 95% Confidence interval Std deviation | Relative error

CMC | 102 | 3271x10° | (3.168x10°5 3.375x10°° | 5.273x10°° | 161
CMC | 107% | 3273x 107! | (3.165x 1071, 3.381x 10°11) | 5.494x 1071 | 1.69

(
(
ZVA 1072 | 3.300x10°° | (3.220x 1075, 3.380x 10°°) | 4.073x 10> | 0.81
(
(
(

ZVA | 104 | 3.255x 10711 | (3.191x 1071, 3.319x 1071Y) | 3.259x 10-11 | 1.02

Comb | 1072 | 3.317x107° | (3.289x 107°,3.344x 107°) | 1.411x107° | 0.42
Comb | 107% | 3.306x 107! | (3.293x 10711, 3.317x 10°1) | 6.153x 10712 | 0.185

Table 4: Empirical relative CPU times for ZVA and the comlinaethods with respect to CMC, when= 10*
and for various values of.

Topology £ ZVA | Combination
Arpanet 1071 | 575 | 100
Arpanet 103 | 635 | 90.4
Arpanet 107° | 639 | 911
Arpanet 106 | 66.3 | 905

Dodecahedron 1071 | 71.8 | 110
Dodecahedron 102 | 70.7 | 935
Dodecahedror} 1073 | 70.6 | 91.2
Dodecahedror] 104 | 705 | 90.5
Almost direct | 102 | 356 | 60.2
Almost direct | 1074 | 36.2 | 612
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