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ABSTRACT

Static network reliability models typically assume that the failures of their components are independent.
This assumption allows for the design of efficient Monte Carlo algorithms that can estimate the network
reliability in settings where it is a rare-event probability. Despite this computational benefit, independent
component failures is frequently not a realistic modeling assumption for real-life networks. In this article
we show how the splitting methods for rare-event simulation can be used to estimate the reliability of a
network model that incorporates a realistic dependence structure via the Marshal-Olkin copula.

INTRODUCTION

The problem of static network reliability modeling and estimation has a wide range of applications in commu-
nication and transportation (Cancela, El Khadiri, and Rubino 2009, Gertsbakh and Shpungin 2010). The
static reliabilityof a network (or graph) is a quantitative measure of the network’s ability to provide service.
It is defined as the probability that a given set of nodes in the graph are connected by operational links, where
each link of the graph is operational with a given probability, called the reliability of the link. Equivalently,
network designers are interested in theunreliability, defined as the complementary probability.

Theexact calculationofnetwork reliability isa#P-completecomputationalproblem(Ball and Provan 1982,
Colbourn 1987). This is why for large networks Monte Carlo techniques are indispensable. Also it is well
known (Gertsbakh and Shpungin 2010) that in highly reliable networks the Crude Monte Carlo (CMC)
method is impractical, because the probability of network failure is a rare-event probability. The search for
efficient Monte Carlo algorithms for such graphs has resulted in a number of variance reduction methods.
Among the most prominent ones are conditional Monte Carlo approaches (Cancela and El Khadiri 2003),
(Cancela et al. 2009, Elperin et al. 1991), (Gertsbakh and Shpungin 2010, Lomonosov and Shpungin 1999),
approximate zero-variance importance sampling (L’Ecuyer et al. 2011), and combinations of these, see
(Cancela et al. 2010). For a survey of some of these methods see (Cancela, El Khadiri, and Rubino 2009).

A salient feature of all of the above Monte Carlo methods is that they assume that the components of
the network fail independently. In this paper we consider the important situation where the link failures
are dependent.

While there are good algorithms designed for special types of dependentcomponent failures, these
can only cope with small networks. These algorithms are typically deterministic (capable of generat-
ing a symbolic reliability expression) and inefficient for large highly reliable networks, because they
rely on cutsets/pathsets (Fard and Lee 1999, Netes and Filin 1996, Nahman 1992, Lin and Yang 2011) or
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graph factorizations (Theologou and Carlier 1991, Kuo, Yeh, and Lin 2007, Biegel 1977, Ahmad 1990,
Chen and Yuang 1996, Ghosh and Singh 1993) whose numbers grow exponentially with the size of the
network.

Our paper contributes to the alleviation of this computational problem by showing how the splitting
method for rare-event simulation can estimate efficiently the reliability of large highly reliable networks with
realistic copula dependence. The aim is to both use one of the most relevantcopula models to account for
real-life component failures and at the same time provide an efficient algorithm for reliability estimation in net-
works driven by such copula models. While there are other possible choices, in this paper we model the depen-
dencies among network components using the realistic Marshal-Olkin shock model. The Marshall-Olkin cop-
ula has been used in risk management in finance (Embrechts, Lindskog, and McNeil 2003). Note that other
types of realistic dependence includecascading failuresmodels (Iyer et al. 2009, Buldyrev et al. 2010),
which we do not consider here in the rare-event setting.

Modeling dependence in static networks has been considered previously, but the existing proposals either
do not offer a viable algorithm to estimate the reliability in the rare-event setting, or do not capture the depen-
dence ina realisticway (Singpurwalla 2002, Ram and Singh 2009),(Walter et al. 2009),(Botev et al. 2012).
For those proposals that consider the rare-event setting, the dependence is typically modeled using a Gaus-
sian, Pareto, or Weibull copula, which do not easily account for rare shock events that can knock out a
multitude of network components simultaneously. As a result, such simple copulastend to overestimate the
real-life reliability of a network. In contrast, it is well known that the more complex Marshall-Olkin copula
meets a number of desirable criteria that make it a good candidate for modeling simultaneous component
failures due to a shock event.

The rest of the paper is organized as follows. In Section1.1 we introduce the the graph evo-
lution approach to modeling static networks as advocated by Elperin, Gertsbakh and Lomonosov, see
(Lomonosov and Shpungin 1999) and (Elperin, Gertsbakh, and Lomonosov 1991). This is followed by
Section1.2, in which we explain how we combine the Marshall-Olkin copula with the graph evolution
approach. Once we have selected a satisfactory copula model, we estimate the corresponding reliability
using a modified version of the splitting method of Kahn and Harris (Kahn and Harris 1951). In Section2
we review the splitting method for rare-event probability estimation and provideimplementation details.
Finally, in Section3 we give a numerical example and an application of the copula model to networks in
which the nodes as well as the links fail. This is followed by a concluding sectiondiscussing possible
directions for future research.

1 STATIC NETWORK MODEL

We begin by defining the prototypical mathematical model for a static network. Suppose we are given the
graphG = (V ,E ) with a set of nodes/verticesV and edges/linksE . Associated with each edgei is a
Bernoulli random variableXi denoting whether the edge is operational (Xi = 1) or failed (Xi = 0). If we label
all edges from 1 tom= |E |, thenX = (X1, . . . ,Xm) represents the configuration of the network, showing
which edges are operational and which are failed. Typically, it is assumedthatX1, . . . ,Xm are independent
andP(Xi = 0) = ui , i = 1, . . . ,m, whereui is the unreliability of edgei. A subset of nodesV0 ⊂ V is
selected a priori and the network (or graph) is said to beoperationalif all nodes inV0 are connected to
each other by at least one path or tree comprising of operational edges.Let Ψ(x) = 1 when the network is
operational, andΨ(x) = 0 otherwise. This functionΨ is referred to as thestructure functionof the graph
(Barlow and Proschan 1975). An important special case is thetwo-terminal network reliabilityproblem,
whereV0 contains only two nodes,V0 = {v0,v1}, andΨ(x) = 1 if and only if there is a path betweenv0
andv1. For example, in the dodecahedron graph on Figure1 we haveV0 = {1,20} and it is operational
when nodes 1 and 20 are connected by a path of working edges. Another special case of interest is the
all-terminal network reliabilityproblem, whereV0 = V , soΨ(x) = 1 if and only if all nodes are connected.
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The unreliability of the networkG is defined as the probability that the nodes inV0 are disconnected,
that is,

u= P(Ψ(X) = 0) .

In the next section we give a different formulation of the reliability estimation problem, which views the
static network as a snapshot of a dynamic one at a given point in time.

Figure 1: A dodecahedron graph with 20 nodes and 30 links (all labeled). The destination nodes (1 and
20) are shaded.

1.1 Graph evolution approach

In our approach we follow the graph evolution formulation in (Elperin, Gertsbakh, and Lomonosov 1991),
(Elperin, Gertsbakh, and Lomonosov 1992), (Lomonosov and Shpungin 1999) and assume that thei-th
link is operational foryi units of time before it finally fails. In other words,yi is the lifetime of thei-th
component of the network. For the time being we assume that the nodes are perfect and do not fail. The
configuration of the network is thus described by the lifetimesy = (y1, . . . ,ym), wherem is the number
of edges. We can signify whether thei-th edge is still alive at timeγ by keeping track of the binary
variablexi(γ) = I{yi > γ}, whereI is the indicator function. Ifxi(γ) = 1, then thei-th link is still alive
or operational at timeγ, and if xi(γ) = 0, then thei-th link has failed at timeγ. We let G (x(γ)) with
x(γ) = (x1(γ), . . . ,xm(γ)) denote the subgraph ofG that contains only the edgesi which are still alive at
time γ, that is, the edges for whichyi > γ or xi(γ) = 1. The network is said to beoperationalat timeγ if
Ψ(x(γ)) = 1.

The lifetime of link i is modelled as a random variableYi with a lifetime distributionFi(y) = P(Yi 6 y)
such thatFi(0) = 0 and, in the case of independent failures,Fi(1) = ui . In other words, the probability
that thei-th edge is not alive at time 1 isui , and the relationship between the Bernoulli indicatorXi and
the lifetime Yi is P(Yi 6 1) = P(Xi = 0) = ui , whereui is the unreliability of edgei. In this case, the
system’s lifetime configuration is described byY = (Y1, . . . ,Ym). The natural interpretation is that at time 0
all the links are in perfect working condition, then they start to age, and after a working life ofYi units of
time, thei-th edge fails. Gradually, more and more edges fail, until finally there is no path connecting the
destination nodes and the network has failed. Elperin, Gertstbak, and Lomonosov call this thedestruction
process. In the destruction process the operational state of each link at timeγ is a random binary vector
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X(γ) = (X1(γ), . . . ,Xm(γ)) with X(1)≡ X. Thus, the network unreliabilityu can be written as:

u= P(Ψ(X(1)) = 0) = P(S(Y)< 1),

whereS(Y) is the last time the network is operational, that is,

S(Y) = sup{γ > 0 : Ψ(X(γ)) = 1} .

We evaluateS(Y) for a givenY using the following straightforward depth first search algorithm.

Algorithm 1 : EvaluatingS(Y)

Require: lifetimes Y
Let π = (π1, . . . ,πm) be the permutation of the edges 1, . . . ,m such that

Yπ1 <Yπ2 < · · ·<Yπm .

Let b= 1 and considerG (X(Yπb)), in which edgesπ1, . . . ,πb are failed andπb+1, . . . ,πm are working.
while Ψ(X(Yπb)) = 1 (verified using depth first search, for example)do

b← b+1
return S(Y) =Yπb−1 as the time at which the network fails for the first time.

Crude Monte Carlo estimatesu by generatingn independent realizations ofY, and taking the average
of then replicates of{S(Y)< 1} as an estimator ofu, or equivalently taking the average of then replicates
of Ψ(X(1)) as an estimator of the reliabilityr = 1−u. The square relative error (the relative variance) of
this estimator ofu is

Var(1
n ∑n

i=1I{S(Yi)< 1})
u2 =

Var(I{S(Yi)< 1})
nu2 =

u−u2

nu2 =
r

nu
,

which increases to infinity whenu→ 0. For highly reliable networksu is very small so we have a rare-event
probability, andn must be very large to get a meaningful estimator. For example, ifu= 10−10, we need
n> 1012 to obtain a relative error below 10%. This inefficiency is the reason why theeclectic variance
reduction methods surveyed in the introduction have been proposed.

1.2 Lifetime shock model

One of the reasons for working within the graph evolution framework above is that since each link is
assigned a lifetime, we will be able to use lifetime shock models, which can capturedependencies amongst
random lifetimes (Singpurwalla 2006). An example of such a suitable model is the Marshal-Olkin copula.

For example, the bivariate Marshal-Olkin copula with exponential marginals isthe only bivariate
distribution satisfying the desirable bivariate lack of memory property. IfY1 andY2 denote the exponential
lifetimes of the two interdependent components, then these lifetimes can be defined in terms of three
independent exponential random variablesZ1,Z2,Z1,2:

Y1 = min{Z1,Z1,2}, Y2 = min{Z2,Z1,2}

with intensitiesλ1 = − ln(1− u1), λ2 = − ln(1− u2), and λ1,2 = − ln(1− u1,2), respectively. Here the
parameterλ1,2 captures the intensity of the interdependence between components 1 and 2 so that the
probability of occurrence of the common shock event isP(Z1,2 < 1) = u1,2. The joint survival function is

P(Y1 > y1,Y2 > y2) = P(Z1 > y1)P(Z2 > y2)P(Z1,2 > max{y1,y2}) = e−λ1y1−λ2y2−λ1,2 max{y1,y2} ,
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from where we can conclude that the joint density ofY1 andY2 is discontinuous, and the marginal distributions
of the lifetimesY1 andY2 are exponential and satisfy the memoryless property:

P(Y1 > y1+a,Y2 > y2+a|Y1 > a,Y2 > a) = P(Y1 > y1,Y2 > y2) .

For a network withm lifetimesY1, . . . ,Ym the copula model generalizes as follows. LetS be the set of all
subsets of{1, . . . ,m}. Thus, without any restrictions the size ofS is 2m−1. Each subsets∈S represents a
collection of components that can be knocked out simultaneously due to a single shock event. For example,
in the bivariate case there are three subsetss1 = {1}, s2 = {2}, ands3 = {1,2}, giving S = {s1,s2,s3}.
The lifetimes of the network can be expressed in terms of|S | independent exponential random variables:

Yi = min
s:i∈s

Zs, i = 1, . . . ,m ,

whereZs are independent with densitiesλse−λs z, z> 0 for all s ∈S . Given the setS and the lifetime
intensitiesλs = − ln(1−us), s ∈S , the crude Monte Carlo estimator ofu consists of the average ofn
replications of the indicator:

I{S(Y)< 1}, Yi = min
s:i∈s
s∈S

Zs, for all i = 1, . . . ,m ,

where theZs are independent and exponentially distributed such thatP(Zs < 1)= 1−e−λs = 1−eln(1−us) = us.
Before continuing with the splitting method for the estimation ofu, we switch to working with normally

distributed lifetimes, instead of exponentially distributed ones. We do this to make the application of the
hit-and-run Markov chain algorithm in Section2 easier. The hit-and-run sampler is most suitable when
sampling from spherically symmetric distributions on a restricted set (Chen and Schmeiser 1996). If the
Yis are expressed in terms of normally distributed (as opposed to exponentiallydistributed) lifetimes:

Yi = min
s:i∈s
s∈S

Zs, Zs ∼ N(µs,1), µs
def
= 1−Φ−1(us), independently for alls ∈S , (1)

where Φ−1 is the inverse of the cdf of the normal distribution, then the distributional properties of
Xi(1) = I{Yi < 1}, i = 1, . . . ,m do not change compared with the exponentially distributed case. For
example, the probability of occurrence of each of the shock events remains unchanged:P(Zs < 1) = us for
all s ∈S .

Finally, if vectorZ = (Zs1,Zs2, . . .) collects all the variables{Zs, s∈S } andY is completely determined
from Z via (1), then we can introduce the shorthand notationS∗(Z) ≡ S(Y) and simply write the crude
Monte Carlo estimator as

1
n

n

∑
k=1

I{S∗(Zk)< 1}, Z1, . . . ,Zn
iid∼ N(µ , I) ,

where µ def
= (µs1,µs2, . . .) collects all the parameters of the shock random variables, andI is the n× n

identity covariance matrix.

2 GENERALIZED SPLITTING FOR RELIABILITY ESTIMATION

To estimate the reliability of a network under the Marshall-Olkin copula we use theGeneralized Splitting
(GS) method described in (Botev et al. 2012) (which is an adaptation of the splitting method of Kahn and
Harris). Here we use the splitting procedure with the following important difference. In (Botev et al. 2012)
we use the construction process, in which all components are initially failed and Y is a vector of repair
times indicating the time at which each component of the network is repaired and becomes operational.
The network is thus gradually “constructed” over time and we wish to estimateu= P(S(Y)> 1), where
S(Y) is interpreted as the first time the network becomes operational, given the repair timesY. In contrast,
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in this article we use the destruction process, in which all components are initiallyoperational andY is
a vector of lifetimes indicating the time at which each component of the network fails. The network is
hence gradually “destroyed” over time and we wish to estimateu= P(S(Y) < 1), where, as mentioned
previously,S(Y) is the last time the network is operational, given the destruction over time. The reason
for using the destruction process instead of the creation process is so that the network model fits the joint
failures from the Marshal-Olkin copula.

With this modification, the GS algorithm will read as follows. We select an integers> 2, called the
splitting factorand another integerτ > 0. Then we select intermediate levels∞= γ0 > γ1 > γ2 > · · ·> γτ = 1,
for which

ρt
def
= P(Ψ(X(γt)) = 0|Ψ(X(γt−1)) = 0) = P(S(Y)< γt |S(Y)< γt−1)

= P(S∗(Z)< γt |S∗(Z)< γt−1)≈ 1/s
(2)

for t = 1, . . . ,τ, except forρτ , which can be larger than 1/s. Theseγt represent the levels of the splitting
algorithm andτ is the number of levels. Good values forτ and{γt} can be estimated by an (independent)
adaptive pilot algorithm, as explained in the Appendix. In (Botev et al. 2012) we argue thats= 2 is a
good choice that yields satisfactory empirical results. Thus, we will uses= 2 for the rest of the paper.

For each levelγt , we run a hit-and-run (Kroese, Taimre, and Botev 2011, Page 240) Markov chain
{Zt, j , j ≥ 0} having a stationary density equal to the density ofZ conditional onS∗(Z)< γt . We can write
this stationary density as

ft(z)∝ I{S∗(z)< γt}∏
s∈S

e−
1
2(zs−µs)

2
, t = 0, . . . ,τ , (3)

where by conventionf0 is the unconditional density ofZ. The transition kernel density of the hit-and-run
Markov chain, which is the density of the next stateZt, j conditional on the current stateZt, j−1, is denoted
by κt(· |Zt, j−1) and defined implicitly via the following algorithm.

Algorithm 2 : Transition densityκt(· |zt, j−1) defined via hit-and-run sampling

Require: Initial stateZt, j−1 such thatS∗(Zt, j−1)< γt and a positive integerβ .
Z0← Zt, j−1

for i = 1, . . . ,β do
generate a vectord uniformly distributed over them-dimensional unit sphere
generate a random scaleΛ∼ N((µ −Zi−1) ·d,1) // here· denotes the vector dot product
if S∗(Zi−1+Λd)< γt then

Zi ← Zi−1+Λd
else

Zi ← Zi−1

return Zt, j ← Zβ .

The indentation in the algorithm above demarcates the scope of theif, else, andfor statements. Note
that to evaluateS∗(Z) we simply determineY from Z and use Algorithm1 to computeS(Y) = S∗(Z).
In the algorithm aboveβ is a positive integer that can be 1. However, a higher value forβ reduces the
Markov chain dependence between the input stateZt, j−1 and the output stateZt, j . In our simulations we
useβ = 30. Note that while there are many possibilities for constructing a Markov chain with stationary
density (3), here we use the hit-and-run Markov chain, because it yields simple updating rules, regardless
of the Marshall-Olkin dependence structure.

GeneratingZ conditional onS∗(Z) < γ0 is the same as generating it via (1). If a generated stateZ
satisfiesS∗(Z)< γ1, then its distribution is obviously the distribution ofZ conditional onS∗(Z)< γ1, so
that the underlyingZ has densityf1. At the t-th stage, if the Markov chain starts from a state having
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density ft−1 and evolves according to the kernelκt−1(· | Zt−1, j−1), then each visited state also has density
ft−1 — the stationary density for the kernelκt−1. With this in mind, the GS algorithm reads as follows.

Algorithm 3 : generalized splitting algorithm; returnsW, an unbiased estimate ofu
Require: s,τ ,γ1, . . . ,γτ ,S ,µ // use the adaptive algorithm in Appendix to get splitting levels

Z1← /0
for j = 1. . . ,s do

Let Z j = (Zs1,Zs2, . . .), whereZs ∼ N(µs,1) for all s ∈S independently.
if S∗(Z j)< γ1 then

addZ j to Z1 // Set of statesZ that have reached levelγ1

for t = 2, . . . ,τ do
Zt ← /0 // set of statesZ that have reached the levelγt ; initially empty
for all Z0 ∈Zt−1 do

for j = 1, . . . ,s do
sampleZ j from the densityκt−1(· | Z j−1)
if S∗(Z j)< γt then

addZ j to Zt

return W← |Zτ |/sτ as an unbiased estimate of the unreliabilityu.

In the script above,Zt stands for the collection of vectorsZ, which yield lifetimesY that have reached
the levelγt . Note that Algorithm3 states the procedure with a single starting chain (trajectory) and gives the
unbiased estimatorW of the unreliabilityu. In practice, we runn times Algorithm3 to obtainn independent
realizationsW1, . . . ,Wn and deliver the estimator

û=
1
n

n

∑
i=1

Wi , (4)

with estimated relative error̂σn/(û
√

n), whereσ̂2
n = 1

n ∑n
i=1(Wi− û)2. In the Appendix we show that under

two idealizing assumptions, this estimator is logarithmically efficient as the unreliabilityu goes to zero.

3 NUMERICAL EXPERIMENTS

Now that we have a computational tool for estimating the reliability under the Marshal-Olkin copula, we
can consider the types of dependencies that we wish to model. First note that if S is unrestricted and
we consider all possible interactions among the component failures, then thenumber of parameters in the
Marshal-Olkin copula grows exponentially with the number of components. For a relatively small network
with a mere 100 components the number of possible interactions is already above 2100−1≈ 1030, and thus
computationally unmanageable. Thus, to make the model scalable, one has to restrict the size ofS and
consider only subsets of possible dependencies. Which subsets are most suitable depends on the particular
modeling requirements and will in practice be determined on a case by case basis. We now give an example
of such specific modeling.

One of the common assumptions in static network models is that the nodes do not fail and hence all failures
are (independent) link failures (Aggarwal, Gupta, and Misra 1975, L’Ecuyer, Saggadi, and Tuffin 2011,
L’Ecuyer and Tuffin 2011). In reality nodes also fail, exacerbating the reliability of the network, and
we must take their fallibility into account. Node failure can be elegantly accounted for by observing
that the failure of a node is equivalent to the simultaneous failure of the linksincident to that node
(Aggarwal, Gupta, and Misra 1975, Fard and Lee 1999, Nahman 1992).

For example, consider the dodecahedron network, a popular benchmark problem, in Figure1. The
failure of node 1 has the same effect as the simultaneous (due to a shock event) failure of links 1,2,3.
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Thus, by making the links incident to each node dependent on a common shock event, we can account for
the node failures and avoid overestimating the reliability of the network.

As a numerical example consider the dodecahedron network with fallible nodes. Since the degree of
connectivity of this network is 3 (meaning that there are 3 links emanating fromeach of the 20 nodes),
the copula model has 20 parameters describing the joint failure of all triplets of components incident to a
node. For example, some of these triplets in Figure1 are(2,7,6),(6,12,14),(22,14,23), corresponding to
nodes 3,7, and 13, respectively. Taking into account the failure of each of the 30 links individually, we get
that the size ofS is 20+30= 50. Thus in this setting the number of parameters in the copula is always
under control. Table1 shows the reliability of the dodecahedron network under the perfect andimperfect
nodes assumption.

Table 1: Reliability of dodecahedron network with and without node failures. Here V0 = {1,20} and
n= 104.

imperfect nodes perfect nodes
us û estimated rel. error CPU time min. û estimated rel. error

10−1 0.15 1.1% 5 0.0028 1.3%
10−2 0.0014 2.1% 25 2.05×10−6 1.9%
10−3 5.40×10−5 3.1% 41 2.02×10−9 2.4%
10−4 4.72×10−6 3.6% 47 2.01×10−12 2.8%
10−5 4.52×10−7 4% 64 1.98×10−15 3.1%
10−6 4.59×10−8 3.5% 65 1.96×10−18 3.5%

While in the imperfect node case|S |= 50, in the perfect node caseS = {1,2,3, . . . ,30} (the copula
reduces to the independent component failure case). In both casesus = P(Zs < 1) is the same for alls ∈S ,
(which means that the node failure probability is the same as the link failure probability) and û and its
estimated relative error are obtained via (4) with n= 104. Note that the relative error grows slowly when
the network becomes more and more reliable.

As expected from Table1 we can see that the reliability of the network is much lower when the nodes
are considered imperfect and having the same reliability as a link. This exampleshows that node failures
are a special case of the more general Marshall-Olkin copula for dependent component failures.

CONCLUSIONS

Network reliability computation requires smart time-saving Monte Carlo simulation strategies even under the
simplifying assumption of independent component failures. When the independence assumption is relaxed
the complexity of reliability estimation becomes more challenging. In this article we have shown how the
(rare-event) probability of failure of highly reliable static binary networksgoverned by a Marshall-Olkin
copula model can be estimated via the GS algorithm — the static version of the splittingmethod of Kahn
and Harris.

As future research we intend to consider the Network Planning Problem (NPP). The objective of
the NPP is to optimally purchase a collection of links, subject to a fixed budget, so as to maximize the
network reliability. We intend to consider this NP-hard integer optimization problem under the additional
complication of dependent link failures.

The dependence model considered here also makes analysis of stochastic flow networks with rare-event
effects more challenging. In stochastic flow networks one is interested in the(rare-event) probability that the
network capacity exceeds a given network demand, where instead of having thei-th link assigned a random
lifetime, each link has a (discrete or continuous) random flow capacity. Thesplitting approach presented
here may also allow practitioners to handle stochastic flow networks with dependent link capacities.
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APPENDIX

Here we briefly present the pilot splitting algorithm used to determineτ andγ1, . . . ,γτ . This algorithm is
an modification of the one given in (Botev et al. 2012). We have tailored the algorithm to the destruction
process, instead of the construction process.

Suppose we are given the splitting factors= 2. Initially, we generatem×s independent statesZ from
N(µ , I), and determine a threshold parameterγ1 so that exactlym of them haveS∗(Z)6 γ1. Then at each
stept, for t = 2,3, . . . , we run fors steps the hit-and-run Markov chain in Algorithm2 with stationary
density (3) from each of thosem statesZ for which S∗(Z)6 γt−1. This gives anotherm×s states and we
select a parameterγt so that exactlym of them haveS∗(Z)6 γt . This is done untilγt ≤ 1 for somet. Then
τ is set to thist and we putγτ = 1. This iterative procedure is summarized in the following algorithm.

Algorithm 4 Adaptive splitting sampler.
Require: S ,µ and splitting factors= 2

Z1← /0
for i = 1 to m×s do

generate a vectorZ∼ N(µ , I) and add it toZ1

sort the elements ofZ1 by decreasing order ofS∗(Z) = S(Y), sayZ(1), . . . ,Z(m×s)

γ1← [S∗(Z(m))+S∗(Z(m+1))]/2
t← 1
while γt > 1 do

t← t +1
Zt−1←{Z(1), . . . ,Z(m)} // retain only the best performingm elements fromZt−1

Zt ← /0
for all Z0 ∈Zt−1 do

for j = 1 to s do
sampleZ j from the hit-and-run sampler in Algorithm2 and add it toZt

sort the elements ofZt by decreasing order ofS∗(Z), sayZ(1), . . . ,Z(m×s)

γt ←max{[S∗(Z(m))+S∗(Z(m+1))]/2,1}
τ ← t

return τ ,γ1, . . . ,γτ

In this algorithm,Zt denotes a set of vectorsZ for which S∗(Z)6 γt−1. When this set containsm×s
elements, we sort it to retain them vectors having the smallest value ofS∗(Z), and we remove the other
vectors from this set. The threshold parameterγt is placed midway between them-th and the(m+1)-th
smallest values ofS∗(Z).

Ideal Case Analysis of GS Algorithm

We present an analysis of the asymptotic performance of the GS algorithm under two idealizing assumptions,
which hold only approximately in practice. The first assumption is that the hit-and-run Markov chain in
Algorithm 2 mixes perfectly. In other words,Zt, j andZt, j−1 are independent of each other andZt, j follows
the conditional density (3) exactly. In practice,Zt, j and Zt, j−1 are dependent and this dependence is
attenuated asβ is increased. Note that this simplifying assumption is standard in analyzing similar splitting
algorithms (Guyader et al. 2011). The second assumption is that the pilot algorithm selects the levels{γt}
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so that the conditional probabilitiesρt in (2) are exactly (as opposed to approximately) equal to 1/s for all
t.

Let Nt = |Zt | be the random number of points or states that have reached levelγt at thet-th iteration
of the GS Algorithm3. Initially we haveN0 = 1, because Algorithm3 runs a single trajectory. In this
setting and under the above assumptions, each stateZ j can either yields offspring points or zero points
and all states yields offspring with the same probability. If we denote the number of offspring ofstate j
in the t-th iteration byQ j,t , then we have the branching process recursion:

Nt+1 = Q1,t +Q2,t + · · ·+QNt ,t ,

whereP(Q j,t = s) = ρ = 1/s, P(Q j,t = 0) = 1− ρ. Thus,E[Q j,t ] = sρ = 1, Var(Q j,t) = s− 1,and we
have via standard branching process arguments (Harris 1989, Page 6) thatE[Nt ] = 1, Var(Nt) = t(s−1) .
Hence, for the unbiased estimatorW = Nτ/sτ in Algorithm 3 we obtain Var(W) = τ(s− 1)/s2τ with
τ = ⌊− lns(u)⌋=− lns(u) from Assumption 2.

Recall that an estimator̂u of u is logarithmically efficient(Kroese et al. 2011, Page 382) if the following
condition holds:

limsup
u↓0

∣∣∣∣
ln(Var(û))

ln(u2)

∣∣∣∣> 1 .

For the logarithmic efficiency criterion we thus obtain

lim
u↓0

∣∣∣∣
ln(Var(W))

ln(u2)

∣∣∣∣= lim
u↓0

∣∣∣∣
ln(τ(s−1))−2τ ln(s)

−2τ ln(s)

∣∣∣∣= lim
τ↑∞

∣∣∣∣
ln(τ(s−1))−2τ ln(s)

−2τ ln(s)

∣∣∣∣= 1 .

Therefore, under the two idealized assumptions the estimatorW and hencêu in (4) is logarithmically
efficient. Next, note that the total simulation effort (proportional to computingtime) in Algorithm3 is the
random variables(N0+ · · ·+Nτ−1) with expected valuesτ. Hence, the expectedrelative time variance
product is given by

Var(W)

u2 × (sτ) = τ(s−1)× (sτ) = τ2s(s−1) = [lns(u)]
2s(s−1) =

[ln(u)]2s(s−1)
[ln(s)]2

,

which is minimized as a function ofs for s> 1 ats= 1.9036969... (s= 2 when constrained on the integers).
This theoretical finding agrees with empirical results that the best performance of the GS occurs when the
splitting factors= 2.
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