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ABSTRACT

We develop customer delay predictors for multi-skill call centers that take into inputs the queueing state
upon arrival and the waiting time of the last customer served. Many predictors have been proposed and
studied for the single queue system, but barely any predictor currently exists for the multi-skill case. We
introduce two new predictors that use cubic regression splines and artificial neural networks, respectively,
and whose parameters are optimized (or learned) from observation data obtained by simulation. In numerical
experiments, our proposed predictors are much more accurate than a popular heuristic that uses as a predictor
the delay of the last customer of the same type that started service.

1 INTRODUCTION

1.1 Context and Problem

We study delay predictors for multi-skill call centers, where the goal is to estimate the time that a customer,
upon arrival, must wait before starting service with an agent. In multi-skill centers, customers are categorized
by call types, and agents are divided into groups based on the subset of call types that they have the ability
to handle (which defines their skill set). An agent can serve a customer only if he/she possesses the skill
for that call type. Gans, Koole, and Mandelbaum (2003) give a thorough description of the operational
aspects of call centers. In this paper, we use the words “customer” and “call” interchangeably, and the
same for “server” and “agent”.

A major contrast between the multi-skill and the traditional and well-studied single-skill system (one
call type and one agent group) is the importance played by the routing policy on the dynamics of a multi-skill
call center. The router manages the waiting queues and assigns calls to idle agents; see Chan, Koole, and
L’Ecuyer (2014) for a study of various routing policies. In this paper, we assume one waiting queue per
call type and calls of the same type are handled first-come, first-served (FIFO). However, calls of different
types may be handled in varying order depending on their priorities and on the availability of agents. With
a single FIFO queue, future arrivals do not affect the waiting times (delays) of current customers, but this
is not necessarily true in the multi-skill case. Predicting delay times in multi-skill call centers is much
more difficult.

Waiting time has an important impact on the quality of service experienced by customers in several
types of service systems, not only call centers. For example, statistical studies have been made to measure
the negative effect of the delay experienced by travelers at an airport, customers at a restaurant, and patients
at a hospital (Taylor 1994; Dubé-Rioux, Schmitt, and Leclerc 1989; Mowen, Licata, and McPhail 1993).
Good predictors of the delay can be useful in these other types of systems as well. One particularity of call
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centers is that although the state of the queues and the customer abandonments are monitored continuously
by the routing device, this information is accessible only from the managerial side, and is generally invisible
to the customers, unless there is a mechanism of delay announcement. Some call centers may also propose
the option of calling back the customer if the predicted waiting time is deemed too long. After learning
the estimated delay, the customer may choose to stay in queue, abandon, or ask to be called back later
(Armony and Maglaras 2004). Providing such an option requires a good delay predictor.

1.2 Literature Review

Recently, there has been a growing number of studies on delay time prediction and announcement for
single-skill call centers, but for the general multi-skill setting there has been very limited work, and only
on small models. See Nakibly (2002), for example. The research literature is roughly divided in two main
categories. Several papers study the delay prediction along with the effects of delay announcement on the
behavior of the customers; see, e.g., Whitt (1999a), Guo and Zipkin (2007), Armony, Shimkin, and Whitt
(2009), Jouini, Dallery, and Aksin (2009), and Jouini, Dallery, and Aksin (2011). A recurrent conclusion is
that delay announcement helps reduce system congestion and service output, because impatient customers
balk upon arrival (immediate abandonment), so fewer (patient) callers wait. A second branch of research
focuses exclusively on delay predictions, without considering the impact on the behavior of customers.
The work of Whitt (1999b), Ibrahim and Whitt (2008, 2009a, 2009b, 2010, 2011a, 2011b), and Ibrahim,
Armony, and Bassamboo (2015), as well as the present paper, fall into this category.

Two major families of delay predictors have been studied for call centers. Following the terminology
of Ibrahim and Whitt (2009b), they are the queue-length (QL) based estimators and the delay-history (DH)
based estimators. QL-based predictors essentially use the state of the queues and the system parameters to
estimate the waiting time. For the single GI/M/s queue (with general inter-arrival time, exponential service
time with rate µ , s servers, and no abandonments), it is well-known that the expected waiting time of a
customer when all servers are busy and n other customers are waiting in queue in front of that customer
is (n+ 1)/sµ (regardless of how long the customer has been waiting). For the GI/M/s+M model with
abandonments (exponential patience time with rate ν), this expected waiting time is ∑

n
i=0(sµ + iν)−1 (Whitt

1999b). Ibrahim and Whitt (2009b) and Ibrahim and Whitt (2011b) propose other variants of QL-based
predictors.

The DH-based predictors, on the other hand, mainly use past delay information, instead of the state
of the queues and system parameters, to estimate the waiting time of a new customer. Nakibly (2002),
Armony, Shimkin, and Whitt (2009), and Ibrahim and Whitt (2009a) propose simple heuristic predictors
that return the delay times experienced by previous customers. As examples of DH-based predictors, one
may return the waiting time of the last customer to enter service (LES), the customer at the head of the
line (HOL), the last customer to complete service (LCS), or the most recently arrived customer to complete
service (RCS).

Ibrahim and Whitt (2009a, 2011a, 2011b) compare QL- and DH-based predictors in the context of a
single queue, by means of simulation and analytical comparisons. They conclude that QL-based predictors
are generally more accurate and preferable to DH-based ones, if all the information that goes into the formula
is available. Among the DH-based predictors mentioned above, LES and HOL are the best performers
in their study, and their performance is comparable. These DH-based predictors also perform about the
same as the QL-based predictors when the arrival rate and staffing are constant in time (or do not vary
much), but their relative accuracy decreases when the time-variability of the arrival process increases. The
DH-based predictors are attractive in practice because they require little and only observable information.
They are easier to extend to the multi-skill setting and they may be more robust than QL-based predictors
when dealing with unexpected events and unknown parameters. Unfortunately, the QL-based predictors
mentioned above do not apply to multi-skill centers and are not easy to adapt, especially when some agents
have several skills.
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1.3 Objective

This paper focuses on delay prediction in multi-skill call centers. This is an important problem that has
barely been studied in the literature. Our main goals are: (i) to test the accuracy of the LES predictor in the
multi-skill setting, and (ii) to propose new delay predictors that could compete with LES and eventually
be more accurate. We do not directly consider the QL-based predictors since they do not extend naturally
to the multi-skill context. They would need to take into account the skill sharing of the agents and the
routing policy, and this appears complicated and difficult. Nevertheless, our new estimators use the queue
lengths as input, in combination with other information.

Our proposed delay predictors are based on a heuristic approach that combines function approximation,
machine learning, simulation, and ideas from single queue predictors. For each call type k, the predictor
is a parameterized nonlinear function of the delay time of the last customer of type k who entered service
(as in LES), the current queue length for call type k, and the queue lengths for all types i 6= k for which
there is an agent that can serve both types k and i. The parameter vector that defines the function is
“optimized” (or learned) to minimize the mean square prediction error, based on either real historical data
or data obtained from simulation with a model of the call center. In our experiments, we do the latter. We
consider two types of predictor functions: (i) one defined by regression (smoothing) splines and (ii) the
other defined by an artificial neural network. When a new customer enters queue k, the predictor function
is evaluated, after observing the required inputs. The new predictors can be seen as extensions of LES,
or partial combinations of LES and QL-based estimators. They require an extra “initialization” (learning)
step.

1.4 Structure of the Paper

The remainder is organized as follows. Section 2 describes the general multi-skill call center model.
Section 3 presents the new proposed delay predictors, the input information they use, their parameters, and
explains how these parameters are estimated (or learned). Numerical experiments with a single queue and
two N-model call centers (with two call types and two agent groups) are reported in Section 4. Finally,
concluding remarks are given in Section 5.

2 CALL CENTER MODEL

We consider a general multi-skill call center model in which each customer is categorized into one of the
K possible call types, and agents are divided into G groups. An agent of group g ∈ {1, . . . ,G} has the skill
set Sg ⊆ {1, . . . ,K} which defines the set of call types she can serve. The opening hours of the call center
are divided into P time periods of equal length. Since we use simulation and do not rely on any queueing
formulas, the arrival process, service times, and patience times can have very general distributions. Their
choice does not affect the mechanism of our delay predictors. In our numerical examples, we shall assume
that for call type k, the arrival process is a Poisson process with a constant rate λk,p over each period p, so
the vector of arrival rates over the P periods is λk = (λk,1, . . . ,λk,P). These arrival processes are assumed
independent across call types. For type k, the service times are assumed exponential with mean 1/µk, the
patience times are exponential with mean 1/νk, and all these random variables are independent. A customer
abandons the queue once her waiting time exceeds her patience time. We do not model retrials. There is
no service preemption, which means an agent cannot interrupt a call in service. Let sg = (sg,1, . . . ,sg,P) be
the staffing vector of group g, where sg,p is the number of agents from that group working in period p.
Agents in the same group are considered homogeneous.

There is one waiting queue per call type. A new call of type k is placed at the end of queue k if, upon
its arrival, there is no idle agent with the skill to serve it. The router assigns calls to idle agents according
to a routing policy, which we leave open for now. It will be specified in our examples. There is no callback
option and we assume that the delay predictions have no influence on the behavior of the customers or on
the operations of the call center.



Thiongane, Chan, and L’Ecuyer

3 DELAY PREDICTORS

3.1 Approximating the Conditional Expectation of the Delay

The waiting time W > 0 of a given customer that enters a queue and waits until its service begins is a
random variable whose distribution depends on the type k of the arriving customer and on the state of the
system when the customer arrives. As a simplistic predictor of W , one may just take the global average
waiting time for type k customers, which can be estimated by simulation (we assume that a simulation
model of the system is available). This predictor is the unconditional expectation of W , Ek[W ], when we
take only k into account and we look at no other information. It is called the No-Information (NI) predictor
(Ibrahim and Whitt 2009a). (Note that we have defined W only for a customer that enters the queue and
waits until being served, so the expectation is always conditional on this.)

To make better predictions, the general idea is to observe the state of the system when the customer
enters the queue and return an estimate of the expectation of W conditional on that state (given k). In
practice, we will select some information xxx from the system’s state, and compute an approximation of
the conditional expectation Ek[W | xxx], which depends on k. This approximation is defined by a predictor
function Fk,θ (xxx) of the observed (input) information vector xxx, where θ is a parameter vector estimated (or
learned) previously.

In this paper, we take xxx = (t,q,rrr) where t is the waiting time of the last call of type k to have entered
service, q is the number of calls already in queue k, and rrr is a vector that contains the size of each queue
j 6= k such that there is at least one agent with both skills k and j.

We consider two ways of constructing the functions Fk,θ . In the first one, each function is a smoothing
(least-squares regression) cubic spline which is additive in the input variables. In the second one, the
function is defined by a deep feedforward multilayer artificial neural network (ANN). They are described
below. We will compare them with LES and also with the simplistic NI predictor that always returns the
average waiting time as a prediction (it corresponds to taking xxx as empty).

The predictors are compared via the mean squared errors (MSEs) of predictions. If E = Fk,θ (xxx) is the
predicted delay for a “random” customer of type k that opts to wait and W is its realized waiting time, the
MSE for type k calls is defined as

MSEk = E[(W −E)2].

We cannot compute this MSE exactly, so we estimate it by its empirical counterpart (and consistent
estimator), the average squared error (ASE) of the predictions. If Ck customers of type k have completed
a nonzero waiting time until starting their service, and had predicted delays Ek,1, . . . ,Ek,Ck and realized
delays Wk,1, . . . ,Wk,Ck , then the ASE for type k is

ASEk =
1

Ck

Ck

∑
c=1

(Wk,c−Ek,c)
2.

Note that we consider only the customers who experience a positive waiting time, Wk,c > 0, and who wait
until they receive service. This differs from Ibrahim and Whitt (2009a), who also include virtual delays
for customers who have abandoned.

To estimate (or learn) the parameter vector θ , we use a learning data set generated by simulation.
Let Ck be the number of observed calls of type k with positive wait time and that received service in
the simulation. Suppose the cth call among those has an observed waiting time of Wk,c and that the
corresponding information vector xxx when this call arrived is xxxk,c. We would like to select θ to minimize
(w.r.t. θ ) the ASEk as defined earlier, with Ek,c = Fk,θ (xxxk,c). However, other factors may also enter the
objective function; for example the smoothness of the predictor function in the case of the splines (see
below).
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3.2 Regression (Smoothing) Splines (RS)

Splines provide a well-known and powerful class of approximation methods for general smooth functions (de
Boor 1978). Here we use smoothing cubic splines, for which the parameters are estimated by least-squares
regression together with a penalty term on the function variation, to promote smoother functions. We also
restrict ourselves to additive splines, which can be written as a sum of one-dimensional functions. That is,
if the information vector is written as xxx = (x1, . . . ,xD), the additive spline predictor can be written as

Fk,θ (xxx) =
D

∑
d=1

fd(xd),

where each fd is a one dimensional cubic spline. The parameters of all these spline functions fd form the
vector θ . These parameters must satisfy the constraints that the successive pieces of the spline (which are
cubic polynomials) have their first and second derivatives equal at the border. To estimate the parameters,
we use the function gam implemented in the package mgcv for the R statistical software (Wood 2006, R
Core Team 2014). The number of knot points and the smoothing factors are chosen automatically by the
package, based on the data.

3.3 Artificial Neural Networks (ANNs)

ANNs are another very popular and effective way to approximate complicated high-dimensional functions.
One recent trend is deep learning, which refers to the use of ANNs with several layers of neurons (Bengio,
Courville, and Vincent 2012). We adopt this technology here. To train the ANN (i.e., estimate a good
parameter vector θ ), we use the state-of-the-art software Pylearn2 (Goodfellow et al. 2013). We have
selected a deep feedforward ANN in which the outputs of nodes at layer l are the inputs of every node at the
next layer l+1. In our numerical examples, we use five layers: one input layer, three hidden layers and one
output layer. The number of nodes at the input layer is equal to the number of elements in the parameter
vector xxx, and the output layer has only one node which returns the estimated delay. Each hidden layer has
180 nodes. For each hidden node (Glorot, Bordes, and Bengio 2011), we use a rectifier activation function
h(zzz) = max(0,b+www · zzz), in which zzz is the vector of inputs for the node, while the intercept b and the vector
of coefficients www are parameters learned by training. The (large) vector θ contains all these parameters.
This type of activation function has been proposed recently, and it is thought to represent more faithfully
the biological mechanism of a neuron than the conventional sigmoid and hyperbolic tangent functions.
The parameters are learned by a back-propagation algorithm that uses a gradient descent method (Bishop
2006).

These ANNs are very powerful, but one drawback is that they requires larger training samples and their
training can be much more time-consuming than other regression techniques such as splines. To speedup
the learning, we use data aggregation, as follows. The idea is to aggregate observations whose values of
xxx are almost the same, and replace them by a single observation (xxx′,w′), where w′ is the average waiting
time for the observations that have been aggregated. This new aggregated observation will have a weight
proportional to the number of original observations that were aggregated into it. To form the groups that
are aggregated, we first regroup all observations xxx having the same pair (q,rrr), then divide each of those
groups into 20 subgroups of approximately equal size according to the value of t. For this, we use the
5%, 10%, 15%, . . . , quantiles with respect to t as separators to make the subgroups, then aggregate each
subgroup. The aggregated observation is (xxx′,w′) = ((t ′,q,rrr),w′), where w′ is the average delay for the
subgroup and t ′ is the midpoint of the interval between the corresponding quantiles. The set of aggregated
observations is used as the new training data set.

4 NUMERICAL EXPERIMENTS

We compare the performance and accuracy of the LES, RS and ANN predictors by simulating small models
of call centers. We start with the classical (single) M/M/s queue as a formality, to see if our RS and
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ANN predictors are competitive with the best predictors available for this simple model. Next, we test our
predictors on two N-models of call centers, one with small queues and short waits and the other one with
long queues and long waits.

To train the RS and ANN predictors, we generate call observations from 100 simulation replications.
For the ANN, we take 80% of the observations as the training data and the remaining 20% as the test data
used to measure the fitting, which is used to select the best parameter θ among those found in the training.
To compare the ASE of the different predictors, we generate an independent set of observations by running
another 100 simulation replications, and we use this same set to compute the ASE for all the predictors,
so the predictors are effectively compared on the same data. All times are measured in seconds.

4.1 Experiments with an M/M/s Model

We consider a single queue with a Poisson arrival process with rate λ = 50 calls per hour, exponential
service times with rate µ = 2, and s = 26 agents. There are no abandonments. To approximate a steady-state
regime, we set each replication as a day of 1000 hours. In the simulations used to evaluate the predictors,
we found an average queue length of 18.9 customers, a delay probability of 77.8%, and a conditional
average waiting time of 1760 seconds for the customers that entered the queue. In steady-state over an
infinite horizon, for comparison, the average queue length is 19.6 customers, and the conditional average
waiting time for customers that wait is 1800 seconds.

The NI predictor returns a constant which is the expected waiting time of a customer that enters the
queue. We include the QL predictor in this comparison, because it is applicable in this single queue
example. We test a variant of RS where the input is only q (the number of customers already in queue).
We also test a variant of ANN to which we give the same inputs as the QL predictor, that is, the queue
length q, and the constant inputs µ and s. These variants are named RS(q) and ANN(q,µ,s), respectively.

Table 1: The ASE on the M/M/s model.

Result NI QL LES RS RS(q) ANN ANN(q,µ,s)
ASE 3030363 118417 123587 117982 117952 118503 117753

Table 1 shows the ASE obtained for each predictor. The accuracies of QL, RS and ANN (including the
variants) are quite comparable, with less than 1% difference. The good results of RS(q) and ANN(q,µ,s)
show that the QL predictor function can be learned with machine learning methods. LES has a noticeably
higher ASE, by about 4.6%. NI performs much worse, as expected, and this confirms that using state-
dependent predictors is worthwhile.

4.2 Experiments with the N-model

We now consider an N-model call center with 2 call types and 2 agent groups, where the groups have skill
sets S1 = {1} and S2 = {1,2}. Group 1 can serve only calls of type 1, and group 2 can serve all calls. A
day is divided into P = 10 periods of 1 hour. The arrival processes are Poisson with constant rate in each
period. All service times and patience times are exponential and independent. We use a priority routing
policy (Chan, Koole, and L’Ecuyer 2014) that works as follows. For a call of type 1, the router will first
try to match it with an idle agent of group 1. If there is no such free agent, then the router will try to
assign it to an idle agent of group 2. Agents of group 2 always give first priority to calls of type 2, even if
some calls of type 1 have waited longer. Thus, calls of the same type are first-come first-served, but calls
of different types may be served in different orders.

We compare the LES, RS and ANN predictors. We do not include QL because it is not directly
applicable (there is no formula) in the multi-skill context. The input for RS and ANN is xxx = (t,q,rrr) for
both call types, where rrr is a vector of length 1. We also consider variants of RS and ANN where the size
of the secondary queue (the input rrr) is removed from the predictor input. We name these variants RS(t,q)
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and ANN(t,q). In each case, we report the ASE for call type 1, call type 2, and aggregated over the two
types.

4.2.1 An N-model with short queues

Our first N-model example is a case with short queues. For calls of type 1, the vector of arrival rates
(per period) are λ1 = (16,20,28,30,35,45,40,30,20,15) per hour, the mean service time is µ

−1
1 = 20

minutes, and the mean patience time is ν
−1
1 = 25 minutes. For type 2, the arrival rates are λ2 =

(20,32,40,50,60,50,40,35,30,20) per hour, the mean service time is µ
−1
2 = 10 minutes, and the mean

patience time is ν
−1
2 = 20 minutes. The staffing vectors (per period) are s1 = (3,5,8,8,9,10,9,6,5,5) and

s2 = (4,6,8,10,9,9,8,8,6,5).
The performance measures aggregated over all periods are as follows. For call type 1, there is an

average of 1.6 customers in queue, the delay probability is 61%, the abandonment ratio is 14%, the average
waiting time is 211 seconds (for all customers), and the average waiting time of customers who waited
and were served was 354 seconds. For type 2, these average measures are respectively: 2.9 customers in
queue, 79% delayed, 12% abandonments, 193 seconds of wait, and 248 seconds of wait. The skill sharing
is very present: 80% of served calls of type 1 were answered by agents of group 1, whereas the other
20% were answered by agents of group 2. Although the global average waiting times (over all customers)
differ by less than 20 seconds between the 2 call types, the average waiting times for those who wait and
are served are quite different for the two types. Figure 1 shows the waiting time distribution of customers
who waited and were served, for each type. Type 1 has a longer tail and obviously a larger variance.

N-model short queues, type 1 and type2
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Figure 1: N-model with short queues: Distribution of the waiting time of customers who waited and were
served, for each type.

Table 2: The ASE for the N-model with short queues.

Call type LES RS RS(t,q) ANN ANN(t,q)
Type 1 95071 45609 46939 47011 48320
Type 2 44451 21924 22032 22414 22935
Overall 62519 30376 30922 31193 31995

Table 2 reports the ASEs. It shows that our RS and ANN predictors and their variants have an ASE
that is about half that of the LES predictor, for all call types. Thus, including or not the parameter rrr,
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N-model short queues, type 1
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Figure 2: N-model with short queues: Distribution of the prediction errors (estimate minus real delay) for
type 1 and type 2.

the length of the secondary queue, into the input xxx, has little effect on the accuracy of RS and ANN. RS
performs slightly better than ANN, for both the originals and the variants. Figure 2 gives a histogram of
the prediction error for each method (excluding the variants). We see that the LES predictor has a much
wider error distribution (large errors are more frequent), whereas RS and ANN have very similar error
distributions, for both call types.

4.2.2 An N-model with long queues

Our second N-model example will have long queues. We take larger arrival rates and patience times than
in the previous case, while keeping the staffing almost unchanged. For call type 1, the arrival rates are
λ1 = (25,34,43,48,51,57,42,34,22,18) per hour, the mean service time is µ

−1
1 = 21 minutes, and the mean

patience time is ν
−1
1 = 46.7 minutes. For type 2, the arrival rates are λ2 =(26,40,47,59,68,59,48,43,39,29)

per hour, the mean service time is µ
−1
2 = 11 minutes, and the mean patience time is ν

−1
2 = 30 minutes.

The staffing vectors are s1 = (4,6,9,10,9,9,9,8,5,5) and s2 = (4,7,9,10,9,8,7,8,6,5).
The performance measures aggregated over all periods are as follows. For call type 1, we find an

average of 9.7 customers in queue, a delay probability of 94%, an abandonment ratio of 33%, an average
waiting time of 938 seconds for all calls, and an average wait time of 1151 seconds for the calls that enter
the queue and are served. For type 2, these measures are 5.5 customers, 97% delayed, 23% abandonments,
426 seconds, and 465 seconds, respectively. In this example, 88% of the served calls of type 1 were
answered by group 1, and the other 12% were answered by group 2. Figure 3 shows that the waiting time
distributions for customers that have to wait and get served are very different between call types 1 and 2.

Table 3: The ASE for the N-model with long queues.

Call type LES RS RS(t,q) ANN ANN(t,q)
Type 1 333927 175392 180000 181200 180962
Type 2 85548 42427 43036 42923 43032
Overall 184733 95569 97776 98188 98158
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N-model long queues, type 1 and type2
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Figure 3: N-model with long queues: Distribution of the waiting time for customers who wait and get
served.
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N-model long queues, type 2
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Figure 4: N-model with long queues: Distribution of the prediction error (estimate minus real delay) for
call types 1 and 2.

By looking at the ASEs in Table 3, we find that the relative performance of the predictors is very
similar to what we saw in the previous example, with short queues. LES performs much more poorly than
all our new methods; its ASE is larger by a factor of 2. Again, RS is a little better than ANN. Adding
the parameter rrr to the input xxx improves slightly the accuracy of RS, but it has almost no impact on ANN.
Figure 4 also illustrates the largest variance of the prediction error with LES.

5 CONCLUSION

We have introduced new delay predictors for multi-skill call centers, built by using RS and ANN. In our
numerical experiments, both RS and ANN were much more accurate than the best existing strategy we
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know from the literature, which returns the waiting time of the last customer of same type that has started
service. Our predictors return a point estimate of the waiting time based on an approximation of the
conditional expectation of the waiting time conditional on the current state of the system when the customer
enters the queue. This current state is represented by the information (input) vector xxx. In our on-going and
future work, we want to develop effective methods to predict and announce not only a point estimate of
the waiting time (an estimate of the expectation), but an estimate of the entire conditional distribution of
the delay, or at least some of its quantiles.
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