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ABSTRACT

We provide a review of the state of the art on the design and implementation of random number generators
(RNGs) for simulation, on both sequential and parallel computing environments. We focus on the need for
multiple streams and substreams of random numbers, explain how they can be constructed and managed,
review software libraries that offer them, and illustrate their usefulness via examples. We also review the
basic quality criteria for good random number generators and their theoretical and empirical testing.

1 INTRODUCTION

RNGs used for simulation are deterministic algorithms that just imitate, to a certain extent, the realizations
of independent random variables having the uniform distribution over the interval (0,1) (i.i.d. U (0,1)
for short), or over a certain range of integer values (L’Ecuyer 1994, Knuth 1998, L’Ecuyer 2012). These
“random numbers” serve as the basic ingredients to simulate randomness. They are often transformed to
simulate random variables from non-uniform distributions, e.g., by applying the inverse of the cumulative
distribution function (cdf), and to simulate random vectors, stochastic processes, etc. (Devroye 1986,
Hörmann, Leydold, and Derflinger 2004, Asmussen and Glynn 2007, Law 2014).

These deterministic algorithms are much more convenient for simulation than genuinely random numbers
produced by physical devices such as thermal noise diodes, photon trajectory detectors, etc., because they
make it easy to reproduce exactly the same sequence as many times as we want. This reproducibility
is essential in many simulation applications, such as for program verification and debugging, and for
comparing similar systems with common random numbers (CRNs) to reduce the variance of the difference
in performance (L’Ecuyer 2007, L’Ecuyer 2008, Passerat-Palmbach, Mazel, and Hill 2012, Law 2014,
L’Ecuyer, Munger, and Kemerchou 2015). We want a given simulation program to produce exactly the
same results when we run it again on the same computer or a different computer, including parallel computers
with different architectures.

Multiple streams of random numbers that can evolve independently of each other are essential for
parallel simulation (L’Ecuyer et al. 2015). They are also useful for simulation on a single processor, in
particular to synchronize the random numbers when using CRNs to compare systems with slightly different
configurations or different decision making policies (L’Ecuyer et al. 2002, L’Ecuyer 2007, Law 2014), to
make sure that exactly the same random numbers are used for exactly the same purpose in all configurations
or for all policies. Typically, one wishes to perform say n independent replications of each configuration,
with CRNs across configurations. It is then convenient to have streams divided into segments of equal
length called substreams, as in L’Ecuyer and Côté (1991) and L’Ecuyer et al. (2002). One can use a
separate stream for each source of random numbers needed in the system, and one different substream for
each replication.
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The easiest (and usual) way to provide such streams and ensure reproducibility is via a central monitor
that creates and manages the streams. Reliable software to do that has been available for several years; for
example RngStreams (L’Ecuyer et al. 2002) and SSJ (L’Ecuyer 2008). This software was designed mainly
for simulation over a sequential computer with a single processor, but it can also be used directly in a parallel
processing environment, provided that only the (single) central monitor is allowed to create new streams.
Karl et al. (2014) show how to use RngStreams without change in both OpenMP and MPI, which are
the most popular parallel programming standards for shared memory and message-passing environments,
respectively.

Graphical processing units (GPUs) are special computing devices originally designed for image-
rendering on computer screens. In recent years, we saw an increasing interest for their usage to accelerate
computations at low-cost for other applications, including scientific computing and simulation. GPUs
execute groups of (typically 32 or 64) parallel threads (or work items) in a single instruction multiple data
(SIMD) mode, which means that all the threads in each group must execute exactly the same instructions
in parallel at each time step, on an array of data. The reason for this restriction is to reduce the work (and
time) required for task scheduling. Moreover, each thread has fast access to only a small amount of private
memory. These restrictions must be taken into account in the design of algorithms that run on such devices.
In particular, the most popular RNGs currently available have been designed for a single processor with
a large memory, and many of them (such as the Mersenne twister and WELL RNGs, for example), have
a large state that requires requires significant memory space to store, which makes them inappropriate for
GPU computations in which each stream runs on a single processing element (in a single thread) at a time.
RNGs with a small state and that are appropriate for GPUs have been proposed recently.

The rest of this paper is organized as follows. In Section 2, we recall the definition of algorithmic
RNG, the requirements and selection criteria for good RNGs, and their theoretical and empirical testing.
In Section 3 we review the most popular types of RNG constructions used for simulation. In Section 4,
we explain how to make multiple streams and manage them, using a single monitor. In Section 5, we give
an example to illustrate the usefulness of multiple streams and substreams, both on a single processor and
on multiple processors.

Most of the material presented here is drawn from various earlier articles and reports from the author,
including L’Ecuyer (1990), L’Ecuyer (1994), L’Ecuyer (2012), L’Ecuyer, Munger, and Kemerchou (2015),
and L’Ecuyer et al. (2015).

2 ALGORITHMIC RNGS AND SELECTION CRITERIA

L’Ecuyer (1994) defines an algorithmic RNG as a deterministic automata with a finite set of states S (the
state space), a transition function f : S →S , an output function g : S → (0,1), and an initial state (or
seed) s0. The seed s0 can be chosen randomly or not. The state evolves according to si = f (si−1). The
output returned at step i is ui = g(si) ∈ (0,1), for i≥ 0. The sequence of states si is periodic and the period
length ρ , defined as the smallest j > 0 such that sl+ j = sl for some l ≥ 0, cannot exceed |S |, the (finite)
cardinality of the state space. Well-designed RNGs usually have l = 0 and ρ close to 2k ≥ |S |, where k
is the number of bits used to represent the state.

Quality criteria for RNGs include high running speed, long period (e.g., 2200 or more), exact repeatability
on various computing platforms, ease of implementation in a platform-independent way, and the availability
of an efficient method to split the sequence into long disjoint streams and to jump quickly between them.
An even more important requirement is for successive output values to behave as independent U (0,1)
random variables. This can be approximated as follows: If we select the seed s0 randomly and uniformly
over S , the s-dimensional vector u0,s = (u0, . . . ,us−1) should have (approximately) the uniform distribution
over (0,1)s, for any s > 0. But in fact, this vector has exactly the uniform distribution over the finite set

Ψs = {(u0, . . . ,us−1) = (g(s0), . . . ,g(ss−1)) : s0 ∈S }.
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From this perspective, we want Ψs to cover the unit hypercube (0,1)s as evenly as possible, in some sense.
Good RNGs are usually constructed based on a mathematical analysis of this uniformity, which is measured
by a figure of merit that can be computed efficiently even when S is huge. These measures depend on
the structure of the RNG; they include the spectral test and measures of equidistribution (Knuth 1998,
L’Ecuyer and Panneton 2009, L’Ecuyer 2012). A larger Ψs (larger S ) can potentially cover (0,1)s more
evenly, but a large S and large period are not sufficient for high quality. A large S (and large state) also
has drawbacks: it requires more memory to store and manipulate the state, and more overhead to compute
the starting points of multiple streams and to copy their states. On GPU devices, this can be unacceptable.

After an appropriate mathematical analysis of the period and multivariate structure, a proposed RNG
should be submitted to empirical statistical tests of uniformity and independence (Knuth 1998, L’Ecuyer and
Simard 2007). As an example of a statistical test, one can partition the unit hypercube (0,1)s into k = 2ds

subcubes of equal size, for some integers s and d, then generate n points (vectors) u = (u0, . . . ,us−1), check
in what subcube each vector falls, and count the number of times C a point falls in a subcube in which
another point already fell previously. When n is large and n2/(2k) is not too large, under the null hypothesis
H0 that the RNG produces independent U (0,1) random variables (so the points are truly uniform and
independent), this random variable C has approximately a Poisson distribution with mean λ = n2/(2k)
(L’Ecuyer, Simard, and Wegenkittl 2002). To test if an observed number c of collisions “agrees” with
this theoretical distribution, one can compute the right and left p-values, defined as p+ = P[X ≥ c] and
p− = P[X ≤ c] where X is a Poisson random variable with mean λ . If one of those is very small, for
example less than 10−10 or less than 10−15 as in L’Ecuyer and Simard (2007), we have found evidence
against H0. A very small p+ indicates a lack of uniformity (too many collision), whereas a very small p−

indicates excessive uniformity, which means a lack of independence (two few collisions). In either case, the
RNG fails the test. This test can actually be repeated r times independently, i.e., on disjoint segments of the
RNG cycle, and the empirical distribution of the r realizations of C can be compared with the Poisson(λ )
distribution via some goodness-of-fit test, which also produces a p-value. This is a two-level test.

This collision test is only an example; there is in fact an unlimited number of ways of defining a
statistical test for RNGs. Each test computes a p-value, and the RNG can be declared to fail the test
when this p-value is much too close to 0 or 1. When the distribution of the test statistic under H0 is not
continuous, we can distinguish the positive and negative p-values, as we did above. When the p-value is
small but not extremely small, e.g., around 10−3 to 10−8, we can just repeat the test with a different and
larger segment of the cycle, until the result is clear.

The TestU01 software (L’Ecuyer and Simard 2007) contains the most extensive collection of statistical
tests currently available for RNGs. Aside from the long list of individual tests that can be parameterized
at will, it offers predefined batteries of tests called SmallCrush, Crush, BigCrush, and Rabbit, which are
very popular. RNGs that pass the three Crush batteries are called Crush-resistant (Salmon et al. 2011).
These Crush batteries are for sequences of real numbers in (0,1) that are supposed to imitate i.i.d. U (0,1)
random variables, whereas Rabbit tests binary sequences which are assumed to be independent random
bits.

Of course, one can only apply a finite and small number of tests in practice, and this can never prove that
a RNG is flawless. We think that theoretical tests that measure the uniformity by studying the mathematical
structure are more important than empirical tests, when they can be applied.

3 POPULAR TYPES OF RNGS FOR SIMULATION

3.1 Linear RNGs

The most common RNGs used for simulation have a state that evolves according to a linear recurrence
modulo some integer m ≥ 2 (L’Ecuyer 1990, Niederreiter 1992, L’Ecuyer 1994, Knuth 1998, L’Ecuyer
2012): The state at step i can be represented as a k-dimensional vector xi = (xi,0, . . . ,xi,k−1)

T with components
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in Zm = {0,1, . . . ,m−1} and the transition function f is defined by

xi = Axi−1 mod m, (1)

where A is a k×k matrix with elements in Zm. The largest period that can be obtained by this construction
is mk− 1: all mk possible vectors x ∈ Zk

m except the zero vector x = 0 are visited exactly once over a
cycle. This occurs if and only if m is a prime number, so Zm can be identified with the finite field Fm
with m elements, and the characteristic polynomial of A is a primitive polynomial over Fm. The most
popular linear constructions satisfy these conditions. The matrix A is also selected in a way that a very
fast implementation of (1) is available (i.e., with very few elementary operations on a computer). For this
reason, A is usually a sparse matrix. Typical values of m are m = 2 (so we work in binary arithmetic,
which can be very fast), and prime numbers slightly smaller than 231 (for 32-bit integer arithmetic) or than
263 (for 64-bit arithmetic). Below, we will discuss those two situations separately.

Given the linear recurrence (1), if k is not too large, one can quickly jump ahead by ν steps, from xi
to xi+ν , for an arbitrarily large positive integer ν , via the simple matrix-vector multiplication

xi+ν = (Aν mod m)xi mod m, (2)

where Aν mod m can be precomputed in advance (L’Ecuyer 1990, L’Ecuyer 2012, L’Ecuyer et al. 2002).
This is very handy to compute the initial states of successive “disjoint” streams of random numbers that
start ν steps apart in the original sequence, for some ν ≥ 2100, for example.

One must also define the output function g, which in the linear case takes the following form:

yi = Bxi mod m, (3)

ui =
w

∑
`=1

yi,`−1m−` (4)

in which yi = (yi,0, . . . ,yi,w−1)
T ∈ Zw

m for some integer w ≥ 1, B is a w× k matrix over Zm, ` ≥ 1 is an
integer, and ui ∈ [0,1) is the output at step i. In practice, the output function is modified slightly to make
sure it never returns 0, e.g., by adding by adding (2m)−w. Typical values of ` are `= 31 or 32 or 64 when
m = 2 and `= 1 when m is large.

3.2 Linear Recurrences Modulo 2

Most of the fastest RNGs for simulation are linear modulo 2 (i.e., over F2). This includes the linear feedback
shift register (LFSR) generator, generalized feedback shift register (GFSR), twisted GFSR, Mersenne twister
(MT), WELL generators, xorshift generators, shift registers in lookup tables (LUT-SR), and combinations of
these; see L’Ecuyer (1996b), Matsumoto and Nishimura (1998), L’Ecuyer (1999b), Panneton et al. (2006),
L’Ecuyer and Panneton (2009), L’Ecuyer (2012), Thomas and Luk (2013). The maximal period is 2k−1.
The matrices A and B usually represent simple operations on blocks of bits such as AND, OR, exclusive-OR,
shift, rotation, etc., that are fast to execute. They are also selected so that the sets Ψs have good uniformity
over some range of values of s. The uniformity is evaluated by verifying the equidistribution of the points
over a collection of dyadic rectangular boxes (L’Ecuyer 1996b, L’Ecuyer 1999b, L’Ecuyer and Panneton
2009). This is achieved efficiently (without generating the points) by exploiting the linear structure.

F2-linear RNGs have the property (among others) that for any given bit of the output, say for bit `, the
sequence {yi,l, i≥ 0} follows a linear recurrence or order k with the same characteristic polynomial as A.
This linear behavior in the output is easily detected by a statistical test that measures the linear complexity
of this binary sequence, by computing the shortest order of a recurrence that this sequence obeys. Since the
Crush and Rabbit batteries in TestU01 contain such tests, none of the F2-linear RNGs is Crush-resistant,
because they all fail this linear complexity test. They also fail tests on the rank of “random” binary matrices
constructed with blocks of successive bits from the RNGs (also included in BigCrush), due to the linear
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relationships between those bits. Nevertheless, these RNGs are still appropriate and safe when the linear
relationship between the bits has no impact (e.g., when the bits are transformed nonlinearly to produce the
output), which is the case for most applications

Notable instances of large F2-linear RNGs that can be recommended include the Mersenne twister
(MT) MT19937 (Matsumoto and Nishimura 1998) and the WELL generators (Panneton, L’Ecuyer, and
Matsumoto 2006). They both have implementations with a primitive polynomial of order k = 19937. The
WELL also has implementations for other values of k, smaller and larger, up to k = 44497. The WELL
RNGs have been designed as an improvement over the MT. They change more bits of the state at each
iteration and their state moves more rapidly (in some sense) in the state space. See Panneton, L’Ecuyer,
and Matsumoto (2006) for further explanations. These RNGs use very large values of k, so they have an
extremely large period, but also a large state (k bits), much too large than necessary. This makes them
inconvenient for GPUs, in particular, because the state occupies way too much memory. Such a very large
k also makes the jumping-ahead via (2) very slow (Haramoto et al. 2008).

If we combine two or more F2-linear RNGs via a bitwise xor of their output vectors yi, the resulting
output sequence is equivalent to that of another F2-linear RNG whose characteristic polynomial is the
product of those of the components. Its period can equal the product of the periods of the components, if
the latter have no common factor. The measures of equidistribution can be computed in a similar way as in
the single-component case. This provides an effective way to construct RNGs with much larger periods and
better behaved point sets Ψs than their components (L’Ecuyer and Panneton 2009), and whose recurrence
can be implemented by implementing the recurrences of the (smaller) components separately. This can
be efficient because the components can have much smaller values of k. Specific instances that can be
recommended are LFRS113 and LFSR258, two combined LFSR generators proposed by L’Ecuyer (1999b),
with period lengths near 2113 and 2258, respectively. Efficient implementations with multiple streams and
substreams are easily done; are available for LFSR113 in L’Ecuyer (2008) and L’Ecuyer, Munger, and
Kemerchou (2015).

3.3 Linear Recurrences Modulo m > 2

When m is large, we often use a recurrence of the form

xi = (a1xi−1 + · · ·+akxi−k) mod m, (5)

for some coefficients a1, . . . ,ak in Zm, with ak 6= 0. This can be written as (1) if we take xi = (xi−k+1, . . . ,xi)
T

and

A =


0 1 · · · 0
...

. . .
...

0 0 · · · 1
ak ak−1 · · · a1

 .

Taking w = 1 gives the output ui = xi/m. This is known as a multiple recursive generator (MRG). For
k = 1, it gives the now obsolete linear congruential generator (LCG), whose period much too small for
current computers and applications. All popular LCGs from the past fail the BigCrush battery. Taking k
too large, on the other hand, makes the state too large and reduces efficiency (to store and copy the state,
to jump ahead, etc.). In practice, one would take for example ui = (xi +1)/(m+1) or ui = (xi +1/2)/m,
to avoid returning 0. This has no impact on the period and affects only marginally the structure of the
point sets Ψs.

The uniformity of Ψs is typically measured via the spectral test, which exploits the fact that Ψs has a
lattice structure and measures the distance between successive equidistant parallel hyperplanes that contains
all the points of Ψs (L’Ecuyer and Couture 1997, Knuth 1998, L’Ecuyer 1999a). We want this distance to
be small and we usually transform it to a normalized figure of merit by dividing the best possible value
(or a lower bound) by the actual distance.
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The multipliers a j are selected so that (5) is fast to compute. For example, one may take many of them
equal to 0, some equal to±1, several equal to the same constant a, etc. But such over-simplification can lead
to bad generators (L’Ecuyer 1997, L’Ecuyer and Simard 1999, L’Ecuyer 2012, L’Ecuyer and Simard 2014).
For example, the lagged-Fibonacci RNG, and its variants the add-with-carry and subtract-with-borrow
generators have only two nonzero coefficients, say ar and ak, both equal to ±1. As a result, their output
vectors the form (ui,ui−r,ui−k) all lie in only two parallel planes in the unit cube [0,1)3 (Couture and
L’Ecuyer 1994, L’Ecuyer 1997). These generators fail several statistical tests (L’Ecuyer and Simard 2007)
and give totally incorrect results in certain types of simulations (Couture and L’Ecuyer 1994).

Combining two (or more) MRGs with the same order k but different prime moduli, say m1 and m2, by
adding the outputs modulo 1, gives another MRG whose recurrence is modulo m = m1m2; see L’Ecuyer
(1996a). Since m is not prime, the period cannot be mk− 1, but it can reach (mk− 1)/2. The spectral
test can be applied as usual. This combination technique provides a way of constructing fast and good
quality RNGs by selecting components that allow a fast implementation and for which the recurrence of the
combined MRG has good uniformity properties. L’Ecuyer (1988), L’Ecuyer and Andres (1997), L’Ecuyer
(1999a), L’Ecuyer and Touzin (2000), L’Ecuyer and Simard (2007) offer several specific constructions of
this type. They include MRG32k3a and MRG31k3p, which are Crush-resistant and come with multiple
streams and substreams (L’Ecuyer 1999a, L’Ecuyer 2008, L’Ecuyer et al. 2002, L’Ecuyer, Munger, and
Kemerchou 2015).

3.4 Nonlinear RNGs

A nonlinear RNG can be obtained conveniently by combining two linear RNGs of different types, such as
an MRG with large modulus with an F2-linear RNG. For this specific type of combination, L’Ecuyer and
Granger-Piché (2003) derive theoretical results that provide bounds on the uniformity of Ψs. For the other
types of nonlinear RNGs that are currently available, uniformity measures in more than one dimension are
not available and appear hard to obtain. Their statistical quality can be assessed only by empirical tests.

The xorgen generators of Brent (2007) use a combination as in L’Ecuyer and Granger-Piché (2003);
They combine a fast long-period F2-linear xorshift generator (Panneton and L’Ecuyer 2005, Brent 2007)
with an additive Weyl sequence. Although the components do not have good high-dimensional uniformity,
the combination is Crush-resistant. This RNG is competitive with the best F2-linear generators in terms of
speed and period length, and does better in empirical tests.

In general, nonlinear RNGs can be constructed by taking either f or g (or both) as a nonlinear function
(L’Ecuyer 1994). For example, proposals have been made in which f is a quadratic or cubic or inversive
recurrence instead of a linear one (L’Ecuyer 1994, L’Ecuyer and Hellekalek 1998). They tend to be slow.
Marsaglia (1985) proposed an interesting class of multiplicative lagged Fibonacci generators, which use a
recurrence similar to (5), with only two nonzero coefficients a j both equal to 1, and in which additions are
replaced by multiplications. They perform very well in statistical tests (L’Ecuyer and Simard 2007).

As a general rule, either f or g must perform a sufficient amount of work to transform the state onto
the next one or into the output, so that successive output values have no easily detectable dependence. For
the most common RNGs, most of the transformation is done by f , while g does very little. The RNGs
discussed in the next subsection do the extreme opposite: almost all the work is done by g.

3.5 Counter-Based RNGs

In counter-based RNGs (Hellekalek and Wegenkittl 2003, L’Ecuyer and Simard 2007, Salmon et al. 2011,
Tzeng and Wei 2008, Zafar et al. 2010), f simply increments a counter: the state at step i is the counter
i, so f (i) = i+1. The output function g must do more work. It can be taken as a bijective block cipher
encryption algorithm such as the advanced encryption standard (AES), the secure hash algorithm (SHA),
the tiny encryption algorithm (TEA), MD5, ChaCha, Threefish, etc. (Claessen and Pałka 2013, L’Ecuyer
and Simard 2007, Neves and Araujo 2012, Phillips et al. 2011, Salmon et al. 2011, Tzeng and Wei 2008,
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Zafar et al. 2010). One advantage: it is trivial to jump ahead or backward to any given position in the
sequence. These output values can then be generated in any order and are easy to replicate, It is also easy
to split the sequence into long disjoint streams. When g is a bijection, the period is 2k where k is the
number of bits used to represent the counter. Typically, k is selected as a multiple of 32, for example 128 or
256. These RNGs are generally slower than popular RNGs when implemented in software, but simplified
versions that are good enough for many simulation applications are practically as fast. Salmon et al. (2011)
propose counter-based RNGs based on simplified (faster) versions of the AES and Threefish algorithms,
named ARS and Threefry, and a new counter-based method called Philox. These RNGs were designed to
be Crush-resistant. But no theoretical analysis of the uniformity of their point sets Ψs is available.

4 IMPLEMENTATION OF MULTIPLE STREAMS

4.1 Making and Managing Multiple Streams

The most common way to create and manage multiple streams of random numbers is by using a single
central monitor, which creates the streams in a well-defined order and transfers them to the software entities
that require them. This mechanism works in the same way for computations on one or many processors.
Multiple streams are typically constructed by splitting a single RNG sequence into long subsequences, by
computing starting points that are sufficiently far from each other. If successive streams start at ν steps
from each other, to compute the starting point of the next stream from that of the current stream, one needs
a function that can compute quickly xi+ν from xi. We have seen how to do that for linear recurrences.

The distance ν between streams is typically large and fixed (e.g., ν = 2127 in RngStreams). But users
sometimes want to select a specific value of ν for a given application. This can be useful for example to
ensure that a parallel version of a program gives the same results as a sequential version that uses just a
single stream. Bradley et al. (2011) propose a tool that allows efficient jump-ahead for arbitrary ν , for
the MRG32k3a RNG. Their implementation precomputes several powers of the matrix A mod m, which
are used to compute Aνx mod m for any arbitrary ν > 0 and vector x, by writing Aν mod m as a sum of
powers that have been precomputed.

In some libraries such as RngStreams, clRNG, and SSJ (L’Ecuyer et al. 2002, L’Ecuyer 2008, L’Ecuyer,
Munger, and Kemerchou 2015), each stream is also divided into substreams. When comparing similar
systems, each simulation run uses a new substream. After each run, all the streams are advanced to their
next substream. An example of this will be given in Section 5.

Adaptations of RngStreams are proposed in various software tools such as Arena, Automod, Simul8,
Inosim, SAS, Matlab, R (in the parallel package), etc. Examples of how to use it directly for parallel
programming in OpenMP and in MPI (two popular parallel programming interfaces) are given by Karl
et al. (2014).

Another approach to produce multiple streams uses a different RNG or a different set of RNG parameters
for each stream (Mascagni and Srinivasan 2000, Saito and Matsumoto 2013). This is generally much less
convenient than using the same RNG (and same code) for all streams, for many reasons (L’Ecuyer et al.
2015). One exception is a counter-based RNG parameterized by an encoding key in addition to the counter
(which represents the state). Under the assumption that block ciphers are safe, any encoding key is as good
as any other, and one can obtain “independent” streams simply by selecting a different encoding key for
each stream. This assumption is not proven but seems a reasonable heuristic. Multiple streams can also be
obtained easily by jumping ahead with the counter.

4.2 Multiple Streams for Vectorized Computing

The Vector Statistical Library (VSL) in the Intel Math Kernel Library (MKL) offers fast vectorized functions
that exploit the single-instruction multiple-data (SIMD) facilities available in recent Intel processors (Intel
Corporation 2015, Chapter 9). Eight different base RNGs are available. There are good ones and bad ones.
One can have multiple streams of random numbers, but the user must provide the seed of each stream
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explicitly. Functions to jump ahead by ν positions in the sequence are available for some of the RNGs.
They are not available for the two MT generators MT19937 and SFMT19937 that are included, because
jumping ahead is too slow for those, due to the huge state.

Barash and Shchur (2013) have proposed RNGSSELIB, for the same type of hardware and computing,
in Fortran and C. It contains MGR32k3a (L’Ecuyer 1999a), LFSR113 (L’Ecuyer 1999b), MT19937
(Matsumoto and Nishimura 1998), and other RNGs named GL and GQ. Facilities are provided to jump
ahead in the sequence, using essentially the same algorithms as in L’Ecuyer et al. (2002), L’Ecuyer (2008).

Matlab provides multiple streams of random numbers, arrays of streams, and functions to fill an array
of random numbers from any stream. The streams are numbered from 1 to N for some integer N. Six type
of RNGs are available, including MRG32k3a and a multiplicative lagged Fibonacci, which are the most
recommendable for multiple streams.

4.3 Multiple Streams for GPUs

The cuRAND library (NVIDIA 2015) offers facilities for random number generation in CUDA, which is
a C-type programming toolkit for NVIDIA GPUs. It provides 5 types of RNGs: XORWOW, MRG32k3a,
MTGP32, PHILOX4 32 10, MT19937. XORWOW has poor quality, but the other ones are reasonably
good. One can create multiple streams from each type, but the maximum number of streams is limited.
The user can set the seed of any stream by passing a 64-bit integer (then the spacing between the streams
is unknown) or have starting points that are regularly spaced by a fixed amount that depends on the RNG.
Random numbers can be generated and consumed either on the host computer or on the GPU device.

Barash and Shchur (2014) propose PRAND, with selected RNGs implemented for both CPU and GPU
usage, in Fortran, Cuda, and C with streaming SIMD extensions for improved performance. It is similar
to RNGSSELIB, but also covers GPUs.

L’Ecuyer, Munger, and Kemerchou (2015) propose clRNG, which includes various types of RNGs, all
with arbitrary numbers of streams and substreams, as in RngStreams, but specially designed for the OpenCL
parallel programming environment. The streams are created by a single monitor on the host computer, but
the random numbers can be generated either on the host or on the device (e.g., on a GPU device). Each
thread (or work item) can use several streams at the same time. The generated numbers can be integers or
U (0,1) in float or in double. It can be found at http://simul.iro.umontreal.ca/clrng.

5 MULTIPLE STREAMS FOR COMPARING SYSTEMS: AN EXAMPLE

5.1 Multiple Streams in SSJ

In the rng package of SSJ (in Java) (L’Ecuyer 2008), stream objects (of type RandomStream) can be
created in practically unlimited number, from various base RNGs. Each choice of base RNG is implemented
in a different class, and a new stream is created by invoking the constructor of the class. Each stream
is further partitioned into substreams. Each stream g has an initial state Ig for the stream, an initial state
Bg for the current substream, and a current state Cg. At creation, one has Cg = Bg = Ig. This initial state
is computed by the monitor at creation and is Z steps ahead of the initial state of the previously created
stream. Each time a random number is generated from this stream, the current state Cg moves ahead
by one position. The method resetStartSubstream resets Cg to Bg (it rewinds the stream to the
beginning of its current substream). The method resetNextSubstream computes the state that is W
steps ahead of Bg and resets both Cg and Bg to this new state (this is the beginning of the next substream).
The method resetStartStream resets both Cg and Bg to Ig (it rewinds the stream to the beginning of
its first substream). The values of Z and W depend on the base RNG. For MRG32k3a, for example, the
streams have length Z = 2127 and the substreams have length W = 276. To illustrate the usefulness of these
tools and of multiple streams and substreams for simulation, we now give a small example taken from the
documentation of SSJ.

http://simul.iro.umontreal.ca/clrng
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5.2 An Inventory Example

We consider a simple inventory model where the demands for a given product on successive days are
independent Poisson random variables with mean λ . If X j is the stock level at the beginning of day j and
D j is the demand on that day, then there are min(D j,X j) sales, max(0,D j−X j) lost sales, and the stock at
the end of the day is Yj = max(0,X j−D j). Suppose there is a revenue c for each sale and a cost h for each
unsold item at the end of the day. The inventory is controlled using a (s,S) policy: If Yj < s, order S−Yj
items, otherwise do not order. When an order is made, it arrives for the next morning with probability p,
otherwise a new order must be made for the next day. When an order arrives, we pay a fixed cost K plus
a marginal cost of k per item. The stock at the beginning of the first day is X0 = S.

We want to estimate the expected profit for a period of m days, and compare these estimates across
several values of (s,S). For this, we simulate m days, replicate this n times independently, and compute
the average profit per day per replication, for each pair (s,S) of interest, It is well-known that to reduce the
variance of the difference of average profits between values of (s,S) it is better to use well-synchronized
common random numbers across these values (Law 2014). This means using the same random numbers
to generate the demand for each day, and to decide whether each order arrives or not, across all values of
(s,S).

Listing 1: Comparing two inventory policies with IRNs and CRNs

RandomStream streamDemand = new MRG32k3a();
RandomStream streamOrder = new MRG32k3a();
RandomVariateGenInt genDemand = new PoissonGen (streamDemand, new PoissonDist (lambda));
Tally statDiff = new Tally ("statistics on difference");

// Simulates system for m days with the (s,S) policy; returns average profit per day.
public double simulateOneRun (int m, int s, int S, ) {

int Xj = S, Yj; // Stock in the morning and in the evening.
double profit = 0.0; // Cumulated profit.
for (int j = 0; j < m; j++) {

Yj = Xj - genDemand.nextInt(); // Subtract demand for the day.
if (Yj < 0) Yj = 0; // Lost demand.
profit += c * (Xj - Yj) - h * Yj;
if ((Yj < s) && (streamOrder.nextDouble() < p)) {

// We have a successful order.
profit -= K + k * (S - Yj);
Xj = S;

} else
Xj = Yj;

}
return profit / m;

}

// Estimate the difference based on n runs with independent random numbers.
public void simulateDiffIRN (int n, int m, int s1, int S1, int s2, int S2) {

statDiff.init();
for (int i = 0; i < n; i++) {

double value1 = simulateOneRun (m, s1, S1);
double value2 = simulateOneRun (m, s2, S2);
statDiff.add (value2 - value1);

}
statDiff.report ();

}
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// Estimate the difference based on n runs with common random numbers.
public void simulateDiffCRN (int n, int m, int s1, int S1, int s2, int S2) {

statDiff.init();
streamDemand.resetStartStream();
streamOrder.resetStartStream();
for (int i = 0; i < n; i++) {

double value1 = simulateOneRun (m, s1, S1);
streamDemand.resetStartSubstream();
streamOrder.resetStartSubstream();
double value2 = simulateOneRun (m, s2, S2);
statDiff.add (value2 - value1);
streamDemand.resetNextSubstream();
streamOrder.resetNextSubstream();

}
statDiff.report ();

}

Listing1 shows Java code that does that for two policies. The method simulateOneRun simulates
the model for m days with a given policy (s,S) and returns the average profit. It uses two RandomStream
objects: streamDemand is used to generate the demands from the Poisson distribution on successive
day, and streamOrder is used to decide if the order arrives (with probability p) each time an order is
made. To generate the demands, we construct a Poisson generator genDemand (this precomputes a set
of tables) and use it to generate one value every day.

The method simulateDiffIRN simulates n runs for the two policies (s1,S1) and (s2,S2), with
independent random numbers across those policies. It computes the difference of profits for each run,
collect these n differences in the statistical collector statDiff, then estimate the expected difference
in average daily profits between the two policies, computes a confidence interval on this difference, and
reports the results.

The method simulateDiffCRN does the same, but using common random numbers across the two
policies for each pair of simulation runs. After running the simulation with policy (s1,S1), the two streams
are rewind to the start of their current substream, so that they produce exactly the same sequence of random
numbers when the simulation is run with policy (s2,S2). The difference in profits is given to the statistical
collector statDiff as before and the two streams are reset to a new substream for the next pair of
simulations (the next run). By resetting the streams to new substreams, we make sure than we start at
the same point for the two policies for the next run, for each stream, even if one stream has produced a
different number of values (and ended at a different position) for Policy 1 than for Policy 2 in the previous
run.

In this example, we generate one random number to decide if the order arrives only on the days where
we make an order, and these days depend on the policy, even if the demands are the same for both policies.
If we were using a single stream for both the demands and orders, a random number used to decide if the
order arrives in one case could end up being used to generate a demand in the other case. This would
greatly diminish the power of the CRN technology. Using two different streams as we do in Listing 1
ensures that the random numbers are used for the same purpose for the two policies.

As a numerical illustration, we tried this for n = 500, m = 2000, λ = 100, c = 2, h = 0.1, K = 10, k = 1,
p = 0.95, (s1,S1) = (80,198), and (s2,S2) = (80,200). With IRNs, we obtained an average difference
of 0.266 with a standard deviation of 1.530, and the 90.0% confidence interval (0.230, 0.302) for the
difference. With CRNs, the corresponding values were 0.315, 0.352, and (0.307, 0.324). Using CRNs here
divides the (empirical) variance of the difference by 18.85.

For this example, one may also compare P� 2 policies with CRNs. This can be done on a single
processor, or with several processors in parallel, for example using each processor to perform n2 runs for
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one policy, for a total of P∗n/n1 processors (or threads) running in parallel. See L’Ecuyer, Munger, and
Kemerchou (2015) for a code that does that with clRNG in OpenCL.

Note that much larger variance reduction factors (VRF) than here can be obtained in other situations.
In fact this factor can be arbitrarily large in some settings (L’Ecuyer and Perron 1994). For other examples
and more discussion on CRNs, see L’Ecuyer and Perron (1994), L’Ecuyer and Buist (2006), L’Ecuyer
(2007), Law (2014).

CRNs are commonly used for stochastic optimization via sample average optimization (Shapiro 1996,
Cez̧ik and L’Ecuyer 2008, Shapiro, Dentcheva, and Ruszczyński 2009). In that setting, one wishes to
optimize, with respect to a (vector) parameter θ , a function defined by a mathematical expectation that
depends on θ , and that one cannot compute exactly. The idea is to simulate this function n times and take
the average, conceptually at every value of θ , with CRNs across all values of θ . The expectation is replaced
by this sample average, which is optimized as a function of θ . In general, θ can be continuous in some
region of the real space and take an infinite number of values, but during the (approximate) optimization
process, the function will be evaluated only at a finite number of values of θ , with CRNs. The use of
CRNs in this context is crucial.
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Shapiro, A., D. Dentcheva, and A. Ruszczyński. 2009. Lecture on Stochastic Programming: Modeling and
Theory. Philadelphia: SIAM.

Thomas, D. B., and W. Luk. 2013. “The LUT-SR Family of Uniform Random Number Generators for
FPGA Architectures”. IEEE Transactions on Very Large Scale Integration Systems 21 (4): 761–770.

Tzeng, S., and L.-Y. Wei. 2008. “Parallel white noise generation on a GPU via cryptographic hash”. In
Proceedings of the 2008 symposium on Interactive 3D graphics and games, 79–87.

Zafar, F., M. Olano, and A. Curtis. 2010. “GPU random numbers via the tiny encryption algorithm”. In
Proceedings of the Conference on High Performance Graphics, HPG ’10, 133–141.



L’Ecuyer

AUTHOR BIOGRAPHY
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